JP2006143103A - Car body structure of rolling stock head car - Google Patents

Car body structure of rolling stock head car Download PDF

Info

Publication number
JP2006143103A
JP2006143103A JP2004338653A JP2004338653A JP2006143103A JP 2006143103 A JP2006143103 A JP 2006143103A JP 2004338653 A JP2004338653 A JP 2004338653A JP 2004338653 A JP2004338653 A JP 2004338653A JP 2006143103 A JP2006143103 A JP 2006143103A
Authority
JP
Japan
Prior art keywords
sectional area
cross
general
vehicle
passenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338653A
Other languages
Japanese (ja)
Other versions
JP4201756B2 (en
Inventor
Takao Kumagai
孝夫 熊谷
Atsushi Sano
淳 佐野
Takashi Sasaki
隆 佐々木
Yasuo Onitake
康夫 鬼武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2004338653A priority Critical patent/JP4201756B2/en
Publication of JP2006143103A publication Critical patent/JP2006143103A/en
Application granted granted Critical
Publication of JP4201756B2 publication Critical patent/JP4201756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain compatibility between high speed and comfortable passenger room space with microbarometric wave reducing performance maintained by securing the sectional area at the head of the passenger room part. <P>SOLUTION: An intermediate part 2C having a constant cross sectional area and a smaller cross sectional area than a general part 2B is provided between the leading part 2A of a car body 2 and the general part 2B. The intermediate part 2C starts in front of a passenger seat 12A located in the rear of a driver's seat 11 and at the foremost position. In the intermediate part 2C, the vehicle width is smaller than that of the general part 3B, and the height of a passage 13A of the passenger seat 12A is set substantially equal to the height of a passage 13B of a passenger seat 12B in the general part 2B. In the case of rushing into a tunnel without buffering, a change in pressure gradient of compressive wave generated by rushing has two substantially equal peaks at a fixed time interval. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高速走行する新幹線等の鉄道先頭車両の車体構造に関するものである。   The present invention relates to a vehicle body structure of a leading railway vehicle such as a Shinkansen that travels at high speed.

一般に、新幹線などの高速の鉄道車両がトンネルに突入する場合には、その先頭車両によって、トンネル内の限られた空間に存在する空気を押し込むように前記空気が圧縮される。この圧縮された空気が圧縮波となってトンネル内をほぼ音速に等しい速度で前方へ伝播される。この圧縮波はトンネルの出口に到達したときには出口で反射されるが、それの一部はパルス状の圧力波となってトンネル出口から外部へ放射される。このパルス状の圧力波を、微気圧波(トンネル微気圧波)という。この微気圧波はパルス状の圧力波で、外部へ放射されることにより、トンネルの出口付近では爆発音とともに微振動等が生じ、周辺の環境に影響を及ぼす場合がある。そのため、高速性能が要求される鉄道車両では、先頭車両の車体先頭部の形状に、いわゆる高速走行時の走行抵抗を減少させるだけでなく、前述したところのトンネルに突入した際に生じる微気圧波を低減させることができる形状とすることが必要とされる。   In general, when a high-speed railway vehicle such as a Shinkansen enters a tunnel, the air is compressed by the leading vehicle so as to push in air existing in a limited space in the tunnel. This compressed air becomes a compression wave and propagates forward in the tunnel at a speed approximately equal to the speed of sound. When this compression wave reaches the exit of the tunnel, it is reflected at the exit, but part of it is radiated from the tunnel exit to the outside as a pulsed pressure wave. This pulsed pressure wave is called a micro atmospheric pressure wave (tunnel micro atmospheric pressure wave). This micro-pressure wave is a pulse-like pressure wave, and when radiated to the outside, fine vibrations and the like are generated in the vicinity of the exit of the tunnel along with explosion sound, which may affect the surrounding environment. Therefore, in railway vehicles that require high-speed performance, the shape of the top part of the body of the leading vehicle not only reduces so-called traveling resistance during high-speed traveling, but also the micro-pressure waves generated when entering the tunnel described above. It is required to have a shape that can reduce the above.

鉄道車両がトンネル内に突入する場合に、トンネルと車両によって発生する微気圧波を分散させて低減するための鉄道先頭車両の車体形状として、車体の先端部分をやや後方に傾斜させて上方に立ち上げることにより第1段目の横断面積増加部分を形成した後、横断面積をほぼ一定に保ってほぼ水平に後方に延設した後、再びやや後方に傾斜させて上方に立ち上げることにより第2段目の横断面積増加部分を形成し、前記第1段目の横断面積/前記第2段目の横断面積の面積比が0.6以上で、前記第1段目と第2段目の横断面積増加部分の間隔を15m以上にしたものが既に知られている(例えば、特許文献1参照)。   When a railway vehicle enters the tunnel, the vehicle body shape of the leading railway vehicle is to disperse and reduce the micro-pressure waves generated by the tunnel and the vehicle. After the first stage cross-sectional area increasing portion is formed by raising, the cross-sectional area is kept substantially constant and extended rearward substantially horizontally, and then tilted slightly rearward and raised upward. Forming a cross-sectional area increasing portion of the step, and an area ratio of the cross-sectional area of the first step / the cross-sectional area of the second step is 0.6 or more, and the crossing of the first step and the second step The thing which made the space | interval of an area increase part 15 m or more is already known (for example, refer patent document 1).

しかしながら、このような構成にすると、微気圧波の低減に効果があるとしても、そのために前記第1段目と第2段目の横断面積増加部分の間隔を15m以上にする必要があり、車両の先頭部分の長さが長くなる。一方、先頭車両の長さをあまり長くすることなく、すなわち前記第1段目と第2段目の横断面積増加部分の間隔をあまり長くすることなく、微気圧波の低減効果を確保したいという要求がある。   However, with such a configuration, even if it is effective in reducing the micro-pressure wave, it is necessary to make the interval between the first step and the second step cross-sectional area increased portions 15 m or more. The length of the top part of becomes longer. On the other hand, there is a demand for ensuring the effect of reducing microscopic pressure waves without increasing the length of the leading vehicle too much, that is, without increasing the distance between the first and second steps in the cross-sectional area increasing portion. There is.

ところで、高速走行することを検討する際に、前記第1段目と第2段目の横断面積増加部分の間隔をあまり長くすることなく、微気圧波の低減効果を得られる車体形状を考える場合に、遺伝的アルゴリズム(GA:Genetic Algorithm)を、最適化設計手法として利用して開発された、微気圧波を低減させる高速鉄道車両の先頭部形状が提案されている(例えば、特許文献2,3参照)。   By the way, when considering high-speed driving, when considering a vehicle body shape that can obtain a micro-pressure wave reduction effect without increasing the interval between the first and second stage cross-sectional area increasing portions. In addition, a head shape of a high-speed railway vehicle that reduces micro-pressure waves, which was developed using a genetic algorithm (GA) as an optimization design method, has been proposed (for example, Patent Document 2). 3).

その一方、微気圧波を低減させるために、このような鉄道車両側の微気圧波対策(高速鉄道車両の先頭部形状に改良を加える)に対し、従来よりトンネル側の微気圧波対策(高速鉄道車両の先頭部形状を変更することなく、トンネル側の入口部分に改良を加える)として、トンネル入口に、断面がトンネル断面より大きく、長さがトンネル直径の1〜3倍程度の覆体(いわゆる緩衝工)の横断面積と覆体の長さとから決められた最適面積を有する開口部を1個ないし複数個設けることによって、列車がトンネルに突入するときに生じる圧縮波面の勾配をなめらかにすることが知られている(例えば、特許文献4参照)。
特開平11−321640号公報(第2頁〜第4頁、図1〜図4) 特開2004−66887号公報(段落0011〜0026及び図10) 特開2004−66888号公報(段落0025〜0034、及び図10) 特公昭55−31274号公報(第1頁〜第2頁、及び第1図)
On the other hand, in order to reduce micro-pressure waves, measures against micro-pressure waves on the railway side (additional improvements to the shape of the top part of high-speed rail vehicles) have been introduced. As an improvement to the tunnel side entrance without changing the top shape of the railway vehicle), the tunnel entrance has a cover whose cross section is larger than the tunnel cross section and whose length is about 1 to 3 times the tunnel diameter ( By providing one or a plurality of openings having an optimum area determined from the cross-sectional area of the so-called shock absorber) and the length of the cover, the gradient of the compression wave front generated when the train enters the tunnel is smoothed. It is known (see, for example, Patent Document 4).
JP-A-11-321640 (2nd to 4th pages, FIGS. 1 to 4) Japanese Patent Laying-Open No. 2004-66887 (paragraphs 0011 to 0026 and FIG. 10) Japanese Patent Laying-Open No. 2004-66888 (paragraphs 0025 to 0034 and FIG. 10) Japanese Examined Patent Publication No. 55-31274 (pages 1 and 2 and FIG. 1)

前述した特許文献1や特許文献2,3に記載の車体形状とすれば、高速鉄道車両のトンネル突入時における微気圧波低減効果は、車体形状のみで考えると、これまでの先頭車両よりも向上している。   If the vehicle body shapes described in Patent Document 1 and Patent Documents 2 and 3 described above are used, the effect of reducing micro-pressure waves when entering a tunnel of a high-speed railway vehicle is improved compared to previous leading vehicles when considering only the vehicle body shape. is doing.

しかしながら、前述した特許文献1や特許文献2,3に記載の車体形状を決定する際に、特許文献4に記載の緩衝工については全く配慮されておらず、特許文献4に記載のように、トンネル側に微気圧波低減のために緩衝工が設けられている場合には、これまでの先頭車両よりも向上しているとは必ずしもいえない。   However, when determining the vehicle body shape described in Patent Document 1 and Patent Documents 2 and 3, the shock absorber described in Patent Document 4 is not considered at all, as described in Patent Document 4, When a shock absorber is provided on the tunnel side to reduce the micro-pressure wave, it cannot necessarily be said that it is improved over the previous vehicle.

実際には高速鉄道車両が走行するトンネルの出入り口には緩衝工が設けられていたり緩衝工が設けられていなかったりし、いずれの場合でも微気圧波の低減が求められる。   Actually, a buffer work is provided at a doorway of a tunnel in which a high-speed railway vehicle travels, or a buffer work is not provided. In any case, it is required to reduce a micro-pressure wave.

ところで、高速鉄道車両の車体構造では、高速化を図れば、微気圧波への影響が大きくなるので、その影響を低減するために車体の横断面積を小さくする必要がある。しかしながら、車体の横断面積を小さくすると、それに伴って乗客座席を配置する客室空間が小さくなり、乗り心地の点で不利になる。   By the way, in the vehicle body structure of a high-speed railway vehicle, if the speed is increased, the influence on the micro-pressure wave is increased. Therefore, in order to reduce the influence, it is necessary to reduce the cross-sectional area of the vehicle body. However, if the cross-sectional area of the vehicle body is reduced, the passenger cabin space in which passenger seats are arranged is reduced accordingly, which is disadvantageous in terms of riding comfort.

そこで、発明者らは、高速鉄道車両の先頭形状において、客室部分の先頭部分での横断面積を確保して、上述した解析を実行して形状を決定すれば、微気圧波低減性能を維持した高速化と快適な客室空間の確保との両立が図れることに着想し、また、通常のトンネルだけの場合(緩衝工がない場合)であっても緩衝工を備えるトンネルの場合であっても、これまでの高速鉄道車両と同程度の微気圧波による衝撃音の低減を図るべく、鋭意研究を重ねた結果、本発明を開発するに至ったものである。   Therefore, the inventors maintained the micro-pressure wave reduction performance by securing the cross-sectional area at the head portion of the passenger compartment in the top shape of the high-speed rail vehicle and determining the shape by executing the above-described analysis. The idea is to achieve both high-speed and comfortable cabin space, and even in the case of a normal tunnel (when there is no buffer) or a tunnel with a buffer, As a result of intensive research aimed at reducing the impact sound caused by micro-pressure waves similar to those of conventional high-speed railway vehicles, the present invention has been developed.

つまり、発明者らは、
(i)車体の横断面積変化が微気圧波低減性能に影響を与える、
(ii)トンネルに突入する際に発生する圧縮波の圧力勾配が前記微気圧波低減性能を測る尺度(指標)になる、
という知見に基づき、高速鉄道車両の先頭車体について、最適な車体形状を得るために、従来までの形状設計に関する試行錯誤的な手法から、数値流体解析(CFD解析)と最適化設計手法(遺伝的アルゴリズム)を組み合わせて、乗客座席が設けられる、運転座席の後側部分については一定の大きさの横断面積を確保することを前提として、数値的に微気圧波が低減し、かつ緩衝工がないトンネルでの微気圧波低減性能と、緩衝工があるトンネルでの微気圧波低減性能との両立を図る上で最も有利な先頭車体形状について研究を進め、快適な客室空間(十分な通路高さ)を確保して、通常のトンネルだけの場合(緩衝工がない場合)であっても緩衝工を備えるトンネルの場合であっても、微気圧波による衝撃音を低減することができる高速先頭車両の車体形状を開発したものである。
In other words, the inventors
(i) The change in the cross-sectional area of the vehicle body affects the micro-pressure wave reduction performance.
(ii) The pressure gradient of the compression wave generated when entering the tunnel is a measure (index) for measuring the micro-pressure wave reduction performance.
Based on this knowledge, in order to obtain the optimum car body shape for the top car body of a high-speed railway vehicle, the conventional fluid flow design (CFD analysis) and optimization design technique (genetic Algorithm), the rear part of the driver's seat where the passenger seat is provided, and assuming that a constant cross-sectional area is secured, the micro-pressure wave is reduced numerically and there is no shock absorber We promoted research on the top car body shape that is most advantageous for achieving both the micro-pressure wave reduction performance in the tunnel and the micro-pressure wave reduction performance in the tunnel with the buffer, and comfortable cabin space (sufficient passage height) ) Ensuring high speed that can reduce the impact sound caused by micro-pressure waves, whether it is a normal tunnel only (no shock absorber) or a tunnel with a shock absorber It is those that developed the body shape of the head vehicle.

本発明は、客室部分の先頭部分での断面積を確保して、微気圧波低減性能を維持した高速化と快適な客室空間の確保との両立が図れる鉄道先頭車両の車体構造を提供することを目的とする。   The present invention provides a vehicle body structure of a railroad leading vehicle that secures a cross-sectional area at the head portion of the passenger compartment and achieves both high-speed maintaining a micro-pressure wave reduction performance and ensuring a comfortable passenger cabin space. With the goal.

請求項1の発明は、車体の横断面積が前端から後方に向かって増加する先端部分と、その先端部分の後側に配置され横断面積が最大で一様となる一般部分とを備える鉄道先頭車両の車体構造であって、前記先端部分と一般部分との間に、横断面積が一定でその横断面積が前記一般部分より小さい中間部分が設けられ、この中間部分は、運転座席の後側であって最も前側に位置する乗客座席よりも前側から開始する構成とされ、前記中間部分は、車両幅が前記一般部分の車両幅より狭く、前記乗客座席の通路高さが前記一般部分における乗客性の通路高さにほぼ等しく設定されることを特徴とする。   The invention according to claim 1 is a railway head vehicle comprising a front end portion in which the cross-sectional area of the vehicle body increases from the front end toward the rear, and a general portion that is arranged on the rear side of the front end portion and has the maximum cross-sectional area. An intermediate portion having a constant cross-sectional area and a cross-sectional area smaller than the general portion is provided between the front end portion and the general portion, and this intermediate portion is located behind the driver seat. And the intermediate portion has a vehicle width that is narrower than the vehicle width of the general portion, and the passage height of the passenger seat is of the passenger property in the general portion. It is characterized by being set approximately equal to the passage height.

このようにすれば、運転座席の後側であって最も前側に位置する乗客座席よりも前側から開始する中間部分の車両幅を、前記一般部分の車両幅より狭く設定することで、前記中間部分における乗客座席の通路高さを、前記一般部分における乗客座席の通路高さにほぼ等しく設定しているので、前記中間部分の乗客座席の乗客も、一般部分の乗客座席の乗客と同様の快適な客室空間が得られ、乗り心地が確保される。   In this way, by setting the vehicle width of the intermediate portion starting from the front side of the passenger seat located behind the driver seat at the most front side, the intermediate portion is set to be narrower than the vehicle width of the general portion. The passenger seat passage height in the general portion is set to be approximately equal to the passenger seat passage height in the general portion, so that the passenger seat passenger in the intermediate portion is as comfortable as the passenger in the general passenger seat. A cabin space is obtained and a comfortable ride is secured.

また、そのような構造とすれば、緩衝工のないトンネルに突入する場合は、その突入によって発生する圧縮波の圧力勾配の変化が、大きさのほぼ等しい2つのピークを一定時間を隔てて有するようにできるので、通常のトンネルだけの場合(緩衝工がない場合)であっても、緩衝工を備えるトンネルの場合であっても、微気圧波の低減効果を確保することができるようになる。よって、高速の鉄道先頭車両の中間部分において、快適な客室空間の確保による乗客の乗り心地と、微気圧波低減性能を維持した高速化との両立が図れる。   In addition, with such a structure, when entering a tunnel without a buffer, the change in the pressure gradient of the compression wave generated by the entry has two peaks of approximately equal magnitude separated by a certain time. As a result, it is possible to ensure the effect of reducing micro-pressure waves even in the case of a normal tunnel only (when there is no buffer work) or in the case of a tunnel equipped with a buffer work. . Therefore, in the middle part of the high-speed railway leading vehicle, it is possible to achieve both passenger comfort by securing a comfortable cabin space and high speed while maintaining the micro-pressure wave reduction performance.

その場合には、請求項2に記載のように、前記中間部分の横断面積は、前記一般部分の横断面積の70%程度の大きさとすることが望ましい。   In that case, as described in claim 2, it is desirable that the cross-sectional area of the intermediate portion is about 70% of the cross-sectional area of the general portion.

このようにすれば、中間部分において、一定数の座席を確保して、必要な通路高さとすることが可能となる。   If it does in this way, it will become possible to secure a fixed number of seats in a middle part, and to make it the required passage height.

また、請求項3に記載のように、前記中間部分において左右方向に配置される乗客座席の数は、前記一般部分に配置される乗客座席の数より左右1つずつ少ない構成とし、中間部分の車体幅を一般部分よりもせまく、いわゆるくびれた形状とすることで、中間部分での乗客座席の通路高さを、一般部分における乗客座席の通路高さにほぼ等しくすることを簡単に実現することができる。   In addition, as described in claim 3, the number of passenger seats arranged in the left-right direction in the intermediate portion is set to be one less each left and right than the number of passenger seats arranged in the general portion. By making the body width narrower than the general part, so-called constricted shape, the passenger seat passage height in the middle part can be easily made almost equal to the passenger seat passage height in the general part. Can do.

微気圧波低減効果を得るためには、請求項4に記載のように、前記先端部分が、横断面積の増加率が大きい前側断面積増加部分と、横断面積増加率が小さい後側断面積増加部分とを有し、前記前側断面積増加部分の横断面積増加率は前記後側断面積増加部分の横断面積増加率の10倍程度であることが望ましい。   In order to obtain a micro-pressure wave reduction effect, as described in claim 4, the front end portion includes a front cross-sectional area increase portion having a large cross-sectional area increase rate and a rear cross-sectional area increase having a low cross-sectional area increase rate. The cross-sectional area increase rate of the front cross-sectional area increase portion is preferably about 10 times the cross-sectional area increase rate of the rear cross-sectional area increase portion.

このためには、請求項5に記載のように、前記前側断面積増加部分は、横断面積増加率が6m2/mで、先端から0.6m程度の範囲であり、前記後側断面積増加部分は、横断面積増加率が0.6m2/mとなるようにすればよい。 For this purpose, as described in claim 5, the front cross-sectional area increase portion has a cross-sectional area increase rate of 6 m 2 / m and a range of about 0.6 m from the tip, and the rear cross-sectional area increase The portion may have a cross-sectional area increase rate of 0.6 m 2 / m.

以上に説明したように、本発明は、運転座席の後側であって最も前側に位置する乗客座席よりも前側から開始する中間部分を、車両幅が一般部分の車両幅より狭く、前記乗客座席の通路高さを前記一般部分における乗客座席の通路高さにほぼ等しくなるように設定しているので、前記中間部分の乗客座席の乗客も、一般部分の乗客座席の乗客と同様の乗り心地を確保することができる。また、そのような構造とすれば、緩衝工のないトンネルに突入する場合は、その突入によって発生する圧縮波の圧力勾配の変化が、大きさのほぼ等しい2つのピークを一定時間を隔てて有するので、通常のトンネルだけの場合(緩衝工がない場合)であっても、緩衝工を備えるトンネルの場合であっても、微気圧波の低減効果を確保することができる。よって、高速鉄道先頭車両において、快適な客室空間の確保による乗客の乗り心地と、微気圧波低減性能を維持した高速化との両立を図ることができる。   As described above, according to the present invention, the intermediate portion starting from the front side of the passenger seat located at the rear side of the driver's seat and the frontmost side has a vehicle width narrower than the vehicle width of the general portion, and the passenger seat Is set to be approximately equal to the passage height of the passenger seat in the general portion, so that passengers in the passenger seat in the intermediate portion have the same riding comfort as passengers in the passenger seat in the general portion. Can be secured. In addition, with such a structure, when entering a tunnel without a buffer, the change in the pressure gradient of the compression wave generated by the entry has two peaks of approximately equal magnitude separated by a certain time. Therefore, even in the case of only a normal tunnel (when there is no buffer work) or in the case of a tunnel equipped with a buffer work, the effect of reducing micro pressure waves can be ensured. Therefore, in the high-speed rail leading vehicle, it is possible to achieve both the passenger comfort by securing a comfortable cabin space and the high speed while maintaining the micro-pressure wave reduction performance.

以下、この発明の実施の形態を図面に沿って説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a)〜(e)はそれぞれ本発明に係る実施の形態の一例である鉄道先頭車両を示し、図1(a)は前記鉄道先頭車両の平面図、図1(b)は同側面図、図1(c)は図1(b)のC−C線における運転部の断面図、図1(d)は図1(b)のD−D線における中間部分(幅狭部)の断面図及び図1(e)は図1(b)のE−E線における一般部分の断面図である。なお、図1(c)〜(e)において、一点鎖線で車両限界を示す。   1 (a) to 1 (e) each show a railway leading vehicle as an example of an embodiment according to the present invention, FIG. 1 (a) is a plan view of the railway leading vehicle, and FIG. 1 (b) is the same side view. Fig. 1 (c) is a cross-sectional view of the operating section along line CC in Fig. 1 (b), and Fig. 1 (d) is an intermediate portion (narrow portion) along line DD in Fig. 1 (b). Sectional drawing and FIG.1 (e) are sectional drawings of the general part in the EE line | wire of FIG.1 (b). In addition, in FIG.1 (c)-(e), a vehicle limit is shown with a dashed-dotted line.

図1(a)(b)に示すように、鉄道先頭車両1は、車体2の横断面積が前端から後方に向かって車体前後方向に沿って増加する先端部分2Aと、その先端部分2Aの後側に配置され横断面積が最大で一様となる一般部分2Bとを備える。   As shown in FIGS. 1 (a) and 1 (b), a railway head vehicle 1 includes a front end portion 2A in which the cross-sectional area of the vehicle body 2 increases from the front end toward the rear along the vehicle front-rear direction, and the rear end portion 2A. And a general portion 2B which is disposed on the side and has a uniform cross-sectional area at the maximum.

先端部分2Aと一般部分2Bとの間には、横断面積が一定でその横断面積が一般部分2Bより小さい中間部分2Cが設けられている。この中間部分2Cは、運転座席11の後側であって最も前側に位置する乗客座席12Aよりも前側から開始する構成とされている。   Between the tip portion 2A and the general portion 2B, an intermediate portion 2C having a constant cross-sectional area and a smaller cross-sectional area than the general portion 2B is provided. This intermediate portion 2C is configured to start from the front side of the passenger seat 12A located at the rear side of the driver's seat 11 and at the most front side.

中間部分2Cの車両幅W1は、一般部分2Bの車両幅W2より狭く設定されている。また、中間部分2Cにおいて、乗客座席12Aの通路13Aの高さは、一般部分2Bにおける乗客座席12Bの通路13Bの高さにほぼ等しく形成されている(図1(d)(e)参照)。つまり、中間部分2Cにおいて、平面視で、車体2の形状をくびれた形状とすることで、中間部分2Cの乗客座席12Aについて必要な通路高さが確保されている。なお、このような車体形状に基づいて、中間部分2Cに対応する部分では、側梁が車体内方側に屈曲して形成されていることになる。   The vehicle width W1 of the intermediate portion 2C is set to be narrower than the vehicle width W2 of the general portion 2B. Further, in the intermediate portion 2C, the height of the passage 13A of the passenger seat 12A is formed substantially equal to the height of the passage 13B of the passenger seat 12B in the general portion 2B (see FIGS. 1D and 1E). That is, in the intermediate portion 2C, the shape of the vehicle body 2 is constricted in a plan view, so that a necessary passage height is secured for the passenger seat 12A of the intermediate portion 2C. Note that, based on such a vehicle body shape, the side beam is formed to bend inward of the vehicle body at the portion corresponding to the intermediate portion 2C.

このように、必要な通路高さ(乗客が移動する通路における天井高さ)を確保するために、中間部分2Cの横断面積は、一般部分2Bの横断面積の70%程度の大きさとされ、乗客座席を設ける部位では、微気圧波低減のために、横断面積があまり大きくならないようにされている。そして、必要な通路高さを確保するために、中間部分2Cにおいて左右方向に配置される乗客座席12Aの数は、一般部分2Bに配置される乗客座席12Bの数より2つ少なくなっている。   Thus, in order to ensure the required passage height (the ceiling height in the passage where the passenger moves), the cross-sectional area of the intermediate portion 2C is set to about 70% of the cross-sectional area of the general portion 2B. In the portion where the seat is provided, the cross-sectional area is not so large in order to reduce the micro-pressure wave. And in order to ensure a required passage height, the number of the passenger seats 12A arrange | positioned in the left-right direction in the intermediate part 2C is two less than the number of the passenger seats 12B arrange | positioned in the general part 2B.

つまり、一般部分2Bは5つの乗客座席12B(左が3つ、右が2つ)が設けられるのに対し、中間部分2Cは3つの乗客座席12A(左側に2つ、右側に1つ)が設けられ、左右1つずつ少なくなっている。そして、その乗客座席2つ分に相当するスペースは上下方向に配分され、天井高さ(通路高さ)が高くされ、一般部分1Bに荷棚14Bを設けるのと同様に荷棚14Aを設けることができる(図1(d)(e)参照)。よって、図8に示す従来例のように、(荷棚を設けることができないため)最も前側とその後側に位置する2列の乗客座席12の横に荷台101を設置する必要がなくなり、その分だけ乗客座席の数を増やすことができる。   That is, the general portion 2B is provided with five passenger seats 12B (three on the left and two on the right), whereas the intermediate portion 2C has three passenger seats 12A (two on the left and one on the right). It is provided and is reduced by one on each side. The space corresponding to the two passenger seats is distributed in the vertical direction, the ceiling height (passage height) is increased, and the cargo rack 14A is provided in the same manner as the cargo rack 14B is provided in the general portion 1B. (See FIGS. 1D and 1E). Therefore, unlike the conventional example shown in FIG. 8, it is not necessary to install the loading platform 101 next to the two rows of passenger seats 12 located on the frontmost side and the rear side (because a cargo rack cannot be provided). Only the number of passenger seats can be increased.

そして、前側断面積増加部分2Aaの後側部位に、運転室風防21が配設され、この運転室風防21が、運転室25の上側に位置し、運転座席11の上側を覆っている。運転室の後側には運転士の乗降用の回転式のドア22が設けられ、その後側に乗客の乗降用のスライド式ドア23が設けられている。また、左右のスライド式ドア23は通路24で結ばれ、この通路24が最も前側に位置する乗客座席12の前側に位置している。また、この通路24が位置する付近は、従来例では一般部分よりも天井高さが低くなっているが(図1(b)一点鎖線参照)、この実施の形態では、一般部分2Bと同様な天井高さ(通路高さ)が確保され(図1(b)実線参照)、快適な客室空間の確保を図る上で有利な構造となっている。   A driver's cab windshield 21 is disposed at the rear portion of the front sectional area increasing portion 2 </ b> Aa. The driver's cab windshield 21 is located above the driver's cab 25 and covers the driver seat 11. On the rear side of the cab, a rotary door 22 for getting on and off the driver is provided, and on the rear side, a sliding door 23 for getting on and off the passenger is provided. The left and right sliding doors 23 are connected by a passage 24, and the passage 24 is located on the front side of the passenger seat 12 located on the front side. Further, in the vicinity where the passage 24 is located, the ceiling height is lower than the general portion in the conventional example (see FIG. 1B), but in this embodiment, the same as the general portion 2B. The ceiling height (passage height) is secured (see the solid line in FIG. 1 (b)), which is an advantageous structure for ensuring a comfortable cabin space.

前述する車体形状は、従来用いられていた形状設計に関する試行錯誤的な手法ではなく、CFDと最適化設計手法(多目的遺伝的アルゴリズム)を組み合わせて、数値的に微気圧波が低減する最適先頭形状(最適横断面積分布)を求める設計技術を適用して、求めたものである。具体的な条件は次の通りである。
(i)最適化対象形状
先頭長さ16m(定員53名)の断面積分布
(ii)設計変数
図2に示すように、10個の制御点を設計変数として最適化したものである(形状表現にB−splineを使用)。なお、図2の各制御点において示す矢符は変更可能範囲を示す。また、客室について必要な横断面積を確保するために先頭から8m〜13mの範囲で3つの制御点を固定している。
(iii)評価関数
A.緩衝工なしの場合の圧力勾配(dp/dx)maxの最小化
B.10m緩衝工を有する場合の圧力勾配(dp/dx)maxの最小化
(iv)設計条件
・列車の時速330km
・列車/トンネル断面積比=0.161
最適化結果(微気圧波性能)を示す図3より、世代が進むにつれて、緩衝工がある場合も緩衝工がない場合も圧力勾配(dp/dt)が小さくなる方向に進化し、35世代付近で、ある一定のライン上に収束していることがわかる。このことは、最適化結果(従来例と同程度の微気圧波性能を確保できる最高速度に相当する現状非悪化速度)を示す図4からも確認される。
The above-mentioned body shape is not a trial and error method related to shape design that has been used in the past, but an optimal head shape that reduces the micro-pressure wave numerically by combining CFD and an optimized design method (multipurpose genetic algorithm). This is obtained by applying a design technique for obtaining (optimum cross-sectional area distribution). Specific conditions are as follows.
(i) Shape to be optimized Cross-sectional area distribution with a head length of 16m (capacity: 53 people)
(ii) Design Variable As shown in FIG. 2, 10 control points are optimized as design variables (B-spline is used for shape expression). In addition, the arrow shown in each control point of FIG. 2 shows the changeable range. Further, in order to secure a necessary cross-sectional area for the guest room, three control points are fixed in the range of 8 to 13 m from the top.
(iii) Evaluation function A. B. Minimization of pressure gradient (dp / dx) max without buffering Minimization of pressure gradient (dp / dx) max with 10m buffer
(iv) Design conditions-Train speed of 330km / h
-Train / tunnel cross-sectional area ratio = 0.161
3 shows the optimization results (microbar wave performance). As the generation progresses, the pressure gradient (dp / dt) evolves in the direction of decreasing the pressure gradient (dp / dt) with and without the buffer, and around 35 generations. Thus, it can be seen that it converges on a certain line. This is also confirmed from FIG. 4 showing the optimization result (current non-deteriorating speed corresponding to the maximum speed at which micro-pressure wave performance comparable to that of the conventional example can be secured).

前記CFDおよび最適化手法を用いて得られた、本発明に係る車体形状の実施例1〜3の横断面積分布を図5において実線L1〜L3で示すが、これを具体化したものが前記図1(a)〜(e)に示す車体形状である。なお、図5には、併せて、前記図1(b)(一点鎖線参照)及び図8に示す従来例の車体形状についての横断面積分布を一緒に示す。   The cross-sectional area distribution of Examples 1 to 3 of the vehicle body shape according to the present invention obtained by using the CFD and the optimization method is indicated by solid lines L1 to L3 in FIG. It is a vehicle body shape shown to 1 (a)-(e). FIG. 5 also shows the cross-sectional area distribution for the vehicle body shape of the conventional example shown in FIG. 1B (see the alternate long and short dash line) and FIG.

図5において、長さがおよそ16mになる先頭部分は、横断面積が車体前後方向に沿って増加する方向に変化し、横断面積が最大でほぼ10.23m2で一定になる一般部分2Bに至るようになっている。 In FIG. 5, the head portion having a length of about 16 m changes in a direction in which the cross-sectional area increases along the longitudinal direction of the vehicle body, and reaches the general portion 2B where the cross-sectional area is constant at a maximum of approximately 10.23 m 2. It is like that.

微気圧波低減の効果を得るために、先頭部分の先端部分2Aは、横断面積の増加率が大きい前側断面積増加部分2Aaと、横断面積増加率が小さい後側断面積増加部分2Abとを有し、前側断面積増加部分2Aaの横断面積増加率は6m2/mで、先端から0.6m程度の範囲であり、前記後側断面積増加部分の横断面積増加率は0.6m2/mで、先端から0.6〜7.5mの範囲である。つまり、前側断面積増加部分2Aaの横断面積増加率は後側断面積増加部分2Abの横断面積増加率の10倍程度である。ここで、横断面積増加率は、各増加部分2Aa,2Abでの横断面積の変化を直線的変化であるとみなして求めた値である。 In order to obtain the effect of reducing micro-pressure waves, the leading end portion 2A has a front cross-sectional area increase portion 2Aa having a large cross-sectional area increase rate and a rear cross-sectional area increase portion 2Ab having a low cross-sectional area increase rate. The cross-sectional area increase rate of the front cross-sectional area increased portion 2Aa is 6 m 2 / m, which is about 0.6 m from the tip, and the cross-sectional area increase rate of the rear cross-sectional area increased portion is 0.6 m 2 / m. In the range from 0.6 to 7.5 m from the tip. That is, the cross-sectional area increase rate of the front cross-sectional area increased portion 2Aa is about 10 times the cross-sectional area increase rate of the rear cross-sectional area increased portion 2Ab. Here, the cross-sectional area increase rate is a value obtained by regarding the change in the cross-sectional area at each of the increased portions 2Aa and 2Ab as a linear change.

そして、前側および後側断面積増加部分2Aa,2Abの間、後側断面積増加部分2Abと中間部分2Cとの間、中間部分2Cと一般部分2Bとの間はそれらがなめらかに連続するように接続されている。   And between the front and rear cross-sectional area increasing portions 2Aa, 2Ab, between the rear cross-sectional area increasing portion 2Ab and the intermediate portion 2C, and between the intermediate portion 2C and the general portion 2B so that they are smoothly continuous. It is connected.

このように先頭車両1の車体2の横断面積を変化させることで、後述するように、微気圧波の低減に効果がある圧縮波の圧力勾配の変化が得られる。つまり、緩衝工のないトンネルに突入する場合にその突入によって発生する圧縮波の圧力勾配の変化が、大きさのほぼ等しい2つのピークを一定時間を隔てて有することになる。   By changing the cross-sectional area of the vehicle body 2 of the leading vehicle 1 in this way, as described later, a change in the pressure gradient of the compression wave that is effective in reducing the micro-pressure wave can be obtained. That is, when a tunnel without a buffer is entered, the change in the pressure gradient of the compression wave generated by the entry has two peaks of approximately the same size with a certain time interval.

また、実施例1〜3及び従来例の車体形状で、微気圧波による影響を二次元軸対称シミュレーション解析をしてみた結果を、図6及び図7に示す。トンネルに突入する場合の解析を行ったものであるが、図6は緩衝工がない場合であり、図7は10mの緩衝工がある場合である。   6 and 7 show the results of a two-dimensional axisymmetric simulation analysis of the influence of micro atmospheric pressure on the vehicle body shapes of Examples 1 to 3 and the conventional example. FIG. 6 shows a case where there is no buffer work, and FIG. 7 shows a case where there is a 10 m buffer work.

緩衝工がない場合には、図6に示すように、微気圧波の影響の目安となる圧力勾配指数は、実施例1〜3はいずれも2つのピークを有するが、いずれのピークも従来例の最大ピークよりも低いことがわかる。一方、10m緩衝工がある場合にも、図7に示す通り、実施例1〜3は、前記圧力勾配指数が、従来例よりも小さくなることがわかる。また、他の長さの緩衝工がある場合にも、実施例1〜3は、前記圧力勾配指数が従来例より小さいか同等に、微気圧波低減効果を発揮するものと推測される。   In the case where there is no buffer work, as shown in FIG. 6, the pressure gradient index, which is a measure of the influence of the micro-pressure wave, has two peaks in each of Examples 1 to 3, but both peaks are conventional examples. It can be seen that it is lower than the maximum peak. On the other hand, even when there is a 10 m buffer, as shown in FIG. 7, in Examples 1 to 3, the pressure gradient index is smaller than that of the conventional example. In addition, even when there are other lengths of buffer work, it is presumed that Examples 1 to 3 exhibit the effect of reducing the micro-pressure wave in the same manner as the pressure gradient index is smaller than or equal to the conventional example.

よって、実施例1〜3は、通路高さを確保して、緩衝工を備えるトンネルの場合は従来例と同程度の圧力勾配指数を維持して、緩衝工がない場合には従来例よりも微気圧波の低減効果に優れる。   Therefore, Examples 1-3 ensure the passage height, maintain a pressure gradient index comparable to that of the conventional example in the case of a tunnel provided with a shock absorber, and more than the conventional example when there is no shock absorber. Excellent in reducing micro-pressure waves.

なお、中間部分2Cに乗客の乗降のためにドア23を設けているので、プラットホームとの間に乗客が落下するのを防止するために、図1(d)に一点鎖線で示すように、左右方向に水平に延びるフィン状の足載せ部材21を設けることも可能である。この場合、足載せ部材を車体2内に収納可能な構造とし、駅に到着したときにのみ足載せ部材が突出するようにすることも可能である。   In addition, since the door 23 is provided in the intermediate part 2C for passengers getting on and off, in order to prevent the passengers from falling between the platform and the left and right sides as shown by a one-dot chain line in FIG. It is also possible to provide a fin-like footrest member 21 extending horizontally in the direction. In this case, the footrest member can be stored in the vehicle body 2 so that the footrest member protrudes only when it arrives at the station.

本発明に係る実施の形態の一例である鉄道先頭車両を示し、図1(a)は前記鉄道先頭車両の平面図、図1(b)は同側面図、図1(c)は図1(b)のC−C線における運転部の断面図、図1(d)は図1(b)のD−D線における中間部分(幅狭部)の断面図及び図1(e)は図1(b)のE−E線における一般部分の断面図である。FIG. 1A is a plan view of the railway leading vehicle, FIG. 1B is a side view thereof, and FIG. 1C is FIG. FIG. 1 (d) is a cross-sectional view of an intermediate portion (narrow portion) in FIG. 1 (b), and FIG. 1 (e) is FIG. It is sectional drawing of the general part in the EE line of (b). 最適化の計算の説明図である。It is explanatory drawing of calculation of optimization. 最適化結果(微気圧波性能)を示す図である。It is a figure which shows the optimization result (micro atmospheric pressure wave performance). 最適化結果(現状非悪化速度)を示す図であるIt is a figure which shows an optimization result (current non-deteriorating speed) 先頭からの距離と車体の横断面積との関係を示す図である。It is a figure which shows the relationship between the distance from a head, and the cross-sectional area of a vehicle body. 緩衝工なしトンネルについての(微気圧波の指針となる)圧力勾配指数の解析結果を示す説明図である。It is explanatory drawing which shows the analysis result of the pressure gradient index | exponent (it becomes a guideline of a micro atmospheric pressure wave) about a tunnel without a buffer work. 10m緩衝工ありトンネルについての圧力勾配指数の解析結果を示す説明図である。It is explanatory drawing which shows the analysis result of the pressure gradient index | exponent about a tunnel with a 10-m buffer work. 従来例についての図1(a)と同様の図である。It is a figure similar to Fig.1 (a) about a prior art example.

符号の説明Explanation of symbols

1 鉄道先頭車両
2 車体
2A 先端部分
2Aa 前側断面積増加部分
2Ab 後側断面積増加部分
2B 一般部分
2C 中間部分
11 運転座席
12A,12B 乗客座席
13A,13B 通路
14A,14B 荷棚
DESCRIPTION OF SYMBOLS 1 Railway head vehicle 2 Car body 2A Tip part 2Aa Front side cross-sectional area increase part 2Ab Rear side cross-section area increase part 2B General part 2C Middle part 11 Driver's seat 12A, 12B Passenger seat 13A, 13B Passage 14A, 14B Loading shelf

Claims (5)

車体の横断面積が前端から後方に向かって増加する先端部分と、その先端部分の後側に配置され横断面積が最大で一様となる一般部分とを備える鉄道先頭車両の車体構造であって、
前記先端部分と一般部分との間に、横断面積が一定でその横断面積が前記一般部分より小さい中間部分が設けられ、
この中間部分は、運転座席の後側であって最も前側に位置する乗客座席よりも前側から開始する構成とされ、
前記中間部分は、車両幅が前記一般部分の車両幅より狭く、前記乗客座席の通路高さが前記一般部分における乗客座席の通路高さにほぼ等しく設定されていることを特徴とする鉄道先頭車両の車体構造。
A vehicle body structure of a railway leading vehicle comprising a front end portion in which the cross-sectional area of the vehicle body increases rearward from the front end, and a general portion that is arranged on the rear side of the front end portion and has a uniform cross-sectional area at the maximum,
An intermediate part having a constant cross-sectional area and a cross-sectional area smaller than the general part is provided between the tip part and the general part,
This intermediate portion is configured to start from the front side of the passenger seat located behind the driver seat and at the most front side,
The intermediate head portion has a vehicle width narrower than a vehicle width of the general portion, and a passage height of the passenger seat is set substantially equal to a passage height of the passenger seat in the general portion. Car body structure.
前記中間部分の横断面積は、前記一般部分の横断面積の70%程度の大きさとされていることを特徴とする請求項1記載の鉄道先頭車両の車体構造。   2. The vehicle body structure of a railway leading vehicle according to claim 1, wherein a cross-sectional area of the intermediate portion is about 70% of a cross-sectional area of the general portion. 前記中間部分において左右方向に配置される乗客座席の数は、前記一般部分に配置される乗客座席の数より左右1つずつ少ないことを特徴とする請求項1又は2記載の鉄道先頭車両の車体構造。   The number of passenger seats arranged in the left-right direction in the intermediate part is less by one on the left and right than the number of passenger seats arranged on the general part. Construction. 前記先端部分は、横断面積の増加率が大きい前側断面積増加部分と、横断面積増加率が小さい後側断面積増加部分とを有し、前記前側断面積増加部分の横断面積増加率は前記後側断面積増加部分の横断面積増加率の10倍程度であることを特徴とする請求項1〜3のいずれかに記載の鉄道先頭車両の車体構造。   The tip portion has a front cross-sectional area increasing portion with a large cross-sectional area increase rate and a rear cross-sectional area increasing portion with a low cross-sectional area increase rate, and the cross-sectional area increasing rate of the front cross-sectional area increasing portion is the rear The vehicle body structure of a railway head vehicle according to any one of claims 1 to 3, wherein the vehicle body structure is about 10 times the cross-sectional area increase rate of the side cross-sectional area increase portion. 前記前側断面積増加部分は、横断面積増加率が6m2/mで、先端から0.6m程度の範囲であり、
前記後側断面積増加部分は、横断面積増加率が0.6m2/mであることを特徴とする請求項4記載の鉄道先頭車両の車体構造。
The front side cross-sectional area increasing portion has a cross-sectional area increase rate of 6 m 2 / m and a range of about 0.6 m from the tip.
The body structure of a railway leading vehicle according to claim 4, wherein the rear cross-sectional area increase portion has a cross-sectional area increase rate of 0.6 m 2 / m.
JP2004338653A 2004-11-24 2004-11-24 Body structure of the leading railway Expired - Fee Related JP4201756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338653A JP4201756B2 (en) 2004-11-24 2004-11-24 Body structure of the leading railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338653A JP4201756B2 (en) 2004-11-24 2004-11-24 Body structure of the leading railway

Publications (2)

Publication Number Publication Date
JP2006143103A true JP2006143103A (en) 2006-06-08
JP4201756B2 JP4201756B2 (en) 2008-12-24

Family

ID=36623273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338653A Expired - Fee Related JP4201756B2 (en) 2004-11-24 2004-11-24 Body structure of the leading railway

Country Status (1)

Country Link
JP (1) JP4201756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215124A (en) * 2009-03-17 2010-09-30 Railway Technical Res Inst Method for forming train head portion for reducing fine barometric wave considering three-dimensional effect
FR3057531A1 (en) * 2016-10-18 2018-04-20 Alstom Transport Technologies PILOT CAR OF RAILWAY VEHICLE, PARTICULARLY OF HIGH-SPEED RAILWAY VEHICLE, WITH REDUCED AERODYNAMIC TRAINING
JP2018070022A (en) * 2016-11-01 2018-05-10 公益財団法人鉄道総合技術研究所 Front part shape evaluation device of movable body and program of evaluating its front part shape
CN115042837A (en) * 2022-06-22 2022-09-13 中南大学 Pressure wave relieving method based on accelerated tunnel passing of high-speed train

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215124A (en) * 2009-03-17 2010-09-30 Railway Technical Res Inst Method for forming train head portion for reducing fine barometric wave considering three-dimensional effect
FR3057531A1 (en) * 2016-10-18 2018-04-20 Alstom Transport Technologies PILOT CAR OF RAILWAY VEHICLE, PARTICULARLY OF HIGH-SPEED RAILWAY VEHICLE, WITH REDUCED AERODYNAMIC TRAINING
EP3312070A1 (en) * 2016-10-18 2018-04-25 ALSTOM Transport Technologies Control trailer of a railway vehicle, especially of a high-speed railway vehicle, having reduced aerodynamic drag
JP2018070022A (en) * 2016-11-01 2018-05-10 公益財団法人鉄道総合技術研究所 Front part shape evaluation device of movable body and program of evaluating its front part shape
CN115042837A (en) * 2022-06-22 2022-09-13 中南大学 Pressure wave relieving method based on accelerated tunnel passing of high-speed train
CN115042837B (en) * 2022-06-22 2023-12-12 中南大学 Pressure wave relieving method based on acceleration of high-speed train through tunnel

Also Published As

Publication number Publication date
JP4201756B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4371837B2 (en) Body structure of the leading railway
JP4201756B2 (en) Body structure of the leading railway
MX2007006718A (en) Elevator installation and use of such elevator installation for high-speed elevators.
JP4456557B2 (en) High speed train
DE50307334D1 (en) GROUNDING STRUCTURE OF MOTOR VEHICLES
JP2010116075A (en) Multiple-car train
EP3010774B1 (en) High-speed rail vehicle provided with a streamlined nose
JP4478633B2 (en) High speed train
CN205440361U (en) EMUs automobile body and EMUs
JP2005335512A (en) Organized train for traveling at high speed
JP4051364B2 (en) High speed train
JP4357522B2 (en) Train train for high speed running
EP0722872B1 (en) Railway vehicle
JP3939218B2 (en) Railway head vehicle body and railway leading vehicle using the same
JP3913162B2 (en) Train train for high speed running
JP3908149B2 (en) The leading train for high-speed running
JP6734754B2 (en) Railway vehicle
JP3939219B2 (en) Railway head vehicle body and railroad leading vehicle using the same
JP4243660B2 (en) Body structure of the leading railway
JP2003063386A (en) Top part shape of rapid-transit railway rolling stock
JP5114327B2 (en) Railway vehicle
CN220262898U (en) Middle channel assembly structure
US11731704B2 (en) Vehicle occupant injury prevention structure
JP2012158258A (en) Method of determining shape of train head part
JP2005186833A (en) Vehicular fuel tank, and vehicular fuel tank arrangement structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4201756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees