JP2006142545A - Laminated film and printed wiring board using it - Google Patents
Laminated film and printed wiring board using it Download PDFInfo
- Publication number
- JP2006142545A JP2006142545A JP2004332733A JP2004332733A JP2006142545A JP 2006142545 A JP2006142545 A JP 2006142545A JP 2004332733 A JP2004332733 A JP 2004332733A JP 2004332733 A JP2004332733 A JP 2004332733A JP 2006142545 A JP2006142545 A JP 2006142545A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- laminated film
- pps
- film
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、二軸配向ポリ−p−フェニレンスルフィドフィルム(以下「PPSフィルム」と略称することがある)を用いた積層フィルムに関するものである。更に詳しくは、PPSフィルムと共重合PPS層、実質的に融点を有しない高分子樹脂層との積層フィルムであり、特にプリント配線基板の絶縁材に最適な積層フィルムおよび該積層フィルムをベースとしたプリント配線基板に関するものである。 The present invention relates to a laminated film using a biaxially oriented poly-p-phenylene sulfide film (hereinafter sometimes abbreviated as “PPS film”). More specifically, it is a laminated film of a PPS film, a copolymerized PPS layer, and a polymer resin layer having substantially no melting point, and particularly based on the laminated film most suitable for an insulating material of a printed wiring board and the laminated film. The present invention relates to a printed wiring board.
IT機器、デジタル機器、自動車用電子機器等の発展に伴い、回路基板も耐熱性、高密度化、薄膜化等の要望が日増しに激しくなっており、今後拡大すると見られる通信機器用では高周波特性や低吸湿性などの特性も要望されている。中でもプリント配線基板(FPC:フレキシブルプリント基板)は、あらゆる機器に多用されており上記の高周波特性や低吸湿性の要望は強い。前記耐熱性、高密度化、薄膜化等ではポリイミドフィルム(以下PIフィルムと略称する場合がある)がその要求特性を保持しており多用されている。しかし、通信用の高周波特性が必要な分野では高周波に対する誘電特性の変化が大きく、また吸湿率も高いために使用が制限されている。そこで、通信用の高周波特性や低吸湿性等が要望される分野には上記の特性を比較的満足する液層ポリマーシート(以下LCPシートと略称する場合がある)が注目を浴びているが、厚み斑や密着性に問題があり回路の加工性等に難がある上に価格も高いため本格的には採用されていないのが実状である。 With the development of IT equipment, digital equipment, automotive electronic equipment, etc., demands for heat resistance, high density, thin film, etc. are increasing day by day, and high frequency is expected for communication equipment that is expected to expand in the future. Properties such as properties and low hygroscopicity are also desired. Of these, printed circuit boards (FPC: flexible printed circuit boards) are widely used in various devices, and the above demands for high frequency characteristics and low moisture absorption are strong. In the heat resistance, densification, thinning, etc., polyimide films (hereinafter sometimes abbreviated as PI films) retain their required characteristics and are frequently used. However, in fields that require high-frequency characteristics for communication, the use is restricted because the dielectric characteristics change greatly with respect to high-frequency and the moisture absorption rate is high. Therefore, in fields where high frequency characteristics for communication, low moisture absorption, etc. are desired, liquid layer polymer sheets (hereinafter sometimes abbreviated as LCP sheets) that relatively satisfy the above characteristics are attracting attention. Actually, it has not been adopted in earnest due to problems in thickness unevenness and adhesion, difficulty in circuit processability, and high price.
一方、二軸配向ポリフェニレンスルフィドフィルムの高周波特性や低吸湿性(吸湿寸法安定性)も注目を浴びており、FPCや多層回路基板材に検討されている。該フィルムをベースにしたフレキシブルリント配線基板は既に提案されている(例えば特許文献1参照)。また高周波用回路基板を目的に二軸配向PPSフィルムを主体に絶縁層をPPSだけで構成した(PPSフィルムと金属層の積層を、共重合PPS層を介して熱融着積層する)金属ベース回路基板も提案されている(例えば特許文献2参照)。更に該フィルムを回路基板材に用いるためにPPS以外の別の樹脂層と積層したものも下記知られている。 On the other hand, high-frequency characteristics and low hygroscopicity (hygroscopic dimensional stability) of biaxially oriented polyphenylene sulfide films have attracted attention and are being studied for FPC and multilayer circuit board materials. A flexible lint wiring board based on the film has already been proposed (see, for example, Patent Document 1). Also, a metal base circuit in which a biaxially oriented PPS film is mainly used for a high frequency circuit board, and an insulating layer is composed only of PPS (a laminate of a PPS film and a metal layer is heat-sealed and laminated via a copolymerized PPS layer). A substrate has also been proposed (see, for example, Patent Document 2). Further, the following is also known in which the film is laminated with another resin layer other than PPS for use as a circuit board material.
(1)PPSフィルムの表面にPI等のPPS以外の樹脂層を設け、150℃における引っ張り弾性率を特定の範囲に制御することで、半田耐熱性の向上や導体層との積層で発生する反りを改善することが提案されている(例えば特許文献3参照)。 (1) A warp caused by improvement of solder heat resistance or lamination with a conductor layer by providing a resin layer other than PPS such as PI on the surface of the PPS film and controlling the tensile elastic modulus at 150 ° C. within a specific range. Has been proposed (see, for example, Patent Document 3).
(2)PPSフィルムの表面に金属化合物(金属酸化物等)層を積層することによって、半田耐熱性を向上させることが提案されている(例えば特許文献4参照)。 (2) It has been proposed to improve solder heat resistance by laminating a metal compound (metal oxide or the like) layer on the surface of a PPS film (see, for example, Patent Document 4).
(3)上記(2)の積層フィルムを熱処理して、230℃のジフェニルエーテルに対し不溶にした積層フィルムは半田耐熱性、熱寸法安定性が向上しプリント配線板に適用できることが提案されている(例えば特許文献5参照)。
しかしながら、従来の二軸配向PPSフィルムを用いたプリント配線基板やそのベースとなる積層フィルムは下記の問題点を有しており、耐熱性や高周波特性、低吸湿特性、難燃性および加工性等がバランスよく兼ね備えていることが要求される回路基板への展開が制限されていた。 However, a conventional printed wiring board using a biaxially oriented PPS film and a laminated film as a base thereof have the following problems, such as heat resistance, high frequency characteristics, low moisture absorption characteristics, flame retardancy, and workability. However, development to circuit boards that are required to have a well-balanced balance has been limited.
すなわち、PPSフィルム単体をベースにしたプリント配線基板は、260℃以上の半田加工で熱変形や熱寸法変化が著しく半田を用いる用途には採用がかなり制限されていた。また、共重合PPSを積層し、該樹脂層を介してPPSフィルムと回路層、金属層を積層した金属ベース回路基板は、PPS以外の樹脂を用いずに積層加工でき、PPSの優れた高周波特性や低吸湿特性が活かせる。しかし、半田耐熱性や熱寸法安定性の改善はできない。一方、半田耐熱性の向上を目的とした上記(1)のPPSフィルムの積層フィルムは、PI樹脂等の耐熱樹脂を塗布しているので半田耐熱性や熱寸法安定も優れるし、該積層フィルムの主体がPPSであるため高周波特性や低吸湿性等も保持している。しかし、PPSフィルム層と表層樹脂層との密着力が弱いために回路層との密着性が劣る。このことは高密度な回路では回路幅が細くなるり回路とベースフィルムが剥がれてしまうという重大な問題が生じる。また(2)の積層フィルムは、回路基板に加工された後に200℃程度の温度で長時間熱処理しないと半田耐熱性や熱寸法安定性が向上しないし、熱処理前の積層フィルムは、表面の金属化合物層が柔らかく掻き落とされやすいので該層の密着力は弱い。このことは回路形成等の加工がしにくいことになる。また(3)の積層フィルムは、半田耐熱性、熱寸法安定性に優れているが該フィルム表面に積層した金属化合物層の熱処理条件(酸素の存在下での高温温度、長時間)が厳しく実用的でないことが問題で使用範囲がかなり限定されていた。 That is, the use of a printed wiring board based on a single PPS film is extremely limited in applications where solder is used because of significant thermal deformation and thermal dimensional change due to soldering at 260 ° C. or higher. In addition, the PPS film, the circuit layer, and the metal layer are laminated with the copolymer PPS, and the metal base circuit board can be laminated without using any resin other than PPS. And low moisture absorption. However, solder heat resistance and thermal dimensional stability cannot be improved. On the other hand, the laminated film of the PPS film (1) for the purpose of improving solder heat resistance is excellent in solder heat resistance and thermal dimensional stability because it is coated with a heat resistant resin such as PI resin. Since the main body is PPS, high frequency characteristics, low hygroscopicity, etc. are maintained. However, since the adhesion between the PPS film layer and the surface resin layer is weak, the adhesion with the circuit layer is poor. This causes serious problems that the circuit width becomes narrow and the circuit and the base film peel off in a high-density circuit. In addition, the laminated film (2) cannot be improved in solder heat resistance and thermal dimensional stability unless it is heat-treated at a temperature of about 200 ° C. for a long time after being processed into a circuit board. Since the compound layer is soft and easily scraped off, the adhesion of the layer is weak. This makes it difficult to perform processing such as circuit formation. The laminated film (3) is excellent in soldering heat resistance and thermal dimensional stability, but the heat treatment conditions (high temperature temperature in the presence of oxygen, long time) of the metal compound layer laminated on the film surface are severe and practical. The problem was that it was not suitable, and the range of use was considerably limited.
そこで、本発明は上記の問題点を鑑み、誘電特性の高周波安定性、低吸湿性、難燃性、機械特性等PPSフィルムが持つ優れた特性を保持し、半田耐熱性、熱寸法安定性、密着性及び回路基板の加工性を付与した、特に高周波用フレキシブルプリント配線基板に最適な積層フィルムおよび該積層フィルムをベースにしたプリント配線基板を提供せんとするものである。 Therefore, in view of the above problems, the present invention retains the excellent properties of the PPS film such as high frequency stability of dielectric properties, low moisture absorption, flame retardancy, mechanical properties, solder heat resistance, thermal dimensional stability, It is an object of the present invention to provide a laminated film that is particularly suitable for a flexible printed wiring board for high frequency use, and a printed wiring board based on the laminated film, provided with adhesion and circuit board workability.
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)ポリ−p−フェニレンスルフィドを主成分とする樹脂組成物からなる二軸配向フィルム(A層)の少なくとも片方の面に、p−フェニレンスルフィド単位以外の少なくとも1種以上の共重合単位を含有し、下記式1、2を満足した共重合ポリフェニレンスルフィドからなる層(B層)、および実質的に融点を有しない高分子樹脂層(C層) がこの順序に積層されていることを特徴とする積層フィルムある。
50≦PPSF(B)≦95 式1
3≦COPF(B)<50 式2
PPSF(B):B層におけるp−フェニレンスルフィド単位の全繰り返し単位に対するモル%で表された含有量
COPF(B):B層におけるp−フェニレンスルフィド単位に次いで多く含まれている共重合単位の全繰り返し単位に対するモル%で表された含有量
(2)C層が実質的に融点を有しない芳香族系重合体からなる層であることを特徴とする上記(1)記載の積層フィルムである。
(3)上記(1)または(2)記載の積層フィルムのC層表面の少なくとも片方の面に、電気回路が形成されたことを特徴とするプリント配線基板である。
The present invention employs the following means in order to solve such problems. That is,
(1) On at least one surface of a biaxially oriented film (A layer) made of a resin composition containing poly-p-phenylene sulfide as a main component, at least one copolymer unit other than p-phenylene sulfide units. And a layer (B layer) made of copolymerized polyphenylene sulfide containing and satisfying the following formulas 1 and 2 and a polymer resin layer (C layer) having substantially no melting point are laminated in this order. There is a laminated film.
50 ≦ PPSF (B) ≦ 95 Formula 1
3 ≦ COPF (B) <50 Formula 2
PPSF (B): the content of the p-phenylene sulfide unit in the B layer expressed in mol% with respect to all the repeating units COPF (B): the amount of copolymer units contained next to the p-phenylene sulfide unit in the B layer Content represented by mol% with respect to all repeating units (2) The laminated film according to (1), wherein the C layer is a layer made of an aromatic polymer having substantially no melting point. .
(3) A printed wiring board in which an electric circuit is formed on at least one surface of the surface of the C layer of the laminated film described in (1) or (2).
本発明は以上の構成としたため、PPSフィルムが持つ優れた高周波特性、低吸湿性、難燃性、機械特性を保持しつつ、従来の課題であった半田加工時の耐熱性、熱寸法安定性、密着性および回路の加工性が付与された積層フィルムが得られた。該積層フィルムはフレキシブルプリント配線基板に代表される各種回路基板に適用できることは言うまでもなく、特に高周波対応の回路基板に最適である。 Since the present invention is configured as described above, the heat resistance and thermal dimensional stability at the time of solder processing, which have been the conventional problems, are maintained while maintaining the excellent high-frequency characteristics, low moisture absorption, flame retardancy, and mechanical characteristics of the PPS film. Thus, a laminated film having adhesion and circuit processability was obtained. Needless to say, the laminated film can be applied to various circuit boards typified by flexible printed wiring boards, and is particularly suitable for high-frequency compatible circuit boards.
本発明の積層フィルムは、ポリ−p−フェニレンスルフィド(以下「p−PPS」と略称する場合がある)を主成分とする樹脂組成物からなる二軸配向フィルム(A層)の少なくとも片方の面に、p−フェニレンスルフィド単位以外の少なくとも1種以上の共重合単位を含有する共重合ポリフェニレンスルフィド(以下「共重合PPS」と略称する場合がある)からなる層(B層)、実質的に融点を有しない高分子樹脂層(C層)がこの順序に積層されていることを基本構成としたものである。 The laminated film of the present invention comprises at least one surface of a biaxially oriented film (A layer) made of a resin composition containing poly-p-phenylene sulfide (hereinafter sometimes abbreviated as “p-PPS”) as a main component. And a layer (B layer) comprising a copolymerized polyphenylene sulfide (hereinafter sometimes abbreviated as “copolymerized PPS”) containing at least one copolymer unit other than the p-phenylene sulfide unit. The basic structure is that polymer resin layers (C layer) not having a layer are laminated in this order.
本発明において、p−PPSとはp−フェニレンスルフィド単位を90モル%以上、より好ましくは95モル%以上含む次式で示される構成単位からなる重合体をいう。 In the present invention, p-PPS refers to a polymer composed of structural units represented by the following formula containing 90 mol% or more, more preferably 95 mol% or more of p-phenylene sulfide units.
かかるPPS成分が90モル%以上であることにより、ポリマの結晶性と熱転移温度、融点などが高く、PPSを主成分とする樹脂組成物の特徴である耐熱性、寸法安定性、機械特性、耐薬品性、難燃性などを十分に発揮できるためである。上記重合体には共重合可能な他のスルフィド結合を含有する単位が含まれていても差し支えない。この場合、構成単位は、ランダム型またはブロック型のいずれの共重合方法であってもよい。 When the PPS component is 90 mol% or more, the crystallinity and thermal transition temperature of the polymer, the melting point, etc. are high, and the heat resistance, dimensional stability, mechanical properties, which are the characteristics of the resin composition containing PPS as the main component, This is because the chemical resistance and flame retardancy can be fully exhibited. The polymer may contain other copolymerizable units containing sulfide bonds. In this case, the structural unit may be either a random type or a block type copolymerization method.
本発明においてp−PPSを主成分とする樹脂組成物とは、p−PPSを60質量%以上含む組成物をいう。p−PPSの含有量が60質量%以上であることで、本発明の積層フィルムの該組成物からなる層の機械特性、耐熱性、耐薬品性、耐加水分解性、難燃性などが十分に発揮できる。また、該組成物中の残りの40質量%未満はPPS以外のポリマー、無機または有機のフィラー、滑剤、着色剤などの添加物を含むことができる。さらに、該組成物の溶融粘度は、温度300℃、剪断速度200sec-1のもとで、100〜50000ポイズであることが好ましく、より好ましくは、500〜20000ポイズの範囲である。この範囲が選定されるのはフィルムの成形、製膜加工しやすく、積層加工性もよいためである。 In the present invention, the resin composition containing p-PPS as a main component refers to a composition containing 60% by mass or more of p-PPS. When the content of p-PPS is 60% by mass or more, the mechanical properties, heat resistance, chemical resistance, hydrolysis resistance, flame resistance, etc. of the layer made of the composition of the laminated film of the present invention are sufficient. Can be demonstrated. Further, the remaining less than 40% by mass in the composition may contain additives such as polymers other than PPS, inorganic or organic fillers, lubricants, and colorants. Furthermore, the melt viscosity of the composition is preferably 100 to 50,000 poises, more preferably 500 to 20000 poises at a temperature of 300 ° C. and a shear rate of 200 sec −1 . This range is selected because it is easy to form and form a film and has good laminating workability.
また、p−PPSの樹脂組成物からなる二軸配向フィルムとは、上記のp−PPSを主成分とする樹脂組成物を溶融押出し、二軸延伸、熱処理してなるフィルム(以下PPSフィルムと略称する場合がある)で、積層の加工性から厚さが4〜300μmの範囲が好ましい。 The biaxially oriented film made of a p-PPS resin composition is a film (hereinafter abbreviated as PPS film) obtained by melt-extruding, biaxially stretching, and heat-treating the resin composition containing p-PPS as a main component. In view of stackability, the thickness is preferably in the range of 4 to 300 μm.
また、本発明の共重合PPSとは、p−フェニレンスルフィド単位を主たる繰り返し単位としてそれ以外の少なくとも1種以上の共重合単位を共重合して構成された重合体をいい、p−フェニレンスルフィド単位に次いで多く含まれている共重合単位の含有量が次式を満足した重合体である。
50≦PPSF(B)≦95 式1
3≦COPP(B)≦50 式2
ここで、PPSF(B)とは、本発明の積層フィルムのB層におけるp−フェニレンスルフィド単位の全繰り返し単位に対する含有量(モル%)をいう。COPP(B)は、本発明の積層フィルムのB層におけるp−フェニレンスルフィドに次いで多く含有される共重合単位の全繰り返し単位に対する含有量(モル%)をいう。
The copolymerized PPS of the present invention refers to a polymer constituted by copolymerizing at least one other copolymer unit with a p-phenylene sulfide unit as a main repeating unit, and p-phenylene sulfide units. Next, the content of the copolymer unit that is contained in the second most is a polymer that satisfies the following formula.
50 ≦ PPSF (B) ≦ 95 Formula 1
3 ≦ COPP (B) ≦ 50 Formula 2
Here, PPSF (B) means content (mol%) with respect to all the repeating units of the p-phenylene sulfide unit in B layer of the laminated | multilayer film of this invention. COPP (B) refers to the content (mol%) of copolymerized units contained in the B layer of the laminated film of the present invention after the p-phenylene sulfide with respect to all repeating units.
B層の共重合PPSにおけるp−フェニレンスルフィド単位の含有量は50モル%以上95モル%以下であることが積層フィルムの耐熱性、熱寸法安定性、密着性等の点で好ましい。より好ましくは70モル%以上92モル%以下である。すなわち、該含有量が上記下限値未満では積層フィルムの耐熱性(半田耐熱性含む)、熱寸法安定性が低下したりする傾向で回路基板の加工性にも悪影響を与える可能性が出てくる。一方、この含有量が上記上限値を越えるとC層との密着力が低下する方向である。ここで共重合単位としては、以下に示すm−フェニレンスルフィド単位が挙げられる(ここでXは、アルキレン、CO、SO3単位を示す。またRはアルキル、ニトロ、フェニレン、アルコキシ基を示す)。これらの複数の単位が存在しても構わない。 The content of the p-phenylene sulfide unit in the copolymerized PPS of the B layer is preferably 50 mol% or more and 95 mol% or less from the viewpoint of heat resistance, thermal dimensional stability, adhesion and the like of the laminated film. More preferably, it is 70 mol% or more and 92 mol% or less. That is, if the content is less than the above lower limit value, the heat resistance (including solder heat resistance) and thermal dimensional stability of the laminated film tend to be lowered, and the workability of the circuit board may be adversely affected. . On the other hand, when the content exceeds the upper limit, the adhesive strength with the C layer is reduced. Examples of the copolymer unit include the following m-phenylene sulfide units (wherein X represents an alkylene, CO, or SO 3 unit, and R represents an alkyl, nitro, phenylene, or alkoxy group). A plurality of these units may exist.
この中でも特に好ましい共重合単位は、m−フェニレンスルフィド単位が耐熱性、熱寸法安定性、密着性に優れ、積層フィルムの加工性もよい。これらの単位の共重合量は共重合PPSの主たる繰り返し単位であるp−フェニレンスルフィド単位に次いで多い共重合単位が、全繰り返し単位に対して3モル%以上50モル%未満(より好ましくは5モル%以上30モル%未満)が耐熱性、熱寸法安性、密着性および積層フィルムの加工性等の向上で好ましい。共重合PPS以外の繰り返し単位の残りの部分については、他の共重合可能な単位で構成されいてもよいが、下式に代表される3官能フェニレンスルフィド単位は共重合体全体の1モル%以下であることが耐熱性、寸法安定性、密着性、加工性を低下させない点で好ましい。また、共重合の形態はランダム、ブロックを問わないがランダムである方が好ましい。 Among these, particularly preferred copolymer units are m-phenylene sulfide units, which are excellent in heat resistance, thermal dimensional stability and adhesion, and workability of the laminated film is also good. The amount of copolymerization of these units is 3 mol% or more and less than 50 mol% (more preferably 5 mol) with respect to the total number of repeating units after the p-phenylene sulfide unit which is the main repeating unit of the copolymerized PPS. % Or more and less than 30 mol%) is preferable for improving heat resistance, thermal dimensional safety, adhesion, workability of laminated film, and the like. The remaining part of the repeating unit other than the copolymerized PPS may be composed of other copolymerizable units, but the trifunctional phenylene sulfide unit represented by the following formula is 1 mol% or less of the entire copolymer. Is preferable from the viewpoint of not deteriorating heat resistance, dimensional stability, adhesion, and workability. Further, the form of copolymer may be random or block, but is preferably random.
本発明の共重合PPS樹脂層の融点は200℃〜285℃の範囲が好ましい。また溶融粘度は300℃、200sec-1のせん断速度で、50〜20000ポイズ(より好ましくは100〜10000ポイズ)、さらに実質的に無配向であることがC層との密着性がより向上して好ましい。また本発明の共重合PPSからなる層とは、該共重合PPS組成物が60質量%以上含有する樹脂層をいう。これは耐熱性、密着性を付与するためで、残りの40質量%未満であれば、別のポリマ、滑剤、帯電防止剤、着色剤等が含有されてあってもよい。 The melting point of the copolymerized PPS resin layer of the present invention is preferably in the range of 200 ° C to 285 ° C. The melt viscosity is 300 ° C., a shear rate of 200 sec −1 , 50 to 20000 poise (more preferably 100 to 10000 poise), and further substantially non-oriented improves the adhesion to the C layer. preferable. Moreover, the layer which consists of copolymer PPS of this invention means the resin layer which this copolymer PPS composition contains 60 mass% or more. This is for imparting heat resistance and adhesion. If the remaining amount is less than 40% by mass, another polymer, lubricant, antistatic agent, colorant and the like may be contained.
次に、本発明の積層フィルムにおけるC層の実質的に融点を有しない高分子樹脂層とは、その主成分となる重合体の分解点がその理論上の融点(またはガラス転移点)より低い重合体で、示差熱量分析法(DSC法)を用い、昇温により融点(またはガラス転移点)ピークを確認した後(1stラン)、直ちに急冷し再び昇温(2ndラン)したときに先の1stランで現れた融点(またはガラス転移点)ピークが確認できなくなる高分子樹脂をいう。この場合に、1stランで現れたピークを該ポリマの分解点とする。本発明は、該分解点が300℃以上のものが積層フィルムの半田耐熱性、熱寸法安定を向上させる点で好ましい。特に好ましい重合体としては芳香族系重合体である。該重合体の例を挙げるならば、ポリイミド、ポリアミドイミド、芳香族ポリアミド、芳香族ポリエステルイミド、芳香族ポリアミドイミダゾール、芳香族ポリアミドヒドラシドなどがある。また、C層は耐熱性を有することが好ましい。 Next, the polymer resin layer having substantially no melting point of the C layer in the laminated film of the present invention has a decomposition point of the polymer as the main component lower than its theoretical melting point (or glass transition point). After confirming the melting point (or glass transition point) peak by heating using a differential calorimetric method (DSC method) on the polymer (1st run), immediately cooled immediately and heated again (2nd run) It refers to a polymer resin in which the melting point (or glass transition point) peak appearing in the 1st run cannot be confirmed. In this case, the peak appearing in the 1st run is taken as the decomposition point of the polymer. In the present invention, those having a decomposition point of 300 ° C. or higher are preferable in terms of improving solder heat resistance and thermal dimensional stability of the laminated film. A particularly preferred polymer is an aromatic polymer. Examples of the polymer include polyimide, polyamideimide, aromatic polyamide, aromatic polyesterimide, aromatic polyamideimidazole, and aromatic polyamide hydraside. Further, the C layer preferably has heat resistance.
本発明の積層フィルムは、前記二軸配向PPSフィルム層(A層)とA層の少なくとも片面に共重合PPS層(B層)と実質的に融点を有しない高分子樹脂層(C層)がこの順序で積層したものを基本構成とする。本発明の目的である、半田耐熱性および熱寸法安定性の付与を最も効率的に達成できる好ましい構成は、A層の両面にB層、C層がこの順序に積層された両面積層フィルムである。また、各層間は本発明で言う各層を構成する樹脂以外の樹脂を用いない方がPPSの優れた誘電特性や吸湿特性が保持できて好ましいが、本発明の上記した効果を損なわなければ用いられていても良い。また、積層フィルム全体の厚さは5〜350μm(より好ましくは6〜300μm)の範囲が本発明の目的を効率よく達成しやすく、また積層フィルムや回路基板の加工性の面でも好ましい。 In the laminated film of the present invention, the biaxially oriented PPS film layer (A layer) and the copolymer PPS layer (B layer) and the polymer resin layer (C layer) having substantially no melting point are provided on at least one side of the A layer. What is laminated in this order is the basic configuration. A preferable configuration that can achieve the most efficient provision of solder heat resistance and thermal dimensional stability, which is the object of the present invention, is a double-sided laminated film in which a B layer and a C layer are laminated in this order on both sides of the A layer. . In addition, it is preferable not to use a resin other than the resin constituting each layer referred to in the present invention between the respective layers because the excellent dielectric characteristics and moisture absorption characteristics of PPS can be maintained, but it is used as long as the above effects of the present invention are not impaired. May be. Further, the thickness of the entire laminated film is preferably in the range of 5 to 350 μm (more preferably 6 to 300 μm), and the object of the present invention can be easily achieved efficiently, and is also preferable from the viewpoint of the workability of the laminated film and circuit board.
A層に対するB層の厚さの比率(全B厚さ/全A厚さ)は、0.02〜0.5の範囲が耐熱性、熱寸法安定性および密着性の点で好ましい。また、A層のp−PPS組成物中における共重合フェニレンスルフィド単位の全繰り返し単位に対するモル%で表させる含有量:COPP(A)とB層の共重合PPS組成物中における共重合フェニレンスルフィド
単位の全繰り返し単位に対するモル%で表される含有量:COPP(B)の関係は、式3の範囲であることが耐熱性や加工性に有利であり好ましい。
COPP(B)>COPP(A) 式3
C層の厚さとA層の厚さ、B層の厚さの関係(全C厚さ/全A厚さ+全B厚さ)は、0.02〜0.5の範囲が半田耐熱性、熱寸法安定性と折り曲げ時のC層のクラックを防止のうえで好ましい。また本発明の積層フィルムは、A層の両面にB層およびC層が積層された構成が半田耐熱性、熱寸法安定性および積層フィルムのカール、回路基板の加工性等の観点から特に好ましい。この場合A層を中心層にした両面のB層+C層の厚さの差は±10%以内が加熱時のカール、回路基板の加工性等から好ましい。また本発明の積層フィルムの表面に別のフィルム、シート、繊維、紙、金属等が積層されてあったり、印刷や蒸着が施されてあってもよい。
The ratio of the thickness of the B layer to the A layer (total B thickness / total A thickness) is preferably in the range of 0.02 to 0.5 in terms of heat resistance, thermal dimensional stability, and adhesion. Further, the content of the copolymerized phenylene sulfide unit in the p-PPS composition of the A layer expressed in mol% with respect to all repeating units: COPP (A) and the copolymerized phenylene sulfide unit in the copolymerized PPS composition of the B layer The relationship of the content expressed by mol% with respect to all repeating units: COPP (B) is preferably in the range of Formula 3 because it is advantageous for heat resistance and workability.
COPP (B)> COPP (A) Equation 3
The relationship between the thickness of the C layer, the thickness of the A layer, and the thickness of the B layer (total C thickness / total A thickness + total B thickness) is in the range of 0.02 to 0.5 in terms of solder heat resistance. It is preferable in terms of thermal dimensional stability and prevention of cracking of the C layer during bending. In the laminated film of the present invention, a structure in which the B layer and the C layer are laminated on both sides of the A layer is particularly preferable from the viewpoints of solder heat resistance, thermal dimensional stability, curling of the laminated film, workability of the circuit board, and the like. In this case, the difference in thickness between the B layer and the C layer on both sides with the A layer as the center layer is preferably within ± 10% from the viewpoint of curling during heating, workability of the circuit board, and the like. Further, another film, sheet, fiber, paper, metal or the like may be laminated on the surface of the laminated film of the present invention, or printing or vapor deposition may be performed.
また、本発明のプリント配線基板は、上記の積層フィルムの少なくとも片面にC層を介して電気回路が形成されたものをいう。本発明の目的である半田耐熱性や回路の加工性の改善からC層/B層/A層/B層/C層の両面積層フィルムの少なくとも片面に電気回路が積層された構成が好ましい。ここで、電気回路とは、金属や導電性を有する塗料等の導電体によって形成された電気の通路をいう。該導体層の厚さは特に制限されないが、一般的には0.1〜40μm程度である。 Further, the printed wiring board of the present invention is one in which an electric circuit is formed on at least one surface of the above laminated film via a C layer. In view of improvement of solder heat resistance and circuit processability, which are the objects of the present invention, a configuration in which an electric circuit is laminated on at least one side of a double-sided laminated film of C layer / B layer / A layer / B layer / C layer is preferable. Here, the electric circuit refers to an electric path formed by a conductor such as metal or conductive paint. The thickness of the conductor layer is not particularly limited, but is generally about 0.1 to 40 μm.
また、本発明に用いられる積層フィルムの厚さは6〜300μmの範囲が展開用途、加工性の点で好ましい。また、電気回路は各種接着剤を介してあってもなくてもよい。また2層以上のプリント配線基板が積層されてあっても、リジットの回路基板に接合されてあってもよい。また形状やサイズも問わない。 In addition, the thickness of the laminated film used in the present invention is preferably in the range of 6 to 300 μm from the viewpoint of development application and workability. The electric circuit may or may not be provided with various adhesives. Two or more printed wiring boards may be laminated, or may be bonded to a rigid circuit board. The shape and size are not limited.
次に本発明の積層フィルムの製造方法を述べる。
まず本発明の積層フィルムの中間体であるA層のp−PPS層を主成分するPPSフィルム層とB層の共重合PPS層の積層フィルム(A/BまたはB/A/B、以下中間積層フィルムと略称する場合がある。)の製造方法について説明する。本発明の共重合PPS層は下記の式1、2を満足させる必要があるが、中間積層フィルムのA層とB層の関係は下記の式1〜4のすべてを満足してる方が本発明の目的である半田耐熱性、熱寸法安定性、密着性が効率的に改善でき好ましい。
50≦PPSF(B)≦95 式1
3≦COPP(B)≦50 式2
COPP(B)>COPP(A) 式3
PPSF(A)≧90 式4
PPSF(A):A層のPPS−BOにおけるp−フェニレンスルフィド単位の全繰り返し単位に対する含有量(モル%)。
COPP(A):A層におけるp−フェニレンスルフィド単位に次いで多く含まれている共重合単位の全繰り返し単位に対する含有量(モル%)。
PPSF(B):B層の共重合PPS層におけるp−フェニレンスルフィド単位の全繰り返し単位に対する含有量(モル%)。
COPP(B):B層におけるp−フェニレンスルフィド単位に次いで多く含まれている共重合単位の全繰り返し単位に対する含有量(モル%)。
Next, the manufacturing method of the laminated film of this invention is described.
First, a laminated film (A / B or B / A / B, hereinafter referred to as an intermediate laminated film) of a PPS film layer composed mainly of an A-layer p-PPS layer and a B-copolymerized PPS layer, which is an intermediate of the laminated film of the present invention. The manufacturing method of (sometimes abbreviated as “film”) will be described. The copolymerized PPS layer of the present invention needs to satisfy the following formulas 1 and 2, but the relationship between the A layer and the B layer of the intermediate laminated film is that the following formulas 1 to 4 should be satisfied. This is preferable because the solder heat resistance, thermal dimensional stability and adhesion can be improved efficiently.
50 ≦ PPSF (B) ≦ 95 Formula 1
3 ≦ COPP (B) ≦ 50 Formula 2
COPP (B)> COPP (A) Equation 3
PPSF (A) ≧ 90 Equation 4
PPSF (A): Content (mol%) of p-phenylene sulfide units in the PPS-BO of the A layer with respect to all repeating units.
COPP (A): Content (mol%) of copolymerized units contained in the layer A after the p-phenylene sulfide units in the amount of all repeating units.
PPSF (B): Content (mol%) of the p-phenylene sulfide unit in the copolymer PPS layer of the B layer with respect to all repeating units.
COPP (B): Content (mol%) of copolymerized units contained in the B layer after the p-phenylene sulfide units in the second layer with respect to all repeating units.
本発明のB層の共重合PPSの重合方法としては種々あるが、硫化アルカリとp−ジハ
ロベンゼン(主成分モノマ)および副成分モノマを上記の式1、2を満足するように配合し、極性溶媒中で重合助剤の存在下に高温、高圧で重合する方法が、得られるポリマの重合度が上昇しやすく好ましい。特に硫化アルカリとして硫化ナトリウム、主成分モノマとしてp−ジクロルベンゼン、溶媒としてN−メチルピドリドンを用いるのが最も好ましい。p−ジクロルベンゼン(主成分モノマ)とともに副成分モノマを共存させる。 副成分モノマとしては、以下の化学式のものが挙げられ(ここでXはアルキレン、CO、SO3単位を示す。またRはアルキル、ニトロ、フェニル、アルコキシ基を示す。)、これらの複数の副成分モノマが存在しても構わない。好ましい副成分モノマとしては(化12)である。
There are various polymerization methods for copolymerizing PPS of the B layer of the present invention. Alkali sulfide, p-dihalobenzene (main component monomer) and subcomponent monomer are blended so as to satisfy the above formulas 1 and 2, and a polar solvent is used. Among them, a method of polymerizing at a high temperature and high pressure in the presence of a polymerization aid is preferable because the degree of polymerization of the resulting polymer is likely to increase. In particular, it is most preferable to use sodium sulfide as the alkali sulfide, p-dichlorobenzene as the main component monomer, and N-methylpyridone as the solvent. A secondary component monomer is allowed to coexist with p-dichlorobenzene (main component monomer). Examples of the subcomponent monomer include those having the following chemical formula (where X represents an alkylene, CO, or SO3 unit, and R represents an alkyl, nitro, phenyl, or alkoxy group). There may be a monomer. A preferred accessory component monomer is (Chemical Formula 12).
本発明のA層のp−PPSは、前述の共重合PPSと同様な方法で重合するが、上記の式3、4を満足させるように副成分モノマを配合しないかまたは配合量を減ずる。
もちろん、共重合PPSおよびp−PPSの溶融粘度を調整する目的等で重合の際に下式で表される3官能モノマを配合してもよい。
The p-PPS of the A layer of the present invention is polymerized in the same manner as the copolymerized PPS described above, but does not contain a subcomponent monomer or reduces the amount so as to satisfy the above formulas 3 and 4.
Of course, you may mix | blend the trifunctional monomer represented by the following Formula in the case of superposition | polymerization in order to adjust the melt viscosity of copolymerization PPS and p-PPS.
このようにして得られた共重合PPSとp−PPSに必要に応じて無機または有機のフィラー等の添加剤を加えて各々樹脂組成物とする。該樹脂組成物は、粉末で得られるPPSポリマに添加剤をミキサー等でブレンド混合するか、、更にエクストルーダーに代表される溶融押出装置に供給し、溶融混練し、ガット状に溶融押出して冷却し、適当な長さにカットしてペレットにして得る方法が好ましい。 Additives such as inorganic or organic fillers are added to the copolymerized PPS and p-PPS thus obtained as necessary to obtain resin compositions. The resin composition is blended and mixed with a PPS polymer obtained in powder using a mixer or the like, or further supplied to a melt extruder represented by an extruder, melt kneaded, melt extruded into a gut shape, and cooled. In addition, a method of obtaining pellets by cutting to an appropriate length is preferable.
中間積層フィルムを得る方法は、コーティング、ラミネート、共押出法等が用いられるが、共押出して二軸延伸するか、p−PPSを溶融押出、冷却(キャスト)または一軸延伸したフィルムに別の溶融押出装置から共重合PPSを押し出し積層して更に延伸、熱処理する方法が各層厚さの制御、層間の密着性、B層の配向制御等がしやすく好ましい。特に共押出、二軸延伸法が好ましい。共押出法は2台以上の溶融押出装置を準備し、溶融押出装置から口金の間のポリマ流路内で合流積層されるが、口金より上流(例えばマニホールド)で合流積層されるのが好ましい。すなわち、別々の溶融押出装置に供給され、各々の組成物の融点以上に加熱、溶融されたp−PPSと共重合PPSは押出装置と口金の間の設けられた合流装置で溶融状態で2層または3層に積層され、スリット状の口金リップから押し出される。かかる溶融積層シート状物を回転する冷却ドラム上で連続的に、共重合PPS樹脂組成物のガラス転移点以下の温度に冷却し実質的に非晶状態の積層シートを得る。溶融押出装置は周知の装置が適用できるがエクストルーダが簡便で好ましい。合流装置は、積層フィルムの構成により2層(A/B)または3層(B/A/B)に溶融状態で積層できる機能を有するものである。 Coating, laminating, co-extrusion methods, etc. are used as the method for obtaining the intermediate laminated film, but it is co-extruded and biaxially stretched, or p-PPS is melt-extruded, cooled (cast) or uniaxially stretched into another melt. A method in which the copolymerized PPS is extruded and laminated from an extruder and then stretched and heat-treated is preferable because control of the thickness of each layer, adhesion between layers, orientation control of the B layer and the like are easy. Particularly preferred are coextrusion and biaxial stretching. In the co-extrusion method, two or more melt-extrusion apparatuses are prepared and merged and laminated in the polymer flow path between the melt-extrusion apparatus and the die, but preferably merged and laminated upstream (for example, a manifold) from the die. That is, p-PPS and copolymerized PPS that are supplied to separate melt-extrusion apparatuses and heated and melted above the melting point of each composition are two layers in a molten state in a merging apparatus provided between the extrusion apparatus and the die. Or it is laminated | stacked on 3 layers and extruded from a slit-shaped base lip. The molten laminated sheet is continuously cooled on a rotating cooling drum to a temperature not higher than the glass transition point of the copolymerized PPS resin composition to obtain a substantially amorphous laminated sheet. Although a well-known apparatus can be applied to the melt extrusion apparatus, an extruder is simple and preferable. The merging device has a function capable of being laminated in a molten state in two layers (A / B) or three layers (B / A / B) depending on the configuration of the laminated film.
次いでこの非晶状態の積層シートを二軸延伸、熱処理を行う。二軸延伸する方法は逐次二軸延伸法、同時二軸延伸法、チューブラー法等周知の方法が用いられる。特に、ロール延伸とテンターと呼ばれるオーブン延伸による逐次二軸延伸法またはテンター法による同時二軸延伸法が機械特性のバランスや熱寸法安定性等を制御しやすく好ましい。延伸の条件は、フィルムの長手方向、幅方向とも80〜120℃の温度で2.0〜5.0倍の延伸倍率の範囲が好ましい。さらに同一テンター内に設けられた熱処理ゾーンで200℃〜p−PPSの融点の範囲で数秒〜数分間熱処理するが、用いられている共重合PPS層の融点以上、p−PPSの融点以下の温度で出来るだけ高温にする方が熱寸法安定性の点で好ましい。さらに0〜20%の範囲の制限収縮(リラックス)させることは熱寸法安定性が向上し好ましい。さらに熱寸法安定性を向上させる目的で、ガラス転移点以上の適当な温度でフリーリラックスをおこなってもよい。 Next, this amorphous laminated sheet is subjected to biaxial stretching and heat treatment. As the biaxial stretching method, known methods such as sequential biaxial stretching method, simultaneous biaxial stretching method, and tubular method are used. In particular, a sequential biaxial stretching method by roll stretching and oven stretching called a tenter or a simultaneous biaxial stretching method by a tenter method is preferable because it is easy to control the balance of mechanical properties, thermal dimensional stability, and the like. The stretching conditions are preferably in the range of a stretching ratio of 2.0 to 5.0 times at a temperature of 80 to 120 ° C. in both the longitudinal direction and the width direction of the film. Furthermore, heat treatment is performed in a heat treatment zone provided in the same tenter for several seconds to several minutes in the range of 200 ° C. to p-PPS melting point, but the temperature is higher than the melting point of the copolymerized PPS layer used and lower than the melting point of p-PPS. In view of thermal dimensional stability, it is preferable to set the temperature as high as possible. Furthermore, limiting shrinkage (relaxation) in the range of 0 to 20% is preferable because thermal dimensional stability is improved. Furthermore, for the purpose of improving thermal dimensional stability, free relaxation may be performed at an appropriate temperature above the glass transition point.
次に上記で得られた中間積層フィルムのB層表面に実質的に融点を有しない高分子樹脂層のC層を積層する方法は、コーティング、ラミネート法等の方法があるがC層の厚さを制御しやすく、簡便さからコーティング(塗布)法が好ましい。該方法は、上記に得られた中間積層フィルムのB層上に、グラビア法、リバースコータ法、ダイコート法、コンマコート法、浸漬法等の種々方法でC層の樹脂組成物溶液を塗布し、溶媒を乾燥除去するか、離型性を有する別の基材に同様の方法でC層樹脂を塗布した後に中間積層フィルムのB層面に転写により積層する方法を用いることができる。更に、上記中間積層フィルムを製造した製膜工程で、延伸前または延伸工程中で塗布しテンター内での熱処理工程で乾燥する方法も用いられる。ここでB層樹脂組成物は、芳香族系重合体が本発明の目的である半田耐熱性、熱寸法安定性を向上させる効果が大きく好ましい。該重合体は各々公知の方法を用いて製造することができる。例えば、本発明の目的を達成しやすいポリイミドは、ピロメリット酸、1、2,3,4−ベンゼンテトラカルボン酸等のテトラカルボン酸および/またはその酸無水物と、ベンジジン、ジアミノジフェノールメタン等の脂肪族一級ジアミンおよび/または芳香族一級ジアミンよりなる群から選ばれた一種または二種以上の化合物とを脱水縮合することにより得られ、具体的にはポリアミド酸を得て、次いで加熱及び/または化学閉環剤を用いて脱水閉環する方法を例示することができる。この場合の閉環に必要な条件は、ポリマの種類や触媒の種類、量で異なるが150〜230℃の温度範囲で0.2〜20分間の範囲がC層の安定性と連続加工性やフィルムに与える熱劣化等の防止のうえで好ましい。該閉環反応は、予め反応させた所謂ポリイミド樹脂をそのまま用いてもよいし、フィルム表面に塗布加工後に加熱等により閉環反応をせしめてもよい。また芳香族ポリアミドは、例えばイソフタル酸クロライドとメタフェニレンジアミンを極性溶媒中で縮合してポリメタフェニレンイソフタルアミドが得られる。また、簡便性から市販されている塗剤を用いることもできる。 Next, the method of laminating the C layer of the polymer resin layer having substantially no melting point on the surface of the B layer of the intermediate laminated film obtained above includes methods such as coating and laminating, but the thickness of the C layer The coating (coating) method is preferred because it is easy to control and is simple. The method comprises applying the resin composition solution of the C layer on the B layer of the intermediate laminated film obtained above by various methods such as gravure method, reverse coater method, die coating method, comma coating method, dipping method, A method may be used in which the solvent is removed by drying, or the C layer resin is applied to another substrate having releasability by the same method and then laminated on the B layer surface of the intermediate laminated film by transfer. Furthermore, in the film forming process for producing the intermediate laminated film, a method of applying before or during the stretching process and drying in the heat treatment process in the tenter is also used. Here, the B-layer resin composition is preferable because the aromatic polymer is highly effective in improving the solder heat resistance and thermal dimensional stability, which are the objects of the present invention. Each of the polymers can be produced using a known method. For example, the polyimide that easily achieves the object of the present invention includes tetracarboxylic acid such as pyromellitic acid, 1,2,3,4-benzenetetracarboxylic acid and / or acid anhydride thereof, benzidine, diaminodiphenolmethane, and the like. Obtained by dehydrating condensation with one or more compounds selected from the group consisting of aliphatic primary diamines and / or aromatic primary diamines, specifically, obtaining polyamic acid, and then heating and / or Or the method of carrying out dehydration ring closure using a chemical ring-closing agent can be illustrated. The conditions necessary for ring closure in this case differ depending on the type of polymer, the type and amount of the catalyst, but the temperature range of 150 to 230 ° C. and the range of 0.2 to 20 minutes are the stability and continuous processability of the C layer and the film. It is preferable from the viewpoint of preventing thermal deterioration and the like. In the ring-closing reaction, a so-called polyimide resin reacted in advance may be used as it is, or the film surface may be subjected to a ring-closing reaction by heating after coating processing. The aromatic polyamide can be obtained by, for example, condensing isophthalic acid chloride and metaphenylenediamine in a polar solvent to obtain polymetaphenylene isophthalamide. Moreover, the coating agent marketed can also be used from simplicity.
次に上記で得られた本発明の積層フィルムからプリント配線基板を製造するのは、本発明の積層フィルムのC層側に接着剤を介して金属箔を積層した後、金属箔を所定の電気回路パターンに塩化第2鉄水溶液等で薬液エッチングしたり、該積層フィルムのC層表面に金属蒸着やスパッタリング法により金属層等の導電層を設けて上記の薬液エッチング法で所望する回路パターンを形成する方法がある。この場合の導電層の厚さはプリント配線基板の用途によって異なるが、一般的には0.1〜40μmの範囲が用いられる。また用いられる導体は、銅、アルミニウム、鉄、SUS等の金属の単体および2種以上の化合物、合金である。また、接着剤を介して金属箔を積層する場合の接着剤は、エポキシ系、アクリル系、シリコン系、ウレタン系等の耐熱接着剤が一般的に用いられ、厚さは乾燥後で10〜30μmの範囲が密着性と半田耐熱性のバランスで最適である。接着剤の塗布方法は、グラビアロールコーター法、リバースロールコーター法、ダイコーター法等周知の方法が用いられる。金属層との積層は、熱プレスロール方式や熱板プレス方式が一般的である。更に接着剤を熱やその他のエネルギーで硬化反応させる場合がある。熱プレス積層の条件は、通常80〜150℃の温度でプレス圧力は1〜5kg/cmの範囲で行われる。また硬化は、50〜150℃で1〜60時間の範囲が一般的である。また、カーボンや銀ペーストのような導電性を有する塗料を本発明の積層フィルムのC層面にシルク印刷等の方法で電気回路のパターンを形成することもできる。本発明の電気回路は、両面、片面問わないし、同種または異種の回路基板が2層以上に積層されてあってもよい。また、他のリジット基板と組み合わせたり、金属板、繊維シート、紙、布、別の種類のプラスチックシートやフィルム等の他素材が本発明のプリント配線基板の片面または両面に積層されてあってもよい。 Next, the printed wiring board is manufactured from the laminated film of the present invention obtained above, after the metal foil is laminated on the C layer side of the laminated film of the present invention via an adhesive, Etch the circuit pattern with ferric chloride aqueous solution, etc., or provide a conductive layer such as metal layer on the C layer surface of the laminated film by metal deposition or sputtering method, and form the desired circuit pattern by the above chemical etching method There is a way to do it. The thickness of the conductive layer in this case varies depending on the use of the printed wiring board, but generally a range of 0.1 to 40 μm is used. The conductor used is a simple substance of metal such as copper, aluminum, iron, SUS, or two or more kinds of compounds and alloys. Moreover, as for the adhesive when laminating metal foil via an adhesive, a heat-resistant adhesive such as epoxy, acrylic, silicon, or urethane is generally used, and the thickness is 10 to 30 μm after drying. This range is optimal for the balance between adhesion and solder heat resistance. As a method for applying the adhesive, known methods such as a gravure roll coater method, a reverse roll coater method, and a die coater method are used. The lamination with the metal layer is generally a hot press roll method or a hot plate press method. Further, the adhesive may be cured by heat or other energy. The hot press lamination is usually performed at a temperature of 80 to 150 ° C. and a press pressure of 1 to 5 kg / cm. The curing is generally performed at 50 to 150 ° C. for 1 to 60 hours. Moreover, the pattern of an electric circuit can also be formed by methods, such as silk printing, on the C layer surface of the laminated | multilayer film of this invention for the paint which has electroconductivity like carbon and a silver paste. The electric circuit of the present invention may be double-sided or single-sided, or the same or different types of circuit boards may be laminated in two or more layers. Also, it may be combined with other rigid boards, or other materials such as metal plates, fiber sheets, paper, cloth, other types of plastic sheets and films may be laminated on one or both sides of the printed wiring board of the present invention. Good.
以下に実施例を示し、本発明を更に詳しく説明する。
<物性および評価方法、評価基準>
(1)積層構成、積層厚み比
積層フィルムの断面を下記の条件で電子顕微鏡写真を撮りA層、B層およびC層の厚さを金尺で測定し積層比率を計算して求めた。
測定装置 : (株)日立製作所製S−4300型電界放出型走査電子顕微鏡
測定条件 : 加速電圧 3kV
倍率 : 積層フィルム厚さにより500〜1000倍。
The following examples illustrate the present invention in more detail.
<Physical properties and evaluation methods, evaluation criteria>
(1) Lamination structure, lamination thickness ratio The cross section of the lamination film was obtained by taking an electron micrograph under the following conditions, measuring the thicknesses of the A layer, the B layer and the C layer with a metal rule and calculating the lamination ratio.
Measuring device: S-4300 type field emission scanning electron microscope manufactured by Hitachi, Ltd. Measurement conditions: Accelerating voltage 3 kV
Magnification: 500 to 1000 times depending on the thickness of the laminated film.
(2)積層フィルムC層の融点、ガラス転移点、分解点
積層フィルムのC層(表層)を削りとり、示差熱量分析法(DSC法)で下記条件で昇温して、融点またはガラス転移点ピークを確認した(1stラン)。その後急冷して、もう一度同様の条件で昇温し融点またはガラス転移点ピークを確認した(2ndラン)。ここで、1stランで現れたピークと同ピークが2ndランでも現れた場合は該樹脂の融点またはガラス転移点とした。一方、1stランで現れた該ピークが2ndランで現れない場合は、1stランで現れたピークを分解点とした。
ここで、融点またはガラス転移点を有するものは、融点ありとし、分解点が現れたものを融点なしと表示した。
測定装置 : PERKIN ELMER社製DSC7
想定条件 : 昇温速度 20℃/分
サンプル量 10mg。
(2) Melting point, glass transition point, decomposition point of laminated film C layer The C layer (surface layer) of the laminated film is scraped and heated up under the following conditions by differential calorimetry (DSC method), and the melting point or glass transition point. A peak was confirmed (1st run). Thereafter, it was rapidly cooled, and the temperature was raised again under the same conditions, and a melting point or a glass transition point peak was confirmed (2nd run). Here, when the same peak that appeared in the 1st run also appeared in the 2nd run, the melting point or glass transition point of the resin was taken. On the other hand, when the peak that appeared in the 1st run did not appear in the 2nd run, the peak that appeared in the 1st run was taken as the decomposition point.
Here, those having a melting point or glass transition point were indicated as having a melting point, and those having a decomposition point were indicated as having no melting point.
Measuring device: DSC7 manufactured by PERKIN ELMER
Assumed conditions: Temperature rising rate 20 ° C./min Sample amount 10 mg.
(3)半田耐熱性A
260℃(±5℃)にセットした半田浴槽中の半田に、2cm角の試料をC層面が半田面に接するよう10秒間浮かべて取り出した時の試料の熱変形状態を目視観察し下記基準で判定した。すなわち、半田耐熱性Aは半田加工時の軟化による熱変形や熱寸法変化による熱変形を判定する評価で、積層フィルム全体の半田耐熱性の評価である。
○:ほとんど熱変形しない。
△:若干カール等の変形はあるが実用上支障がない程度の変形である。
×:熱じわ、カールが激しく実用上使用できないレベル。
(3) Solder heat resistance A
Visually observe the state of thermal deformation of the sample when a 2 cm square sample is floated for 10 seconds with the solder in the solder bath set at 260 ° C. (± 5 ° C.) so that the C layer surface is in contact with the solder surface. Judged. That is, the solder heat resistance A is an evaluation for determining thermal deformation due to softening during solder processing and thermal deformation due to thermal dimensional change, and is an evaluation of the solder heat resistance of the entire laminated film.
○: Almost no thermal deformation.
Δ: Slight deformation such as curling but no problem in practical use.
×: Level of heat wrinkles and curls that cannot be used practically.
(4)半田耐熱性B
本発明の積層フィルムのC層面に下記エポキシ系接着剤を介して36μm厚さの電解銅箔(福田金属箔粉工業(株)製:UHタイプ)を積層した。接着剤の厚さは18μm(乾燥後)で、塗布はリバースロールコーターを用いた。積層の条件は加熱ロールプレス方式で温度が100℃、圧力が3kg/cm、熱硬化条件は80℃で48時間後100℃で5時間おこなった。このようにして得られた積層フィルムの一部を銅箔とフィルムの間で剥離し、該剥離界面を2本のピンセットで保持し上記(2)の条件の半田浴槽に浸けながら剥離したときの剥離性から下記B層の耐熱性を判定した。すなわち、半田耐熱性BはB層の半田加工時の熱による軟化の度合いを評価するものである。
(使用したエポキシ系接着剤)
ポリアミド樹脂(ヘンケル社製バーサロン1105)60質量%、ビスフェノールA系エポキシ樹脂(シェル社製エピコート834)30質量%、ダイマー酸系グリシジルエステル変成物(シェル社製エピコート872)8質量%、イミダゾール2質量%をジメチルホルムアミドに混合溶解し40質量%、2ポイズの接着剤溶液とした。
(判定)
○:B層部分は簡単に剥がれない(C層と上記接着剤層が剥離する)。
△:B層部分で剥がれるが、ある程度剥離力が必要。
×:B層部分が軟化し簡単に剥がれた。
(4) Solder heat resistance B
An electrolytic copper foil having a thickness of 36 μm (Fukuda Metal Foil Powder Co., Ltd .: UH type) was laminated on the C layer surface of the laminated film of the present invention via the following epoxy adhesive. The thickness of the adhesive was 18 μm (after drying), and a reverse roll coater was used for coating. The lamination was performed by a heated roll press system at a temperature of 100 ° C., a pressure of 3 kg / cm, and the thermosetting conditions were 80 ° C. for 48 hours and then 100 ° C. for 5 hours. When a part of the laminated film thus obtained is peeled off between the copper foil and the film, the peeling interface is held with two tweezers and peeled while being immersed in the solder bath of the above condition (2) The heat resistance of the following B layer was determined from peelability. That is, the solder heat resistance B evaluates the degree of softening due to heat at the time of soldering the B layer.
(Epoxy adhesive used)
60% by mass of a polyamide resin (Henkel's Versalon 1105), 30% by mass of a bisphenol A epoxy resin (Epicoat 834 manufactured by Shell), 8% by mass of a dimer acid glycidyl ester modified product (Epicoat 872 manufactured by Shell), imidazole 2 Mass% was mixed and dissolved in dimethylformamide to obtain an adhesive solution of 40 mass% and 2 poise.
(Judgment)
○: The B layer portion is not easily peeled off (the C layer and the adhesive layer are peeled off).
Δ: Peeled at the B layer portion, but requires some peeling force.
X: The B layer portion was softened and easily peeled off.
(5)密着性
積層フィルムのC層に1mm2のクロスカット(C層のみ切る)を100個入れ、この部分にセロファン製粘着テープ(ニチバン製:CT18)を貼り、ゴムローラーを用いて加重19.6Nで3往復させて押しつけた後90度方向に剥離し、樹脂の残ったクロスカット部分の個数を評価し下記基準で判定した。
○:80%以上
△:50%以上80%未満
×:50%未満。
(5) Adhesiveness 100 pieces of 1 mm 2 crosscuts (cutting only the C layer) are put in the C layer of the laminated film, cellophane adhesive tape (manufactured by Nichiban: CT18) is pasted on this part, and a weight of 19 is applied using a rubber roller. The sheet was reciprocated 3 times at 6 N and then pressed, peeled in the direction of 90 degrees, and the number of cross-cut portions where the resin remained was evaluated and judged according to the following criteria.
○: 80% or more Δ: 50% or more and less than 80% ×: less than 50%
(6)そり
積層フィルムの片面に上記(4)の方法で接着剤を塗布し、36μmの電解銅箔(福田金属箔粉工業製:UHタイプ)を100℃、3kg/cmの条件(テンションフリー)で加熱プレスロールにてラミネートし、接着剤層を80℃の温度で24時間後100℃で5時間、0.6kg/m2の圧力下で接着剤を熱硬化させた。このサンプルを5cm角に切り出し、片端をガラス板に固定して一番反りあがった高さをそり高さとし下記の基準で評価した。なおそり高さは金尺で測定した。
○:15mm未満
△:15mm以上30mm未満
×:30mm以上。
(6) Sled Adhesive is applied to one side of the laminated film by the method of (4) above, and 36 μm electrolytic copper foil (made by Fukuda Metal Foil Powder Industry: UH type) at 100 ° C. and 3 kg / cm (tension-free) ), And the adhesive layer was thermally cured at a temperature of 80 ° C. for 24 hours and then at 100 ° C. for 5 hours under a pressure of 0.6 kg / m 2 . This sample was cut into a 5 cm square, one end was fixed to a glass plate, and the height of the most warped was taken as the warp height and evaluated according to the following criteria. The warp height was measured with a metal scale.
○: Less than 15 mm Δ: 15 mm or more and less than 30 mm x: 30 mm or more.
(7)誘電損失の周波数特性
JIS C2151(1990)に準じて1KHz(通常周波数)、1MHz(高周波数)の周波数で誘電損失を測定し、周波数変化率(1MHz/1KHz)を算出して下記基準で判定した。測定器はPRECISION LCR METER(ヒューレット・パッカード(株)社製 4284A(20Hz〜1MHz))で、誘電体測定用電極は横河ヒューレット・パッカード社製 HP 16451Bを用いた。
○:5未満
△:5以上10未満
×:10以上。
(7) Frequency characteristics of dielectric loss Measure dielectric loss at a frequency of 1KHz (normal frequency) and 1MHz (high frequency) in accordance with JIS C2151 (1990) and calculate the frequency change rate (1MHz / 1KHz). Judged by. The measuring instrument was PRECISION LCR METER (4284A (20 Hz to 1 MHz) manufactured by Hewlett-Packard Co.), and the dielectric measurement electrode was HP 16451B manufactured by Yokogawa Hewlett-Packard.
○: Less than 5 Δ: 5 or more and less than 10 ×: 10 or more.
(8)機械特性(破断強度、破断伸度)
テンシロン型引っ張り試験機(東洋ボールドウィン社製TENSION VTM-III)により、フィルム幅10mm、試験長50mmの試料を引っ張り速度200mm/分で測定したときの破断時の強度を破断強度(kg/mm2)で、また破断時の伸度を破断伸度(%)として表しフィルムの長手方向を測定した。
(8) Mechanical properties (breaking strength, breaking elongation)
Using a Tensilon-type tensile tester (TENSION VTM-III manufactured by Toyo Baldwin), the strength at break when a sample with a film width of 10 mm and a test length of 50 mm was measured at a pulling speed of 200 mm / min was determined as the breaking strength (kg / mm 2 ). The elongation at break was expressed as the elongation at break (%), and the longitudinal direction of the film was measured.
(9)難燃性
積層フィルムを50mm×200mmの短冊状に切り出し、直径12.7mm、長さ200mmの筒状に丸めた。この筒状サンプルの長手方向の一端を固定し垂直方向の他端に約20mmの火炎を3秒間さらした後、離炎した。この時離炎後のサンプルの燃焼時間をストップウォッチで測定した。このテストを同一サンプルで2回実施し合計の燃焼時間で難燃性を評価した。
(9) Flame retardancy The laminated film was cut into a 50 mm × 200 mm strip and rolled into a cylinder with a diameter of 12.7 mm and a length of 200 mm. One end of the cylindrical sample in the longitudinal direction was fixed, and a flame of about 20 mm was exposed to the other end in the vertical direction for 3 seconds, followed by flame removal. At this time, the burning time of the sample after flame separation was measured with a stopwatch. This test was performed twice on the same sample, and the flame retardancy was evaluated by the total burning time.
(10)吸湿率
試料を真空乾燥(100℃、5mmHg以下、24時間)した後サンプルの質量(W1)を直示天秤で測定する。その後40−℃75%RHの恒温恒湿槽に24時間エージングして該試料の質量(W2)を直示天秤で測定し、W2−W1/W1×100(%)の値を吸湿率とした。
(10) Moisture absorption rate After the sample is vacuum dried (100 ° C., 5 mmHg or less, 24 hours), the mass (W1) of the sample is measured with a direct balance. Thereafter, the sample was aged in a constant temperature and humidity chamber of 40- ° C. and 75% RH for 24 hours, and the mass (W2) of the sample was measured with a direct balance, and the value of W2−W1 / W1 × 100 (%) was defined as the moisture absorption rate. .
(11)プリント配線基板の半田耐熱性
上記(4)半田耐熱性Bの評価で作成した銅貼り積層フィルムと同じ方法で得た銅貼り品の銅箔層に、銅幅1mm、エッチング間隔5mmの碁盤目のパターンに12%の塩化第2鉄水溶液で銅箔をエッチングしてプリント配線基板を作成した。該基板を2mm×3cmのサイズに切り出し、プリント配線面を260℃の半田面に10秒間浮かべ、半田中および取り出した後のフィルムの外観変化でプリント配線基板の半田耐熱性を下記判断した。
○:ほとんど熱変形しない。
△:若干カール、回路間部分の変形はあるが実用上支障がない程度の変形である。
×:熱じわ、カール、回路間の収縮が激しく実用上使用できない変形である。
(11) Solder heat resistance of printed wiring board (4) Copper width 1 mm, etching interval 5 mm on the copper foil layer of the copper-coated product obtained by the same method as the copper-laminated laminated film prepared in the evaluation of (4) solder heat resistance B A printed wiring board was prepared by etching a copper foil with a 12% aqueous solution of ferric chloride in a grid pattern. The substrate was cut into a size of 2 mm × 3 cm, the printed wiring surface was floated on the solder surface at 260 ° C. for 10 seconds, and the solder heat resistance of the printed wiring substrate was determined by the change in the appearance of the film in and after the soldering.
○: Almost no thermal deformation.
Δ: Slightly curled and deformed to the extent that there is no problem in practical use, although there is a deformation of the inter-circuit portion.
X: Deformation that cannot be used practically due to severe shrinkage between heat wrinkles, curls, and circuits.
(12)プリント配線基板の密着性
上記(11)で作成されたプリント配線基板の銅箔部分をテンシロン(東洋ボールドウィン製 VTM-III)で90度方向に引き剥がし(剥離速度:50mm/分)密着力を求め、下記基準で密着性を判定した。
○:800g/cm以上(高密度回路でも問題ないレベル)
△:800g/cm未満500g/cm以上(通常回路で問題ないレベル)
×:500g/cm未満(実用上問題になるレベル)。
(12) Adhesiveness of the printed wiring board The copper foil part of the printed wiring board prepared in the above (11) is peeled off in a 90 degree direction with Tensilon (VTM-III manufactured by Toyo Baldwin) (peeling speed: 50 mm / min) The force was determined and the adhesion was determined according to the following criteria.
○: 800 g / cm or more (a level where there is no problem even in a high-density circuit)
(Triangle | delta): Less than 800 g / cm 500 g / cm or more (a level which does not have a problem with a normal circuit)
X: Less than 500 g / cm (a level that causes a practical problem).
実施例1
(1)共重合PPS樹脂組成物の製造
オートクレーブに100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下NMPと略称する場合がある)を仕込み、拡販しながら徐々に220℃まで昇温して含有されてる水分を蒸留により除去した。
脱水が終了した系内へ主成分モノマとして89モルのp−ジクロルベンゼン、副成分モノマとして10モル%のm−ジクロルベンゼン、および0.2モル%の1,2,4−トリクロルベンゼンを5リットルのNMPとともに添加し、170℃で窒素を3kg/cm2に加圧封入後昇温し260℃にて4時間重合した。重合終了後冷却し、蒸留水中にポリマを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマを採取した。
このポリマを90℃の蒸留水により5回洗浄した後、減圧下120℃にて乾燥して溶融粘度が1000ポイズ、融点が263℃の白色粒状の共重合PPSを得た。さらにこのポリマに平均粒径0.5μmの球状シリカを0.5質量%配合しブレンダーで均一混合させた後、30mm孔径の2軸溶融押出機にて、温度320℃でガット状に押し出し、5mm長程度にカットしてペレット化した。
(2)p−PPS樹脂組成物の製造
主成分モノマとして101モル%のp−ジクロルベンゼンを用い、副成分モノマを用いないこと以外は全て上記(1)の共重合PPS樹脂組成物の製造と同様にしてp−PPS樹脂組成物を得た。なお、該p−PPS樹脂組成物の溶融粘度は3000ポイズ、融点は285℃であった。
(3)中間積層フィルムの製造
上記(1)および(2)で得られた共重合PPS樹脂組成物およびp−PPS樹脂組成物をそれぞれ180℃の温度で4時間減圧乾燥(真空度5mmHg)した。この樹脂組成物を別々のエクストルーダに供給し溶融状態(両ポリマとも押出温度は320℃とした)で口金上部にある二重管型の積層装置で二層に積層しTダイ型の口金より吐出させ冷却用の回転ドラムで急冷し、実質的に非晶状態の共重合PPS樹脂組成物/p−PPS樹脂組成物の2層シート(厚さ620μm)を得た。
次いで、逐次二軸延伸装置で二軸延伸フィルムにした。すなわち、上記に得られた未延伸の2層積層シートをロール群からなる縦延伸装置に供給し長手方向に延伸した後、テンターを用いて幅方向に延伸した。延伸の条件は、両軸とも100℃の温度で延伸倍率は3.5倍とした。更にテンター内の熱処理ゾーンで270℃の温度で10秒間の熱処理を行った。さらに熱寸法安定性を良化する目的で幅方向に5%のリラックスを実施した。更に、ロール群を設けた加熱オーブンに該フィルムを通し200℃の温度でフリーリラックスした。このようにして得られた2層の中間積層フィルムの総厚さは25μmであり、共重合PPS樹脂組成物層の厚さは1.5μmであった。この2層の中間積層フィルムの共重合PPS樹脂組成物層の表面に6000J/m2の処理強度でコロナ放電処理を施した。
(4)積層フィルムの製造
ポリイミド(以下PIと略称する場合がある)溶液として東レ(株)製“トレニース”#3000)をNMPで固形分濃度が10質量%になるよう希釈した後、コロイダルシリカのNMP分散体(触媒化成工業(株)製“OSCAL”5116、固形分濃度10質量%、1次粒径80nm)を準備し、ポリイミド/シリカ=60/40になるよう調整した。
この溶液を用いグラビアロールコータ法で、先に得られた2層の中間積層フィルムの共重合PPS樹脂組成物層表面に塗布し、130℃で乾燥後、200℃で熱処理した。得られた積層フィルムのポリイミド層(C層)の厚さは2.0μmになるよう調整した。得られた積層フィルムを積層フィルム−1とする。
Example 1
(1) Production of copolymer PPS resin composition An autoclave was charged with 100 moles of sodium sulfide nonahydrate, 45 moles of sodium acetate and 25 liters of N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP). While expanding, the temperature was gradually raised to 220 ° C. and the contained water was removed by distillation.
89 mol of p-dichlorobenzene as a main component monomer, 10 mol% of m-dichlorobenzene as a secondary component monomer, and 0.2 mol% of 1,2,4-trichlorobenzene were added to the system after dehydration. The mixture was added together with 5 liters of NMP, and nitrogen was pressurized to 3 kg / cm 2 at 170 ° C., followed by heating and polymerization at 260 ° C. for 4 hours. After completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small block polymer was collected with a wire mesh having a 150 mesh opening.
The polymer was washed 5 times with distilled water at 90 ° C. and then dried at 120 ° C. under reduced pressure to obtain a white granular copolymer PPS having a melt viscosity of 1000 poise and a melting point of 263 ° C. Further, 0.5% by mass of spherical silica having an average particle diameter of 0.5 μm was blended with this polymer and uniformly mixed with a blender, and then extruded in a gut shape at a temperature of 320 ° C. with a 30 mm pore diameter twin screw extruder, 5 mm It was cut to a long length and pelletized.
(2) Production of p-PPS resin composition Production of copolymerized PPS resin composition of (1) above, except that 101 mol% of p-dichlorobenzene is used as the main component monomer and no accessory component monomer is used. In the same manner as above, a p-PPS resin composition was obtained. The p-PPS resin composition had a melt viscosity of 3000 poise and a melting point of 285 ° C.
(3) Production of intermediate laminated film The copolymerized PPS resin composition and p-PPS resin composition obtained in (1) and (2) above were each dried under reduced pressure (vacuum degree 5 mmHg) at a temperature of 180 ° C. for 4 hours. . This resin composition is supplied to separate extruders, melted (both polymers are extruded at 320 ° C.), laminated in two layers with a double tube type laminating device at the top of the die, and discharged from a T-die die. Then, it was quenched with a cooling drum for cooling to obtain a two-layer sheet (thickness: 620 μm) of a substantially amorphous copolymerized PPS resin composition / p-PPS resin composition.
Subsequently, it was made into the biaxially stretched film with the sequential biaxial stretching apparatus. That is, the unstretched two-layer laminated sheet obtained above was supplied to a longitudinal stretching apparatus consisting of a roll group and stretched in the longitudinal direction, and then stretched in the width direction using a tenter. The stretching conditions were a temperature of 100 ° C. for both axes and a stretching ratio of 3.5 times. Further, heat treatment was performed at a temperature of 270 ° C. for 10 seconds in a heat treatment zone in the tenter. Furthermore, 5% relaxation was performed in the width direction for the purpose of improving the thermal dimensional stability. Furthermore, the film was passed through a heating oven provided with a group of rolls and relaxed freely at a temperature of 200 ° C. The total thickness of the two-layered intermediate laminated film thus obtained was 25 μm, and the thickness of the copolymerized PPS resin composition layer was 1.5 μm. The surface of the copolymerized PPS resin composition layer of the two-layer intermediate laminated film was subjected to corona discharge treatment at a treatment strength of 6000 J / m 2 .
(4) Manufacture of laminated film Colloidal silica after diluting “Torenice” # 3000 manufactured by Toray Industries, Inc. as a polyimide (hereinafter sometimes abbreviated as PI) solution with NMP to a solid content concentration of 10% by mass. NMP dispersion (“OSCAL” 5116, manufactured by Catalyst Kasei Kogyo Co., Ltd., solid content concentration 10% by mass, primary particle size 80 nm) was prepared and adjusted so that polyimide / silica = 60/40.
Using this solution, a gravure roll coater method was applied to the surface of the copolymer PPS resin composition layer of the previously obtained two-layer intermediate laminated film, dried at 130 ° C., and then heat-treated at 200 ° C. The thickness of the polyimide layer (C layer) of the obtained laminated film was adjusted to 2.0 μm. The obtained laminated film is designated as laminated film-1.
実施例2
(1)PPS樹脂組成物の製造
実施例1と同様の方法で、主成分モノマとして50.8モル%のp−ジクロルベンゼン、副成分モノマとして49モル%のm−ジクロルベンゼン、および0.2モル%の1,2,4−トリクロルベンゼンを調整した共重合PPS樹脂組成物を作成した。
p−PPS樹脂組成物は、実施例1で使用したポリマを用いた。
(2)中間積層フィルムの製造
実施例1の方法で、3層に積層できる溶融積層装置を用い、実質的に非晶状態の共重合PPS樹脂組成物層/p−PPS樹脂組成物層/共重合PPS樹脂組成物層の3層積層シートを得た。該積層シートを実施例1の方法で逐次二軸延伸、熱処理、リラックスした。得られた3層の中間積層フィルムの厚さは25μmで、共重合PPS樹脂層は片側1.5μmであった。更にこの3層中間積層フィルムの両面に6000J/m2の処理強度でコロナ放電処理を施した。
(3)積層フィルムの製造
実施例1の方法で、上記3層中間積層フィルムの両面にPI樹脂層を設けた。塗布厚みは両面とも乾燥、熱処理後で2μmになるよう調整した。このようにして得られた積層フィルムを積層フィルム−2とする。
Example 2
(1) Production of PPS resin composition In the same manner as in Example 1, 50.8 mol% of p-dichlorobenzene as the main component monomer, 49 mol% of m-dichlorobenzene as the subcomponent monomer, and 0 A copolymerized PPS resin composition prepared with 2 mol% of 1,2,4-trichlorobenzene was prepared.
The polymer used in Example 1 was used for the p-PPS resin composition.
(2) Production of intermediate laminated film Using the melt laminating apparatus capable of laminating three layers by the method of Example 1, a substantially amorphous copolymerized PPS resin composition layer / p-PPS resin composition layer / copolymer A three-layer laminated sheet of polymerized PPS resin composition layers was obtained. The laminated sheet was sequentially biaxially stretched, heat-treated and relaxed by the method of Example 1. The thickness of the obtained three-layer intermediate laminated film was 25 μm, and the copolymer PPS resin layer was 1.5 μm on one side. Further, a corona discharge treatment was performed on both surfaces of the three-layer intermediate laminated film with a treatment strength of 6000 J / m 2 .
(3) Manufacture of laminated film By the method of Example 1, PI resin layers were provided on both surfaces of the three-layer intermediate laminated film. The coating thickness was adjusted to 2 μm after drying and heat treatment on both sides. The laminated film thus obtained is designated as laminated film-2.
実施例3
(1)中間積層フィルムの製造
共重合PPS樹脂組成物は実施例1の方法で、主成分モノマとして69.8モル%のp−ジクロルベンゼン、副成分モノマとして30モル%のm−ジクロルベンゼン、および0.2モル%の1,2,4−トリクロルベンゼンを用い実施例の条件で重合した。他の条件は実施例1と同様である。またp−PPS樹脂層は実施例1で製造したものを用いた。この共重合PPS樹脂組成物とp−PPS樹脂組成物を用いて実施例2の方法で、同じ構成で25μm厚さ(共重合PPS樹脂層の厚さは片面当たり1.5μm)の3層中間積層フィルムを得た。得られた中間積層フィルムの両側に6000J/m2の処理強度でコロナ放電処理を行った。
(2)積層フィルムの製造
実施例1の方法で、上記3層中間積層フィルムの両面にPI樹脂層を設けた。塗布厚みは両面とも乾燥、熱処理後で2μmになるよう調整した。このようにして得られた積層フィルムを積層フィルム−3とする。
Example 3
(1) Production of Intermediate Laminated Film The copolymerized PPS resin composition was prepared by the method of Example 1, with 69.8 mol% of p-dichlorobenzene as the main component monomer and 30 mol% of m-dichloro as the accessory component monomer. Polymerization was carried out under the conditions of Examples using benzene and 0.2 mol% of 1,2,4-trichlorobenzene. Other conditions are the same as in the first embodiment. Further, the p-PPS resin layer used in Example 1 was used. Using this copolymerized PPS resin composition and p-PPS resin composition, the method of Example 2 was used, and a three-layer intermediate having the same configuration and a thickness of 25 μm (the thickness of the copolymerized PPS resin layer was 1.5 μm per side) A laminated film was obtained. Corona discharge treatment was performed on both sides of the obtained intermediate laminated film at a treatment strength of 6000 J / m 2 .
(2) Manufacture of laminated film By the method of Example 1, PI resin layers were provided on both surfaces of the three-layer intermediate laminated film. The coating thickness was adjusted to 2 μm after drying and heat treatment on both sides. The laminated film thus obtained is designated as laminated film-3.
実施例4
実施例1の共重合PPS樹脂組成物とp−PPS樹脂組成物を用い、実施例2の方法で共重合PPS樹脂組成物層/p−PPS樹脂組成物層/共重合PPS樹脂組成物層の25μm厚さ(共重合PPS樹脂層厚さ片面当たり1.5μm)の3層中間積層フィルムを得た。この中間積層フィルムの両面に6000J/m2の処理強度でコロナ放電処理行い、両面に実施例1と同様の方法でPI層を2μm設けた積層フィルム−4を得た。
Example 4
Using the copolymerized PPS resin composition and the p-PPS resin composition of Example 1, the copolymer PPS resin composition layer / p-PPS resin composition layer / copolymerized PPS resin composition layer by the method of Example 2 A three-layer intermediate laminated film having a thickness of 25 μm (copolymerized PPS resin layer thickness of 1.5 μm per side) was obtained. Corona discharge treatment was performed on both surfaces of this intermediate laminated film at a treatment strength of 6000 J / m 2 , and a laminated film-4 having a PI layer of 2 μm provided on both sides in the same manner as in Example 1 was obtained.
実施例5
共重合PPS樹脂組成物は実施例1の方法で、主成分モノマとして96.8モル%のp−ジクロルベンゼン、副成分モノマとして3.0モル%のm−ジクロルベンゼン、および0.2モル%の1,2,4−トリクロルベンゼンを用い実施例1の条件で重合して得た。p−PPS樹脂組成物は実施例1で製造したものを用いた。
3層中間積層フィルム、積層フィルムの製造は実施例2の方法を用いた。得られた積層フィルムを積層フィルム−5とした。
Example 5
The copolymerized PPS resin composition was prepared according to the method of Example 1, with 96.8 mol% p-dichlorobenzene as the main component monomer, 3.0 mol% m-dichlorobenzene as the accessory component monomer, and 0.2. It was obtained by polymerization under the conditions of Example 1 using 1 mol% 1,2,4-trichlorobenzene. The p-PPS resin composition produced in Example 1 was used.
The method of Example 2 was used to produce a three-layer intermediate laminated film and a laminated film. The obtained laminated film was designated as laminated film-5.
実施例6
(1)PPS積層フィルムの製造
実施例4で得た3層の中間積層フィルムを用いた(両面に6000J/m2のコロナ放電処理を施した。)。
(2)積層フィルムの製造
C層樹脂にポリアミドイミド溶液(日立化成(株)製“H1−400”、固形分濃度:30質量%、粘度:60ポイズ)を用いた。該溶液をNMP/ジメチルホルムアミド/トルエン/塩化メチレン=40/20/30/10の質量比の溶剤で、10質量%になるよう希釈し、コロイダルシリカのNMP分散体(触媒化成工業(株)製“OSCAL”5116、固形分濃度10質量%、1次粒径80nm)を準備し、ポリアミドイミド/シリカ=60/40になるよう調整した。この溶液を実施例1の方法で
実施例4の3層中間積層フィルムの両面に塗布した。110℃、130℃、200℃、110℃の条件で塗剤乾燥した。時間は各ゾーン20秒間とした。塗布厚みは乾燥後で片面当たり2μmになるよう調整した。得られた積層フィルムを積層フィルム−6とする。
Example 6
(1) Production of PPS Laminated Film The three-layer intermediate laminated film obtained in Example 4 was used (6000 J / m 2 of corona discharge treatment was applied to both sides).
(2) Production of laminated film Polyamideimide solution ("H1-400" manufactured by Hitachi Chemical Co., Ltd., solid content concentration: 30% by mass, viscosity: 60 poise) was used for the C layer resin. The solution was diluted with a solvent having a mass ratio of NMP / dimethylformamide / toluene / methylene chloride = 40/20/30/10 to be 10% by mass, and an NMP dispersion of colloidal silica (manufactured by Catalyst Chemical Industries, Ltd.) “OSCAL” 5116, solid content concentration 10% by mass, primary particle size 80 nm) were prepared and adjusted so that polyamideimide / silica = 60/40. This solution was applied to both sides of the three-layer intermediate laminated film of Example 4 by the method of Example 1. The coating material was dried under the conditions of 110 ° C, 130 ° C, 200 ° C and 110 ° C. The time was 20 seconds for each zone. The coating thickness was adjusted to 2 μm per side after drying. Let the obtained laminated film be laminated film-6.
比較例1
実施例1で得たp−PPS樹脂組成物の単体を実施例1の方法、条件で溶融押出、逐次二軸延伸、熱処理し25μm厚さのp−PPS樹脂組成物の二軸延伸フィルムを得た。PPSフィルム−1とする。
Comparative Example 1
The single p-PPS resin composition obtained in Example 1 was melt-extruded, sequentially biaxially stretched and heat-treated under the methods and conditions of Example 1 to obtain a biaxially stretched film of p-PPS resin composition having a thickness of 25 μm. It was. Let it be PPS film-1.
比較例2
比較のために実施例4の3層中間積層フィルム(以下中間積層フィルム−1とする)を準備した。
Comparative Example 2
For comparison, a three-layer intermediate laminated film of Example 4 (hereinafter referred to as intermediate laminated film-1) was prepared.
比較例3
比較例1で得たPPSフィルム−1の両面に、アルゴンガス中でプラズマ処理(印加電圧0.6kV、速度0.25m/分)を行い、実施例1で用いたPI溶液を実施例1の方法で塗布した。塗布厚みは乾燥、熱処理後で2μmになるよう調整した。得られた積層フィルムを積層フィルム−7とする。
Comparative Example 3
Both surfaces of the PPS film-1 obtained in Comparative Example 1 were subjected to plasma treatment in argon gas (applied voltage 0.6 kV, speed 0.25 m / min), and the PI solution used in Example 1 was used as in Example 1. The method was applied. The coating thickness was adjusted to 2 μm after drying and heat treatment. Let the obtained laminated | multilayer film be laminated | multilayer film-7.
比較例4
(1)PPS積層フィルムの製造
実施例4と同様の方法で、総厚さが50μm(共重合PPS層厚が片面当たり3μm)の3層中間積層フィルムを製造した。
(2)積層フィルムの製造
熱可塑性PI樹脂として、AURUM450:三井化学製のペレットを準備した。該樹脂を30mm孔径の溶融押出機にて320℃の温度で溶融押出成形し、冷却ドラムにプレスキャストするときに約2.5倍のドラフト延伸を実施した。得られたフィルムは、4〜5μm厚さであった。このフィルムを上記(1)で得た3層中間積層フィルムの両面に加熱ロールプレス法で熱圧着して積層フィルム−8を得た。積層厚は、実施例1〜6および比較例3の積層フィルムに比べて約2倍の厚さになったが、積層比は同程度になるよう調整した。また加熱プレス温度は250℃で、プレス圧力は5kg/cmであった。この積層フィルム−8の表層C層のPIをDSC分析したら、253℃にガラス転移温度と見られる吸熱ピークが見られた。また分解点は400℃を少し超えた温度であった。
Comparative Example 4
(1) Production of PPS Laminated Film A three-layer intermediate laminated film having a total thickness of 50 μm (copolymerized PPS layer thickness of 3 μm per side) was produced in the same manner as in Example 4.
(2) Manufacture of laminated film AURUM450: Mitsui Chemicals pellets were prepared as a thermoplastic PI resin. The resin was melt-extruded at a temperature of 320 ° C. with a 30 mm pore size melt extruder, and was stretched about 2.5 times when it was press-cast to a cooling drum. The resulting film was 4-5 μm thick. This film was thermocompression-bonded on both surfaces of the three-layer intermediate laminated film obtained in (1) above by a hot roll press method to obtain a laminated film-8. The lamination thickness was about twice that of the laminated films of Examples 1 to 6 and Comparative Example 3, but the lamination ratio was adjusted to be about the same. The heating press temperature was 250 ° C. and the press pressure was 5 kg / cm. When PI of the surface layer C layer of this laminated film-8 was subjected to DSC analysis, an endothermic peak considered to be a glass transition temperature was observed at 253 ° C. The decomposition point was a little over 400 ° C.
比較例5
比較のために、ポリイミドフィルム(PI−1)の25μm(東レ−デュポン製カプトン100H)を準備した。
Comparative Example 5
For comparison, a polyimide film (PI-1) of 25 μm (Toray-DuPont Kapton 100H) was prepared.
実施例7〜実施例12
実施例1〜実施例6の積層フィルム−1〜6に下記の方法で加工し、表1に示す6種のプリント配線基板を作成した。得られたプリント配線基板をそれぞれ配線基板−1〜6とした。
Example 7 to Example 12
The laminated films-1 to 6 of Example 1 to Example 6 were processed by the following method to prepare six types of printed wiring boards shown in Table 1. The obtained printed wiring boards were designated as wiring boards -1 to 6, respectively.
(1)接着剤の準備
接着剤として、ポリアミド樹脂(ヘンケル社製バーサロン1105)60質量%、ビスフェノールA系エポキシ樹脂(シェル社製エピコート834)30質量%、ダイマー酸系グリシジルエステル変成物(シェル社製エピコート872)8質量%、イミダゾール2質量%をジメチルホルムアミドに混合溶解して固形分濃度が40質量%、2ポイズの接着剤溶液を用いた。
(1) Preparation of Adhesive As an adhesive, 60% by mass of a polyamide resin (Henkel's Versalon 1105), 30% by mass of a bisphenol A-based epoxy resin (Epicoat 834 manufactured by Shell), a dimer acid-based glycidyl ester modified product (shell) Epicoat 872) 8% by mass and 2% by mass of imidazole were mixed and dissolved in dimethylformamide, and an adhesive solution having a solid content concentration of 40% by mass and 2 poise was used.
(2)銅貼り積層フィルムの製造
上記(1)の接着剤を、リバースコータを用いて積層フィルム1〜6のC面に塗布した。塗布厚みは溶剤が乾燥された後で18μmになるよう調整した。乾燥温度は100℃、120℃の2ゾーンで行った。塗布速度は10m/分とした。この接着剤塗布面に、36μm厚さの電解銅箔(福田金属箔粉工業(株)製:UHタイプ)を加熱プレスロールで熱圧着した。加熱ロールの表面温度は100℃で、プレス速度は5m/分、プレス圧は3kg/cmとした。得られた銅貼り積層フィルムを80℃で2日間、100℃で5時間の条件で熱硬化させた。
(2) Manufacture of copper-clad laminated film The adhesive of (1) above was applied to the C surface of laminated films 1 to 6 using a reverse coater. The coating thickness was adjusted to 18 μm after the solvent was dried. The drying temperature was performed in two zones of 100 ° C. and 120 ° C. The coating speed was 10 m / min. A 36 μm-thick electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Co., Ltd .: UH type) was thermocompression-bonded to this adhesive-coated surface with a hot press roll. The surface temperature of the heating roll was 100 ° C., the pressing speed was 5 m / min, and the pressing pressure was 3 kg / cm. The obtained copper-clad laminated film was thermally cured at 80 ° C. for 2 days and at 100 ° C. for 5 hours.
(3)プリント配線基板
上記で得られた銅貼り積層フィルムの銅箔面をエタノールで洗浄後、ポリエステル粘着テープ(ニチバン(株)製573−H−UL、50μm厚)でマスキングし、銅幅1mm、エッチング間隔5mmの碁盤目のパターンに12%の塩化第2鉄水溶液でエッチングしてプリント配線基板を得た。
(3) Printed wiring board After the copper foil surface of the copper-clad laminate film obtained above is washed with ethanol, it is masked with a polyester adhesive tape (57-H-UL, manufactured by Nichiban Co., Ltd., 50 μm thickness), and the copper width is 1 mm. The printed wiring board was obtained by etching with a 12% aqueous solution of ferric chloride in a grid pattern with an etching interval of 5 mm.
比較例6
比較例1のPPSフィルム−1の片面に6000J/m2のコロナ放電処理を施し、該コロナ処理面に実施例7と同様の方法で銅箔を積層しプリント配線基板を作成した(配線基板−7とする)。
Comparative Example 6
One side of the PPS film-1 of Comparative Example 1 was subjected to a corona discharge treatment of 6000 J / m 2 , and a copper foil was laminated on the corona treated surface in the same manner as in Example 7 to produce a printed wiring board (wiring board— 7).
比較例7
比較例2で準備した中間積層フィルム−1の片面に6000J/m2のコロナ放電処理を施し、該コロナ処理面に実施例7と同じ方法で銅箔を積層し、プリント配線基板を作成した(配線基板−8とする)。
Comparative Example 7
One side of the intermediate laminated film-1 prepared in Comparative Example 2 was subjected to a corona discharge treatment of 6000 J / m 2 , and a copper foil was laminated on the corona treated surface in the same manner as in Example 7 to prepare a printed wiring board ( Wiring board-8).
比較例8
比較例3で得た積層フィルム−7の片面に、実施例7と同様の方法でプリント配線回路を作成した(配線基板−9とする)。
Comparative Example 8
A printed wiring circuit was prepared on one side of the laminated film-7 obtained in Comparative Example 3 in the same manner as in Example 7 (referred to as wiring board-9).
比較例9
比較例4で作成した積層フィルム−8の片面に、実施例7と同様の方法でプリント配線回路を形成した。得られたプリント配線基板を配線基板−10とする。
Comparative Example 9
A printed wiring circuit was formed on one side of the laminated film-8 prepared in Comparative Example 4 in the same manner as in Example 7. Let the obtained printed wiring board be wiring board-10.
各実施例および比較例の評価の結果を表2、3に比較して示す。 The results of evaluation of each example and comparative example are shown in comparison with Tables 2 and 3.
(まとめ)
表2、3に本発明の積層フィルムの評価の結果を示す。本発明の積層フィルムは、PPSの優れた特性を保持し従来の問題点であった半田耐熱性、密着性および熱寸法安定性(そり)が改善されプリント配線基板に最適な素材になった。すなわち、機械特性、難燃性、吸湿率の各特性を本発明の実施例1の積層フィルム−1〜実施例6の積層フィルム−6をPPS単体である比較例1のPPSフィルム−1や比較例2の中間積層フィルム−1と比較評価したらほとんどPPS単体の特性と同レベルであった(表2)。またもう一つの優位な特性である誘電特性の周波数依存性も小さく安定していることが表3の評価結果から判る。その上で、半田耐熱性、密着性、そり(熱寸法安定性)といった従来の問題点が解決されていることが判る。また従来のポリイミドフィルム(比較例5)は半田耐熱性や熱寸法安定性には優れるが誘電特性の高周波領域での変化が大きく、高周波対応への適用は難しいことが判る。
(Summary)
Tables 2 and 3 show the evaluation results of the laminated film of the present invention. The laminated film of the present invention has maintained the excellent characteristics of PPS and has improved the solder heat resistance, adhesion and thermal dimensional stability (warping), which have been the conventional problems, and has become an optimal material for printed wiring boards. That is, each characteristic of mechanical characteristics, flame retardancy, and moisture absorption is compared with the PPS film-1 of Comparative Example 1 in which the laminated film-1 of Example 1 to the laminated film-6 of Example 6 of the present invention is a single PPS or a comparison. When compared with the intermediate laminated film-1 of Example 2, it was almost at the same level as the characteristics of the single PPS (Table 2). Further, it can be seen from the evaluation results in Table 3 that the frequency dependence of dielectric characteristics, which is another advantageous characteristic, is small and stable. In addition, it can be seen that conventional problems such as solder heat resistance, adhesion, and warpage (thermal dimensional stability) have been solved. Further, it can be seen that the conventional polyimide film (Comparative Example 5) is excellent in solder heat resistance and thermal dimensional stability, but has a large change in dielectric characteristics in the high frequency region, and is difficult to apply to high frequency.
また、特許文献1で提案されている構成(比較例3の積層フィルム−7)は、半田耐熱性や熱寸法安定性の度合いを示すそりは改善されるが、密着力が弱いことがよく判る。これは本発明の積層フィルムの構成で密着性が改善されたのは共重合PPS層をp−PPS層の表面に積層したためである。比較例2の中間積層フィルムの特性と本発明の積層フィルムを比較すると半田耐熱性、そりの改善からC層が必要であることが判る。さらに、該C層は比較例4の積層フィルム−8と実施例で示す本発明の積層フィルムの比較によって、本発明で言う実質的に融点を有しない耐熱樹脂層を用いないと半田耐熱性やそりを改善することができないこともよく判る。 Further, the configuration proposed in Patent Document 1 (laminated film-7 of Comparative Example 3) improves the warpage indicating the degree of solder heat resistance and thermal dimensional stability, but it is well understood that the adhesion is weak. . This is because the cohesive PPS layer was laminated on the surface of the p-PPS layer because the adhesiveness was improved by the constitution of the laminated film of the present invention. Comparing the characteristics of the intermediate laminated film of Comparative Example 2 with the laminated film of the present invention, it can be seen that the C layer is necessary from the viewpoint of improvement in solder heat resistance and warpage. Further, the C layer is obtained by comparing the laminated film-8 of Comparative Example 4 with the laminated film of the present invention shown in the Examples, unless the heat resistant resin layer having substantially no melting point as used in the present invention is used. You can also see that the sled cannot be improved.
本発明の積層フィルムは、二軸配向p−PPSフィルムの少なくとも片面に共重合PPS層が積層されていることが特徴であるが、該共重合PPS樹脂に含有するp−フェニレンスルフィド単位の全繰り返し単位に対するモル%で表される含有量をPPSF(B)とし、本発明の積層フィルムのB層におけるp−フェニレンスルフィドに次いで多く含有する共重合単位の全繰り返し単位に対するモル%で表される含有量をCOPF(B)とすると式1、2を満足することが密着性と半田耐熱性、そりの点で必要であることも実施例2〜6の結果から判る。すなわち、共重合PPSの含有量が増加すると半田耐熱性、熱寸法安定性(そり)が低下する傾向であり、逆に共重合PPSの含有量が低下すると密着性が低下する傾向にある。 The laminated film of the present invention is characterized in that a copolymerized PPS layer is laminated on at least one surface of a biaxially oriented p-PPS film, but all repeating p-phenylene sulfide units contained in the copolymerized PPS resin. Content represented by mol% with respect to the unit is PPSF (B), and content represented by mol% with respect to all repeating units of copolymerized units contained in the B layer of the laminated film of the present invention after the p-phenylene sulfide. It can also be seen from the results of Examples 2 to 6 that, when the amount is COPF (B), satisfying Expressions 1 and 2 is necessary in terms of adhesion, solder heat resistance, and warpage. That is, when the content of the copolymerized PPS increases, the solder heat resistance and thermal dimensional stability (warp) tend to decrease, and conversely, when the content of the copolymerized PPS decreases, the adhesion tends to decrease.
また、本発明の積層フィルムは実施例1の積層フィルム−1と実施例4の積層フィルム−4を比較することで判るように2軸配向p−PPSフィルムの両面にB層、C層がこの順に積層されている方が本発明の目的を達成しやすい。 The laminated film of the present invention has a B layer and a C layer on both sides of the biaxially oriented p-PPS film as can be seen by comparing the laminated film 1 of Example 1 and the laminated film 4 of Example 4. It is easier to achieve the object of the present invention by laminating in order.
次に本発明のプリント配線基板については、表4に評価の結果を示す。実施例7〜12の本発明の積層フィルムをベースにしたプリント配線基板は半田耐熱性、密着性ともに改善されていることが判る。PPS単体のフィルムをベースにしたものやC層の耐熱樹脂が融点またはガラス転移点を持つものは半田耐熱性に問題がある。また特許文献1で提案されている積層フィルムをベースにした配線基板−9は密着性に難があり上記積層フィルムの評価結果に準じた結果であることがよく判る。 Next, the results of evaluation are shown in Table 4 for the printed wiring board of the present invention. It can be seen that the printed wiring boards based on the laminated films of Examples 7 to 12 of the present invention have both improved solder heat resistance and adhesion. A film based on a single PPS film or a C-layer heat-resistant resin having a melting point or glass transition point has a problem in solder heat resistance. Further, it can be seen that the wiring board-9 based on the laminated film proposed in Patent Document 1 has difficulty in adhesion and has a result according to the evaluation result of the laminated film.
本発明は、PPSフィルムを用いた積層フィルムに関するものである。さらに詳しくは、PPSフィルムと共重合PPS層、実質的に融点を有しない高分子樹脂層との積層フィルムであり、特にプリント配線基板の絶縁材に最適な積層フィルムおよび該積層フィルムをベースとしたプリント配線基板に関するものである。
The present invention relates to a laminated film using a PPS film. More specifically, it is a laminated film of a PPS film, a copolymerized PPS layer, and a polymer resin layer having substantially no melting point, and particularly based on the laminated film most suitable for an insulating material of a printed wiring board and the laminated film. The present invention relates to a printed wiring board.
Claims (3)
50≦PPSF(B)≦95 式1
3≦COPF(B)<50 式2
PPSF(B):B層におけるp−フェニレンスルフィド単位の全繰り返し単位に対する含有量(モル%)
COPF(B):B層におけるp−フェニレンスルフィド単位に次いで多く含まれる共重合単位の全繰り返し単位に対する含有量(モル%) Containing at least one copolymer unit other than the p-phenylene sulfide unit on at least one surface of the biaxially oriented film (A layer) comprising a resin composition containing poly-p-phenylene sulfide as a main component; A layer characterized in that a layer (B layer) composed of copolymerized polyphenylene sulfide satisfying the following formulas 1 and 2 and a polymer resin layer (C layer) having substantially no melting point are laminated in this order. the film.
50 ≦ PPSF (B) ≦ 95 Formula 1
3 ≦ COPF (B) <50 Formula 2
PPSF (B): Content (mol%) of p-phenylene sulfide unit in B layer with respect to all repeating units
COPF (B): Content (mol%) of copolymerized units contained in the B layer after the p-phenylene sulfide units in the second layer with respect to all repeating units
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004332733A JP2006142545A (en) | 2004-11-17 | 2004-11-17 | Laminated film and printed wiring board using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004332733A JP2006142545A (en) | 2004-11-17 | 2004-11-17 | Laminated film and printed wiring board using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006142545A true JP2006142545A (en) | 2006-06-08 |
Family
ID=36622788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004332733A Pending JP2006142545A (en) | 2004-11-17 | 2004-11-17 | Laminated film and printed wiring board using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006142545A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04319436A (en) * | 1991-04-18 | 1992-11-10 | Toray Ind Inc | Laminated polyphenylene sulfide film and manufacture thereof |
JPH08142274A (en) * | 1994-11-25 | 1996-06-04 | Toray Ind Inc | Heat resistant laminated film |
-
2004
- 2004-11-17 JP JP2004332733A patent/JP2006142545A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04319436A (en) * | 1991-04-18 | 1992-11-10 | Toray Ind Inc | Laminated polyphenylene sulfide film and manufacture thereof |
JPH08142274A (en) * | 1994-11-25 | 1996-06-04 | Toray Ind Inc | Heat resistant laminated film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007108284A1 (en) | Adhesive film | |
WO2006011404A1 (en) | Adhesive film and use thereof | |
TWI788546B (en) | Metal laminate | |
JP2006269615A (en) | Printed wiring board | |
WO2011071087A1 (en) | Method for producing a polyimide film, and polyimide film | |
JP2956254B2 (en) | Laminated polyphenylene sulfide film and method for producing the same | |
WO2021006258A1 (en) | Long film, method for producing long film, method for producing long multilayer body, and long multilayer body | |
WO2010119907A1 (en) | Polyimide film, method for producing same, and metal-laminated polyimide film | |
JP4598408B2 (en) | Adhesive sheet | |
CN112020427A (en) | Film, clad laminate, flexible substrate, method for producing film, method for producing clad laminate, and method for producing flexible substrate | |
JPH07102661B2 (en) | Manufacturing method of multilayer extruded polyimide film | |
JP3077857B2 (en) | Metal base circuit board | |
JP2006142545A (en) | Laminated film and printed wiring board using it | |
JP2007001173A (en) | Multilayered polyimide film | |
JP2002047360A (en) | Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same | |
JP2007254530A (en) | Laminated adhesive sheet, metal layer-adhered laminated adhesive sheet and circuit substrate | |
JP4876396B2 (en) | Printed wiring board | |
WO1994022941A1 (en) | Resin-impregnated fiber sheet | |
JP2002144510A (en) | Resin sheet and metal laminate sheet | |
JP3139515B2 (en) | Fiber sheet and circuit board using the same | |
JP3060729B2 (en) | Multilayer wiring board | |
JP2805882B2 (en) | Laminate | |
JP2004042579A (en) | Copper-clad laminated sheet and its manufacturing method | |
JP2007186586A (en) | Metallized polyimide film | |
JP3635918B2 (en) | Masking material for solder printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20071108 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101005 |