JP2006141678A - Instrument for measuring blood rheology - Google Patents

Instrument for measuring blood rheology Download PDF

Info

Publication number
JP2006141678A
JP2006141678A JP2004335709A JP2004335709A JP2006141678A JP 2006141678 A JP2006141678 A JP 2006141678A JP 2004335709 A JP2004335709 A JP 2004335709A JP 2004335709 A JP2004335709 A JP 2004335709A JP 2006141678 A JP2006141678 A JP 2006141678A
Authority
JP
Japan
Prior art keywords
blood
living body
light
signal
blood flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004335709A
Other languages
Japanese (ja)
Other versions
JP4611001B2 (en
Inventor
Mizuaki Suzuki
瑞明 鈴木
Fumio Kimura
文雄 木村
Norihiko Nakamura
敬彦 中村
Masataka Araogi
正隆 新荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004335709A priority Critical patent/JP4611001B2/en
Publication of JP2006141678A publication Critical patent/JP2006141678A/en
Application granted granted Critical
Publication of JP4611001B2 publication Critical patent/JP4611001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument for measuring blood rheology by which the blood rheology is measured at low costs by enabling anybody other than a specialist to simply measure a blood flow velocity without collecting blood, and by which measurement excellent in correlation property is furthermore carried out also about data between different patients. <P>SOLUTION: The instrument carries out measurement using a blood flow velocity sensor obtained by combining a plurality of ultrasonic sensors each consisting of an ultrasonic transmitter and an ultrasonic receiver, and an optical sensor, and corrects data of the blood flow velocity using data of the optical sensor to reduce variance caused by the individual difference between living bodies. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生体内の血液の流動性を示す血液レオロジーの評価のための特に血管中を流れる血液の動的状態を測定する技術に関する。   The present invention relates to a technique for measuring a dynamic state of blood flowing in a blood vessel, particularly for evaluation of blood rheology indicating blood fluidity in a living body.

人体の健康状態を判断する検査項目のひとつとして、血液の流動性に着目した血液レオロジー測定が注目されている。血液レオロジーを測定する手段として、被験者より採血した一定量の血液が微小流路(マイクロチャネル)を通過する時間を測定する装置(製品名MC−FAN)が開発されている(非特許文献1参照。)。現在においては、MC−FAN装置は、血液レオロジー測定における標準機とされている。   As one of the examination items for judging the health condition of the human body, blood rheology measurement focusing on blood fluidity has attracted attention. As a means for measuring blood rheology, an apparatus (product name MC-FAN) has been developed that measures the time for a certain amount of blood collected from a subject to pass through a microchannel (microchannel) (see Non-Patent Document 1). .). At present, the MC-FAN apparatus is a standard machine in blood rheology measurement.

しかし、MC−FAN装置による測定においては上記のように必ず採血を行う必要があり、測定が行えるのは医療機関に限られ、いつでもだれでもが手軽に健康状態を検査する目的には大きな不都合がある。また、採血は被験者に対する肉体的および心理的な負担も大きく、1日あたりに測定作業が可能な回数もせいぜい数回まででしかないため、時系列的に連続したデータが得られないという問題がある。   However, in the measurement using the MC-FAN apparatus, blood must be collected as described above, and the measurement can be performed only by medical institutions, and there is a great inconvenience for the purpose of easily checking the health condition of anyone at any time. is there. In addition, blood sampling has a large physical and psychological burden on the subject, and the number of measurement operations per day can only be several times at most, so that there is a problem that continuous data cannot be obtained in time series. is there.

血液レオロジーと生体内の血流速度は強い相関があると考えられる。すなわち、血液の流動性が低い場合、血流速度は遅く、流動性が高い場合は血流速度が速いと考えられる。そのため、生体内の血流速度を計測することで、間接的に血液レオロジーを知ることが可能となる。そこで従来、血液レオロジーと強い相関のある血流速度を計測するため、生体内を伝播し、血管内の血流に反射する超音波のドップラシフトから血流速度を計測する発明が提案されている(特許文献1参照。)。
特開2003−159250号公報 「血液レオロジー測定装置」 菊池佑二「毛細血管モデルを用いた全血流動性の測定」(食品研究成果情報,NO.11 1999年発行)
There is a strong correlation between blood rheology and blood flow velocity in vivo. That is, it is considered that when the blood fluidity is low, the blood flow velocity is slow, and when the blood fluidity is high, the blood flow velocity is fast. Therefore, it is possible to know blood rheology indirectly by measuring the blood flow velocity in the living body. Thus, in order to measure blood flow velocity that has a strong correlation with blood rheology, an invention has been proposed in which blood flow velocity is measured from Doppler shift of an ultrasonic wave that propagates in a living body and reflects on blood flow in a blood vessel. (See Patent Document 1).
Japanese Patent Laid-Open No. 2003-159250 “Blood Rheology Measuring Device” Keiji Kikuchi “Measurement of whole blood fluidity using a capillary model” (Food Research Result Information, NO.11, 1999)

生体内を伝播し、血管内の血流に反射する超音波のドップラシフトから血流速度を計測する従来の技術においても、特定の被験者については、MC−FANによる測定データと高い相関を有するデータを得ることができた。しかしながら、複数の被験者について測定を行うと、その生体の個体差(個人差)から、従来の技術では、異なる被験者間のデータの比較において、相関性が低下する場合があった。   Even in the conventional technique of measuring blood flow velocity from the Doppler shift of ultrasonic waves that propagate in the living body and reflect on the blood flow in the blood vessel, for a specific subject, data that has a high correlation with the measurement data by MC-FAN Could get. However, when measurement is performed on a plurality of subjects, the correlation may be reduced in the comparison of data between different subjects in the conventional technique due to individual differences (individual differences) in the living body.

そこで本願発明は、血液の採取を行なわずに、専門家以外の誰でも手軽に正確な血流速度を計測し、血液レオロジーを低コスト測定可能とするのみならず、異なる被験者間のデータにおいても相関性に優れた測定が可能な血液レオロジー測定装置を提供することを目的とする。   Therefore, the present invention does not only collect blood, but anyone other than an expert can easily measure an accurate blood flow velocity, enable not only blood rheology to be measured at low cost, but also data between different subjects. An object of the present invention is to provide a blood rheology measuring apparatus capable of measuring with excellent correlation.

上記課題を解決するためには、本願発明では、超音波送信機と超音波受信機から成る超音波センサを複数個組み合わせた血流速度センサと、光センサとを組合わせて用いて計測を行う。一般に、管内を流れる粘性流体の速度は、圧力と、管径の2乗に比例し、粘性に反比例する。一方、流体の流量は、圧力と、管径の4乗に比例し、粘性に反比例する。したがって、上記の関係から、流体の速度と流量および圧力から粘性を求めることができる。生体中(血管中)を流れる血液の速度は超音波センサで測定する。血液に吸収されやすい波長の光(青色、緑色など)を生体(人体)に入射すると、血流量に応じて血液に吸収された光の残りの反射光または透過光を検出することができるため、血流量は発光素子と受光素子を組合わせた光センサで検出する。   In order to solve the above problems, in the present invention, measurement is performed using a combination of a blood flow velocity sensor, which is a combination of a plurality of ultrasonic sensors including an ultrasonic transmitter and an ultrasonic receiver, and an optical sensor. . In general, the velocity of the viscous fluid flowing in the pipe is proportional to the pressure and the square of the pipe diameter, and inversely proportional to the viscosity. On the other hand, the flow rate of the fluid is proportional to the pressure and the fourth power of the tube diameter, and inversely proportional to the viscosity. Therefore, the viscosity can be obtained from the speed, flow rate and pressure of the fluid from the above relationship. The velocity of blood flowing in the living body (in the blood vessel) is measured by an ultrasonic sensor. When light of a wavelength that is easily absorbed by blood (blue, green, etc.) is incident on a living body (human body), the remaining reflected or transmitted light of the light absorbed by the blood can be detected according to the blood flow volume. The blood flow rate is detected by an optical sensor that combines a light emitting element and a light receiving element.

また、光センサにおいては、その発光素子の駆動方法をパルス発光とすることにより、発光の強さを向上し、光センサの感度およびS/Nを向上することができる。血液の流れやすさを血液粘性の逆数とすると、超音波センサで測定した血流速度のデータを、光センサで得た流量のデータを用いて補正することにより、超音波センサ単体で得られるデータに含まれる生体の個体差に起因するバラツキを低減し、より正確に血液の流れやすさを求めることができる。   Further, in the optical sensor, the intensity of light emission can be improved and the sensitivity and S / N of the optical sensor can be improved by setting the driving method of the light emitting element to pulse light emission. If the ease of blood flow is the reciprocal of blood viscosity, the blood flow velocity data measured by the ultrasonic sensor is corrected using the flow rate data obtained by the optical sensor, and the data obtained by the ultrasonic sensor alone It is possible to reduce the variation caused by the individual difference of the living body contained in the blood and to determine the ease of blood flow more accurately.

超音波センサと光センサを組合わせて用いることにより、被験者から採血を行うことなく、手軽に誰であっても血液レオロジーの測定が可能となり、さらにその精度が向上する。また、光センサの発光素子をパルス駆動とすることにより、光センサの感度を向上し、さらに、高価な多層膜光学フィルタを備えた受光素子を複数備えることなく、1つの受光素子のみを備えれば良いため、装置の価格上昇が最小限で済む。   By using a combination of an ultrasonic sensor and an optical sensor, anyone can easily measure blood rheology without collecting blood from a subject, and the accuracy is further improved. In addition, by using a pulse drive for the light emitting element of the optical sensor, the sensitivity of the optical sensor is improved, and further, only one light receiving element can be provided without providing a plurality of light receiving elements having an expensive multilayer optical filter. Therefore, the increase in the price of the apparatus can be minimized.

(実施の形態1)
まず、図面に基づき実施例の構成を説明する。図1は、本発明の測定装置の構成を示すブロック図である。図2には本発明で用いた血流速度センサを示す。また、図4及び図5に超音波ドップラ信号測定原理の概略を示す模式図を示す。
(Embodiment 1)
First, the structure of an Example is demonstrated based on drawing. FIG. 1 is a block diagram showing the configuration of the measuring apparatus of the present invention. FIG. 2 shows a blood flow velocity sensor used in the present invention. FIGS. 4 and 5 are schematic views showing the outline of the principle of ultrasonic Doppler signal measurement.

血流速度センサ30は、2対の超音波センサ、すなわち、発信素子2a、受信素子3aから成る超音波センサ1aと、発信素子2b、受信素子3bから成る超音波センサ1bとを組み合わせたものである。超音波センサ1a、1bの発信素子2a、2bと受信素子3a、3bはいずれも圧電性セラミックス板に電極薄膜を形成した圧電振動素子である。本実施の形態においては超音波の周波数は15MHzとした。本発明においては、2対の超音波センサ1a、1bを用い、超音波の射出および受信の指向性の方向が互いに平行にならない角度αを成すようにセンサ支持基板10上に配置してある。この血流センサ30に、図4に示すように測定対象である生体71(被験者の指先など)を接触させて、血流速度を計測する。   The blood flow velocity sensor 30 is a combination of two pairs of ultrasonic sensors, that is, an ultrasonic sensor 1a including a transmitting element 2a and a receiving element 3a, and an ultrasonic sensor 1b including a transmitting element 2b and a receiving element 3b. is there. The transmitting elements 2a and 2b and the receiving elements 3a and 3b of the ultrasonic sensors 1a and 1b are all piezoelectric vibrating elements in which an electrode thin film is formed on a piezoelectric ceramic plate. In the present embodiment, the ultrasonic frequency is 15 MHz. In the present invention, two pairs of ultrasonic sensors 1a and 1b are used and arranged on the sensor support substrate 10 so that the directions of directivity of ultrasonic emission and reception are not parallel to each other. The blood flow velocity is measured by bringing the blood flow sensor 30 into contact with a living body 71 (such as a fingertip of a subject) as shown in FIG.

超音波センサ1aの発信素子2aから発した超音波(送信波13a)は生体組織中を伝播し、血管中を流れる血液で反射される。反射波14aは、血液の流れる速度に従いドップラシフトを受けた信号に変化している。この反射波を受信素子3aで受信する。超音波センサ1bについても同様に、発信素子2bから発した超音波(送信波13b)は血流によるドップラシフトを受けて反射され受信素子3bで検出されるのであるが、超音波センサ1aと1bでは超音波の放射される指向方向が異なる。この超音波センサ1aと1bの角度の差αと超音波センサ1aと1bの信号から得られたそれぞれのドップラシフト周波数ΔFa、ΔFbから血流速度を計算することが可能である。   The ultrasonic wave (transmission wave 13a) emitted from the transmitting element 2a of the ultrasonic sensor 1a propagates through the living tissue and is reflected by the blood flowing through the blood vessel. The reflected wave 14a changes to a signal subjected to Doppler shift according to the blood flow speed. This reflected wave is received by the receiving element 3a. Similarly for the ultrasonic sensor 1b, the ultrasonic wave (transmitted wave 13b) emitted from the transmitting element 2b is reflected by the Doppler shift due to blood flow and detected by the receiving element 3b, but the ultrasonic sensors 1a and 1b Then, the directivity directions in which ultrasonic waves are emitted are different. The blood flow velocity can be calculated from the angle difference α between the ultrasonic sensors 1a and 1b and the Doppler shift frequencies ΔFa and ΔFb obtained from the signals of the ultrasonic sensors 1a and 1b.

超音波計測部51は、2対の超音波センサ1からなる血流速度センサ30、それぞれ2組の検波回路23、フィルタ回路24、増幅回路25、A/D変換器26からなる。反射波14a、14bを受けた受信素子3a、3bのそれぞれの信号は、検波回路23a、23bで検波され、超音波の搬送波成分(ベース成分)を取り除いたドップラシフト信号成分のみが取り出され、さらにフィルタ回路24a、24bによりA/D変換処理に不要な周波数成分を取り除き、増幅回路25a、25bでそれぞれ増幅される。このドップラシフト信号はアナログ信号であるが、A/D変換器26a、26bによりデジタルデータに変換され、バッファメモリ41に一時蓄積される。本実施の形態では、A/D変換器25a、25bのサンプリング周波数は20kHzとした。   The ultrasonic measurement unit 51 includes a blood flow velocity sensor 30 including two pairs of ultrasonic sensors 1, two detection circuits 23, a filter circuit 24, an amplification circuit 25, and an A / D converter 26. The signals of the receiving elements 3a and 3b that have received the reflected waves 14a and 14b are detected by the detection circuits 23a and 23b, and only the Doppler shift signal component from which the ultrasonic carrier component (base component) is removed is extracted. The frequency components unnecessary for the A / D conversion process are removed by the filter circuits 24a and 24b, and amplified by the amplifier circuits 25a and 25b, respectively. The Doppler shift signal is an analog signal, but is converted into digital data by the A / D converters 26 a and 26 b and temporarily stored in the buffer memory 41. In the present embodiment, the sampling frequency of the A / D converters 25a and 25b is 20 kHz.

光計測部53は、生体内の局所的な血液容量を検知するための手段であり、発光素子8と受光素子9からなる光センサ7を備えるものである。実施例において発光素子8は青色発光または緑色発光の発光ダイオード、受光素子9はフォトトランジスタである。発光素子は発光用発振回路および駆動回路によりパルス電圧を印加され、駆動される。生体の脈拍は通常、毎分数十〜100程度であるので、血流波形を観測するには、100Hz以上の周波数で発光素子を駆動する必要があると考えられる。   The optical measurement unit 53 is a means for detecting a local blood volume in the living body, and includes an optical sensor 7 including a light emitting element 8 and a light receiving element 9. In the embodiment, the light emitting element 8 is a blue or green light emitting diode, and the light receiving element 9 is a phototransistor. The light emitting element is driven by applying a pulse voltage by a light emitting oscillation circuit and a driving circuit. Since the pulse of a living body is usually about several tens to 100 per minute, it is considered that the light emitting element needs to be driven at a frequency of 100 Hz or more in order to observe the blood flow waveform.

発光素子の駆動電圧の周波数を250Hz、デューティを50%、A/D変換のサンプリング周波数を1kHzとすると、図7に示すタイミングとなる。発光素子の駆動電圧の周波数を250Hz、デューティを50%、A/D変換のサンプリング周波数を2kHzとすると、図8に示すタイミングとなる。発光素子の駆動電圧の周波数に対しさらにA/D変換のサンプリング周波数をさらに高くすることも可能であるが、サンプリングのタイミングが発光素子の駆動電圧の立ち上がり立下りのタイミングと一致してしまう場合は、そのデータを捨てて、残りのデータを利用する。この図7および図8の場合は、発光素子が非発光時の受光素子の信号も検出しているが、バックグラウンド光の影響を除去するために非発光時のデータを使用することができる。   When the frequency of the driving voltage of the light emitting element is 250 Hz, the duty is 50%, and the sampling frequency of A / D conversion is 1 kHz, the timing shown in FIG. 7 is obtained. When the frequency of the driving voltage of the light emitting element is 250 Hz, the duty is 50%, and the sampling frequency of A / D conversion is 2 kHz, the timing shown in FIG. 8 is obtained. Although it is possible to further increase the sampling frequency of the A / D conversion with respect to the frequency of the driving voltage of the light emitting element, when the sampling timing coincides with the rising and falling timing of the driving voltage of the light emitting element. Discard the data and use the remaining data. In the case of FIG. 7 and FIG. 8, the signal of the light receiving element when the light emitting element is not emitting light is also detected, but the data when not emitting light can be used to eliminate the influence of the background light.

発光素子8を発した入射光15は、測定対象の生体内組織で反射されて受光素子9で受光される。入射光15は生体内の血液も照射するが、血液は青色光または緑色光を吸収する性質を有するため、入射光15の照射範囲かつ受光素子9の受光範囲に含まれる局所的な血液容量が多いと反射光16は弱く、逆に局所的な血液容量が少ないと反射光16は強く検出される。したがって、脈に伴う生体内の局所的な血液容量変化を光センサ7で検出することができる。光センサの信号は増幅回路27で増幅され、フィルタ回路28で不要な高周波成分を除去した後、A/D変換器29によりデジタルデータに変換される。   Incident light 15 emitted from the light emitting element 8 is reflected by the in-vivo tissue to be measured and received by the light receiving element 9. Although incident light 15 also irradiates blood in the living body, since blood has a property of absorbing blue light or green light, the local blood volume included in the irradiation range of incident light 15 and the light receiving range of light receiving element 9 is small. When the amount is large, the reflected light 16 is weak. Conversely, when the local blood volume is small, the reflected light 16 is detected strongly. Therefore, the local blood volume change in the living body accompanying the pulse can be detected by the optical sensor 7. The signal of the optical sensor is amplified by the amplifier circuit 27, and unnecessary high frequency components are removed by the filter circuit 28, and then converted into digital data by the A / D converter 29.

演算部51は、バッファメモリ41および42と、演算処理装置43からなる。バッファメモリ41は超音波センサ30からの計測データを一時的に保持する。バッファメモリ42は光センサからのデータを一時的に保持する。それぞれのバッファメモリ内のデータは一定量ごとに演算処理装置43に送られる。演算処理装置43は、各A/D変換器によりデジタル化された各センサからのデータをデジタル入力部44を経由して受取り、信号演算処理部45および汎用演算処理部46の機能により演算処理し、ノイズ成分を除去した血流速度を算出する。なお、演算処理装置43が計測データのサンプリングレートに対して十分高速に動作するのであれば、バッファメモリ41および42は省略可能である。また信号演算処理部45は特殊なハードウェア構成によって信号処理を高速に実行する装置であり、汎用演算処理部46の処理速度が高速である場合は、信号演算処理部45は省略可能である。   The arithmetic unit 51 includes buffer memories 41 and 42 and an arithmetic processing unit 43. The buffer memory 41 temporarily stores measurement data from the ultrasonic sensor 30. The buffer memory 42 temporarily holds data from the optical sensor. The data in each buffer memory is sent to the arithmetic processing unit 43 every fixed amount. The arithmetic processing unit 43 receives data from each sensor digitized by each A / D converter via the digital input unit 44, and performs arithmetic processing by the functions of the signal arithmetic processing unit 45 and the general-purpose arithmetic processing unit 46. The blood flow velocity with the noise component removed is calculated. If the arithmetic processing unit 43 operates at a sufficiently high speed with respect to the sampling rate of the measurement data, the buffer memories 41 and 42 can be omitted. The signal arithmetic processing unit 45 is a device that performs signal processing at a high speed with a special hardware configuration. If the processing speed of the general-purpose arithmetic processing unit 46 is high, the signal arithmetic processing unit 45 can be omitted.

主記憶部47は、計測データと演算処理装置43が演算を実行するにあたって使用する演算データを保持するものである。測定データや演算結果のデータなど保存が必要なデータはストレージ48に保存する。ストレージ48は不揮発性のフラッシュメモリ装置またはハードディスク装置等で構成されるものである。   The main storage unit 47 holds measurement data and calculation data used when the calculation processing device 43 executes calculation. Data that needs to be stored, such as measurement data and calculation result data, is stored in the storage 48. The storage 48 is configured by a nonvolatile flash memory device or a hard disk device.

入出力装置等49は、キーボード、マウスなどのユーザーインターフェース機能を有する装置、CRTまたはLCDなどの画面表示機能を有する装置、イーサネットまたはシリアル通信バスなどの通信機能を有する装置等である。さらに、周辺装置としては、血圧測定器が接続され、データを血圧値で補正することができる。   The input / output device 49 or the like is a device having a user interface function such as a keyboard or a mouse, a device having a screen display function such as a CRT or LCD, or a device having a communication function such as an Ethernet or serial communication bus. Furthermore, as a peripheral device, a blood pressure measuring device is connected, and data can be corrected with a blood pressure value.

次に、上記構成の血液レオロジー測定装置を用いた測定方法を説明する。   Next, a measurement method using the blood rheology measurement apparatus having the above-described configuration will be described.

まず、生体の測定を行う前に、校正用反射板センサに置き、基準となる反射強度を測定しておき、このときデータである光信号基準値Lrを装置に保存する。校正用反射板はアルミ板に白色塗装したものである。図4に示すように、血流センサ30に測定対象である生体71(被験者の指先など)を接触させて、血流速度を計測する。超音波センサ1aの発信素子2aから発した超音波(送信波13a)は生体組織中を伝播し、血管を流れる血液で反射される。反射波14aは、血液の流速に従いドップラシフトを受けた信号に変化する。この反射を受信素子3aで受信する。   First, before the measurement of the living body, it is placed on the calibration reflector sensor and the reference reflection intensity is measured, and at this time, the optical signal reference value Lr as data is stored in the apparatus. The calibration reflector is an aluminum plate painted in white. As shown in FIG. 4, a blood flow velocity is measured by bringing a blood flow sensor 30 into contact with a living body 71 (such as a fingertip of a subject) that is a measurement target. The ultrasonic wave (transmission wave 13a) emitted from the transmitting element 2a of the ultrasonic sensor 1a propagates through the living tissue and is reflected by blood flowing through the blood vessel. The reflected wave 14a changes to a signal subjected to Doppler shift according to the blood flow velocity. This reflection is received by the receiving element 3a.

超音波センサ1bについても同様に、発信素子2bから発した超音波(送信波13b)は血流によるドップラシフトを受けて反射され受信素子3bで検出されるのであるが、超音波の放射される指向方向が異なる。受信素子3a、3bで受けたそれぞれの反射波14a、14bの信号は、それぞれ、検波回路23a、23bで検波され、超音波の搬送波成分(ベース成分)を取り除いたドップラ信号成分のみが取り出され、さらにフィルタ回路24a、24bによりA/D変換処理に不要な高周波成分を取り除いた後、増幅回路25a,26bでそれぞれ増幅される。このドップラ信号はアナログ信号であるが、A/D変換器26a、26bによりデジタルデータに変換され、バッファメモリ42に一時蓄積された後、演算処理装置43へデジタル入力部を通して主記憶部47に転送され、記憶される。   Similarly, for the ultrasonic sensor 1b, the ultrasonic wave (transmitted wave 13b) emitted from the transmitting element 2b is reflected by the Doppler shift due to blood flow and detected by the receiving element 3b, but the ultrasonic wave is emitted. Directional direction is different. The signals of the reflected waves 14a and 14b received by the receiving elements 3a and 3b are detected by the detection circuits 23a and 23b, respectively, and only the Doppler signal component from which the ultrasonic carrier component (base component) is removed is extracted. Further, high frequency components unnecessary for A / D conversion processing are removed by the filter circuits 24a and 24b, and then amplified by the amplification circuits 25a and 26b, respectively. Although this Doppler signal is an analog signal, it is converted into digital data by the A / D converters 26a and 26b, temporarily stored in the buffer memory 42, and then transferred to the main memory 47 through the digital input unit to the arithmetic processing unit 43. And memorized.

なお、これら測定データを直ちに解析処理を行わない場合、装置に付属した外部記憶であるストレージ48または入出力装置等49のネットワークを介して外部記憶メディアに蓄積しておき、解析処理に必要な時点で取り出せばよい。   If these measurement data are not immediately analyzed, they are stored in the external storage medium via the network of the storage 48 or the input / output device 49, which is an external storage attached to the device, and the time required for the analysis processing. Just take it out.

上記測定で得られた超音波センサ1aと超音波センサ1bのそれぞれのドップラ信号のデジタルデータを演算処理装置43の信号演算処理部45および汎用演算処理部46においてフーリエ変換(FFT)処理により、周波数分布(スペクトル)データに変換し、周波数分布データを主記憶部47に記憶する。A/D変換のサンプリング周波数をfs=20kHz、FFT処理の個数をNf=256個とすると、0.0128秒毎の周波数分布データが、Nf=512個とすると、0.0256秒毎の周波数分布データが得られることになる(ただし、FFT処理のデータ個数とFFT処理の時間間隔は必ずしも一致しなくてもよい。たとえば、0.01秒間隔で256個ずつのデータを処理することも可能である)。   The digital data of the respective Doppler signals of the ultrasonic sensor 1a and the ultrasonic sensor 1b obtained by the above measurement is subjected to Fourier transform (FFT) processing in the signal arithmetic processing unit 45 and the general-purpose arithmetic processing unit 46 of the arithmetic processing unit 43, so that the frequency The data is converted into distribution (spectrum) data, and the frequency distribution data is stored in the main memory 47. Assuming that the sampling frequency of A / D conversion is fs = 20 kHz and the number of FFT processes is Nf = 256, the frequency distribution data every 0.0128 seconds is Nf = 512, and the frequency distribution is every 0.0256 seconds. (However, the number of FFT processing data and the time interval of the FFT processing do not necessarily match. For example, 256 pieces of data can be processed at intervals of 0.01 seconds.) is there).

以上の方法で超音波センサ1aのデータから得られた周波数シフトをFa、超音波センサ1bのデータから得られた周波数シフトをFb、とすると、血流速度Vhは、下記の式で導出できる。   If the frequency shift obtained from the data of the ultrasonic sensor 1a by the above method is Fa and the frequency shift obtained from the data of the ultrasonic sensor 1b is Fb, the blood flow velocity Vh can be derived by the following equation.

Vh = cFa/2Fscosθ
ここで、θ=atan( (−cosα − Fb/Fa)/sinα )
αは2つの超音波センサの超音波の射出および受信の指向性のなす角度、cは生体中での音速、Fsは超音波センサの発信周波数(駆動周波数)である。
Vh = cFa / 2Fscosθ
Here, θ = atan ((− cos α−Fb / Fa) / sin α)
α is an angle formed by directivity of emission and reception of ultrasonic waves of the two ultrasonic sensors, c is a sound velocity in the living body, and Fs is a transmission frequency (drive frequency) of the ultrasonic sensors.

なお、血液は生体の血圧Pで押し出されて流動するものであるため、血流速度Vhは、生体の血圧の影響も受けるものと考えられる。血圧の影響を補正するために、血流速度Vhを血圧測定器で測定した血圧Phで割り算する。このVh/Phの値を便宜上、補正血流速度Vcと呼ぶこととする。この補正血流速度Vcが大きければ、相対的に生体中の血液の流動性が高く、Vcが小さければ血液の流動性が低いということである。ただし、複数の個人(個体)のデータを同時に評価すると、血管径の個体差の影響があり、ばらつきが大きくなる場合がある。   In addition, since the blood is pushed by the blood pressure P of the living body and flows, the blood flow velocity Vh is considered to be affected by the blood pressure of the living body. In order to correct the influence of blood pressure, the blood flow velocity Vh is divided by the blood pressure Ph measured by a blood pressure measuring device. The value of Vh / Ph is referred to as a corrected blood flow velocity Vc for convenience. If this corrected blood flow velocity Vc is large, the blood fluidity in the living body is relatively high, and if Vc is small, the blood fluidity is low. However, if the data of a plurality of individuals (individuals) are simultaneously evaluated, there may be an effect of individual differences in blood vessel diameter, and the variation may increase.

図11に光センサの出力電圧の例を示す。受光素子が出力する光信号L80は、血流量の小さなときに信号電圧が大きく出力され、また生体の透過率に影響されるので、これを演算処理装置43にて補正する処理を行う。光信号Lのピーク値Lp82は血液による光の吸収量がもっとも小さい時の信号であるので、光信号の振幅成分をLa83とし、LaをLpと光信号基準値Lr81の比で規格化したLqが生体の血流量に比例した指標となる。すなわち Lq = La・(Lr/Lp)とする。   FIG. 11 shows an example of the output voltage of the optical sensor. The optical signal L80 output from the light receiving element is output with a large signal voltage when the blood flow volume is small, and is affected by the transmittance of the living body. Since the peak value Lp82 of the optical signal L is a signal when the amount of light absorbed by blood is the smallest, the amplitude component of the optical signal is La83, and La is Lq normalized by the ratio of Lp to the optical signal reference value Lr81. It is an index proportional to the blood flow of the living body. That is, Lq = La · (Lr / Lp).

血管径をD、血液の粘性をμ、とすると、粘性流体の法則から、血流速度Vhは、血圧Pと、Dの2乗に比例し、μに反比例する。一方、血流量は、Pと、Dの4乗に比例し、μに反比例する。したがって、血液の流れやすさの指標Rhを粘性μの逆数とすると、流れやすさRhは、Rh∝(Vh×Vh)/(Lq・P) となる。
すなわち、本発明のレオロジー測定装置で測定される血流速度データVhと光血流量Lqから血液の流れやすさRhを求めることができる。
Assuming that the blood vessel diameter is D and the blood viscosity is μ, the blood flow velocity Vh is proportional to the blood pressure P and the square of D, and inversely proportional to μ, from the law of viscous fluid. On the other hand, the blood flow volume is proportional to the fourth power of P and D, and inversely proportional to μ. Therefore, if the index Rh of the ease of blood flow is the reciprocal of the viscosity μ, the ease of flow Rh is Rh∝ (Vh × Vh) / (Lq · P).
That is, the ease of blood flow Rh can be obtained from the blood flow velocity data Vh and the optical blood flow Lq measured by the rheology measurement device of the present invention.

(実施の形態2)
別実施例として、発光素子を複数個設けた構成を説明する。図3および図6において、発光素子(a)8aと発光素子(b)8bは異なる波長の発光を行うことができる。駆動回路31により、発光素子(a)8aにはパルス波形(a)の電圧が印加され、発光素子(b)8bにはパルス波形(b)の電圧が印加される。発光素子の駆動電圧の周波数を250Hz、デューティを25%、A/D変換のサンプリング周波数を2kHzとすると、9図に示すタイミングとなる。発光素子の駆動電圧の周波数を250Hz、デューティを25%、A/D変換のサンプリング周波数を4kHzとすると、図10に示すタイミングとなる。
(Embodiment 2)
As another embodiment, a configuration in which a plurality of light emitting elements are provided will be described. 3 and 6, the light emitting element (a) 8a and the light emitting element (b) 8b can emit light having different wavelengths. The voltage of the pulse waveform (a) is applied to the light emitting element (a) 8a by the drive circuit 31, and the voltage of the pulse waveform (b) is applied to the light emitting element (b) 8b. If the frequency of the driving voltage of the light emitting element is 250 Hz, the duty is 25%, and the sampling frequency of A / D conversion is 2 kHz, the timing shown in FIG. 9 is obtained. When the frequency of the driving voltage of the light emitting element is 250 Hz, the duty is 25%, and the sampling frequency of A / D conversion is 4 kHz, the timing shown in FIG. 10 is obtained.

図10の場合は、パルス電圧の立ち上がりと立ち下がりに一致する時刻の計測値は使用しない。駆動回路31は、発振回路の単純な矩形波電圧のデューティと位相を加工し、各発光素子に振り分けるプログラムロジック回路と増幅回路から構成される。図9および図10に示すように、パルス波形(a)とパルス波形(b)は、電圧ONの時間が互いに重ならないため、発光素子(a)8aと発光素子(b)8bが同時に発光することはない。
駆動回路から(a)(b)いずれの発光素子を発光させているかを示す信号を演算処理装置に送信することにより、あるいは、演算処理装置から駆動回路にパルス電圧のタイミングを指示することにより、演算処理装置51は、受光素子9の信号を発光素子(a)8aが発光したときの信号と、発光素子(b)8bが発光したときの信号に振り分けることが可能となる。したがって、複数の受光素子にそれぞれ透過波長の異なる光学フィルタを備える必要がなく、光学フィルタのない1つの受光素子のみで複数波長による血液観察が可能となる。
In the case of FIG. 10, the measured value at the time corresponding to the rise and fall of the pulse voltage is not used. The drive circuit 31 includes a program logic circuit and an amplifier circuit that process the duty and phase of a simple rectangular wave voltage of the oscillation circuit and distribute them to each light emitting element. As shown in FIG. 9 and FIG. 10, the pulse waveform (a) and the pulse waveform (b) are not simultaneously overlapped with each other, so that the light emitting element (a) 8a and the light emitting element (b) 8b emit light simultaneously. There is nothing.
By transmitting a signal indicating which light emitting element (a) or (b) is emitting light from the driving circuit to the arithmetic processing device, or by instructing the timing of the pulse voltage from the arithmetic processing device to the driving circuit, The arithmetic processing unit 51 can sort the signal of the light receiving element 9 into a signal when the light emitting element (a) 8a emits light and a signal when the light emitting element (b) 8b emits light. Therefore, it is not necessary to provide optical filters having different transmission wavelengths for each of the plurality of light receiving elements, and blood observation with a plurality of wavelengths can be performed using only one light receiving element without an optical filter.

以上の構成により、実施の形態2においては、発光素子(a)8aを青色または緑色の発光とし、発光素子(b)8bを赤色の発光とした。発光素子(a)8aが発光時の受光素子9の信号から発光素子(b)8bが発光時の受光素子9の信号の直流成分を差し引くことで、静脈血の影響を補正でき、より正確な血流量の計測ができる。   With the above configuration, in Embodiment 2, the light emitting element (a) 8a emits blue or green light, and the light emitting element (b) 8b emits red light. By subtracting the direct current component of the signal of the light receiving element 9 when the light emitting element (b) 8b emits light from the signal of the light receiving element 9 when the light emitting element (a) 8a emits light, the influence of venous blood can be corrected and more accurately Blood flow can be measured.

本発明は、医療および健康維持・増進を目的として、血液の流動性(流れやすさ)を計測することが可能であるだけでなく、生体(人体)の活動状況と生体各部における血流状態の相関を知るための計測においても利用可能である。   The present invention is not only capable of measuring blood fluidity (ease of flow) for the purpose of medical care and health maintenance / enhancement, but also the activity state of a living body (human body) and the blood flow state in each part of the living body. It can also be used in measurement to know the correlation.

本発明に係る測定装置の構成を示すブロック図The block diagram which shows the structure of the measuring apparatus which concerns on this invention 本発明に係るセンサの構成を示す図The figure which shows the structure of the sensor which concerns on this invention 本発明に係るセンサの構成を示す図The figure which shows the structure of the sensor which concerns on this invention 本発明に係るセンサの構成を示す図The figure which shows the structure of the sensor which concerns on this invention 本発明に係るセンサの構成を示す図The figure which shows the structure of the sensor which concerns on this invention 本発明に係るセンサの構成を示す図The figure which shows the structure of the sensor which concerns on this invention 本発明に係る光センサの駆動方法を示す図The figure which shows the drive method of the optical sensor which concerns on this invention 本発明に係る光センサの駆動方法を示す図The figure which shows the drive method of the optical sensor which concerns on this invention 本発明に係る光センサの駆動方法を示す図The figure which shows the drive method of the optical sensor which concerns on this invention 本発明に係る光センサの駆動方法を示す図The figure which shows the drive method of the optical sensor which concerns on this invention 本発明に係る光センサの出力電圧の例を示す図The figure which shows the example of the output voltage of the optical sensor which concerns on this invention

符号の説明Explanation of symbols

1a、1b 超音波センサ
2a、2b 発信素子
3a、3b 受信素子
7 光センサ
8a 発光素子(a)
8b 発光素子(b)
9 受光素子
10 センサ支持基板
13a、13b 送信波
14a、14b 反射波
15 入射光
16 反射光
21 発信回路
23a、23b 検波回路
24a、24b フィルタ回路
25a、25b 増幅回路
26a、26b A/D変換器
27 増幅回路
28 フィルタ回路
29 A/D変換器
30 血流センサ
31 駆動回路
32 発光用発振回路
41a、41b バッファメモリ
42 バッファメモリ
43 演算処理装置
44 デジタル入力部
45 信号演算部
46 汎用演算部
47 主記憶部
48 ストレージ
49 入出力装置等
50 超音波計測部
51 演算部
52 血圧測定器
53 光計測部
54 周辺機器
60 駆動電圧
61 A/D変換タイミング
62 駆動電圧
63 A/D変換タイミング
64 駆動電圧(a)
65 駆動電圧(b)
66 A/D変換タイミング
67 駆動電圧(a)
68 駆動電圧(b)
69 A/D変換タイミング
71 生体(指先)
72 血管
80 光信号L
81 光信号基準値Lr
82 光信号のピーク値Lp
83 光信号の振幅成分La
1a, 1b Ultrasonic sensor 2a, 2b Transmitting element 3a, 3b Receiving element 7 Optical sensor 8a Light emitting element (a)
8b Light emitting element (b)
DESCRIPTION OF SYMBOLS 9 Light receiving element 10 Sensor support board 13a, 13b Transmitted wave 14a, 14b Reflected wave 15 Incident light 16 Reflected light 21 Transmitter circuit 23a, 23b Detector circuit 24a, 24b Filter circuit 25a, 25b Amplifier circuit 26a, 26b A / D converter 27 Amplification circuit 28 Filter circuit 29 A / D converter 30 Blood flow sensor 31 Drive circuit 32 Oscillation circuit for light emission 41a, 41b Buffer memory 42 Buffer memory 43 Arithmetic processing unit 44 Digital input unit 45 Signal calculation unit 46 General-purpose calculation unit 47 Main memory Unit 48 Storage 49 Input / output device, etc. 50 Ultrasonic measurement unit 51 Calculation unit 52 Blood pressure measurement device 53 Optical measurement unit 54 Peripheral device 60 Drive voltage 61 A / D conversion timing 62 Drive voltage 63 A / D conversion timing 64 Drive voltage (a )
65 Drive voltage (b)
66 A / D conversion timing 67 Drive voltage (a)
68 Drive voltage (b)
69 A / D conversion timing 71 Living body (fingertip)
72 Blood vessel 80 Optical signal L
81 Optical signal reference value Lr
82 Peak value Lp of optical signal
83 Amplitude component La of optical signal

Claims (5)

生体内の血液の流動性を示す血液レオロジーを測定する血液レオロジー測定装置であって、
生体中に超音波を入射する発信素子と、入射された超音波が生体中で反射された反射波を受信する受信素子とからなる超音波センサと、
所定の点滅周波数で点滅発光して生体中に光を入射する発光素子と、生体で反射または生体を透過した光を受信する受光素子とからなる光センサと、
前記受光素子の出力信号を、前記点滅発光の点滅周波数と同期し、点滅周波数に対し2倍以上の整数倍のサンプリング周波数でアナログ・デジタル変換する信号サンプリング手段と、
前記超音波センサの信号から得られた生体内における血流速度の情報を、前記光信号から得られた生体内における血流量の情報を用いて補正することにより、生体の血液レオロジーを算出する手段と、を備えることを特徴とする血液レオロジー測定装置。
A blood rheology measuring device for measuring blood rheology indicating fluidity of blood in a living body,
An ultrasonic sensor comprising a transmitting element that makes ultrasonic waves enter the living body, and a receiving element that receives the reflected waves reflected by the incident ultrasonic waves in the living body;
A light sensor comprising a light emitting element that flashes and emits light at a predetermined blinking frequency and enters light into a living body, and a light receiving element that receives light reflected or transmitted through the living body,
A signal sampling means for analog-to-digital conversion of the output signal of the light receiving element in synchronization with the blinking frequency of the blinking light emission at a sampling frequency that is an integer multiple of twice or more the blinking frequency;
Means for calculating the blood rheology of the living body by correcting the information on the blood flow velocity in the living body obtained from the signal of the ultrasonic sensor using the information on the blood flow amount in the living body obtained from the optical signal. And a blood rheology measurement device.
生体内の血液の流動性を示す血液レオロジーを測定する血液レオロジー測定装置であって、
生体中に超音波を入射する発信素子と、入射された超音波が生体中で反射された反射波を受信する受信素子とからなる超音波センサと、
それぞれが異なる発光波長を有し、且つ所定の同じ点滅周波数で点滅発光し、しかも互いに同時には点燈しないデューティ比と位相で点滅発光を行って、生体中に光を入射する複数個の発光素子と、生体で反射または生体を透過した光を受信する受光素子とからなる光センサと、
前記受光素子の出力信号を前記点滅発光の点滅周波数と同期し、点滅周波数に対し発光素子の個数より大きな整数倍を乗じたサンプリング周波数でアナログ・デジタル変換する信号サンプリング手段と、
前記超音波センサの信号から得られた生体内における血流速度の情報を、前記光信号から得られた生体内における血流の情報を用いて補正することにより、生体の血液レオロジーを算出する手段と、を備えることを特徴とする血液レオロジー測定装置。
A blood rheology measuring device for measuring blood rheology indicating fluidity of blood in a living body,
An ultrasonic sensor comprising a transmitting element that makes ultrasonic waves enter the living body, and a receiving element that receives the reflected waves reflected by the incident ultrasonic waves in the living body;
A plurality of light-emitting elements each having a different emission wavelength, flashing at a predetermined flashing frequency, and flashing at a duty ratio and phase that are not turned on at the same time, and entering light into a living body And a light sensor comprising a light receiving element that receives light reflected or transmitted through the living body,
A signal sampling means for performing analog-to-digital conversion at a sampling frequency obtained by synchronizing the output signal of the light receiving element with the blinking frequency of the blinking emission and multiplying the blinking frequency by an integer multiple greater than the number of light emitting elements;
Means for calculating the blood rheology of the living body by correcting information on the blood flow velocity in the living body obtained from the signal of the ultrasonic sensor using the information on the blood flow in the living body obtained from the optical signal. And a blood rheology measurement device.
前記発光素子のうち少なくとも1つは、生体中の血液に吸収されやすい波長の光を発する発光素子であることを特徴とする請求項1または2に記載の血液レオロジー測定装置。   The blood rheology measuring apparatus according to claim 1 or 2, wherein at least one of the light emitting elements is a light emitting element that emits light having a wavelength that is easily absorbed by blood in a living body. 前記発光素子のうち少なくとも1つは、中心波長が青色または緑色に相当する波長域の光を発する発光素子であることを特徴とする請求項1または2に記載の血液レオロジー測定装置。   3. The blood rheology measurement device according to claim 1, wherein at least one of the light emitting elements is a light emitting element that emits light in a wavelength range corresponding to a center wavelength of blue or green. 4. 校正用反射板を前記光センサと一定の距離に置き、このとき受光素子が受ける光反射強度を基準として生体を測定したときの前記光センサの信号を校正する手段を更に備えることを特徴とする請求項1〜4のいずれかに記載の血液レオロジー測定装置。   A calibration reflector is placed at a certain distance from the optical sensor, and further comprises means for calibrating the signal of the optical sensor when the living body is measured with reference to the intensity of light reflection received by the light receiving element. The blood rheology measuring device according to any one of claims 1 to 4.
JP2004335709A 2004-11-19 2004-11-19 Blood rheology measuring device Expired - Fee Related JP4611001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335709A JP4611001B2 (en) 2004-11-19 2004-11-19 Blood rheology measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335709A JP4611001B2 (en) 2004-11-19 2004-11-19 Blood rheology measuring device

Publications (2)

Publication Number Publication Date
JP2006141678A true JP2006141678A (en) 2006-06-08
JP4611001B2 JP4611001B2 (en) 2011-01-12

Family

ID=36622013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335709A Expired - Fee Related JP4611001B2 (en) 2004-11-19 2004-11-19 Blood rheology measuring device

Country Status (1)

Country Link
JP (1) JP4611001B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008188351A (en) * 2007-02-07 2008-08-21 Seiko Instruments Inc Biological information measuring device
WO2017109885A1 (en) * 2015-12-24 2017-06-29 パイオニア株式会社 Fluid evaluation device and method, computer program, and recording medium
CN114217090A (en) * 2021-12-07 2022-03-22 中国科学院大学 Sensor control device, ultrasonic velocimeter and ultrasonic velocimetry system
CN115998275A (en) * 2022-12-26 2023-04-25 广东省新黄埔中医药联合创新研究院 Blood flow velocity detection calibration method, device, equipment and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104476A (en) 2013-11-29 2015-06-08 船井電機株式会社 Photoacoustic imaging apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384516A (en) * 1986-09-30 1988-04-15 アイシン精機株式会社 Heart rate meter for car
JPH01305670A (en) * 1988-06-02 1989-12-08 Canon Inc Flicker removing device
JPH07222737A (en) * 1994-02-14 1995-08-22 Nippon Koden Corp Pulse oximeter
JP2000225109A (en) * 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
JP2004008330A (en) * 2002-06-04 2004-01-15 Seiko Instruments Inc Circulatory kinetics measuring instrument
JP2004041482A (en) * 2002-07-12 2004-02-12 Seiko Epson Corp Pulse wave detector and biopotential detector
JP2004113821A (en) * 1996-04-08 2004-04-15 Seiko Epson Corp Exercise formulation support system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384516A (en) * 1986-09-30 1988-04-15 アイシン精機株式会社 Heart rate meter for car
JPH01305670A (en) * 1988-06-02 1989-12-08 Canon Inc Flicker removing device
JPH07222737A (en) * 1994-02-14 1995-08-22 Nippon Koden Corp Pulse oximeter
JP2004113821A (en) * 1996-04-08 2004-04-15 Seiko Epson Corp Exercise formulation support system
JP2000225109A (en) * 1999-02-05 2000-08-15 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
JP2004008330A (en) * 2002-06-04 2004-01-15 Seiko Instruments Inc Circulatory kinetics measuring instrument
JP2004041482A (en) * 2002-07-12 2004-02-12 Seiko Epson Corp Pulse wave detector and biopotential detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132012A (en) * 2006-11-27 2008-06-12 Denso Corp Pulse wave detector
JP2008188351A (en) * 2007-02-07 2008-08-21 Seiko Instruments Inc Biological information measuring device
WO2017109885A1 (en) * 2015-12-24 2017-06-29 パイオニア株式会社 Fluid evaluation device and method, computer program, and recording medium
CN114217090A (en) * 2021-12-07 2022-03-22 中国科学院大学 Sensor control device, ultrasonic velocimeter and ultrasonic velocimetry system
CN115998275A (en) * 2022-12-26 2023-04-25 广东省新黄埔中医药联合创新研究院 Blood flow velocity detection calibration method, device, equipment and readable storage medium
CN115998275B (en) * 2022-12-26 2023-10-24 广东省新黄埔中医药联合创新研究院 Blood flow velocity detection calibration method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JP4611001B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
TWI250867B (en) Pulse wave analysis device
JP2006218169A (en) Blood rheology measuring apparatus and blood rheology measuring method
JP2012101027A (en) Pulse period computation device and bio-sensor provided with the same
JP2004121625A (en) Arrangement for detecting pulse wave and fourier transform treatment apparatus
JP2005028157A5 (en)
JP2009095511A5 (en)
CN102652679A (en) Portable stroke prediction instrument based on carotid artery pulse wave and blood flow velocity
Jeger-Madiot et al. Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography
JP2018007894A (en) Measuring device, measuring method, and measuring program
JP2015077395A (en) Detection system and method for physiology measurement
JPH06317566A (en) Method and apparatus for optoacoustic analysis as well as blood component measuring apparatus utilizing them
JP4641809B2 (en) Biological information measuring device
JP4388356B2 (en) Blood flow velocity measuring device and measuring method
JP4611001B2 (en) Blood rheology measuring device
JP4676258B2 (en) Blood rheology measuring device
JP4751120B2 (en) Blood rheology measuring device
WO2017089479A1 (en) Non-invasive human condition monitoring device
JP4751079B2 (en) Blood rheology measuring device
JP4497979B2 (en) Blood flow velocity measuring device and blood flow velocity measuring method
JP6609738B2 (en) Biological light measurement device and biological light measurement method
JP5044154B2 (en) Biological information measuring device
JP4881177B2 (en) Biological information measuring device
JP2003235820A (en) Hemodynamics measuring instrument
JP4785420B2 (en) Blood rheology measuring device
CN204765618U (en) Rhythm of heart measuring device based on optoacoustic effect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4611001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees