JP2006141323A - Rotary type seedling-transplanting mechanism in rice transplanter - Google Patents

Rotary type seedling-transplanting mechanism in rice transplanter Download PDF

Info

Publication number
JP2006141323A
JP2006141323A JP2004338034A JP2004338034A JP2006141323A JP 2006141323 A JP2006141323 A JP 2006141323A JP 2004338034 A JP2004338034 A JP 2004338034A JP 2004338034 A JP2004338034 A JP 2004338034A JP 2006141323 A JP2006141323 A JP 2006141323A
Authority
JP
Japan
Prior art keywords
transmission mechanism
shaft
seedling
circular gear
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338034A
Other languages
Japanese (ja)
Other versions
JP4716482B2 (en
Inventor
Kunio Doi
邦夫 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2004338034A priority Critical patent/JP4716482B2/en
Publication of JP2006141323A publication Critical patent/JP2006141323A/en
Application granted granted Critical
Publication of JP4716482B2 publication Critical patent/JP4716482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transplanting Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a dense-planting and sparse-planting under almost the same condition in a rotary type seedling-transplanting mechanism installing a seedling-transplanting bodies 35 equipped with separated claws 36, at equally divided 2 positions on a circular circumference in a rotary case 30 fixed at a driving shaft 18 transmitted with a power through an inter roots transmission mechanism 24 from a power source, rotating the seedling-transplanting bodies by only one time in reverse direction during the one time revolution of the rotary case, for moving as reciprocating up and down so as to delay the rotation of each of the seedling-transplanting bodies in the vicinity of their dead points in their reciprocating movements. <P>SOLUTION: This power transmission from the inter roots transmission mechanism 24 to the driving shaft 18 is switched between an unequal speed state so as to accelerate the rotational speed of the rotary case, when each of the seedling-transplanting bodies are at a phase position in the vicinity of before or after their lower dead points in each of their one rounds by an unequal speed transmission mechanism 54 of an unequal transmission unit 24, and another unequal speed state so as to decelerate the speed of rotation of the rotary case, when each of the seedling-transplanting bodies are at the phase position in the vicinity of before or after their lower dead points in each of their one rounds by an unequal speed transmission mechanism 55 of the unequal transmission unit 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,田植機において,一つの回転ケースに,分割爪を備えた苗植体を少なくとも二つ設けて,この各苗植体を,当該苗植体が前方の苗載台の方向を向いたた姿勢のままで回転ケースの回転によって前記苗載台と圃場面との間を上下に往復動するように構成して成るロータリー式の苗植付け機構に関するものである。   According to the present invention, in a rice transplanter, at least two seedling plants with split claws are provided in one rotating case, and each seedling plant is directed to the front seedling platform. The present invention relates to a rotary seedling planting mechanism configured so as to reciprocate up and down between the seedling platform and the field scene by rotating a rotary case while keeping the posture.

この種のロータリー式苗植付け機構は,例えば,特許文献1等に記載されているように,田植機における伝動ケースに横向きに軸支した駆動軸に回転ケースを固着し,この回転ケースのうち前記駆動軸を中心とする円周上の少なくとも等分二箇所に,分割爪を備えた苗植体を取付ける一方,前記回転ケースに,当該回転ケースにおける一回の公転苗に前記各苗植体が逆方向に一回だけ自転するようにした連動機構を設けて,前記各苗植体を,その分割爪が前方に位置する苗載台の方向を向いた姿勢で苗載台と圃場面との間を往復動するに際して,前記連動機構を,前記回転ケースの公転に伴う前記各苗植体における逆方向への自転を,当該苗植体における下死点前後付近において遅らせるという不等速連動機構にすることにより,前記各苗植体における分割爪の先端が,上下に長い楕円状の閉ループの運動軌跡を描くように構成している。   This type of rotary seedling planting mechanism is, for example, as described in Patent Document 1 and the like, in which a rotating case is fixed to a drive shaft that is horizontally supported by a transmission case in a rice transplanter. A seedling plant with split claws is attached to at least two equal parts on the circumference centered on the drive shaft, while each seedling plant is attached to the rotating case in one revolving seedling in the rotating case. An interlocking mechanism that rotates only once in the opposite direction is provided, and each seedling plant is placed between the seedling platform and the field scene in a posture in which the divided claws face the direction of the seedling platform located in front. When reciprocating between them, the interlocking mechanism is an inconstant speed interlocking mechanism that delays rotation in the reverse direction of each seedling plant in association with the revolution of the rotating case around the bottom dead center in the seedling plant. By making each seedling The tip of the split nail in has configured to draw a movement trajectory of the long oval shape of the closed loop up and down.

また,ロータリー式苗植付け機構を備えた田植機による田植え作業に際しては,圃場面に対して,3.3平方メートル当たりの植付け株数を50〜60株の標準植えにする場合と,3.3平方メートル当たりの植付け株数を前記標準植えよりも多くする密植えにする場合と,3.3平方メートル当たりの植付け株数を前記標準植えよりも少なくする疎植えにする場合とがある。   In addition, in the case of rice planting work using a rice planting machine equipped with a rotary seedling planting mechanism, the standard planting of 50 to 60 plants per 3.3 square meters, and 3.3 square meters per plant There are a case where the planted plant is densely planted so that the number of planted plants is larger than that of the standard planting, and a case where the planted plant is sparsely planted so that the number of planted plants per 3.3 square meters is smaller than that of the standard planting.

この場合,前記した植付け株数の変更は,前記回転ケースにおける回転速度を,株間変速機構によって,田植機における前進走行速度に対して相対的に,密植えの場合に早くすることによって,疎植えの場合に遅くすることによって行うようにしている。
特開2000−139146号公報
In this case, the change in the number of planted strains described above can be achieved by increasing the rotational speed in the rotating case relative to the forward traveling speed in the rice transplanter by the inter-shaft transmission mechanism, in the case of dense planting. If you are going to do so late.
JP 2000-139146 A

しかし,前記各苗植体の分割爪の先端における運動軌跡は,回転ケースにおける不等速連動機構によって設定されるから,この運動軌跡を,前記標準植えに合わせて,この標準植えの場合に最適になるように,つまり、当該分割爪が圃場面から抜け上昇するときにおける泥土の後方へのはね上げ及び圃場面に差し込まれた状態での前方への引きずりを少なくするように設定すると,前記回転ケースの回転速度を遅くすることで疎植えにした場合に,前記分割爪が圃場面から抜け上昇が遅れるから,当該分割爪による泥土の後方へのはね上げはない反面,当該分割爪が圃場面に差し込まれた状態で前方への引きずられることになって,圃場面には,植付け苗の前側に大きな掘り起こし穴があくことになるし、前記回転ケースの回転速度を早くすることで密植えにした場合に,前記分割爪が圃場面から抜け上昇が早くなるから,当該分割爪による前方への引きずりは少なくなる反面,当該分割爪による泥土の後方へのはね上げが増大することにより,圃場面には,植付け苗の後側に大きな掘り起こし穴があくことになる。   However, since the motion trajectory at the tip of the split claw of each seedling plant is set by the inconstant speed interlocking mechanism in the rotating case, this motion trajectory is optimal for this standard planting in accordance with the standard planting. In other words, when the division claw is pulled out from the field scene and lifted up, the mud soil is pushed up backwards and dragged forward when inserted in the field scene. When sparse planting is performed by slowing down the rotation speed, the split claws are pulled out of the field scene and the rise is delayed. Therefore, the split claws do not splash up the mud behind, but the split claws are inserted into the field scene. In the farmed scene, there will be a large digging hole in the front side of the planted seedling, and the rotational speed of the rotating case will be increased. When densely planted in this way, the split claws are removed from the field scene and rise faster, so the forward drag by the split claws is reduced, but the backlash of the mud by the split claws increases. As a result, the farm scene has a large digging hole behind the planted seedling.

つまり,前記ロータリー式苗植付け機構においては,これを標準植えに設定すると,密植え又は疎植えにした場合に適切な苗植付けができず,勿論,密植えに設定すると,標準植え又は疎植えにした場合に適切な苗植付けができず,また,疎植えに設定すると,標準植え又は密植えにした場合に適切な苗植付けができないという問題があった。   In other words, in the rotary type seedling planting mechanism, if this is set as standard planting, appropriate seedling planting cannot be performed when dense planting or sparse planting is performed. In this case, there was a problem that appropriate seedlings could not be planted, and if set to sparse planting, appropriate seedlings could not be planted when standard planting or dense planting was used.

本発明は,この問題を解消したロータリー式苗植付け機構を提供することを技術的課題とするものである。   This invention makes it a technical subject to provide the rotary type seedling planting mechanism which eliminated this problem.

この技術的課題を達成するため本発明の請求項1は,
「動力源から株間変速機構を経て動力伝達される横向きの駆動軸に回転ケースを固着し,この回転ケースのうち前記駆動軸を中心とする円周上の少なくとも等分二箇所に,分割爪を備えた苗植体を設ける一方,前記回転ケースに,当該回転ケースにおける一回の公転中に前記苗植体を逆方向に一回だけ自転して前記各苗植体をその分割爪が苗載台の方向を向いた姿勢で上下に往復動し,且つ,前記各苗植体における自転をその往復動のうち下死点前後付近において遅らせるようにした不等速連動機構を設けて成るロータリー式苗植付け機構において,
前記株間変速機構から前記駆動軸への動力伝達を,前記回転ケースにおける回転速度を当該回転ケースの一回転のうち前記各苗植体が下死点前後付近における位相位置にあるときにおいて加速するという不等速の状態にする加速用不等速伝達機構にて行う場合と,前記回転ケースにおける回転速度を当該回転ケースの一回転のうち前記各苗植体が下死点前後付近における位相位置にあるときにおいて減速するという不等速の状態にする減速用不等速伝達機構にて行う場合とに切り換えるための不等速変換ユニットを備えている。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“A rotating case is fixed to a lateral drive shaft to which power is transmitted from the power source through the inter-shaft transmission mechanism, and split claws are provided at least in two equal parts on the circumference around the drive shaft. While the provided seedling plant is provided, the seedling plant is rotated only once in the opposite direction during one revolution in the rotating case, and each of the seedling plants is seeded by the divided claws. A rotary type that is provided with an inconstant speed interlocking mechanism that reciprocates up and down in a posture facing the direction of the table and that delays the rotation of each seedling plant around the bottom dead center of the reciprocating motion. In the seedling planting mechanism,
The transmission of power from the inter-shaft transmission mechanism to the drive shaft is accelerated when the rotational speed of the rotating case is at a phase position around the bottom dead center in one rotation of the rotating case. In the case of using an unequal speed transmission mechanism for accelerating to make an inconstant speed state, the rotational speed of the rotating case is set to the phase position around the bottom dead center in one rotation of the rotating case. There is provided an inconstant speed conversion unit for switching between the case of performing the inconstant speed transmission mechanism for decelerating at a certain time and the case of using the inconstant speed transmission mechanism for deceleration. "
It is characterized by that.

本発明の請求項2は,
「前記請求項1の記載において,前記不等速変換ユニットは,前記駆動軸への動力伝達を,回転ケースの回転速度を等速にするようにした等速伝達機構にて行う場合から,前記加速用不等速伝達機構にて行う場合又は減速用不等速伝達機構にて行う場合とに切り換える構成である。」
ことを特徴としている。
Claim 2 of the present invention includes:
“In the first aspect of the present invention, the inconstant speed conversion unit performs power transmission to the drive shaft by a constant speed transmission mechanism in which the rotation speed of the rotating case is constant. The configuration is switched between the case of using the acceleration inconstant speed transmission mechanism and the case of using the deceleration inconstant speed transmission mechanism. "
It is characterized by that.

本発明の請求項3は,
「前記請求項1の記載において,前記加速用不等速伝達機構及び前記減速用不等速伝達機構の各々は,互いに常時噛合する非円形歯車機構の構成であり,これら両非円形歯車機構のうち一方の非円形歯車は,前記株間変速機構からの入力軸又は前記駆動軸への出力軸上に回転自在に設けられ,前記両非円形歯車機構のうち他方の非円形歯車は,前記出力軸又は前記入力軸上に回転不能に設けられ,更に,前記入力軸又は前記出力軸上における回転自在な両非円形歯車のうちいずれか一方を,前記入力軸又は前記出力軸に対して回転不能に固定する構成である。」
ことを特徴としている。
Claim 3 of the present invention provides:
“In the first aspect of the present invention, each of the acceleration non-uniform speed transmission mechanism and the deceleration non-uniform speed transmission mechanism is a configuration of a non-circular gear mechanism that always meshes with each other. One non-circular gear is rotatably provided on an input shaft from the inter-shaft transmission mechanism or an output shaft to the drive shaft, and the other non-circular gear of the non-circular gear mechanisms is the output shaft. Alternatively, the non-rotating gear is provided on the input shaft so as not to rotate, and further, either one of the rotatable non-circular gears on the input shaft or the output shaft is made non-rotatable with respect to the input shaft or the output shaft. It is a fixed configuration. "
It is characterized by that.

本発明の請求項4は,
「前記請求項2の記載において,前記等速伝達機構は,互いに常時噛合する円形歯車機構の構成である一方,前記加速用不等速伝達機構及び前記減速用不等速伝達機構の各々は,互いに常時噛合する非円形歯車機構の構成であり,前記円形歯車機構のうち一方の円形歯車及び前記両非円形歯車列のうち一方の非円形歯車は,前記株間変速機構からの入力軸又は前記駆動軸への出力軸上に,当該円形歯車を当該両非円形歯車の間に位置するようにして回転自在に設けられ,前記円形歯車機構のうち他方の円形歯車及び前記両非円形歯車機構のうち他方の非円形歯車は,前記出力軸又は前記入力軸上に,当該円形歯車を当該両非円形歯車の間に位置するようにして回転不能に設けられ,更に,前記入力軸又は前記出力軸上における回転自在な円形歯車及び両非円形歯車のうちいずれか一つを前記入力軸又は前記出力軸に対して回転不能に固定するように軸方向に往復動する滑りキーを備えている。」
ことを特徴としている。
Claim 4 of the present invention provides:
“In the description of claim 2, the constant speed transmission mechanism is a configuration of a circular gear mechanism that is always meshed with each other, while each of the acceleration inconstant speed transmission mechanism and the deceleration inconstant speed transmission mechanism includes: A non-circular gear mechanism that is always meshed with each other, wherein one of the circular gear mechanisms and one of the non-circular gear trains are connected to an input shaft from the inter-mesh transmission mechanism or the drive On the output shaft to the shaft, the circular gear is rotatably provided so as to be positioned between the two non-circular gears. Of the circular gear mechanisms, the other circular gear and the two non-circular gear mechanisms The other non-circular gear is provided non-rotatably on the output shaft or the input shaft so that the circular gear is positioned between the non-circular gears, and further on the input shaft or the output shaft. Rotating circle in Car and one of the two non-circular gear has a sliding key reciprocating in the axial direction so as to non-rotatably fixed to said input shaft or said output shaft. "
It is characterized by that.

前記請求項1に記載した構成において,回転ケースを固着した駆動軸への動力伝達を,加速用不等速伝達機構にて行う状態に切り換えると,前記回転ケースにおける回転速度が,各苗植体が下死点前後付近にきたときの位相位置において加速されるように不等速になり,従って,前記各苗植体が,その下死点前後付近において逆方向に自転するときの回転速度が早くなることにより,前記苗植体における分割爪は,前記したように加速しない場合よりも圃場面から早く抜け上昇するから,前記回転ケースにおける回転速度を前記株間変速機構によって遅くしての疎植えにした場合に,当該分割爪による圃場面の前方への引きずりが小さくなり,植付け苗の前側にできる掘り起こし穴を確実に小さくすることができる。   In the configuration described in claim 1, when the power transmission to the drive shaft to which the rotating case is fixed is switched to a state in which the unequal speed transmission mechanism for acceleration is performed, the rotational speed in the rotating case is changed to each seedling plant. Is unequal so that it is accelerated at the phase position around the bottom dead center. By being faster, the split claws in the seedling plant will rise faster from the field than in the case of not accelerating as described above, and therefore the sparse planting with the rotation speed in the rotating case being slowed by the inter-strain transmission mechanism. In this case, the forward drag of the field scene by the divided claws is reduced, and the excavation hole formed on the front side of the planted seedling can be surely reduced.

また,回転ケースを固着した駆動軸への動力伝達を,減速用不等速伝達機構にて行う状態に切り換えると,前記回転ケースにおける回転速度が,各苗植体が下死点前後付近にきたときの位相位置において減速されるように不等速になり,従って,前記各苗植体が,その下死点前後付近において逆方向に自転するときの回転速度が遅くなることにより,前記苗植体における分割爪は,前記したように減速しない場合よりも圃場面から抜け上昇が遅れることになるから,前記回転ケースにおける回転速度を前記株間変速機構にて早くしての密植えにした場合に,当該分割爪による泥土の後方へのはね上げが小さくなり,植付け苗の後側にできる掘り起こし穴を確実に小さくすることができる。   In addition, when the power transmission to the drive shaft to which the rotating case is fixed is switched to a state in which the inconstant speed transmission mechanism for deceleration is used, the rotational speed in the rotating case causes the seedlings to come to around the bottom dead center. The speed of the seedlings is reduced so that they are decelerated at the time phase position, and therefore the rotational speed of each seedling plant when it rotates in the reverse direction near the bottom dead center is reduced. The split claws in the body come out of the field scene more slowly than when not decelerating as described above. Therefore, when the rotation speed in the rotating case is increased by the inter-shaft transmission mechanism and densely planted. Therefore, the back-up of the mud by the divided claws is reduced, and the excavation hole formed on the rear side of the planted seedling can be surely reduced.

つまり、苗の植付けを、密植え又は疎植えのいずれにした場合においても,略同じの最適な植付け状態にして行うことができるのである。   That is, regardless of whether the seedlings are densely planted or sparsely planted, they can be performed in substantially the same optimal planting state.

次に,請求項2は,前記した切り換えを,回転ケースの回転速度を等速にする等速伝達機構から前記加速用不等速伝達機構にするか,或いは,前記等速伝達機構から前記減速用不等速伝達機構にするように構成したもので,このように構成することにより,各苗植体の分割爪の先端における運動軌跡を,標準植えに適合するように,換言すると,標準植えにおいて植付け苗の前後における掘り起こし穴を可及的に小さくするように設定することで,このように植付け苗の前後における掘り起こし穴を可及的に小さくできる植付け状態を,疎植え,及び,密植えの両方について確実に維持することができる。   Next, a second aspect of the present invention is configured such that the switching is performed from the constant speed transmission mechanism that makes the rotation speed of the rotating case constant speed to the unequal speed transmission mechanism for acceleration, or from the constant speed transmission mechanism to the deceleration speed. In this way, the movement trajectory at the tip of the split claw of each seedling plant is adapted to the standard planting, in other words, the standard planting. By setting so that the digging holes before and after the planted seedlings are made as small as possible in this way, the planting state that can make the digging holes before and after the planted seedlings as small as possible is sparsely planted and densely planted Both can be reliably maintained.

また,請求項3又は4に記載した構成にすることにより,前記回転ケースの不等速回転を,二つの非円形歯車機構にて行う場合に,この両非円形歯車機構のうち一方から他方への切り換え及び他方から一方への切り換えを,当該両円形歯車機構における各非円形歯車を常時噛合したままの状態で行うことができるから,前記の切り換えの際に,位相のずれが発生することを確実に回避できるであり,しかも,これら両非円形歯車機構,又は両非円形歯車機構及び円形歯車機構を,不等速変換ユニットにおける一つの歯車ケースに収容できるから,この歯車ケースの取付けによって,既存の田植機に対して適用することができる。   According to the configuration described in claim 3 or 4, when the non-uniform rotation of the rotating case is performed by two non-circular gear mechanisms, one of the non-circular gear mechanisms is changed from one to the other. And switching from the other to the other can be performed with the non-circular gears in the double-circular gear mechanism kept in mesh at all times, so that a phase shift occurs during the switching. The two non-circular gear mechanisms, or both the non-circular gear mechanism and the circular gear mechanism can be accommodated in one gear case in the inconstant speed conversion unit. It can be applied to existing rice transplanters.

特に,請求項4に記載した構成は,前記の切り換えを滑りキーによって行うことにより,構造の簡単化及び小型・軽量を図ることができるとともに,切り換え操作の簡単化を図ることができる。   Particularly, in the configuration described in claim 4, by performing the switching with a sliding key, the structure can be simplified and the size and weight can be simplified, and the switching operation can be simplified.

以下,本発明の実施の形態を,乗用型の多条植え田植機に適用した場合の図面について説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, drawings when an embodiment of the present invention is applied to a riding type multi-row planting rice transplanter will be described.

図1及び図2において,符号1は,8条植えの乗用型田植機を示し,この田植機1は,左右一対の前輪3及び後輪4にて支持された走行機体2と,この走行機体2の後部に昇降可能に装着した苗植装置5とを備えて,前記走行機体2には,エンジン6が搭載されるとともに,操縦座席7が設けられ,更に,前記エンジン6からの動力を適宜変速して前記各車輪3,4に伝達するための走行ミッション8が搭載され,矢印Aで示す方向に適宜速度で前進走行するように構成されている。   1 and 2, reference numeral 1 denotes an eight-row riding type rice transplanter. The rice transplanter 1 includes a traveling machine body 2 supported by a pair of left and right front wheels 3 and a rear wheel 4, and the traveling machine body. 2 and a seedling planting device 5 mounted so as to be movable up and down. The traveling machine body 2 is equipped with an engine 6 and is provided with a control seat 7. Further, the power from the engine 6 is appropriately transmitted. A traveling mission 8 for shifting and transmitting to each of the wheels 3 and 4 is mounted, and is configured to travel forward at an appropriate speed in the direction indicated by the arrow A.

前記苗植装置5は,前記エンジン6から動力伝達される伝動ケース9と,この伝動ケース9に横方向に適宜の条間隔で並列に配設した8個のロータリー式苗植付け機構10と,左右往復移動するように後方下向き傾斜配設された苗載台11と,前記各苗植付け機構10の間において圃場面12の表面を滑走するように配設した複数個のフロート13とによって構成されている。   The seedling planting device 5 includes a transmission case 9 to which power is transmitted from the engine 6, eight rotary seedling planting mechanisms 10 disposed in parallel in the transmission case 9 in the lateral direction at appropriate intervals, and left and right It is constituted by a seedling table 11 which is inclined backward and downward so as to reciprocate, and a plurality of floats 13 which are arranged so as to slide on the surface of the farm scene 12 between the seedling planting mechanisms 10. Yes.

前記伝動ケース9は,図4に示すように,前記エンジン6からの動力入力軸14を備えた第1ケース15と,この第1ケース15から横方向に延びるパイプ状の第2ケース16と,この第2ケース16から横方向に適宜間隔を隔てて後方に延びる四つの第3ケース17とから成り,前記各苗植付け機構10は,前記各第3ケース17の後端に水平横向きに軸支した駆動軸18の左右両端に取付けられる一方,前記第2ケース16内には,前記各第3ケース17における駆動軸18に軸19を介して動力伝達するための伝達軸20が設けられ,また,前記第1ケース15内には,前記動力入力軸14から傘歯車機構21を介して動力伝達される主動軸22と,この主動軸22から前記伝達軸20への動力伝機構23が設けられている。また,前記主動軸22から図示しない苗載台横送り機構に動力伝達される。   As shown in FIG. 4, the transmission case 9 includes a first case 15 having a power input shaft 14 from the engine 6, a pipe-like second case 16 extending laterally from the first case 15, The third seedling planting mechanism 10 includes four third cases 17 extending rearward from the second case 16 at an appropriate interval in the lateral direction. Each seedling planting mechanism 10 is pivotally supported horizontally at the rear end of the third case 17. In the second case 16, a transmission shaft 20 is provided in the second case 16 for transmitting power to the drive shaft 18 in each third case 17 via the shaft 19. The first case 15 is provided with a main shaft 22 that transmits power from the power input shaft 14 via a bevel gear mechanism 21 and a power transmission mechanism 23 from the main shaft 22 to the transmission shaft 20. ing. Further, power is transmitted from the main drive shaft 22 to a seedling table lateral feed mechanism (not shown).

一方,前記走行機体2における走行ミッション8には,前記エンジン6から分岐した動力を入力とする株間変速機構24が設けられているとともに,詳しくは後述する不等速変換ユニット25が取付けられ,前記株間変速機構24の出力軸26に前記不等速変換ユニット25における入力軸27が連結され,この不等速変換ユニット25における出力軸28に,前記苗植装置5における動力入力軸14が,両端に自在軸継ぎ手を有する動力伝達軸29を介して連結されており,前記各苗植付け機構10における駆動軸18の回転速度を,前記株間変速機構24にて適宜変速するように構成されている。   On the other hand, the traveling mission 8 in the traveling machine body 2 is provided with a stock shifting mechanism 24 that receives power branched from the engine 6 and an inconstant speed conversion unit 25 described later in detail. An input shaft 27 in the non-uniform speed conversion unit 25 is connected to the output shaft 26 of the inter-strain transmission mechanism 24, and the power input shaft 14 in the seedling planting device 5 is connected to the output shaft 28 in the non-constant speed conversion unit 25 at both ends. Are connected via a power transmission shaft 29 having a universal shaft joint, and the rotation speed of the drive shaft 18 in each seedling planting mechanism 10 is appropriately changed by the inter-strain transmission mechanism 24.

前記各苗植付け機構10は,図4及び図5に示すように構成されている。   Each seedling planting mechanism 10 is configured as shown in FIGS.

すなわち,前記駆動軸18のうち前記第3ケース17から突出する両端には,側面視小判型の回転ケース30を着脱可能に固着して,この回転ケース30を,前記駆動軸18によって田植機1の側面視において矢印Bで示すように,反時計方向に回転(公転)するもので,この回転ケース30内における前記駆動軸18上には,太陽歯車31が回転自在に被嵌され,該太陽歯車31は,前記第3ケース17に対して連結部材32を介して回転不能に係止されている。   That is, a side-view-type rotary case 30 is detachably fixed to both ends of the drive shaft 18 protruding from the third case 17, and the rotary case 30 is attached to the rice transplanter 1 by the drive shaft 18. As shown by an arrow B in the side view, the sun gear 31 rotates (revolves) in the counterclockwise direction. The sun gear 31 is rotatably fitted on the drive shaft 18 in the rotating case 30. The gear 31 is locked to the third case 17 through a connecting member 32 so as not to rotate.

前記回転ケース30の外周部,つまり,左右両端部には,前記駆動軸18からの距離が等しい位置に,後述する押し出し具用の作動軸33が駆動軸18と平行に軸支されている。また,前記回転ケース30内における両作動軸33上には,中空状の植付け軸34が回転自在に被嵌されている。   On the outer peripheral portion of the rotating case 30, that is, both left and right end portions, a pusher operating shaft 33, which will be described later, is pivotally supported in parallel with the drive shaft 18 at positions where the distance from the drive shaft 18 is equal. A hollow planting shaft 34 is rotatably fitted on both operating shafts 33 in the rotating case 30.

この植付け軸34及び前記作動軸33の各端部を回転ケース30の側面から外に突出して,この各植付け軸34の突出端の各々に,アルミ合金等の軽合金にて上面に開放するように中空状にした苗植体35をボルト36にて取付け,この各苗植体35の先端におけるボス部35aには,分割爪36が前記苗載台11に向かう姿勢位置にして固着されている一方,前記作動軸33の先端は,前記苗植体35の中空部内に突出して,この部分に,押し出し作動用のカム37が固着されている。   The end portions of the planting shaft 34 and the operating shaft 33 project outward from the side surface of the rotary case 30 so that the projecting ends of the planting shafts 34 are opened to the upper surface with a light alloy such as an aluminum alloy. A hollow seedling plant 35 is attached with a bolt 36, and a split claw 36 is fixed to a boss portion 35 a at the tip of each seedling plant 35 in a posture position toward the seedling mount 11. On the other hand, the tip of the operating shaft 33 protrudes into the hollow portion of the seedling plant 35, and a cam 37 for pushing operation is fixed to this portion.

そして,前記各植付け軸34上には,前記太陽歯車31と同歯数の遊星歯車38が嵌着されている一方,前記回転ケース30内には,前記太陽歯車31と前記遊星歯車38とに同時に噛合する中間歯車39を設けて,歯車列機構を構成して,この歯車列機構にて,前記回転ケース30が反時計方向の一回だけ公転するとき,前記各植付け軸34を時計方向に一回だけ自転することにより,前記各苗植体35を,その分割爪36が苗載台11に向かう姿勢を保持した状態で,前記苗載台11と圃場面12との間を往復動するように構成している。   A planetary gear 38 having the same number of teeth as the sun gear 31 is fitted on each planting shaft 34, while the sun gear 31 and the planetary gear 38 are connected to the rotating case 30. An intermediate gear 39 that meshes at the same time is provided to constitute a gear train mechanism. When the rotating case 30 revolves only once counterclockwise in this gear train mechanism, each planting shaft 34 is moved clockwise. By rotating only once, each seedling plant 35 is reciprocated between the seedling platform 11 and the field scene 12 in a state in which the divided claws 36 maintain the posture toward the seedling platform 11. It is configured as follows.

前記歯車列機構を構成する前記太陽歯車31,前記遊星歯車38及び前記中間歯車39を例えば特公昭63−20486号公報及び特開昭63−74413号公報等に記載されているように偏芯歯車等の非円形歯車に構成することにより,前記各苗植体35における分割爪36の先端が,図4に図示したように,上下方向に長い楕円状閉ループの運動軌跡40を描くように構成している。   The sun gear 31, the planetary gear 38 and the intermediate gear 39 constituting the gear train mechanism are eccentric gears as described in, for example, Japanese Patent Publication No. 63-20486 and Japanese Patent Publication No. 63-74413. The tip of the divided claw 36 in each seedling plant 35 is configured to draw an elliptical closed-loop motion trajectory 40 that is long in the vertical direction, as shown in FIG. ing.

この場合,前記各苗植体35の分割爪36の先端における上下方向に長い楕円状閉ループの運動軌跡40は,前記回転ケース30における回転速度を標準植えの50株又は60株の状態にしたときにおいて,最適の植付け状態,つまり,植付け苗の前後における掘り起こし穴を可及的に小さくできる植付け状態を得ることができるように設定されている。   In this case, the elliptical closed loop motion trajectory 40 that is long in the vertical direction at the tip of the split claw 36 of each seedling plant 35 is obtained when the rotational speed of the rotating case 30 is set to 50 or 60 strains of standard planting. Is set to obtain an optimal planting state, that is, a planting state in which the digging holes before and after the planted seedling can be made as small as possible.

前記各苗植体35におけるボス部35aには,押し出し具を構成する押し出し軸41が,前記分割爪36の長手方向と平行に延びる軸線方向に摺動自在に貫通するように設けられ,その下端には断面U字状にした押し出し片42が,前記分割爪36の後面に近接するように固定されており,前記押し出し軸41の上端は苗植体35内に突出され,この押し出し軸41の上端に,前記苗植体35内に上下方向に揺動回動するようにピン43にて枢着して成る押し出しレバー44の先端が,当該押し出しレバー44における下向き回動により前記押し出し軸41が分割爪36の先端部に向かう方向に前進動し,当該押し出しレバー44における上向き回動により前記押し出し軸41が分割爪36の先端部から根元部の方向に後退動するように,連結片45を介して連結されている。   The boss portion 35a of each seedling plant 35 is provided with an extrusion shaft 41 constituting an extrusion tool so as to slidably penetrate in an axial direction extending in parallel with the longitudinal direction of the divided claw 36, and its lower end. A pushing piece 42 having a U-shaped cross section is fixed so as to be close to the rear surface of the split claw 36, and the upper end of the pushing shaft 41 protrudes into the seedling plant 35. At the upper end, the tip of an extrusion lever 44 pivotally attached by a pin 43 so as to pivot in the vertical direction in the seedling plant 35, and the extrusion shaft 41 is moved downward by the extrusion lever 44. It moves forward in the direction toward the tip of the split claw 36, and the push-out shaft 41 moves backward so as to move backward from the tip of the split claw 36 toward the root by the upward rotation of the push-out lever 44. It is connected via a single 45.

また,前記苗植体35内には,前記押し出しレバー44を下向き方向に付勢するばね手段46が設けられている一方,前記押し出しレバー44における基端を,前記押し出し作動用カム37の外周面に接当することにより,前記回転ケース30の回転に連動して,前記各苗植体35における分割爪36の先端が回転ケース30の回転に伴ってその往復動のうち下降下限における下死点の近傍に来たとき,前記押し出しレバー44が前記ばね手段46の押圧付勢によって下向きに回動し,各苗植体35が回転ケース30の回転に伴ってその往復動のうち下死点から上昇動するとき,前記押し出しレバー44が前記ばね手段46に抗して上向きに回動するように構成している。   A spring means 46 for urging the push lever 44 downward is provided in the seedling plant 35, and the base end of the push lever 44 is connected to the outer peripheral surface of the push operation cam 37. In contact with the rotation of the rotating case 30, the tip of the split claw 36 in each seedling plant 35 is moved to the bottom dead center at the lower limit of the reciprocating movement with the rotation of the rotating case 30. The pushing lever 44 is rotated downward by the pressing force of the spring means 46, and the seedlings 35 are moved from the bottom dead center of the reciprocating motion as the rotating case 30 rotates. When moving upward, the pushing lever 44 is configured to rotate upward against the spring means 46.

更にまた,前記苗植体35における底面板には,苗植体35内に突出するボス部47を一体的に設け,このボス部47内に,ゴム等の軟質弾性体48を,着脱可能に装填して,この軟質弾性体48の上面に,前記押し出しレバー44がその下向き回動の終端において接当するように構成する。   Furthermore, the bottom plate of the seedling plant 35 is integrally provided with a boss portion 47 projecting into the seedling plant body 35, and a soft elastic body 48 such as rubber is detachable in the boss portion 47. The push lever 44 contacts the upper surface of the soft elastic body 48 at the end of its downward rotation.

一方,前記不等速変換ユニット25は,図7〜図9に示すように構成されている。   On the other hand, the non-uniform speed conversion unit 25 is configured as shown in FIGS.

すなわち,歯車ケース49内に,前記入力軸27及び出力軸28を一直線状に並べて軸支するとともに,切換え軸50を,前記入力軸27及び出力軸28と平行に軸支し,この切換え軸50と,前記出力軸28とは,互いに噛合する歯車51,52を嵌着することにより,当該切換え軸50の回転が出力軸28に伝達するように連動している一方,前記切換え軸50及び前記入力軸27の間は,入力軸27の回転を等速の状態で切換え軸50に伝えるための等速伝達機構53と,入力軸27の回転を不等速の状態にして切換え軸50に伝えるための加速用不等速伝達機構54及び減速用不等速伝達機構55とが設けられている。   That is, the input shaft 27 and the output shaft 28 are aligned and supported in a gear case 49, and the switching shaft 50 is supported in parallel with the input shaft 27 and the output shaft 28. The output shaft 28 is interlocked so that the rotation of the switching shaft 50 is transmitted to the output shaft 28 by fitting gears 51 and 52 that mesh with each other. Between the input shafts 27, a constant speed transmission mechanism 53 for transmitting the rotation of the input shaft 27 to the switching shaft 50 in a constant speed state and a rotation of the input shaft 27 in a non-uniform speed state are transmitted to the switching shaft 50. An unequal speed transmission mechanism 54 for acceleration and an unequal speed transmission mechanism 55 for deceleration are provided.

前記等速伝達機構53は,前記入力軸27にスプライン嵌合に回転不能に嵌着した円形歯車53aと,前記切換え軸50に回転自在に被嵌した円形歯車53bとを互いに常時噛合するという構成である一方,前記加速用不等速伝達機構54及び減速用不等速伝達機構55は,前記入力軸27にスプライン嵌合に回転不能に嵌着した歯車54a,55aと,前記切換え軸50に回転自在に被嵌した歯車54b,55bとを互いに常時噛合するという構成であり,前記等速伝達機構53における各円形歯車53a,53bは,前記加速用不等速伝達機構54における歯車54a,54bと,前記減速用不等速伝達機構55における歯車55a,55bとの間に位置している。   The constant speed transmission mechanism 53 is configured such that a circular gear 53a that is non-rotatably fitted to the input shaft 27 for spline fitting and a circular gear 53b that is rotatably fitted to the switching shaft 50 are always meshed with each other. On the other hand, the accelerating unequal speed transmission mechanism 54 and the deceleration unequal speed transmission mechanism 55 are connected to the input shaft 27 in a spline fitting manner so as not to rotate and to the switching shaft 50. The gears 54b and 55b, which are rotatably fitted, are always meshed with each other, and the circular gears 53a and 53b in the constant speed transmission mechanism 53 are gears 54a and 54b in the inconstant speed transmission mechanism 54 for acceleration. And the gears 55a and 55b in the inconstant speed transmission mechanism 55 for deceleration.

前記切換え軸50には,その軸線方向に延びるキー溝50aを設けて,このキー溝50a内に滑りキー56を摺動自在に挿入し,この滑りキー56を,その軸線方向への移動により前記等速伝達機構53における円形歯車53bのキー溝に係合したとき,前記等速伝達機構53を介して前記入力軸27から前記切換え軸50に動力伝達し,前記滑りキー56を,その軸線方向への移動により前記加速用不等速伝達機構54における歯車54bのキー溝に係合したとき,前記加速用不等速伝達機構54を介して前記入力軸27から前記切換え軸50に動力伝達し,前記前記滑りキー56を,その軸線方向への移動により前記減速用不等速伝達機構55における歯車55bのキー溝に係合したとき,前記減速用不等速伝達機構55を介して前記入力軸27から前記切換え軸50に動力伝達するように構成する。   The switching shaft 50 is provided with a key groove 50a extending in the axial direction thereof, and a sliding key 56 is slidably inserted into the key groove 50a, and the sliding key 56 is moved by moving in the axial direction. When engaged with the keyway of the circular gear 53b in the constant speed transmission mechanism 53, power is transmitted from the input shaft 27 to the switching shaft 50 via the constant speed transmission mechanism 53, and the sliding key 56 is moved in the axial direction thereof. , The power is transmitted from the input shaft 27 to the switching shaft 50 via the acceleration unequal speed transmission mechanism 54. When the slip key 56 is engaged with the key groove of the gear 55b of the speed reduction unequal speed transmission mechanism 55 by moving in the axial direction, the slip key 56 is inserted through the speed reduction unequal speed transmission mechanism 55. The operating shaft 50 from the shaft 27 configured to power transmission.

そして,前記加速用不等速伝達機構54における両歯車54a,54bを,図8に示すように,その中心O1を各々における軸の中心から適宜寸法eだけ偏芯した偏芯歯車等の非円形歯車に構成することにより,前記回転ケース30における回転速度を,当該回転ケース30の一回転のうち前記各苗植体35が下死点前後付近における位相位置にあるときにおいて加速するように構成する一方,前記減速用不等速伝達機構55における両歯車55a,55bを,図9に示すように,その中心O2を各々における軸の中心から前記とは逆方向に適宜寸法eだけ偏芯した偏芯歯車等の非円形歯車に構成することにより,前記回転ケース30における回転速度を,当該回転ケース30の一回転のうち前記各苗植体35が下死点前後付近における位相位置にあるときにおいて減速するように構成する。   Then, as shown in FIG. 8, both the gears 54a and 54b in the acceleration inconstant speed transmission mechanism 54 are non-circular such as an eccentric gear in which the center O1 is eccentric from the center of each shaft by an appropriate dimension e. By constituting the gear, the rotational speed of the rotating case 30 is accelerated when each seedling plant 35 is in a phase position around the bottom dead center in one rotation of the rotating case 30. On the other hand, as shown in FIG. 9, the gears 55a and 55b in the inconstant speed transmission mechanism 55 for deceleration are eccentrically decentered by an appropriate dimension e in the opposite direction to the center O2 from the center of each shaft. By configuring the rotating gear 30 to be a non-circular gear such as a core gear, the rotational speed of the rotating case 30 is set to the phase around the bottom dead center of each seedling plant 35 in one rotation of the rotating case 30. Configured to decelerate in when in location.

なお,前記不等速変換ユニット25における歯車ケース49には,握り付き切り換え操作軸57が,前記切換え軸50と平行に往復動するように設けられ,この切り換え操作軸57を,前記切換え軸50における滑りキー56に,当該切換え軸50に摺動自在に被嵌したリング体58を介して連結することにより,この切り換え操作軸57における軸方向への移動操作によって,前記入力軸27から切換え軸50への動力伝達を前記等速伝達機構53による動力伝達の状態,又は,前記加速用不等速伝達機構54による動力伝達の状態,或いは,前記減速用不等速伝達機構55による動力伝達の状態に選択的に切り換えするように構成する。   The gear case 49 in the inconstant speed conversion unit 25 is provided with a switching operation shaft 57 with a grip so as to reciprocate in parallel with the switching shaft 50, and the switching operation shaft 57 is connected to the switching shaft 50. Is connected to the sliding key 56 via a ring body 58 slidably fitted to the switching shaft 50, so that the switching shaft 57 can be moved from the input shaft 27 to the switching shaft in the axial direction. 50 is a state of power transmission by the constant speed transmission mechanism 53, a state of power transmission by the inconstant speed transmission mechanism 54 for acceleration, or a power transmission state by the inconstant speed transmission mechanism 55 for deceleration. It is configured to selectively switch to a state.

また,前記切り換え操作軸57には,当該切り換え操作軸57を前記三つの操作位置にしたとき,その位置を一時的に保持するためのボールクラッチ59が設けられている。   Further, the switching operation shaft 57 is provided with a ball clutch 59 for temporarily holding the switching operation shaft 57 when the switching operation shaft 57 is in the three operation positions.

この構成において,回転ケース30の矢印B方向への回転(公転)に伴って,その公転の回転角度と同じ回転角度だけ矢印B方向とは逆向きの方向に植付け軸34を中心として苗植体35が自転するから,各苗植体35は,その分割爪36が苗載台11の方向を向いた状態で上下方向に往復動するように旋回運動することになり,この旋回運動中において,苗載台11の上面に面する側において上から下に下降するとき,先端の分割爪36にて苗載台11上の苗マットから苗を一株だけ分割したのち,この一株の苗を,その下降下限の下死点近傍において分割爪36の先端が圃場面12中に進入する。   In this configuration, with rotation (revolution) of the rotation case 30 in the direction of arrow B, the seedling plant is centered on the planting shaft 34 in the direction opposite to the direction of arrow B by the same rotation angle as the rotation angle of the revolution. Since each of the seedlings 35 is rotated, the split claws 36 revolve in the vertical direction with the divided claws 36 facing the direction of the seedling mount 11. When descending from top to bottom on the side facing the top surface of the seedling table 11, after dividing the seedling from the seedling mat on the seedling table 11 with the split claw 36 at the tip, The tip of the split claw 36 enters the farm scene 12 in the vicinity of the bottom dead center of the lower limit of lowering.

このとき,前記苗植体35内における押し出しレバー44が,ばね手段46のはね力にて下向きに回動することにより,押し出し片42が分割爪36の先端に向かって前進動するから,前記分割爪36の先端における一株の苗は,押し出されるようにして圃場面12に植付けられる。   At this time, the pushing lever 44 in the seedling plant 35 is rotated downward by the spring force of the spring means 46, so that the pushing piece 42 moves forward toward the tip of the split claw 36. One seedling at the tip of the split claw 36 is planted in the farm scene 12 so as to be pushed out.

この苗の植付けが終わると,前記押し出し片42が後退動すると同時に,分割爪36は,圃場面12より抜けるように上昇動する。   When the planting of the seedling is completed, the pushing piece 42 moves backward, and at the same time, the split claw 36 moves upward so as to come out of the field scene 12.

そして,この田植え作業を,3.3平方メートル当たりの植付け株数を50株又は60株の標準植えにして行う場合は,前記回転ケース30における回転速度を,前記株間変更機構24における変速操作にて当該標準植えのときにおける回転速度にする一方,前記不等速変換ユニット25を,等速伝達機構53による動力伝達の状態にすることで,前記回転ケース30における各苗植体35の分割爪36の先端が描く走行運動軌跡は,50株のとき,図3に二点鎖線で示す曲線40aに,60株のとき,図4に一点鎖線で示す曲線40bになることにより,標準植えによる苗の植付けを,植付け苗の前後における掘り起こし穴を可及的に小さくできる状態で行うことができる。   And when this rice planting operation is carried out with a standard planting of 50 or 60 plants per 3.3 square meters, the rotational speed in the rotating case 30 is changed by the speed change operation in the inter- stock change mechanism 24. While the rotation speed at the time of standard planting is set, the non-constant speed conversion unit 25 is in a state of power transmission by the constant speed transmission mechanism 53, so that the split claws 36 of the seedlings 35 in the rotation case 30 The running motion trajectory drawn by the tip becomes a curve 40a indicated by a two-dot chain line in FIG. 3 when the strain is 50, and becomes a curve 40b indicated by a one-dot chain line in FIG. 4 when the strain is 60. Can be performed in a state where the digging holes before and after the planted seedling can be made as small as possible.

しかし,この標準植えの状態から,前記不等速変換ユニット25を等速伝達機構53による動力伝達にしたままで,前記回転ケース30の回転速度を株間変速機構24における変速操作にて早くすることによって,3.3平方メートル当たりの植付け株数を前記標準植えより多い密植えにした場合に,回転ケース30における公転の回転速度が早いことで各苗植体35における自転も早くなって,分割爪36における圃場面12からの抜け上昇が早くなるから,前記分割爪36による前方への引きずりは小さくなる反面,前記分割爪36における後方への泥土のはね上げが増大して,植付け苗における後側における掘り起こし穴が大きくなる。   However, from this standard planting state, the rotational speed of the rotating case 30 is increased by a shifting operation in the inter-shaft transmission mechanism 24 while the inconstant speed conversion unit 25 is kept in power transmission by the constant speed transmission mechanism 53. Thus, when the planting strain per 3.3 square meters is densely planted more than the standard planting, the rotation speed of the revolution in the rotating case 30 is fast, so that the rotation in each seedling plant 35 is accelerated, and the divided claws 36 As the detachment from the farm scene 12 becomes faster, the forward dragging by the divided claws 36 becomes smaller, while the rearward mud of the divided claws 36 increases and the rearing of the planted seedlings is dug up. The hole gets bigger.

そこで,前記回転ケース30の回転速度を,密植えのときの回転速度に早くした場合には,前記不等速変換ユニット25を,等速伝達機構53による動力伝達の状態から,減速用不等速伝達機構55による動力伝達の状態に切り換え操作する。   Therefore, when the rotational speed of the rotary case 30 is increased to the rotational speed at the time of dense planting, the unequal speed conversion unit 25 is moved from the power transmission state by the constant speed transmission mechanism 53 to the unequal for deceleration. Switching to the state of power transmission by the speed transmission mechanism 55 is performed.

これにより,前記回転ケース30における各苗植体35が自転するときの速度は,当該苗植体35が下死点前後付近に来たときにおいて遅くなるというように不等速になって,分割爪36における圃場面12からの抜け上昇が,前記不等速変換ユニット25を等速伝達機構53による動力伝達の状態にした場合よりも遅くなることにより,前記各苗植体35における分割爪36の先端が描く走行運動軌跡は,前記図4に一点鎖線で示す曲線40b又は二点鎖線で示す曲線40aに近似し,分割爪36による泥土の後方へのはね上げが小さくなるから,密植えによる苗の植付けを,前記標準植えに近い状態,つまり,植付け苗の前後における掘り起こし穴を可及的に小さくできる状態で行うことができる。   As a result, the speed at which each seedling plant 35 rotates in the rotating case 30 becomes unequal and slow when the seedling plant 35 comes around the bottom dead center. The rise of the nail 36 from the farm scene 12 becomes slower than the case where the inconstant speed conversion unit 25 is in a state of power transmission by the constant speed transmission mechanism 53, so that the divided nail 36 in each seedling plant 35 4 is approximated to the curve 40b shown by the one-dot chain line or the curve 40a shown by the two-dot chain line in FIG. 4 and the rearward lifting of the mud by the divided claws 36 becomes small. Can be planted in a state close to the standard planting, that is, in a state where the digging holes before and after the planted seedling can be made as small as possible.

また,前記標準植えの状態から,前記不等速変換ユニット25を等速伝達機構53による動力伝達にしたままで,前記回転ケース30の回転速度を株間変速機構24における変速操作にて遅くすることによって,3.3平方メートル当たりの植付け株数を前記標準植えより少ない疎植えにした場合に,回転ケース30における公転の回転速度が遅くなることで各苗植体35における自転も遅くなって,分割爪36における圃場面12からの抜け上昇が遅くなるから,前記分割爪36による後方への泥土のはね上げは少なくなる反面,分割爪36による前方への引きずりが増大し,植付け苗における前側における掘り起こし穴が大きくなる。   Further, from the standard planting state, the rotational speed of the rotating case 30 is slowed by a shifting operation in the inter-strain transmission mechanism 24 while the inconstant speed conversion unit 25 is kept in the power transmission by the constant speed transmission mechanism 53. Therefore, when the number of planted plants per 3.3 square meters is less sparse than the standard planting, the rotation speed of the revolution in the rotating case 30 is slowed, so that the rotation in each seedling plant 35 is also slowed down, and the divided nail 36, the lifting of the mud from the farm scene 12 is delayed, so that the muddy soil splashing backward by the divided claws 36 is reduced, but the forward dragging by the divided claws 36 is increased, and a digging hole on the front side of the planted seedling is formed. growing.

そこで,前記回転ケース30の回転速度を,疎植えの回転速度に遅くした場合には,前記不等速変換ユニット25を,等速伝達機構53による動力伝達の状態から,加速用不等速伝達機構54による動力伝達の状態に切り換え操作する。   Therefore, when the rotational speed of the rotating case 30 is reduced to the rotational speed of loose planting, the inconstant speed conversion unit 25 is made to transmit the inconstant speed transmission for acceleration from the state of power transmission by the constant speed transmission mechanism 53. Switching to the state of power transmission by the mechanism 54 is performed.

これにより,前記回転ケース30における各苗植体35が自転するときの速度は,当該苗植体35が下死点前後付近に来たときにおいて早くなるというように不等速になって,分割爪36における圃場面12からの抜け上昇が,前記不等速変換ユニット25を等速伝達機構53による動力伝達の状態にした場合よりも早くなることにより,前記各苗植体35における分割爪36の先端が描く走行運動軌跡は,前記図4に一点鎖線で示す曲線40b又は二点鎖線で示す曲線40aに近似し,分割爪36による前方への引きずりが少なくなるから,疎植えによる苗の植付けを,前記標準植えに近い状態,つまり,植付け苗の前後における掘り起こし穴を可及的に小さくできる状態で行うことができる。   As a result, the speed at which each seedling plant 35 rotates in the rotating case 30 becomes unequal, such that the speed when the seedling plant 35 comes near the bottom dead center is divided. Since the nail 36 is removed from the farm scene 12 more quickly than when the inconstant speed conversion unit 25 is in a state of power transmission by the constant speed transmission mechanism 53, the divided nail 36 in each seedling plant 35 is obtained. 4 is approximated to the curve 40b shown by the one-dot chain line or the curve 40a shown by the two-dot chain line in FIG. 4, and the forward dragging by the divided claws 36 is reduced. Can be performed in a state close to the standard planting, that is, in a state where the digging holes before and after the planted seedling can be made as small as possible.

この場合において,前記株間変速機構24に,前記不等速変換ユニット25を,株間変速機構24をその操作手段にて標準植えに操作したときこれに機械的に又は電気的に或いは油圧的に連動して自動的に不等速変換ユニット25を等速伝達機構53による動力伝達の状態に操作でき,株間変速機構24をその操作手段にて密植えに操作したときこれに機械的に又は電気的に或いは油圧的に連動して自動的に不等速変換ユニット25を減速用不等速伝達機構55による動力伝達の状態に操作でき,更に,株間変速機構24をその操作手段にて疎植えに操作したときこれに機械的に又は電気的に或いは油圧的に連動して自動的に不等速変換ユニット25を加速用不等速伝達機構54による動力伝達の状態に操作できるように関連するという構成にしたり,或いは,前記株間変速機構24と前記不等速変換ユニット25とを,一つの操作手段によって同時に操作するように構成したりすることができ,このように構成することにより,操作性の大幅な向上を図ることができるとともに,誤操作を確実に回避することができる利点がある。   In this case, when the inconstant speed conversion unit 25 is operated to the inter-gear transmission mechanism 24, and the inter-gear transmission mechanism 24 is operated to the standard planting by the operation means, it is mechanically, electrically, or hydraulically linked thereto. Thus, the inconstant speed conversion unit 25 can be automatically operated in a state of power transmission by the constant speed transmission mechanism 53, and when the inter-shaft transmission mechanism 24 is densely planted by the operation means, mechanically or electrically Alternatively, the inconstant speed conversion unit 25 can be automatically operated in a state of power transmission by the inconstant speed transmission mechanism for deceleration 55 in conjunction with hydraulic pressure, and the inter-strain transmission mechanism 24 can be sparsely planted by the operation means. When operated, it is related to mechanically, electrically or hydraulically linked so that the inconstant speed conversion unit 25 can be automatically operated to the state of power transmission by the inconstant speed transmission mechanism 54 for acceleration. Constitution Alternatively, the inter-strain transmission mechanism 24 and the inconstant speed conversion unit 25 can be configured to be operated simultaneously by a single operating means. There is an advantage that significant improvement can be achieved and erroneous operation can be surely avoided.

ところで,前記した実施の形態は,前記不等速変換ユニット25における等速伝達機構53,加速用不等速伝達機構54及び加速用不等速伝達機構55の各々を,歯車列に構成した場合であったが,本発明は,これに限らず,前記等速伝達機構53を,一対の円形スプロケット間にチエンを巻掛けした構成に,加速用不等速伝達機構54及び加速用不等速伝達機構55の各々を,一対の偏芯等の非円形スプロケット間にチエンを巻掛けした構成にすることができるほか,切換手段としても,前記実施の形態における滑りキー56に限らず,クラッチ機構等の他の切換手段にしても良いのである。   By the way, in the above-described embodiment, each of the constant velocity transmission mechanism 53, the acceleration unequal velocity transmission mechanism 54, and the acceleration unequal velocity transmission mechanism 55 in the unequal velocity conversion unit 25 is configured as a gear train. However, the present invention is not limited to this, and the constant velocity transmission mechanism 53 has a configuration in which a chain is wound between a pair of circular sprockets. Each of the transmission mechanisms 55 can have a structure in which a chain is wound between a pair of non-circular sprockets such as eccentricity, and the switching means is not limited to the sliding key 56 in the above embodiment, but is also a clutch mechanism. Other switching means may be used.

また,前記した実施の形態において,前記不等速変換ユニット25における切換え軸50を,そのまま当該不等速変換ユニット25からの出力軸に置き換えるという構成にしたり,或いは,前記切換え軸56(又は出力軸)における各歯車53b,54b,55bを,前記切換え軸56(又は出力軸)に回転不能に嵌着する一方,前記入力軸27における各歯車53a,54a,55aを,前記入力軸27に回転自在に被嵌して,この入力軸27に滑りキー56等のその他の切換手段を設けるという構成にしても良いことはいうまでもない。   In the above-described embodiment, the switching shaft 50 in the inconstant speed conversion unit 25 may be replaced with the output shaft from the inconstant speed conversion unit 25 as it is, or the switching shaft 56 (or output). The gears 53b, 54b, 55b in the shaft) are non-rotatably fitted to the switching shaft 56 (or the output shaft), while the gears 53a, 54a, 55a in the input shaft 27 are rotated to the input shaft 27. It goes without saying that other input means such as a sliding key 56 may be provided on the input shaft 27 so as to be freely fitted.

更にまた,前記不等速変換ユニット25を,走行機体2又は苗植装置5に対して着脱自在に構成することにより,既存の田植機に対して適用することができる。   Furthermore, the non-constant speed conversion unit 25 can be applied to an existing rice transplanter by being configured to be detachable from the traveling machine body 2 or the seedling planting device 5.

乗用型田植機の側面図である。It is a side view of a riding type rice transplanter. 乗用型田植機の平面図である。It is a top view of a riding type rice transplanter. 図1における苗植装置の要部拡大側面図である。It is a principal part expanded side view of the seedling planting apparatus in FIG. 図3のIV−IV視断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV−V視拡大断面図である。FIG. 5 is an enlarged sectional view taken along line VV in FIG. 3. 図5のVII −VII 視拡大断面図である。FIG. 7 is an enlarged sectional view taken along the line VII-VII in FIG. 5. 不等速変換ユニットの拡大縦断正面図である。It is an expansion vertical front view of an inconstant speed conversion unit. 図7のVIII−VIII視断面図である。It is VIII-VIII sectional view taken on the line of FIG. 図7のVIX −VIX 視断面図である。FIG. 8 is a cross-sectional view taken along the line VIX-VIX in FIG. 7.

符号の説明Explanation of symbols

1 田植機
2 走行機体
3,4 車輪
5 苗植装置
8 走行ミッション
9 伝動ケース
10 苗植付け機構
11 苗載台
12 圃場面
13 フロート
18 駆動軸
24 株間変速機構
25 不等速変換ユニット
27 不等速変換ユニットの入力軸
28 不等速変換ユニットの出力軸
30 回転ケース
35 苗植体
36 分割爪
31 太陽歯車
38 遊星歯車
39 中間歯車
50 不等速変換ユニットの切換え軸
53 等速伝達機構
53a,53b 円形歯車
54 加速用不等速伝達機構
54a,54b 非円形歯車
55 減速用不等速伝達機構
55a,55b 非円形歯車
56 切り換え用滑りキー
57 切り換え操作軸
DESCRIPTION OF SYMBOLS 1 Rice transplanter 2 Traveling machine body 3, 4 Wheel 5 Seedling planting device 8 Traveling mission 9 Transmission case 10 Seedling planting mechanism 11 Seedling stand 12 Farm scene 13 Float 18 Drive shaft 24 Inter-strain transmission mechanism 25 Unequal speed conversion unit 27 Unequal speed Input shaft of conversion unit 28 Output shaft of non-constant speed conversion unit 30 Rotating case 35 Seedling body 36 Split claw 31 Sun gear 38 Planetary gear 39 Intermediate gear 50 Switching shaft of non-uniform speed conversion unit 53 Constant speed transmission mechanism 53a, 53b Circular gear 54 Accelerating non-uniform speed transmission mechanism 54a, 54b Non-circular gear 55 Deceleration unequal speed transmission mechanism 55a, 55b Non-circular gear 56 Switching slip key 57 Switching operation shaft

Claims (4)

動力源から株間変速機構を経て動力伝達される横向きの駆動軸に回転ケースを固着し,この回転ケースのうち前記駆動軸を中心とする円周上の少なくとも等分二箇所に,分割爪を備えた苗植体を設ける一方,前記回転ケースに,当該回転ケースにおける一回の公転中に前記苗植体を逆方向に一回だけ自転して前記各苗植体をその分割爪が苗載台の方向を向いた姿勢で上下に往復動し,且つ,前記各苗植体における自転をその往復動のうち下死点前後付近において遅らせるようにした不等速連動機構を設けて成るロータリー式苗植付け機構において,
前記株間変速機構から前記駆動軸への動力伝達を,前記回転ケースにおける回転速度を当該回転ケースの一回転のうち前記各苗植体が下死点前後付近における位相位置にあるときにおいて加速するという不等速の状態にする加速用不等速伝達機構にて行う場合と,前記回転ケースにおける回転速度を当該回転ケースの一回転のうち前記各苗植体が下死点前後付近における位相位置にあるときにおいて減速するという不等速の状態にする減速用不等速伝達機構にて行う場合とに切り換えるための不等速変換ユニットを備えていることを特徴とする田植機におけるロータリー式苗植付け機構。
A rotating case is fixed to a lateral drive shaft to which power is transmitted from a power source through an inter-shaft transmission mechanism, and a split claw is provided at least in two equal parts on the circumference centering on the drive shaft of the rotating case. The seedlings are rotated on the rotating case only once in the opposite direction during the revolution of the rotating case, and the divided claws are provided on the rotating case. Rotary seedlings provided with a non-constant speed interlocking mechanism that reciprocates up and down in a posture facing the direction and that delays the rotation of each seedling plant around the bottom dead center of the reciprocating motion. In the planting mechanism,
The transmission of power from the inter-shaft transmission mechanism to the drive shaft is accelerated when the rotational speed of the rotating case is in the phase position around the bottom dead center in one rotation of the rotating case. In the case of using an unequal speed transmission mechanism for accelerating to make an inconstant speed state, the rotational speed of the rotating case is set to the phase position around the bottom dead center in one rotation of the rotating case. Rotary seedling planting in a rice transplanter characterized by comprising an inconstant speed conversion unit for switching to the case of using an inconstant speed transmission mechanism for deceleration that causes the inconstant speed to decelerate at a certain time mechanism.
前記請求項1の記載において,前記不等速変換ユニットは,前記駆動軸への動力伝達を,回転ケースの回転速度を等速にするようにした等速伝達機構にて行う場合から,前記加速用不等速伝達機構にて行う場合又は減速用不等速伝達機構にて行う場合とに切り換える構成であることを特徴とする田植機におけるロータリー式苗植付け機構。   In the first aspect of the present invention, the unequal speed conversion unit is configured to transmit power to the drive shaft by a constant speed transmission mechanism in which a rotation speed of a rotating case is made constant. A rotary seedling planting mechanism in a rice transplanter, characterized in that it is configured to switch between the case of using a non-uniform speed transmission mechanism and the case of using a non-uniform speed transmission mechanism for deceleration. 前記請求項1の記載において,前記加速用不等速伝達機構及び前記減速用不等速伝達機構の各々は,互いに常時噛合する非円形歯車機構の構成であり,これら両非円形歯車機構のうち一方の非円形歯車は,前記株間変速機構からの入力軸又は前記駆動軸への出力軸上に回転自在に設けられ,前記両非円形歯車機構のうち他方の非円形歯車は,前記出力軸又は前記入力軸上に回転不能に設けられ,更に,前記入力軸又は前記出力軸上における回転自在な両非円形歯車のうちいずれか一方を,前記入力軸又は前記出力軸に対して回転不能に固定する構成であることを特徴とする田植機におけるロータリー式苗植付け機構。   In the first aspect of the present invention, each of the non-uniform speed transmission mechanism for acceleration and the non-uniform speed transmission mechanism for deceleration is a configuration of a non-circular gear mechanism that always meshes with each other, and among these non-circular gear mechanisms, One non-circular gear is rotatably provided on an input shaft from the inter-shaft transmission mechanism or an output shaft to the drive shaft, and the other non-circular gear of the non-circular gear mechanisms is the output shaft or Non-rotatably provided on the input shaft, and further, either one of the non-circular gears rotatable on the input shaft or the output shaft is fixed to the input shaft or the output shaft so as not to rotate. A rotary seedling planting mechanism in a rice transplanter, which is characterized by 前記請求項2の記載において,前記等速伝達機構は,互いに常時噛合する円形歯車機構の構成である一方,前記加速用不等速伝達機構及び前記減速用不等速伝達機構の各々は,互いに常時噛合する非円形歯車機構の構成であり,前記円形歯車機構のうち一方の円形歯車及び前記両非円形歯車列のうち一方の非円形歯車は,前記株間変速機構からの入力軸又は前記駆動軸への出力軸上に,当該円形歯車を当該両非円形歯車の間に位置するようにして回転自在に設けられ,前記円形歯車機構のうち他方の円形歯車及び前記両非円形歯車機構のうち他方の非円形歯車は,前記出力軸又は前記入力軸上に,当該円形歯車を当該両非円形歯車の間に位置するようにして回転不能に設けられ,更に,前記入力軸又は前記出力軸上における回転自在な円形歯車及び両非円形歯車のうちいずれか一つを前記入力軸又は前記出力軸に対して回転不能に固定するように軸方向に往復動する滑りキーを備えていることを特徴とする田植機におけるロータリー式苗植付け機構。   In the second aspect of the present invention, the constant speed transmission mechanism is a configuration of a circular gear mechanism that always meshes with each other, while the acceleration inconstant speed transmission mechanism and the deceleration inconstant speed transmission mechanism are mutually connected. A non-circular gear mechanism that is always meshed, wherein one of the circular gear mechanisms and one of the non-circular gear trains are an input shaft or a drive shaft from the inter-stock transmission mechanism. The circular gear is rotatably provided on the output shaft so as to be positioned between the two non-circular gears, and the other of the circular gear mechanisms and the other of the two non-circular gear mechanisms. The non-circular gear is provided on the output shaft or the input shaft so as to be non-rotatable with the circular gear positioned between the non-circular gears, and further on the input shaft or the output shaft. Rotary circular teeth And a rotary key in the rice transplanter, characterized by comprising a sliding key that reciprocates in the axial direction so as to fix any one of the non-circular gears to the input shaft or the output shaft in a non-rotatable manner. Formula seedling planting mechanism.
JP2004338034A 2004-11-22 2004-11-22 Rotary seedling planting mechanism in rice transplanter Expired - Fee Related JP4716482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338034A JP4716482B2 (en) 2004-11-22 2004-11-22 Rotary seedling planting mechanism in rice transplanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338034A JP4716482B2 (en) 2004-11-22 2004-11-22 Rotary seedling planting mechanism in rice transplanter

Publications (2)

Publication Number Publication Date
JP2006141323A true JP2006141323A (en) 2006-06-08
JP4716482B2 JP4716482B2 (en) 2011-07-06

Family

ID=36621685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338034A Expired - Fee Related JP4716482B2 (en) 2004-11-22 2004-11-22 Rotary seedling planting mechanism in rice transplanter

Country Status (1)

Country Link
JP (1) JP4716482B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161934A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2010161937A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2010161933A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2012100574A (en) * 2010-11-09 2012-05-31 Yanmar Co Ltd Rice transplanter
JP2013106597A (en) * 2011-11-24 2013-06-06 Yanmar Co Ltd Seedling transplanter
CN109479463A (en) * 2018-11-29 2019-03-19 华南农业大学 A kind of linkage period stepping mechanism of three-dimensional three of unidirectional drive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080358B1 (en) * 2012-03-15 2020-02-21 얀마 가부시키가이샤 Transplanting machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368016A (en) * 1986-09-08 1988-03-26 井関農機株式会社 Transplanter
JPH09224439A (en) * 1996-02-20 1997-09-02 Yanmar Agricult Equip Co Ltd Rotary type rice transplanting mechanism in rice transplanter
JP2000139146A (en) * 1998-11-06 2000-05-23 Yanmar Agricult Equip Co Ltd Planting device of rice transplanter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368016A (en) * 1986-09-08 1988-03-26 井関農機株式会社 Transplanter
JPH09224439A (en) * 1996-02-20 1997-09-02 Yanmar Agricult Equip Co Ltd Rotary type rice transplanting mechanism in rice transplanter
JP2000139146A (en) * 1998-11-06 2000-05-23 Yanmar Agricult Equip Co Ltd Planting device of rice transplanter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161934A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2010161937A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2010161933A (en) * 2009-01-13 2010-07-29 Yanmar Co Ltd Rice transplanter
JP2012100574A (en) * 2010-11-09 2012-05-31 Yanmar Co Ltd Rice transplanter
JP2013106597A (en) * 2011-11-24 2013-06-06 Yanmar Co Ltd Seedling transplanter
CN109479463A (en) * 2018-11-29 2019-03-19 华南农业大学 A kind of linkage period stepping mechanism of three-dimensional three of unidirectional drive

Also Published As

Publication number Publication date
JP4716482B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP2012196199A (en) Seedling transplanter
JP4716482B2 (en) Rotary seedling planting mechanism in rice transplanter
JP2007252317A (en) Seedling planting apparatus
JP2003219712A (en) Rice transplanter
JP4577828B2 (en) Rice transplanter
JP4575801B2 (en) Rice transplanter with rotary seedling planting mechanism
JPH1098924A (en) Seedling planting device
JP5335446B2 (en) Rice transplanter
JP4562495B2 (en) Rotary seedling planting mechanism in rice transplanter
JP4095885B2 (en) Transplanter
JP2008092881A (en) Seedling planting apparatus
JP5650024B2 (en) Seedling transplanter
JP2008182926A (en) Seedling transplanter
JP2003189712A (en) Transplanting machine
JP2014042525A (en) Work machine transmission of rice transplanter
JP4376154B2 (en) Transplanter
JP5226039B2 (en) Rice transplanter work machine transmission
JP4436063B2 (en) Transplanter
JP5350548B2 (en) Rice transplanter work machine transmission
JPS5854257Y2 (en) Transmission device in rice transplanter
JP5763150B2 (en) Rice transplanter work machine transmission
JP2021176270A (en) Seedling planting device
JP2012196200A (en) Riding type seedling transplanter
JP4022137B2 (en) Transplanter
JP2892344B2 (en) Operating device for paddy working machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees