JP2006140361A - Polishing constituent - Google Patents

Polishing constituent Download PDF

Info

Publication number
JP2006140361A
JP2006140361A JP2004329828A JP2004329828A JP2006140361A JP 2006140361 A JP2006140361 A JP 2006140361A JP 2004329828 A JP2004329828 A JP 2004329828A JP 2004329828 A JP2004329828 A JP 2004329828A JP 2006140361 A JP2006140361 A JP 2006140361A
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
composition according
polymer
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004329828A
Other languages
Japanese (ja)
Inventor
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004329828A priority Critical patent/JP2006140361A/en
Publication of JP2006140361A publication Critical patent/JP2006140361A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate polishing constituent that is capable of polishing the surface of an object to be polished fairly flatly, and particularly appropriate for flattening a dielectric in a process of separating interlayer dielectrics or elements of a semiconductor device, and to provide a method of polishing the semiconductor substrate and the semiconductor substrate. <P>SOLUTION: The polishing constituent contains a polymer (A) having a repetition unit represented by a general expression (I) originated from an N-vinyl carboxylic acid amide, a polymer (B) having a repetition unit selected from a group comprising a vinyl carboxylic acid and its derivative, polishing particles, and water. In the expressions, R<SP>1</SP>and R<SP>2</SP>independently represent hydrogen and alkyl groups, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体デバイス製造技術である基板表面の平坦化研磨、特に素子分離や層間絶縁膜の平坦化研磨において使用される研磨組成物及びこれら研磨組成物を使用した基板の研磨方法に関する。   The present invention relates to a polishing composition used in planarization polishing of a substrate surface, which is a semiconductor device manufacturing technique, in particular, element isolation and planarization polishing of an interlayer insulating film, and a method of polishing a substrate using these polishing compositions.

半導体デバイスの高集積化・高速化が進むに伴い、グローバルプラナリゼーション技術の重要性がますます高まってきている。多層配線構造を必要とするロジックLSIの製造工程に於いて、層間絶縁膜の平坦化はリソグラフィーの精度を高めてデザインルールの微細化を達成する必要不可欠なキーテクノロジーとなっている。又、LOCOSに代わる素子分離技術として開発されたシャロートレンチ分離法(STI)では、研磨後の膜厚の均一性が素子特性を決めるため、極めて精度の高い平坦化研磨技術が要求されている。   As semiconductor devices become more highly integrated and faster, global planarization technology has become increasingly important. In the manufacturing process of a logic LSI requiring a multilayer wiring structure, planarization of an interlayer insulating film is an indispensable key technology for improving the accuracy of lithography and achieving miniaturization of design rules. Further, in the shallow trench isolation method (STI) developed as an element isolation technique that replaces LOCOS, a highly accurate planarization technique is required because the uniformity of film thickness after polishing determines element characteristics.

図1に、アルミ配線を形成した後で、絶縁膜である酸化珪素膜を成膜した半導体基板断面の模式図を示す。絶縁膜表面には配線の凹凸に対応する凹凸段差が形成される。この絶縁膜の上に微細な配線層を積層するためには、絶縁膜表面を高度に平坦化してリソグラフィー精度を高める事が要求される。図2に素子分離(STI)工程における絶縁膜成膜後の半導体基板断面の模式図を示す。窒化珪素膜を通してエッチングされた溝に対応する凹凸段差が、絶縁膜である酸化珪素膜表面に形成される。窒化珪素膜表面まで研磨して酸化珪素膜を除去することによって、エッチングされた溝の中に絶縁膜を残し、素子領域を分離する。研磨後の絶縁膜厚及び窒化珪素膜厚の均一性が素子性能に影響することから、段差が無い平坦な研磨面を得られる研磨方法が求められている。   FIG. 1 shows a schematic view of a cross section of a semiconductor substrate on which a silicon oxide film, which is an insulating film, is formed after forming aluminum wiring. An uneven step corresponding to the unevenness of the wiring is formed on the surface of the insulating film. In order to laminate a fine wiring layer on the insulating film, it is required to highly planarize the surface of the insulating film to improve lithography accuracy. FIG. 2 shows a schematic diagram of a cross section of a semiconductor substrate after an insulating film is formed in an element isolation (STI) process. An uneven step corresponding to the groove etched through the silicon nitride film is formed on the surface of the silicon oxide film which is an insulating film. By polishing the surface of the silicon nitride film to remove the silicon oxide film, the insulating film is left in the etched groove, and the element region is separated. Since the uniformity of the insulating film thickness and the silicon nitride film thickness after polishing affects the device performance, a polishing method capable of obtaining a flat polished surface without a step is required.

この様な半導体基板の平坦化には化学的な研磨と機械的な研磨を組み合わせた、化学的機械研磨(Chemical Mechanical Polishing:CMP)が応用されている。一般的な半導体基板のCMPでは、半導体基板を、回転テーブル上に張り付けた研磨パッドに一定荷重で押しつけ、研磨パッドと半導体基板の間に研磨スラリーを供給しながらテーブル及び半導体基板を回転させて、凹凸のある半導体基板表面を研磨する。研磨スラリーは、被研磨物に対して化学的に活性な溶液に機械的な研磨作用を有する研磨粒子を懸濁させたものが一般的に使用されるが、研磨粒子を埋め込んだパッド等が使用される場合もある。   For such planarization of a semiconductor substrate, chemical mechanical polishing (CMP), which combines chemical polishing and mechanical polishing, is applied. In CMP of a general semiconductor substrate, the semiconductor substrate is pressed against a polishing pad attached on a rotary table with a constant load, and the table and the semiconductor substrate are rotated while supplying a polishing slurry between the polishing pad and the semiconductor substrate. The surface of the semiconductor substrate with unevenness is polished. A polishing slurry is generally used in which abrasive particles having a mechanical polishing action are suspended in a solution that is chemically active to the object to be polished, but a pad or the like in which abrasive particles are embedded is used. Sometimes it is done.

CMP技術は一般に高平坦な研磨面を得るために有効な手法とされているが、被研磨基板上に形成されたパターンの大きさに依存して研磨速度が異なるために基板全面での高いレベルの平坦化を実現することが難しいという技術課題があった。又、従来のCMP技術では、過剰時間研磨した場合には被研磨膜を研磨しすぎてしまい膜厚の均一性が確保できなくなる問題があったため、研磨中に被研磨面をモニターしながら研磨の終点を検出する、或いは研磨時間を一定にする等の必要があった。しかし、被研磨面のモニターには特別の設備が必要であるので、製造コストアップにつながり、又、研磨パッド等の消耗に伴って研磨速度が変化するので、研磨時間を一定にしても必ずしも同じ研磨結果を得られなかった。従って、過剰時間研磨した場合でも被研磨膜厚の均一性を確保できるCMP技術が求められていた。   CMP technology is generally considered to be an effective method for obtaining a highly flat polished surface, but the polishing rate varies depending on the size of the pattern formed on the substrate to be polished, so the high level over the entire surface of the substrate. There was a technical problem that it was difficult to realize flattening. Further, in the conventional CMP technique, if the polishing is performed for an excessive period of time, the film to be polished is excessively polished and the uniformity of the film thickness cannot be ensured. It was necessary to detect the end point or make the polishing time constant. However, since special equipment is required for monitoring the surface to be polished, this leads to an increase in manufacturing cost, and the polishing rate changes with the consumption of the polishing pad, etc., so the same is not necessary even if the polishing time is constant. Polishing results could not be obtained. Therefore, there has been a demand for a CMP technique that can ensure the uniformity of the film thickness even when polishing is performed for an excessive time.

凹凸のある半導体基板を平坦化するための研磨組成物及び研磨方法は、例えば非特許文献1及び特許文献1〜5で開示されている。非特許文献1及び特許文献1〜5には、酸化セリウムを含む研磨スラリーにポリカルボン酸等を添加することによって、このスラリーを用いて研磨したときの研磨圧力と研磨速度の関係が非線形になることが開示されている。これによれば、研磨圧力を適当に調節することによって、研磨パッドから受ける部分的な研磨圧力が高くなる段差凸部が優先的に研磨され、従って半導体基板表面の凹凸段差が平坦化されるとしている。   A polishing composition and a polishing method for planarizing an uneven semiconductor substrate are disclosed in Non-Patent Document 1 and Patent Documents 1 to 5, for example. In Non-Patent Document 1 and Patent Documents 1 to 5, by adding polycarboxylic acid or the like to a polishing slurry containing cerium oxide, the relationship between the polishing pressure and the polishing rate when polishing using this slurry becomes nonlinear. It is disclosed. According to this, by appropriately adjusting the polishing pressure, the step protrusions that increase the partial polishing pressure received from the polishing pad are preferentially polished, and thus the uneven step on the surface of the semiconductor substrate is flattened. Yes.

又、これらの文献には、酸化セリウムを含む研磨スラリーにポリカルボン酸等を添加することによって、酸化珪素の研磨速度を窒化珪素の研磨速度で割って得られる選択比が大きくなることが開示されている。これは、ポリカルボン酸は電離して負の電荷を有する傾向があり、また窒化珪素は酸化珪素よりも正に帯電する傾向があるので、ポリカルボン酸は、酸化珪素表面によりも窒化珪素表面に被膜を形成し、窒化珪素の研磨を抑制する傾向があることによる。これによれば、停止膜としての窒化珪素によって研磨の進行を止めることが容易になるとしている。   In addition, these documents disclose that the selection ratio obtained by dividing the polishing rate of silicon oxide by the polishing rate of silicon nitride is increased by adding polycarboxylic acid or the like to the polishing slurry containing cerium oxide. ing. This is because polycarboxylic acids tend to be ionized and have a negative charge, and silicon nitride tends to be more positively charged than silicon oxide. This is because a film is formed and the polishing of silicon nitride tends to be suppressed. According to this, it becomes easy to stop the progress of polishing by silicon nitride as a stop film.

しかし、非特許文献1に記載されているように、段差が小さくなる速度は大きなサイズのパターンでは遅く、サイズの異なるパターンが混在する半導体基板全体では高度な平坦化が難しい。特許文献2には、ポリカルボン酸であるポリアクリル酸が半導体基板表面の凹凸段差を平坦化することが開示されている。特許文献3には、被研磨面である酸化珪素膜に結合する性質を有する高分子化合物、好ましくはポリビニルピロリドンと酸化セリウムを添加した研磨スラリーによって、半導体基板表面の凹凸が平坦化されることが開示されている。特許文献4には、カルボニル基、ニトリル基またはアミド基を含む炭化水素の重合体、好ましくはα−セルロースを添加して、研磨スラリーの、窒化珪素膜に対する酸化珪素膜の研磨速度比を向上させることによって、研磨後の酸化珪素膜及び窒化珪素膜の膜厚を均一化する研磨方法が開示されている。特許文献5には、酸化セリウム粒子、分散剤、2種類以上の添加剤、及び水を含んでなるCMP研磨組成物によって半導体基板表面のサイズが異なるパターンの凹凸段差を平坦化することが開示されている。また特許文献6には、酸化セリウムとカルボキシル基等を有する水溶性有機化合物を含む研磨組成物が開示されている。   However, as described in Non-Patent Document 1, the speed at which the level difference is reduced is slow for large size patterns, and it is difficult to achieve high level planarization for the entire semiconductor substrate in which patterns of different sizes are mixed. Patent Document 2 discloses that polyacrylic acid, which is a polycarboxylic acid, planarizes uneven steps on the surface of a semiconductor substrate. In Patent Document 3, unevenness on the surface of a semiconductor substrate is planarized by a polishing slurry to which a high molecular compound having a property of bonding to a silicon oxide film that is a surface to be polished, preferably polyvinylpyrrolidone and cerium oxide, is added. It is disclosed. In Patent Document 4, a hydrocarbon polymer containing a carbonyl group, a nitrile group or an amide group, preferably α-cellulose, is added to improve the polishing rate ratio of the silicon oxide film to the silicon nitride film in the polishing slurry. Thus, a polishing method is disclosed in which the thickness of the polished silicon oxide film and silicon nitride film is made uniform. Patent Document 5 discloses flattening uneven steps of patterns having different sizes on the surface of a semiconductor substrate by a CMP polishing composition comprising cerium oxide particles, a dispersant, two or more additives, and water. ing. Patent Document 6 discloses a polishing composition containing a water-soluble organic compound having cerium oxide and a carboxyl group.

しかしながら、サイズが異なるパターンが混在するウェハ表面の段差を高度に平坦化し、且つ過剰時間研磨しても研磨面の平坦性が損なわれない研磨方法は開示されていない。   However, there is no disclosure of a polishing method in which a step on the wafer surface where patterns of different sizes are mixed is highly flattened and the flatness of the polished surface is not impaired even if polishing is performed for an excessive period of time.

IEDM96 Proceedings(1996)P.34−352IEDM96 Proceedings (1996) P.I. 34-352 特開平8−22970号公報JP-A-8-22970 国際公開00/39843号公報International Publication No. 00/39843 国際公開00/79577International Publication 00/79577 特開2003−338470号公報JP 2003-338470 A 特開2001−185514号公報JP 2001-185514 A 国際公開99/43761号公報International Publication No. 99/43761

従って、本発明の目的は、高平坦面を達成するための研磨、特に半導体装置製造におけるCMP研磨において、研磨面を平坦化する性能が高く、大きさの異なるパターンが混在した半導体基板であっても高度に平坦化でき、過剰時間研磨した場合にも被研磨膜の過剰な研磨が抑制できる研磨組成物及び研磨方法を提供することである。   Accordingly, an object of the present invention is a semiconductor substrate having a high performance for flattening a polished surface and a mixture of patterns of different sizes in polishing for achieving a highly flat surface, particularly CMP polishing in semiconductor device manufacturing. It is also possible to provide a polishing composition and a polishing method that can be highly planarized and that can suppress excessive polishing of a film to be polished even when polished for an excessive period of time.

本発明者は、前記の目的を達成すべく鋭意研究を重ねた結果、特定の重合体を少なくとも2種、研磨粒子、及び水を含む研磨組成物を用いたCMP研磨によって、大きさの異なるパターンが混在した半導体基板であっても高度に平坦化でき、且つ、平坦化された後には研磨しても研磨面が過剰に研磨されなくなることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that patterns of different sizes are obtained by CMP polishing using a polishing composition containing at least two kinds of specific polymers, abrasive particles, and water. It has been found that even if a semiconductor substrate is mixed, it can be highly planarized, and after the planarization, the polished surface is not excessively polished even if polished, and the present invention has been completed.

即ち本発明は、下記に示すようなものである。   That is, the present invention is as follows.

(1)N−ビニルカルボン酸アミド由来の下記一般式(I)で表される繰り返し単位を主たる繰り返し単位として有する重合体(A)、ビニルカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種由来の繰り返し単位を有する重合体(B)、研磨粒子、及び水を含む、研磨組成物:

Figure 2006140361
(式中、R1及びR2はそれぞれ独立に、水素原子または炭素数1〜3のアルキル基を示す)。 (1) At least one selected from the group consisting of a polymer (A) having a repeating unit represented by the following general formula (I) derived from N-vinylcarboxylic acid amide as a main repeating unit, vinylcarboxylic acid and derivatives thereof A polishing composition comprising a polymer (B) having a repeating unit derived from, an abrasive particle, and water:
Figure 2006140361
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).

(2)前記重合体(A)が、前記一般式(I)で表される繰り返し単位を50質量%以上有する重合体である、前記(1)項に記載の研磨組成物。 (2) The polishing composition according to (1), wherein the polymer (A) is a polymer having 50% by mass or more of the repeating unit represented by the general formula (I).

(3)前記重合体(A)が、前記一般式(I)で表される繰り返し単位からなるホモ重合体である、前記(1)項に記載の研磨組成物。 (3) The polishing composition according to (1), wherein the polymer (A) is a homopolymer composed of a repeating unit represented by the general formula (I).

(4)前記重合体(A)が、前記一般式(I)で表される繰り返し単位と、ビニル酢酸、アクリル酸、メタクリル酸、アクリル酸アミド、N−ビニルピロリドンから成る群から選ばれる少なくとも1種由来の繰り返し単位とを有する重合体である、前記(1)あるいは前記(2)項に記載の研磨組成物。 (4) The polymer (A) is at least one selected from the group consisting of the repeating unit represented by the general formula (I) and vinyl acetic acid, acrylic acid, methacrylic acid, acrylamide, and N-vinylpyrrolidone. The polishing composition according to (1) or (2) above, which is a polymer having a seed-derived repeating unit.

(5)前記N−ビニルカルボン酸アミドが、N−ビニルアセトアミドである、前記(1)〜(4)項のいずれかに記載の研磨組成物。 (5) The polishing composition according to any one of (1) to (4), wherein the N-vinylcarboxylic acid amide is N-vinylacetamide.

(6)前記重合体(A)の20質量%水溶液粘度が、100mPa・s〜50000mPa・sである、前記(1)〜(5)項のいずれかに記載の研磨組成物。 (6) The polishing composition according to any one of (1) to (5), wherein the polymer (A) has a 20% by mass aqueous solution viscosity of 100 mPa · s to 50000 mPa · s.

(7)前記重合体(B)が、アクリル酸重合体及びその塩並びにそれらの組み合わせから成る群より選ばれる、前記(1)〜(6)項のいずれかに記載の研磨組成物。 (7) The polishing composition according to any one of (1) to (6), wherein the polymer (B) is selected from the group consisting of an acrylic acid polymer, a salt thereof, and a combination thereof.

(8)前記重合体(B)の質量平均分子量が、500〜100000である、前記(1)〜(7)項のいずれかに記載の研磨組成物。 (8) The polishing composition according to any one of (1) to (7), wherein the polymer (B) has a mass average molecular weight of 500 to 100,000.

(9)前記研磨粒子が無機酸化物である、前記(1)〜(8)項のいずれかに記載の研磨組成物。 (9) The polishing composition according to any one of (1) to (8), wherein the abrasive particles are an inorganic oxide.

(10)前記研磨粒子が、酸化セリウム粒子である、前記(1)〜(9)項のいずれかに記載の研磨組成物。 (10) The polishing composition according to any one of (1) to (9), wherein the abrasive particles are cerium oxide particles.

(11)前記酸化セリウムの純度が、99%以上である、前記(10)項に記載の研磨組成物。 (11) The polishing composition according to (10), wherein the cerium oxide has a purity of 99% or more.

(12)動的光散乱法で測定した前記研磨粒子の質量平均粒子径が、10〜2000nmである、前記(1)〜(11)項のいずれかに記載の研磨組成物。 (12) The polishing composition according to any one of (1) to (11), wherein a mass average particle diameter of the abrasive particles measured by a dynamic light scattering method is 10 to 2000 nm.

(13)窒素ガス吸着法で測定した前記研磨粒子の比表面積が、1〜100m2/gである、前記(1)〜(12)項のいずれかに記載の研磨組成物。 (13) The polishing composition according to any one of (1) to (12), wherein the polishing particles have a specific surface area of 1 to 100 m 2 / g measured by a nitrogen gas adsorption method.

(14)pHが3〜9である、前記(1)〜(13)項のいずれかに記載の研磨組成物。 (14) The polishing composition according to any one of (1) to (13), wherein the pH is 3 to 9.

(15)前記研磨粒子の含有量が、0.01〜20質量%である、前記(1)〜(14)項のいずれかに記載の研磨組成物。 (15) The polishing composition according to any one of (1) to (14), wherein the content of the abrasive particles is 0.01 to 20% by mass.

(16)前記重合体(A)の含有量が、前記研磨粒子100質量部に対して0.01〜1000質量部である、前記(1)〜(15)項のいずれかに記載の研磨組成物。 (16) The polishing composition according to any one of (1) to (15), wherein the content of the polymer (A) is 0.01 to 1000 parts by mass with respect to 100 parts by mass of the abrasive particles. object.

(17)前記重合体(B)の含有量が、前記研磨粒子100質量部に対して1〜1000質量部である、前記(1)〜(16)項のいずれかに記載の研磨組成物。 (17) The polishing composition according to any one of (1) to (16), wherein the content of the polymer (B) is 1-1000 parts by mass with respect to 100 parts by mass of the abrasive particles.

(18)半導体デバイス基板上に形成した被研磨膜を研磨パッドに押し当て、前記(1)〜(17)項のいずれかに記載の研磨組成物を被研磨膜と研磨パッドの間に供給しながら半導体デバイス基板と研磨パッドを擦り合わせて被研磨膜を研磨する、半導体デバイス基板の研磨方法。 (18) The polishing film formed on the semiconductor device substrate is pressed against the polishing pad, and the polishing composition according to any one of (1) to (17) is supplied between the polishing film and the polishing pad. A method for polishing a semiconductor device substrate, comprising polishing a film to be polished by rubbing a semiconductor device substrate and a polishing pad.

(19)半導体デバイス基板上に形成した被研磨膜を研磨パッドに押し当て、前記(1)〜(17)項のいずれかに記載の研磨組成物を被研磨膜と研磨パッドの間に供給しながら半導体デバイス基板と研磨パッドを擦り合わせて被研磨膜を研磨する方法により製造される、半導体デバイス基板。 (19) A polishing film formed on a semiconductor device substrate is pressed against a polishing pad, and the polishing composition according to any one of (1) to (17) is supplied between the polishing film and the polishing pad. A semiconductor device substrate manufactured by a method of polishing a film to be polished by rubbing a semiconductor device substrate and a polishing pad.

(20)被研磨膜が酸化珪素を含む、前記(19)項に記載の半導体デバイス基板。 (20) The semiconductor device substrate according to (19), wherein the film to be polished contains silicon oxide.

(21)希釈することにより前記(15)〜(17)項のいずれかに記載の研磨組成物となる、組成物。 (21) A composition which becomes the polishing composition according to any one of (15) to (17) by dilution.

(22)前記(21)項に記載の組成物として輸送または保管を行う、研磨組成物の輸送または保管方法。
(23)混合、または混合及び希釈することにより前記(1)〜(17)項のいずれかに記載の研磨組成物となる、2種の組成物からなるキット。
(22) A method for transporting or storing a polishing composition, wherein the composition according to (21) is transported or stored.
(23) A kit composed of two kinds of compositions that becomes the polishing composition according to any one of (1) to (17) above by mixing, or mixing and diluting.

(24)前記重合体(A)及び(B)を含有する溶液と、前記研磨粒子を含有するスラリーとを混合することを含む、前記(1)〜(17)項のいずれかに記載の研磨組成物の製造方法。 (24) The polishing according to any one of (1) to (17), comprising mixing a solution containing the polymers (A) and (B) and a slurry containing the abrasive particles. A method for producing the composition.

(25)前記重合体(A)及び(B)を含有する溶液と、前記研磨粒子を含有するスラリーとして輸送または保管することを含む、前記(1)〜(17)項のいずれかに記載の研磨組成物の輸送または保管方法。 (25) The solution according to any one of (1) to (17), comprising transporting or storing the solution containing the polymers (A) and (B) and a slurry containing the abrasive particles. A method for transporting or storing the polishing composition.

(26)前記重合体(A)及び(B)を含有する、前記(1)〜(17)項のいずれかに記載の研磨組成物のための輸送または保管用組成物。 (26) A composition for transportation or storage for a polishing composition according to any one of (1) to (17), comprising the polymers (A) and (B).

本発明の研磨組成物は半導体基板表面、特に酸化珪素膜を高平坦に研磨することができ、更に研磨時間のマージンが大きくプロセス管理が容易なため、層間絶縁膜や素子分離工程の絶縁膜の平坦化に好適に使用することができる。又、本発明の研磨方法は、半導体基板表面、特に酸化珪素膜を高平坦に研磨することができ、更に研磨時間のマージンが大きくプロセス管理が容易なため、層間絶縁膜や素子分離工程の絶縁膜の平坦化に好適なCMP研磨方法である。更に、本発明の半導体基板は被研磨面の平坦性が高いため、素子性能が高く、微細なデザインルールが適用できる半導体基板である。   The polishing composition of the present invention can polish a semiconductor substrate surface, particularly a silicon oxide film, in a highly flat manner, and further has a large polishing time margin and easy process management. It can be suitably used for planarization. In addition, the polishing method of the present invention can polish the surface of a semiconductor substrate, particularly a silicon oxide film, in a highly flat manner, and has a large polishing time margin and easy process management. This is a CMP polishing method suitable for film planarization. Furthermore, the semiconductor substrate of the present invention is a semiconductor substrate that has high device performance and can be applied with fine design rules because of the high flatness of the surface to be polished.

重合体(A)
本発明で使用される重合体(A)は、N−ビニルカルボン酸アミド由来の下記の一般式(I)で表される繰り返し単位を主たる繰り返し単位として有する重合体である:

Figure 2006140361
(式中、R1及びR2は、それぞれ独立に水素原子または炭素数1〜3のアルキル基を示す)。 Polymer (A)
The polymer (A) used in the present invention is a polymer having as a main repeating unit a repeating unit represented by the following general formula (I) derived from N-vinylcarboxylic acid amide:
Figure 2006140361
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).

本発明に関して、重合体が特定の繰り返し単位を「主たる繰り返し単位として有する」とは、重合体が複数種の繰り返し単位を有する場合に、この特定の繰り返し単位が、他のいずれの繰り返し単位よりも多く存在することを意味する。   In the context of the present invention, the polymer has a specific repeating unit as “main repeating unit” means that when the polymer has a plurality of types of repeating units, the specific repeating unit is more than any other repeating unit. It means that there are many.

この一般式(I)で表される繰り返し単位は、式CH2=CH−NR1−COR2(式中、R1及びR2は、それぞれ独立に水素原子または炭素数1〜3のアルキル基を示す)で示されるN−ビニルカルボン酸アミドから得ることができ、このN−ビニルカルボン酸アミドとしては、例えばN−ビニルアセトアミドが好適に使用できる。すなわち、重合体(A)としては、例えば公知の重合開始剤の共存下でN−ビニルアセトアミドを重合させた重合体を用いることができる。又、同様にして、N−ビニルアセトアミドと他のビニル化合物、例えばビニル酢酸、アクリル酸、メタクリル酸、アクリル酸アミド、N−ビニルピロリドン、N−ビニルカプロラクタムを共重合させた重合体も、同様に重合体(A)として用いることができる。これらの共重合体にはN−ビニルアセトアミド由来の一般式(I)で表される繰り返し単位が50質量%以上含まれていることが望ましい。 The repeating unit represented by the general formula (I) has the formula CH 2 ═CH—NR 1 —COR 2 (wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms). N-vinyl acetamide can be suitably used as the N-vinyl carboxylic acid amide, for example. That is, as the polymer (A), for example, a polymer obtained by polymerizing N-vinylacetamide in the presence of a known polymerization initiator can be used. Similarly, a polymer obtained by copolymerizing N-vinylacetamide and other vinyl compounds such as vinyl acetic acid, acrylic acid, methacrylic acid, acrylic amide, N-vinyl pyrrolidone, and N-vinyl caprolactam is similarly used. It can be used as the polymer (A). These copolymers preferably contain 50% by mass or more of the repeating unit represented by the general formula (I) derived from N-vinylacetamide.

これらの重合体の重合度は、例えば重合体水溶液の粘度で規定することができる。本発明には20質量%の水溶液粘度が100mPa・s〜50000mPa・sである重合体が使用でき、更に好適には20質量%の水溶液粘度が150mPa・s〜30000mPa・sである重合体が使用できる。本発明の研磨組成物の重合体(A)の含有量は、研磨粒子100質量部に対して0.01〜1000質量部であることが望ましく、0.1〜100質量部であることがより望ましい。すなわち、被研磨面の平坦性を高める効果を得るためには、重合体(A)の含有量が研磨粒子100質量部に対して0.01質量部より多いことが好ましい。又、研磨粒子の凝集を防ぐためには、重合体(A)の含有量が研磨粒子100質量部に対して1000質量部より少ないことが好ましい。   The degree of polymerization of these polymers can be defined by the viscosity of the aqueous polymer solution, for example. In the present invention, a polymer having a 20% by weight aqueous solution viscosity of 100 mPa · s to 50000 mPa · s can be used, and a polymer having a 20% by weight aqueous solution viscosity of 150 mPa · s to 30000 mPa · s is more preferably used. it can. The content of the polymer (A) in the polishing composition of the present invention is preferably 0.01 to 1000 parts by mass and more preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the abrasive particles. desirable. That is, in order to obtain the effect of improving the flatness of the surface to be polished, the content of the polymer (A) is preferably more than 0.01 parts by mass with respect to 100 parts by mass of the abrasive particles. Moreover, in order to prevent agglomeration of the abrasive particles, the content of the polymer (A) is preferably less than 1000 parts by mass with respect to 100 parts by mass of the abrasive particles.

本発明の研磨組成物中のこのN−ビニルカルボン酸アミド由来の繰り返し単位を主たる繰り返し単位として有する重合体(A)は、そのアミド基部分の作用によって、重合体(B)の凹凸段差を平坦体する作用を増強し、更に、研磨面の平坦性を維持する作用を有する。従って重合体(A)を重合体(B)と組み合わせて使用する場合、重合体(B)を単独で使用する場合よりも良好に、半導体基板表面、特に酸化珪素表面の凹凸段差を平坦化し、また窒化珪素の研磨を抑制する。   The polymer (A) having the repeating unit derived from the N-vinylcarboxylic acid amide as the main repeating unit in the polishing composition of the present invention has a flat uneven surface of the polymer (B) by the action of the amide group portion. It has the effect | action which reinforces the body and maintains the flatness of a grinding | polishing surface further. Accordingly, when the polymer (A) is used in combination with the polymer (B), the unevenness step on the surface of the semiconductor substrate, particularly the silicon oxide surface is flattened better than when the polymer (B) is used alone, Moreover, polishing of silicon nitride is suppressed.

重合体(B)
本発明で使用される重合体(B)は、ビニルカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種由来の繰り返し単位を有する重合体である。アクリル酸、メタクリル酸、アクリル酸アミド、無水マレイン酸を構成モノマーとする重合体及びその塩、あるいはそれらのモノマーを任意の割合で含む共重合体及びその塩が望ましいが、アクリル酸重合体及びその塩がきわめて有利である。
Polymer (B)
The polymer (B) used in the present invention is a polymer having a repeating unit derived from at least one selected from the group consisting of vinyl carboxylic acids and derivatives thereof. Polymers containing acrylic acid, methacrylic acid, acrylic amide, and maleic anhydride and salts thereof, or copolymers containing these monomers in any proportion and salts thereof are desirable. Salt is very advantageous.

重合体(B)の質量平均分子量は500〜100000が望ましく、1000〜10000がより望ましい。重合体(B)の質量平均分子量が500〜100000の範囲であることは、研磨面を平坦化する効果を得、又、研磨粒子の凝集を防ぐために好ましい。本発明の研磨組成物への重合体(B)の含有量は、研磨粒子100質量部に対して1〜1000質量部であることが望ましく、より望ましくは研磨粒子100質量部に対して10〜500質量部である。被研磨面を平坦化する効果を得るためには、重合体(B)の含有量が研磨粒子100質量部に対して1質量部より多いことが好ましい。又、研磨粒子の凝集を防ぐためには、重合体(B)の含有量が研磨粒子100質量部に対して1000質量部より少ないことが好ましい。   The mass average molecular weight of the polymer (B) is desirably 500 to 100,000, and more desirably 1000 to 10,000. A mass average molecular weight of the polymer (B) in the range of 500 to 100,000 is preferable in order to obtain an effect of flattening the polished surface and to prevent agglomeration of abrasive particles. The content of the polymer (B) in the polishing composition of the present invention is preferably 1 to 1000 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the abrasive particles. 500 parts by mass. In order to obtain the effect of flattening the surface to be polished, the content of the polymer (B) is preferably more than 1 part by mass with respect to 100 parts by mass of the abrasive particles. In order to prevent agglomeration of abrasive particles, the content of the polymer (B) is preferably less than 1000 parts by mass with respect to 100 parts by mass of the abrasive particles.

本発明の研磨組成物中のこのビニルカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種由来の繰り返し単位を有する重合体(B)は、非特許文献1及び特許文献1〜5で開示されているように、この重合体(B)を含有するスラリーを用いて研磨したときに、半導体基板表面の凹凸段差を平坦化し、また酸化珪素の研磨速度を窒化珪素の研磨速度で割って得られる選択比を大きくする。   The polymer (B) having a repeating unit derived from at least one selected from the group consisting of this vinyl carboxylic acid and derivatives thereof in the polishing composition of the present invention is disclosed in Non-Patent Document 1 and Patent Documents 1 to 5. As shown, when polishing is performed using the slurry containing the polymer (B), the uneven step on the surface of the semiconductor substrate is flattened, and the polishing rate of silicon oxide is divided by the polishing rate of silicon nitride. Increase the selection ratio.

研磨粒子
本発明における研磨粒子は、酸化セリウム粒子が好適に用いられる。この酸化セリウム粒子は、セリウム化合物の焼成により合成した酸化セリウム、又はセリウム化合物から湿式法により合成した酸化セリウムであってよい。特に酸化セリウム粒子は、硫酸塩、硝酸塩、炭酸塩等のセリウム塩を高温で焼成後、ボールミル等による湿式粉砕法やジェットミル等の乾式粉砕法によって機械的に粉砕して得られる。
Abrasive Particles As the abrasive particles in the present invention, cerium oxide particles are preferably used. The cerium oxide particles may be cerium oxide synthesized by firing a cerium compound or cerium oxide synthesized from a cerium compound by a wet method. In particular, the cerium oxide particles are obtained by firing cerium salts such as sulfates, nitrates and carbonates at a high temperature and then mechanically pulverizing them by a wet pulverization method such as a ball mill or a dry pulverization method such as a jet mill.

又、水溶性のセリウム塩から湿式混合法によって得られる酸化セリウム粒子を用いることもできる。   Further, cerium oxide particles obtained from a water-soluble cerium salt by a wet mixing method can also be used.

研磨粒子は、研磨速度を高めるためには粒子径が大きいものが好ましいが、研磨傷の発生を防ぐためには粒子径が小さくかつ粒子径の揃ったものが好ましい。研磨粒子として酸化セリウムを用いる場合、窒素ガス吸着法により算出した酸化セリウムの比表面積が1〜100m2/gであることが好ましく、5〜80m2/gであることがより好ましい。更に好ましくは8〜50m2/gである。加えて、研磨傷の発生をより確実に抑制するためには、動的光散乱法で測定した酸化セリウムの質量平均粒子径が1〜1000nmであることが好ましく、10〜700nmであることがより好ましく、30〜500nmであることがさらに好ましい。本発明の研磨組成物には、これら研磨粒子は単独で用いても良く、二種以上を混合して用いても良い。 The abrasive particles preferably have a large particle size in order to increase the polishing rate, but those having a small particle size and a uniform particle size are preferable in order to prevent the occurrence of polishing flaws. When using cerium oxide as an abrasive grain, it is preferable that the specific surface area of cerium oxide calculated by the nitrogen gas adsorption method is 1 to 100 m 2 / g, more preferably 5~80m 2 / g. More preferably, it is 8-50 m < 2 > / g. In addition, in order to more reliably suppress the occurrence of polishing flaws, the cerium oxide mass average particle diameter measured by the dynamic light scattering method is preferably 1 to 1000 nm, more preferably 10 to 700 nm. Preferably, it is 30-500 nm. In the polishing composition of the present invention, these abrasive particles may be used alone or in admixture of two or more.

本発明の研磨組成物に添加する研磨粒子の含有量は0.01〜20質量%であることが望ましく、更に望ましくは0.1〜10質量%である。研磨粒子の分散性の低下、研磨組成物の粘度の上昇等を防ぎ、研磨組成物のハンドリング性を改良するためには、研磨粒子の含有量が20質量%以下であることが好ましい。又、研磨粒子の含有量を0.01質量%以上にすることは、研磨速度を改良するので、経済性の点で好ましい。研磨粒子は半導体装置の特性を劣化させる不純物が少ない高純度のものが好ましく、研磨粒子の純度が99%以上のものが好ましく、99.9%以上の高純度品がより好ましい。   The content of abrasive particles added to the polishing composition of the present invention is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass. In order to prevent a decrease in the dispersibility of the abrasive particles, an increase in the viscosity of the polishing composition, and to improve the handling properties of the polishing composition, the content of the abrasive particles is preferably 20% by mass or less. Moreover, it is preferable from the point of economical efficiency to make content of an abrasive particle 0.01 mass% or more, since the polishing rate is improved. The abrasive particles preferably have a high purity with few impurities that deteriorate the characteristics of the semiconductor device, the abrasive particles preferably have a purity of 99% or more, and more preferably have a purity of 99.9% or more.

研磨組成物のpH
本発明の研磨組成物は酸又はアルカリによりpHを3〜9に、より好ましくは4〜8に調整する。pHを調節する酸又はアルカリには特に制限はなく、例えば酸では塩酸、硫酸、硝酸等の無機酸類、あるいは蟻酸、酢酸、プロピオン酸、安息香酸、ベンゼンスルホン酸等の有機酸類、アルカリでは水酸化カリウム等のアルカリ金属の水酸化物、炭酸カリウム等のアルカリ金属の炭酸塩、アンモニア等を挙げることができる。
Polishing composition pH
In the polishing composition of the present invention, the pH is adjusted to 3 to 9, more preferably 4 to 8 with acid or alkali. There are no particular restrictions on the acid or alkali that adjusts the pH. For example, inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, or organic acids such as formic acid, acetic acid, propionic acid, benzoic acid, and benzenesulfonic acid are used for acids. Examples thereof include alkali metal hydroxides such as potassium, carbonates of alkali metals such as potassium carbonate, ammonia and the like.

分散剤及び研磨調節剤
本発明の研磨組成物には、必要に応じて、研磨粒子の分散性を高めるための分散剤、被研磨面の研磨速度や研磨選択比をコントロールするための研磨調節剤等を含有することができる。これらの研磨調節剤は研磨粒子が極度に凝集しない濃度範囲で含有させることができる。
Dispersant and Polishing Modifier The polishing composition of the present invention includes, as necessary, a dispersant for enhancing the dispersibility of abrasive particles, and a polishing regulator for controlling the polishing rate and polishing selectivity of the surface to be polished. Etc. can be contained. These polishing regulators can be contained in a concentration range in which the abrasive particles do not extremely aggregate.

−分散剤
分散剤としては、例えばアニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、高分子界面活性剤等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。アニオン性界面活性剤としては、脂肪酸塩類、高級アルコール硫酸エステル類、脂肪族アミン硫酸塩類、脂肪アルコールリン酸エステル塩類、ニ塩基性脂肪酸エステルのスルホン塩類、脂肪族アミドスルホン酸塩類、アルキルアリルスルホン酸塩類、ホルマリン縮合のナフタリンスルホン酸塩類等が挙げられる。カチオン性界面活性剤としては、脂肪族アミン塩類、第四アンモニウム塩類、アルキルピリジニウム塩類等が挙げられる。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェノールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類、ポリオキシエチレンアルキルアミン等が挙げられる。両性界面活性剤としては、ラウリルベタイン、ステアリルベタイン等のベタイン類等が挙げられる。
-Dispersant Examples of the dispersant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, and a polymer surfactant. These can be used alone or in combination of two or more. Anionic surfactants include fatty acid salts, higher alcohol sulfates, aliphatic amine sulfates, fatty alcohol phosphate esters, dibasic fatty acid ester sulfonates, aliphatic amide sulfonates, alkyl allyl sulfonic acids Examples thereof include salts and formalin-condensed naphthalene sulfonates. Examples of the cationic surfactant include aliphatic amine salts, quaternary ammonium salts, and alkylpyridinium salts. Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, polyoxyethylene alkyl amines and the like. Can be mentioned. Examples of amphoteric surfactants include betaines such as lauryl betaine and stearyl betaine.

−研磨調節剤
研磨調節剤としては、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、グリコール酸、蓚酸、リンゴ酸、クエン酸、コハク酸、乳酸、酒石酸、アジピン酸、ポリアクリル酸、安息香酸、サリチル酸、ニコチン酸、ベンゼンスルホン酸、スルファミン酸、ヘキサメタ燐酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸等の有機酸類及びその塩類、アラニン、グリシン、グリシルグルシン、アルギニン、リシン、グルタミン、グルタミン酸、セリン、チロシン、トリプトファン、トレオニン、バリン、ヒスチジン、フェニルアラニン、リシン、ロイシン、4−アミノ酪酸、6−アミノヘキサン酸、12−アミノラウリン酸等のアミノ酸類及びそれらの塩類、エチレンジアミン四酢酸、ニトリロトリ酢酸、β−アラニン二酢酸、α−アラニン二酢酸、アスパラギン酸二酢酸、エチレンジアミン二コハク酸、ヒドロキシエチルイミノジ酢酸、1,3−プロパンジアミン四酢酸、シクロヘキサンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、L−グルタミン酸二酢酸、アミノトリ、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、イミノジ酢酸等のキレート剤及びそれらの塩類が挙げられる。
-Polishing modifier As polishing modifier, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, glycolic acid, succinic acid, malic acid, citric acid, succinic acid, lactic acid, tartaric acid, adipic acid, polyacrylic acid, benzoic acid, Organic acids such as salicylic acid, nicotinic acid, benzenesulfonic acid, sulfamic acid, hexametaphosphoric acid, 1-hydroxyethylidene-1,1-diphosphonic acid and salts thereof, alanine, glycine, glycylglucin, arginine, lysine, glutamine, glutamic acid, serine, Amino acids such as tyrosine, tryptophan, threonine, valine, histidine, phenylalanine, lysine, leucine, 4-aminobutyric acid, 6-aminohexanoic acid, 12-aminolauric acid and their salts, ethylenediaminetetraacetic acid, nitrilotriacetic acid, β- Alanine diacetate, α Alanine diacetic acid, aspartic acid diacetic acid, ethylenediamine disuccinic acid, hydroxyethyliminodiacetic acid, 1,3-propanediaminetetraacetic acid, cyclohexanediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, Examples thereof include chelating agents such as L-glutamic acid diacetic acid, aminotri, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), iminodiacetic acid, and salts thereof.

本発明の研磨組成物の使用
本発明の研磨組成物は、濃厚な組成物として予め作成しておき、使用時に所定濃度に希釈、特に水で希釈して本発明の研磨組成物として用いることができる。又、2種の組成物に分け、例えば研磨粒子を含むスラリーと重合体を含む溶液を別に作成しておき、研磨直前に研磨粒子を含むスラリーと重合体を含む溶液を混合、または混合及び希釈して本発明の研磨組成物として使用することもできる。それら2種の組成物は、それらを混合、または混合及び希釈することにより本発明の研磨組成物となるキットとすることができ、取り扱いが容易であり、好ましい。これら濃厚な組成物及び2種に分けた組成物は、輸送または保管用の組成物として好ましく用いることができる。
Use of the Polishing Composition of the Present Invention The polishing composition of the present invention is prepared in advance as a thick composition and diluted to a predetermined concentration at the time of use, particularly diluted with water and used as the polishing composition of the present invention. it can. Separated into two types of compositions, for example, a slurry containing abrasive particles and a solution containing a polymer are prepared separately, and a slurry containing abrasive particles and a solution containing a polymer are mixed or mixed and diluted immediately before polishing. And it can also be used as a polishing composition of the present invention. These two kinds of compositions can be used as a kit that becomes the polishing composition of the present invention by mixing, or mixing and diluting them, and are easy to handle and are preferred. These concentrated compositions and the compositions divided into two types can be preferably used as a composition for transportation or storage.

研磨装置
研磨装置としては、一般的な半導体基板研磨用の研磨装置が使用できる。キャリアに保持した半導体基板を定盤に貼り付けた研磨パッドに加圧して押し当て、半導体基板と研磨パッドとの間に研磨組成物を連続的に供給しながら、半導体基板と研磨パッドを相対的に擦り動かして半導体基板を研磨する。研磨パッドがベルト状になった研磨装置も使用できる。押し当て圧力、キャリア及び定盤の回転数、研磨組成物供給量としては、通常の条件を使用できる。研磨時間は、被研磨膜の厚み、被研磨表面のパターン密度、被研磨表面のパターン密度、研磨パッドの状態等によって調節する。本発明の研磨方法は研磨時間のマージンが広く、過剰時間研磨しても高い平坦性が維持される。
Polishing apparatus As a polishing apparatus, a general polishing apparatus for polishing a semiconductor substrate can be used. The semiconductor substrate held by the carrier is pressed against and pressed against the polishing pad affixed to the surface plate, and the polishing composition is continuously supplied between the semiconductor substrate and the polishing pad, while the semiconductor substrate and the polishing pad are relative to each other. The semiconductor substrate is polished by rubbing. A polishing apparatus having a belt-like polishing pad can also be used. Ordinary conditions can be used as the pressing pressure, the rotation number of the carrier and the platen, and the polishing composition supply amount. The polishing time is adjusted by the thickness of the film to be polished, the pattern density of the surface to be polished, the pattern density of the surface to be polished, the state of the polishing pad, and the like. The polishing method of the present invention has a wide polishing time margin and maintains high flatness even if polishing is performed for an excessive amount of time.

研磨パッドは一般的な発泡ウレタン製や不織布製などが使用でき、特に制限がない。本発明の研磨組成物は、半導体基板に形成された酸化珪素や窒化珪素を含む層を高平坦に研磨することができる。研磨後のウェハリンス工程やウェハ洗浄工程にも特に制限がなく、脱イオン水でのリンス工程、フッ酸やアンモニア水、半導体用洗浄液での洗浄工程を適用できる。   The polishing pad can be made of general foamed urethane or non-woven fabric, and is not particularly limited. The polishing composition of the present invention can highly flatly polish a layer containing silicon oxide or silicon nitride formed on a semiconductor substrate. There are no particular restrictions on the wafer rinsing step and wafer cleaning step after polishing, and a rinsing step with deionized water, a cleaning step with hydrofluoric acid, ammonia water, or a semiconductor cleaning solution can be applied.

本発明の研磨組成物及び研磨方法によって、表面に凹凸のある半導体基板、例えば素子分離工程における絶縁膜成膜後の半導体基板や、素子層や配線層上に層間絶縁膜を形成した後の半導体基板を平坦化することができる。   Semiconductor substrate having an uneven surface by the polishing composition and polishing method of the present invention, for example, a semiconductor substrate after forming an insulating film in an element separation step, or a semiconductor after forming an interlayer insulating film on an element layer or a wiring layer The substrate can be planarized.

以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
ポリアクリル酸(Aldrich製、分子量2,000)10質量部に脱イオン水70質量部を加え、更にアンモニア水を加えることによって、ポリアクリル酸水溶液のpHを7.5に調整した。その後、ポリアクリル酸濃度が10質量%になるように脱イオン水を加えて、pH7.5のポリアクリル酸10質量%水溶液を作成した。
Example 1
The pH of the polyacrylic acid aqueous solution was adjusted to 7.5 by adding 70 parts by mass of deionized water to 10 parts by mass of polyacrylic acid (manufactured by Aldrich, molecular weight 2,000) and further adding aqueous ammonia. Thereafter, deionized water was added so that the polyacrylic acid concentration was 10% by mass to prepare a 10% polyacrylic acid aqueous solution having a pH of 7.5.

高純度酸化セリウムスラリー(昭和電工(株)製、GPL−C1010、D50=0.22μm、一次粒子径0.1μm、純度99.9質量%以上の酸化セリウムの10質量%スラリー)10質量部に対し、pH7.5のポリアクリル酸10質量%水溶液を20質量部、ポリ(N−ビニルアセトアミド)水溶液(20質量%水溶液、粘度1500mPa・s)を0.05質量部、脱イオン水69.95質量部を混合して、実施例1の研磨組成物を作成した。 10 parts by mass of high-purity cerium oxide slurry (manufactured by Showa Denko KK, GPL-C1010, D 50 = 0.22 μm, primary particle diameter 0.1 μm, purity 109.9% by weight cerium oxide slurry) In contrast, 20 parts by mass of a 10% by mass aqueous solution of polyacrylic acid having a pH of 7.5, 0.05 parts by mass of a poly (N-vinylacetamide) aqueous solution (20% by mass aqueous solution, viscosity 1500 mPa · s), and 69% deionized water. The polishing composition of Example 1 was prepared by mixing 95 parts by mass.

比較例1
実施例1で用いたのと同じ高純度酸化セリウムスラリー10質量部に対し、pH7.5のポリアクリル酸10質量%水溶液を20質量部、脱イオン水70質量部を混合して、ポリ(N−ビニルアセトアミド)を含まない比較例1の研磨組成物を作成した。
Comparative Example 1
To 10 parts by mass of the same high-purity cerium oxide slurry used in Example 1, 20 parts by mass of a 10% polyacrylic acid aqueous solution having a pH of 7.5 and 70 parts by mass of deionized water were mixed. A polishing composition of Comparative Example 1 containing no vinylacetamide was prepared.

実施例1及び比較例1の研磨組成物の評価
直径200mmのシリコンウェハ上に厚さ150nmの窒化珪素膜を成膜した後に、エッチングによって幅が500μmで深さ500nmの溝を、溝と溝の間の凸部の幅と溝の幅が等しくなるようにして、ウェハ上の一辺4mm角の領域内に等間隔に形成した。又、同一ウェハ内の別の領域には、幅が100μmで深さ500nmの溝を同様に形成した。更にその上に、絶縁膜として厚さ600nmの酸化珪素膜を成膜して、パターンウェハを作成した。このパターンウェハの表面形状を触針式段差計で測定したところ、溝の形状を反映した段差500nmの凹凸パターンがウェハ表面の酸化珪素膜に形成されていた。
Evaluation of Polishing Compositions of Example 1 and Comparative Example 1 After forming a silicon nitride film having a thickness of 150 nm on a silicon wafer having a diameter of 200 mm, a groove having a width of 500 μm and a depth of 500 nm was formed by etching. The width of the protrusions and the width of the grooves between them were made equal to each other in a 4 mm square region on the wafer. In another region in the same wafer, a groove having a width of 100 μm and a depth of 500 nm was similarly formed. Further thereon, a silicon oxide film having a thickness of 600 nm was formed as an insulating film to form a pattern wafer. When the surface shape of the pattern wafer was measured with a stylus profilometer, an uneven pattern with a step of 500 nm reflecting the shape of the groove was formed on the silicon oxide film on the wafer surface.

Strasbaugh社製6EG研磨機のウェハキャリアにパターンウェハを装着し、パターンウェハの酸化珪素表面を、研磨パッド(ロデール社製、IC−1000/Suba400)を貼り付けた研磨定盤に300g重/cm2の圧力で押し付けた。又、研磨定盤にそれぞれ実施例1及び比較例1の研磨組成物を200ml/minの速度で供給しながら、キャリアと研磨定盤を共に70rpmで3分間回転させて酸化珪素膜を研磨した。 The pattern wafer was mounted on the wafer carrier Strasbaugh Co. 6EG grinding machine, a silicon oxide surface of the pattern wafer, the polishing pad (Rodel, Inc., IC-1000 / Suba400) 300g weight / cm 2 to the polishing platen pasted It pressed with the pressure of. Further, the silicon oxide film was polished by rotating both the carrier and the polishing platen at 70 rpm for 3 minutes while supplying the polishing composition of Example 1 and Comparative Example 1 to the polishing platen at a rate of 200 ml / min.

研磨後のウェハの表面形状を触針式段差計で、パターンの凹部の酸化珪素膜の膜厚を光学式膜厚計で測定した。比較例1の研磨組成物を供給しながら研磨したパターンウェハでは、幅500μmのパターンの凹凸段差は34.3nmで、パターンの凹部の酸化珪素膜の膜厚は519nmであり、幅100μmのパターンの凹凸段差は10.3nmで、パターンの凹部の酸化珪素膜の膜厚は525nmあった。これに対して、実施例1の研磨組成物を供給しながら研磨したパターンウェハでは、幅500μmのパターンの凹凸段差は12.6nmで、パターンの凹部の酸化珪素膜の膜厚は540nmであり、幅100μmのパターンの凹凸段差は2.8nm、パターンの凹部の酸化珪素膜の膜厚は541nmであった。   The surface shape of the polished wafer was measured with a stylus type step meter, and the film thickness of the silicon oxide film in the concave portion of the pattern was measured with an optical film thickness meter. In the patterned wafer polished while supplying the polishing composition of Comparative Example 1, the uneven step of the pattern having a width of 500 μm is 34.3 nm, the thickness of the silicon oxide film in the recess of the pattern is 519 nm, and the pattern having a pattern of 100 μm in width is formed. The uneven step was 10.3 nm, and the thickness of the silicon oxide film in the concave portion of the pattern was 525 nm. In contrast, in the patterned wafer polished while supplying the polishing composition of Example 1, the uneven step of the pattern having a width of 500 μm is 12.6 nm, and the thickness of the silicon oxide film in the recessed portion of the pattern is 540 nm, The uneven step of the pattern having a width of 100 μm was 2.8 nm, and the thickness of the silicon oxide film in the recess of the pattern was 541 nm.

実施例1の研磨組成物を供給しながら研磨したパターンウェハでは、比較例1の研磨組成物を供給しながら研磨したパターンウェハに比較して、研磨後のパターンの凹凸段差が小さく、且つ酸化珪素膜の膜厚が均一な、より平坦な研磨面が得られた。   In the patterned wafer polished while supplying the polishing composition of Example 1, the unevenness of the pattern after polishing was smaller than that of the patterned wafer polished while supplying the polishing composition of Comparative Example 1, and the silicon oxide A flatter polished surface with a uniform film thickness was obtained.

実施例2
ポリアクリル酸(Aldrich製、分子量5,000)10質量部に脱イオン水70質量部を加え、更にアンモニア水を加えることによって、ポリアクリル酸水溶液のpHを4.0に調整した。その後、ポリアクリル酸濃度が10質量%になるように脱イオン水を加えて、pH4.0のポリアクリル酸10質量%水溶液を作成した。
Example 2
The pH of the polyacrylic acid aqueous solution was adjusted to 4.0 by adding 70 parts by mass of deionized water to 10 parts by mass of polyacrylic acid (manufactured by Aldrich, molecular weight 5,000) and further adding aqueous ammonia. Thereafter, deionized water was added so that the polyacrylic acid concentration was 10% by mass to prepare a 10% by mass aqueous solution of polyacrylic acid having a pH of 4.0.

高純度酸化セリウムスラリー(昭和電工(株)製、GPL−C1010、D50=0.22μm、一次粒子径0.1μm、純度99.9質量%以上の酸化セリウムの10質量%スラリー)10質量部に対し、pH4.0のポリアクリル酸10質量%水溶液を10質量部、ポリ(N−ビニルアセトアミド)水溶液(20質量%水溶液、粘度150mPa・S)を0.4質量部、脱イオン水79.95質量部を混合して実施例2の研磨組成物を作成した。この実施例2の研磨組成物のpHは4.3であった。 10 parts by mass of high-purity cerium oxide slurry (manufactured by Showa Denko KK, GPL-C1010, D 50 = 0.22 μm, primary particle diameter 0.1 μm, purity 109.9% by weight cerium oxide slurry) 10 parts by mass of a polyacrylic acid 10 mass% aqueous solution having a pH of 4.0, 0.4 parts by mass of a poly (N-vinylacetamide) aqueous solution (20 mass% aqueous solution, viscosity 150 mPa · S), and deionized water 79. A polishing composition of Example 2 was prepared by mixing 95 parts by mass. The pH of the polishing composition of Example 2 was 4.3.

比較例2
実施例2で用いたのと同じ高純度酸化セリウムスラリー10質量部に対し、pH4.0のポリアクリル酸10質量%水溶液を10質量部、脱イオン水80質量部を混合して、ポリ(N−ビニルアセトアミド)を含まない比較例2の研磨組成物を作成した。この比較例2の研磨組成物のpHは4.3であった。
Comparative Example 2
To 10 parts by mass of the same high-purity cerium oxide slurry used in Example 2, 10 parts by mass of a polyacrylic acid 10 mass% aqueous solution having a pH of 4.0 and 80 parts by mass of deionized water were mixed. A polishing composition of Comparative Example 2 containing no vinylacetamide was prepared. The pH of the polishing composition of Comparative Example 2 was 4.3.

実施例2及び比較例2の研磨組成物の評価
実施例1及び比較例1の研磨組成物の評価の場合と同様にして作成したパターンウェハを、Strasbaugh社製6EG研磨機のウェハキャリアに装着し、パターンウェハの酸化珪素表面を、研磨パッド(ロデール社製、IC−1000/Suba400)を貼り付けた研磨定盤に300g重/cm2の圧力で押し付けた。研磨定盤に実施例2及び比較例2の研磨組成物を200ml/minの速度で供給しながら、キャリアと研磨定盤を共に70rpmで4分間及び6分間回転させて、酸化珪素膜を研磨した。その後、脱イオン水を研磨組成物と同速度で研磨定盤に供給しながら、それぞれ更に15秒間研磨定盤を回転させた。
Evaluation of Polishing Composition of Example 2 and Comparative Example 2 A pattern wafer prepared in the same manner as in the evaluation of the polishing composition of Example 1 and Comparative Example 1 was mounted on a wafer carrier of a 6EG polishing machine manufactured by Strasbaugh. The silicon oxide surface of the pattern wafer was pressed at a pressure of 300 g weight / cm 2 against a polishing surface plate on which a polishing pad (Rodel, IC-1000 / Suba400) was attached. While supplying the polishing compositions of Example 2 and Comparative Example 2 to the polishing platen at a rate of 200 ml / min, both the carrier and the polishing platen were rotated at 70 rpm for 4 minutes and 6 minutes to polish the silicon oxide film. . Thereafter, the polishing platen was further rotated for 15 seconds while deionized water was supplied to the polishing platen at the same speed as the polishing composition.

研磨後のウェハの表面形状を触針式段差計で、またパターン凸部の酸化珪素膜と窒化珪素膜の膜厚を光学式膜厚計で測定した。   The surface shape of the polished wafer was measured with a stylus type step meter, and the film thicknesses of the silicon oxide film and silicon nitride film on the pattern protrusion were measured with an optical film thickness meter.

比較例2の研磨組成物を供給しながら4分15秒間研磨したパターンウェハでは、幅500μmのパターンについて凹凸段差は36.7nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは149.6nmであり、幅100μmのパターンについて凹凸段差は12.4nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは147.6nmであった。又、比較例2の研磨組成物を供給しながら6分15秒間研磨したパターンウェハでは、幅500μmのパターンについて凹凸段差は67.5nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは136.0nmであり、幅100μmのパターンについて凹凸段差は25.9nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは130.3nmであった。   In the pattern wafer polished for 4 minutes and 15 seconds while supplying the polishing composition of Comparative Example 2, the uneven step was 36.7 nm, the thickness of the convex silicon oxide film was 0 nm, and the convex silicon nitride film for the pattern having a width of 500 μm The thickness of the film was 149.6 nm, the unevenness step was 12.4 nm, the thickness of the convex silicon oxide film was 0 nm, and the thickness of the convex silicon nitride film was 147.6 nm. Further, in the pattern wafer polished for 6 minutes and 15 seconds while supplying the polishing composition of Comparative Example 2, the uneven step was 67.5 nm, the thickness of the convex silicon oxide film was 0 nm, and the convex portion was nitrided. The thickness of the silicon film was 136.0 nm, the uneven step was 25.9 nm, the thickness of the convex silicon oxide film was 0 nm, and the thickness of the convex silicon nitride film was 130.3 nm.

これに対して、実施例2の研磨組成物を供給しながら4分15秒間研磨したパターンウェハでは、幅500μmのパターンについて凹凸段差は17.3nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは149.9nmであり、幅100μmのパターンについて凹凸段差は8.1nm、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは149.2nmであった。又、実施例2の研磨組成物を供給しながら6分15秒間研磨したパターンウェハでは、幅500μmのパターンの凹凸段差は18.5nmで、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは149.4nm、幅100μmのパターンの凹凸段差は8.4nmで、凸部の酸化珪素膜の厚みは0nm、凸部の窒化珪素膜の厚みは148.7nmであった。   On the other hand, in the pattern wafer polished for 4 minutes and 15 seconds while supplying the polishing composition of Example 2, the uneven step was 17.3 nm, the thickness of the silicon oxide film of the protrusion was 0 nm, and the protrusion was 500 nm. The thickness of the silicon nitride film in the part is 149.9 nm, the unevenness step is 8.1 nm, the thickness of the silicon oxide film in the convex part is 0 nm, and the thickness of the silicon nitride film in the convex part is 149.2 nm. there were. In addition, in the pattern wafer polished for 6 minutes and 15 seconds while supplying the polishing composition of Example 2, the uneven step of the pattern having a width of 500 μm is 18.5 nm, the thickness of the silicon oxide film of the protrusion is 0 nm, The thickness of the silicon nitride film was 149.4 nm, the unevenness step of the pattern having a width of 100 μm was 8.4 nm, the thickness of the convex silicon oxide film was 0 nm, and the thickness of the convex silicon nitride film was 148.7 nm.

実施例2の研磨組成物を供給しながら研磨したパターンウェハでは、比較例2の研磨組成物を供給しながら研磨したパターンウェハに比較して、研磨面の段差と窒化膜のロスが少なかった。又、実施例2の研磨組成物を供給しながら研磨した方法では、比較例2の研磨組成物を供給しながら研磨した方法に比較して、過剰時間研磨しても研磨面の平坦性が損なわれず、より研磨時間の許容範囲が大きかった。   In the patterned wafer polished while supplying the polishing composition of Example 2, the level difference on the polished surface and the loss of the nitride film were less than those of the patterned wafer polished while supplying the polishing composition of Comparative Example 2. Further, in the method of polishing while supplying the polishing composition of Example 2, the flatness of the polished surface is impaired even if polishing is performed for an excessive period of time compared to the method of polishing while supplying the polishing composition of Comparative Example 2. As a result, the allowable range of polishing time was larger.

配線形成後に酸化珪素を成膜した半導体基板断面の模式図である。It is the schematic diagram of the semiconductor substrate cross section which formed the silicon oxide film after wiring formation. 素子分離工程における絶縁膜成形後の半導体基板断面の模式図である。It is a schematic diagram of the semiconductor substrate cross section after the insulating film shaping | molding in an element isolation process.

Claims (26)

N−ビニルカルボン酸アミド由来の下記一般式(I)で表される繰り返し単位を主たる繰り返し単位として有する重合体(A)、ビニルカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種由来の繰り返し単位を有する重合体(B)、研磨粒子、及び水を含む、研磨組成物:
Figure 2006140361
(式中、R1及びR2はそれぞれ独立に、水素原子または炭素数1〜3のアルキル基を示す)。
A polymer (A) having a repeating unit represented by the following general formula (I) derived from N-vinylcarboxylic acid amide as a main repeating unit, a repeating group derived from at least one selected from the group consisting of vinylcarboxylic acid and derivatives thereof A polishing composition comprising a polymer (B) having units, abrasive particles, and water:
Figure 2006140361
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
前記重合体(A)が、前記一般式(I)で表される繰り返し単位を50質量%以上有する重合体である、請求項1に記載の研磨組成物。   The polishing composition according to claim 1, wherein the polymer (A) is a polymer having 50% by mass or more of the repeating unit represented by the general formula (I). 前記重合体(A)が、前記一般式(I)で表される繰り返し単位からなるホモ重合体である、請求項1に記載の研磨組成物。   The polishing composition according to claim 1, wherein the polymer (A) is a homopolymer composed of repeating units represented by the general formula (I). 前記重合体(A)が、前記一般式(I)で表される繰り返し単位と、ビニル酢酸、アクリル酸、メタクリル酸、アクリル酸アミド、N−ビニルピロリドンから成る群から選ばれる少なくとも1種由来の繰り返し単位とを有する重合体である、請求項1あるいは請求項2に記載の研磨組成物。   The polymer (A) is derived from at least one selected from the group consisting of the repeating unit represented by the general formula (I) and vinyl acetic acid, acrylic acid, methacrylic acid, acrylic acid amide, and N-vinylpyrrolidone. The polishing composition according to claim 1 or 2, which is a polymer having a repeating unit. 前記N−ビニルカルボン酸アミドが、N−ビニルアセトアミドである、請求項1〜4のいずれかに記載の研磨組成物。   The polishing composition according to claim 1, wherein the N-vinylcarboxylic amide is N-vinylacetamide. 前記重合体(A)の20質量%水溶液粘度が、100mPa・s〜50000mPa・sである、請求項1〜5のいずれかに記載の研磨組成物。   The polishing composition according to any one of claims 1 to 5, wherein a viscosity of a 20% by mass aqueous solution of the polymer (A) is 100 mPa · s to 50000 mPa · s. 前記重合体(B)が、アクリル酸重合体及びその塩並びにその組み合わせから成る群より選ばれる、請求項1〜6のいずれかに記載の研磨組成物。   The polishing composition according to any one of claims 1 to 6, wherein the polymer (B) is selected from the group consisting of an acrylic acid polymer, a salt thereof, and a combination thereof. 前記重合体(B)の質量平均分子量が、500〜100000である、請求項1〜7のいずれかに記載の研磨組成物。   The polishing composition according to any one of claims 1 to 7, wherein the polymer (B) has a mass average molecular weight of 500 to 100,000. 前記研磨粒子が無機酸化物である、請求項1〜8のいずれかに記載の研磨組成物。   The polishing composition according to claim 1, wherein the abrasive particles are an inorganic oxide. 前記研磨粒子が、酸化セリウム粒子である、請求項1〜9のいずれかに記載の研磨組成物。   The polishing composition according to claim 1, wherein the abrasive particles are cerium oxide particles. 前記酸化セリウムの純度が、99%以上である、請求項10に記載の研磨組成物。   The polishing composition according to claim 10, wherein the purity of the cerium oxide is 99% or more. 動的光散乱法で測定した前記研磨粒子の質量平均粒子径が、10〜2000nmである、請求項1〜11のいずれかに記載の研磨組成物。   The polishing composition according to claim 1, wherein a mass average particle diameter of the abrasive particles measured by a dynamic light scattering method is 10 to 2000 nm. 窒素ガス吸着法で測定した前記研磨粒子の比表面積が、1〜100m2/gである、請求項1〜12のいずれかに記載の研磨組成物。 The polishing composition according to any one of claims 1 to 12, wherein a specific surface area of the abrasive particles measured by a nitrogen gas adsorption method is 1 to 100 m 2 / g. pHが3〜9である、請求項1〜13のいずれかに記載の研磨組成物。   14. Polishing composition in any one of Claims 1-13 whose pH is 3-9. 前記研磨粒子の含有量が、0.01〜20質量%である、請求項1〜14のいずれかに記載の研磨組成物。   The polishing composition according to claim 1, wherein the content of the abrasive particles is 0.01 to 20% by mass. 前記重合体(A)の含有量が、前記研磨粒子100質量部に対して0.01〜1000質量部である、請求項1〜15のいずれかに記載の研磨組成物。   The polishing composition according to any one of claims 1 to 15, wherein the content of the polymer (A) is 0.01 to 1000 parts by mass with respect to 100 parts by mass of the abrasive particles. 前記重合体(B)の含有量が、前記研磨粒子100質量部に対して1〜1000質量部である、請求項1〜16のいずれかに記載の研磨組成物。   The polishing composition according to any one of claims 1 to 16, wherein the content of the polymer (B) is 1-1000 parts by mass with respect to 100 parts by mass of the abrasive particles. 半導体デバイス基板上に形成した被研磨膜を研磨パッドに押し当て、請求項1〜17のいずれかに記載の研磨組成物を被研磨膜と研磨パッドの間に供給しながら半導体デバイス基板と研磨パッドを擦り合わせて被研磨膜を研磨する、半導体デバイス基板の研磨方法。   A semiconductor device substrate and a polishing pad while pressing a polishing film formed on a semiconductor device substrate against the polishing pad and supplying the polishing composition according to claim 1 between the polishing film and the polishing pad A method for polishing a semiconductor device substrate, wherein the film to be polished is polished by rubbing together. 半導体デバイス基板上に形成した被研磨膜を研磨パッドに押し当て、請求項1〜17のいずれかに記載の研磨組成物を被研磨膜と研磨パッドの間に供給しながら半導体デバイス基板と研磨パッドを擦り合わせて被研磨膜を研磨する方法により製造される、半導体デバイス基板。   A semiconductor device substrate and a polishing pad while pressing a polishing film formed on a semiconductor device substrate against the polishing pad and supplying the polishing composition according to claim 1 between the polishing film and the polishing pad A semiconductor device substrate manufactured by a method for polishing a film to be polished by rubbing together. 被研磨膜が酸化珪素を含む、請求項19に記載の半導体デバイス基板。   The semiconductor device substrate according to claim 19, wherein the film to be polished contains silicon oxide. 希釈することにより請求項15〜17のいずれかに記載の研磨組成物となる、組成物。   The composition which becomes the polishing composition in any one of Claims 15-17 by diluting. 請求項21に記載の組成物として輸送または保管を行う、研磨組成物の輸送または保管方法。   A method for transporting or storing a polishing composition, wherein the composition is transported or stored as a composition according to claim 21. 混合、または混合及び希釈することにより請求項1〜17のいずれかに記載の研磨組成物となる、2種の組成物からなるキット。   The kit which consists of two types of compositions which become the polishing composition in any one of Claims 1-17 by mixing or mixing and diluting. 前記重合体(A)及び(B)を含有する溶液と、前記研磨粒子を含有するスラリーとを混合することを含む、請求項1〜17のいずれかに記載の研磨組成物の製造方法。   The manufacturing method of the polishing composition in any one of Claims 1-17 including mixing the solution containing the said polymers (A) and (B), and the slurry containing the said abrasive particle. 前記重合体(A)及び(B)を含有する溶液と、前記研磨粒子を含有するスラリーとして輸送または保管することを含む、請求項1〜17のいずれかに記載の研磨組成物の輸送または保管方法。   The transportation or storage of the polishing composition according to claim 1, comprising transporting or storing the solution containing the polymers (A) and (B) and the slurry containing the abrasive particles. Method. 前記重合体(A)及び(B)を含有する、請求項1〜17のいずれかに記載の研磨組成物のための輸送または保管用組成物。   The composition for transport or storage for the polishing composition according to any one of claims 1 to 17, comprising the polymers (A) and (B).
JP2004329828A 2004-11-12 2004-11-12 Polishing constituent Pending JP2006140361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329828A JP2006140361A (en) 2004-11-12 2004-11-12 Polishing constituent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329828A JP2006140361A (en) 2004-11-12 2004-11-12 Polishing constituent

Publications (1)

Publication Number Publication Date
JP2006140361A true JP2006140361A (en) 2006-06-01

Family

ID=36620965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329828A Pending JP2006140361A (en) 2004-11-12 2004-11-12 Polishing constituent

Country Status (1)

Country Link
JP (1) JP2006140361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116807A1 (en) * 2008-03-20 2009-09-24 Lg Chem, Ltd. Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same
CN101978018A (en) * 2008-03-20 2011-02-16 株式会社Lg化学 Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same
EP2324956A1 (en) * 2008-06-18 2011-05-25 Fujimi Incorporated Polishing composition and polishing method using the same
JP2012121086A (en) * 2010-12-07 2012-06-28 Yokkaichi Chem Co Ltd Additive for polishing and high dispersive polishing slurry
KR101178620B1 (en) 2010-12-23 2012-08-30 주식회사 케이씨텍 Slurry and additive composition for high planarity slurry composition for relatively weak layer
JP5518334B2 (en) * 2006-07-05 2014-06-11 デュポン エア プロダクツ ナノマテリアルズ,リミティド ライアビリティ カンパニー Polishing composition for silicon wafer, polishing method for silicon wafer, and polishing composition kit for silicon wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313815A (en) * 1999-04-30 2000-11-14 Kao Corp Grinding aid
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2003347248A (en) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2004311967A (en) * 2003-03-27 2004-11-04 Nippon Shokubai Co Ltd Polymer and composition for cmp abrasive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313815A (en) * 1999-04-30 2000-11-14 Kao Corp Grinding aid
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2003347248A (en) * 2002-05-28 2003-12-05 Hitachi Chem Co Ltd Cmp polishing agent for semiconductor insulating film and method of polishing substrate
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2004311967A (en) * 2003-03-27 2004-11-04 Nippon Shokubai Co Ltd Polymer and composition for cmp abrasive

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518334B2 (en) * 2006-07-05 2014-06-11 デュポン エア プロダクツ ナノマテリアルズ,リミティド ライアビリティ カンパニー Polishing composition for silicon wafer, polishing method for silicon wafer, and polishing composition kit for silicon wafer
WO2009116807A1 (en) * 2008-03-20 2009-09-24 Lg Chem, Ltd. Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same
CN101978018A (en) * 2008-03-20 2011-02-16 株式会社Lg化学 Method for preparing cerium oxide, cerium oxide prepared therefrom and cmp slurry comprising the same
US8361878B2 (en) 2008-03-20 2013-01-29 Lg Chem, Ltd. Method for preparing cerium oxide, cerium oxide prepared therefrom and CMP slurry comprising the same
EP2324956A1 (en) * 2008-06-18 2011-05-25 Fujimi Incorporated Polishing composition and polishing method using the same
EP2324956A4 (en) * 2008-06-18 2011-08-03 Fujimi Inc Polishing composition and polishing method using the same
US8827771B2 (en) 2008-06-18 2014-09-09 Fujimi Incorporated Polishing composition and polishing method using the same
JP2012121086A (en) * 2010-12-07 2012-06-28 Yokkaichi Chem Co Ltd Additive for polishing and high dispersive polishing slurry
KR101178620B1 (en) 2010-12-23 2012-08-30 주식회사 케이씨텍 Slurry and additive composition for high planarity slurry composition for relatively weak layer

Similar Documents

Publication Publication Date Title
JP5176154B2 (en) CMP polishing agent and substrate polishing method
EP3055376B1 (en) Mixed abrasive polishing compositions
TWI435381B (en) Chemical mechanical grinding of water dispersions and semiconductor devices of chemical mechanical grinding method
TWI441905B (en) Polishing composition
JP4853287B2 (en) CMP polishing agent and substrate polishing method
TWI626303B (en) Chemical mechanical honing slurry and chemical mechanical honing method
TWI485235B (en) Chemical mechanical polishing composition and methods relating thereto
JP6375623B2 (en) Abrasive, abrasive set, and substrate polishing method
JP2010153781A (en) Polishing method for substrate
JP2009094233A (en) Polishing composition for semiconductor substrate
JP2004079984A (en) Chemical mechanical polishing slurry and method of chemical mechanical polishing using same
TWI554578B (en) A chemical mechanical polishing (cmp) composition comprising a polymeric polyamine
JP2008091524A (en) Polishing solution for metal
JP2007103485A (en) Polishing method, and polishing liquid used therefor
JP2010153782A (en) Polishing method for substrate
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP2017508833A (en) Chemical mechanical polishing (CMP) composition comprising poly (amino acid)
US20080182413A1 (en) Selective chemistry for fixed abrasive cmp
JP6581299B2 (en) CMP slurry composition and polishing method using the same
JP5403909B2 (en) Polishing liquid composition
JP2006140361A (en) Polishing constituent
JP2006173411A (en) Polishing solution composition for semiconductor substrate
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
US20230219188A1 (en) Mega-sonic vibration assisted chemical mechanical planarization
JP2001057352A (en) Method of polishing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914