JP2006140298A - Coated-bar array type electric wave absorber, and manufacturing method for coated-bar for electric wave absorber - Google Patents

Coated-bar array type electric wave absorber, and manufacturing method for coated-bar for electric wave absorber Download PDF

Info

Publication number
JP2006140298A
JP2006140298A JP2004328204A JP2004328204A JP2006140298A JP 2006140298 A JP2006140298 A JP 2006140298A JP 2004328204 A JP2004328204 A JP 2004328204A JP 2004328204 A JP2004328204 A JP 2004328204A JP 2006140298 A JP2006140298 A JP 2006140298A
Authority
JP
Japan
Prior art keywords
radio wave
coated
wave absorber
absorber
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004328204A
Other languages
Japanese (ja)
Other versions
JP4284267B2 (en
Inventor
Takashi Miyamoto
隆志 宮本
Koichi Hosoi
宏一 細井
Susumu Imaoka
進 今岡
Yoshio Kajima
善雄 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004328204A priority Critical patent/JP4284267B2/en
Publication of JP2006140298A publication Critical patent/JP2006140298A/en
Application granted granted Critical
Publication of JP4284267B2 publication Critical patent/JP4284267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric wave absorber which shows better electric wave absorbing characteristics than a conventional resonant single layer sheet in broader bands, and is remarkably thinner than a conventional pyramidal electric wave absorber for a microwave chamber having broad-band characteristics. <P>SOLUTION: According to the coated-bar array type electric wave absorber, an array of columnar conductor cores 1 coated with an electric absorbing material (coated bars) are formed on the electric wave incident side of a conductor reflective plate 2 or a conductor reflective plate 2 coated with an electric wave absorbing material. The diameter of each columnar conductor cores 1 is 1/20 of the wavelength of the incident electric wave or larger, and a gap at each coated bar 1 is equal to the wavelength of the incident electric wave or smaller. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被覆棒列型電波吸収体および電波吸収体用被覆棒の製造方法に関するものであり、殊に、電波吸収特性や広帯域性に優れており、かつ薄型である被覆棒列型電波吸収体と、該電波吸収体を構成する被覆棒の製造方法に関するものである。   The present invention relates to a coated rod array type radio wave absorber and a method for producing a coated rod for a radio wave absorber, and in particular, is excellent in radio wave absorption characteristics and broadband properties, and is thin and has a coated rod array type radio wave absorber. The present invention relates to a body and a method of manufacturing a covering rod constituting the radio wave absorber.

近年、無線LAN、ETC、携帯電話などの無線を用いたデジタルデータ通信の利用が急速に普及し、それに伴い電波の干渉問題や情報漏洩などの問題が社会問題となりつつある。この様な問題への対策技術の一つとして、電波吸収体の利用が挙げられる。   In recent years, the use of wireless digital data communication such as wireless LAN, ETC, and cellular phone has rapidly spread, and accordingly, problems such as radio wave interference and information leakage are becoming social problems. One of the countermeasure techniques for such problems is the use of a radio wave absorber.

上記用途に使用される電波吸収体には、特性として、電波の吸収性能、広帯域性(広い周波数領域で必要な吸収特性である。一般的には20dB以上;入射電波の99%以上の吸収が求められ、20dB以上の吸収を示す周波数領域が広いことが吸収体の性能の一指針となる)、軽量あるいは薄型であること、屋外で使用する場合には耐候性を有していること、大面積に使用する場合には安価であることなどが挙げられるが、現在実用化されている電波吸収体は一長一短があり、上記要件を全て満たす吸収体は未だ実現していないのが現状である。   The radio wave absorber used for the above-mentioned applications has, as characteristics, absorption characteristics of radio waves and broadband properties (absorption characteristics necessary in a wide frequency range. Generally, 20 dB or more; absorption of 99% or more of incident radio waves). It is required that a wide frequency region exhibiting absorption of 20 dB or more is one guideline for the performance of the absorber), being lightweight or thin, and having weather resistance when used outdoors, Although it can be mentioned that it is inexpensive when used for an area, there are merits and demerits of currently used radio wave absorbers, and an absorber that satisfies all the above requirements has not yet been realized.

現在、電波吸収体として一般的に使用されているものとして、
(a)焼結フェライトのタイルや樹脂、ゴム、繊維にフェライト粉末やカーボン粉末などの電波吸収体を分散もしくは被着させて、板状に形成したものを単層または多層とした平板型吸収体、
(b)発泡ポリスチロール等にカーボン等を含有させて、ピラミッド形状またはウエッジ形状に成形し、これを並べたピラミッド型やウエッジ型の吸収体
等があり、要求性能や使用環境によってそれぞれ使い分けられている。
As currently used as a radio wave absorber,
(A) A flat-plate-type absorber in which a monolithic or multilayered product is formed by dispersing or adhering a ferrite powder, carbon powder or other electromagnetic wave absorber to a sintered ferrite tile, resin, rubber, or fiber. ,
(B) Polystyrene foam or the like contains carbon, etc., molded into a pyramid shape or wedge shape, and there are pyramid type and wedge type absorbers, etc., which are arranged side by side, depending on the required performance and usage environment. Yes.

前記平板型吸収体には、更に、
(a−1)ゴムまたは樹脂に、カーボンまたはフェライトを含侵したもの、あるいは樹脂繊維にカーボンを被着させこれを重ねて板状に成形した複合シート型吸収体や、
(a−2)抵抗皮膜や繊維、導電性塗料を塗布した抵抗皮膜型吸収体、
(a−3)ガラスにITO等の透明導電膜をコーティングした透明電波吸収体
等が実用化されている。
The flat plate absorber further includes
(A-1) a rubber or resin impregnated with carbon or ferrite, or a composite sheet type absorbent body in which carbon is deposited on resin fibers and laminated into a plate shape;
(A-2) a resistance film type absorber coated with a resistance film, fiber, or conductive paint,
(A-3) Transparent wave absorbers and the like in which glass is coated with a transparent conductive film such as ITO have been put into practical use.

現在広く用いられている電波吸収体のうち、この平板型吸収体は、形状が単純であり薄型にしやすく、また比較的大面積のものを安価で作りやすいことから、一般的には屋外の用途に使用されている。   Of the radio wave absorbers currently in wide use, this flat type absorber is simple in shape and easy to make thin, and it is easy to make a relatively large area at a low cost. Is used.

一般的に使用されている平板型吸収体として、その構造が、電波の損失媒体からなる吸収層と背面の反射板からなるものがある。この様な構造は整合型ともよばれ、その吸収原理は次の通りである。   As a generally used flat plate type absorber, there is one having a structure composed of an absorption layer made of a loss medium of radio waves and a back reflector. Such a structure is also called a matching type, and its absorption principle is as follows.

即ち、電波が吸収層へ入射した場合に、空気層の電波屈折率と吸収層の電波屈折率の差から、一部が吸収層の表面で反射され、残りが吸収層の中を吸収されながら進み、背面の反射板に達して反射される。この反射板で反射された電波は、再び吸収層の中を進み、一部は吸収層の表面で反射されて再度吸収層の中を進み、一部は吸収層の表面から空気層に放出される。   That is, when radio waves are incident on the absorption layer, a part of it is reflected on the surface of the absorption layer and the rest is absorbed in the absorption layer due to the difference between the radio wave refractive index of the air layer and the radio wave refractive index of the absorption layer. Then, the light reaches the back reflector and is reflected. The radio wave reflected by this reflector travels again through the absorption layer, part of it is reflected by the surface of the absorption layer and travels through the absorption layer again, and part of it is emitted from the surface of the absorption layer to the air layer. The

そして前記吸収層表面で1次反射した反射波と、背面の反射板まで達した後に反射された反射波のうち吸収層の表面から再び放射される電波が、互いに打ち消しあうように吸収体の電波屈折率や厚みなどを調整すれば、吸収層の表面で反射される電波強度は消失し、吸収層内部ですべて吸収されて熱に変換される。   The radio wave of the absorber so that the radio wave radiated from the surface of the absorption layer out of the reflected wave primarily reflected on the surface of the absorption layer and the reflected wave reflected after reaching the back reflector is mutually cancelled. If the refractive index, thickness, etc. are adjusted, the radio wave intensity reflected on the surface of the absorption layer disappears, and is completely absorbed inside the absorption layer and converted to heat.

この条件は整合条件と呼ばれ、該条件の制御は平板型吸収体やシート型吸収体の基本設計手法となっている。しかしその原理から明らかな通り、入射電波の波長や入射角度が変わると、即ち、整合条件がくずれると電波の反射減衰特性が劣化する。従って、簡単な構造である単層型の吸収体は、一般的に狭帯域に限定され、また斜め入射に対する特性劣化が大きい。この欠点を改善する手法として、吸収層を多層化して広領域化を図るのが一般的である。しかし層数を増加させると、各層の設計や品質安定性、特性のマージン設計が難しくなり、またコストアップにもつながるので5層以下が一般的となっている。   This condition is called a matching condition, and the control of the condition is a basic design method for a flat plate type absorber and a sheet type absorber. However, as apparent from the principle, when the wavelength or incident angle of the incident radio wave changes, that is, when the matching condition is lost, the reflection attenuation characteristic of the radio wave deteriorates. Therefore, a single-layer absorber having a simple structure is generally limited to a narrow band and has a large characteristic deterioration with respect to oblique incidence. As a technique for improving this defect, it is common to increase the area by multilayering the absorption layer. However, if the number of layers is increased, the design of each layer, quality stability, and margin design of characteristics become difficult, and this leads to cost increase.

前記ピラミッド型やウエッジ型の電波吸収体は、広帯域特性を示すことから、各種アンテナや通信機器の性能評価に用いられる電波暗室の内壁を構成する吸収体として広く用いられている。   The pyramidal and wedge-shaped wave absorbers are widely used as absorbers constituting the inner wall of an anechoic chamber used for performance evaluation of various antennas and communication devices because they exhibit broadband characteristics.

このタイプの吸収体の電波吸収原理は次の通りである。即ち、先端の尖ったピラミッド型の吸収エレメントを並べることで、電波の入射界面でのインピーダンスの不連続をなくして表面での反射を抑え、連続的に吸収層の断面積を増やして損失係数を上げていくことにより、表面で反射されず内部に侵入した電波を徐々に吸収する。   The radio wave absorption principle of this type of absorber is as follows. In other words, by arranging pyramidal absorption elements with sharp tips, the impedance discontinuity at the radio wave incident interface is eliminated, reflection on the surface is suppressed, and the cross-sectional area of the absorption layer is continuously increased to increase the loss factor. By raising it, it gradually absorbs the radio waves that have entered the interior without being reflected by the surface.

この構造では、入射した電波の表面反射を抑える目的で、電波に対するインピーダンスを空気のインピーダンスから徐々に変えていくため、先頭を尖らせたピラミッドあるいはウエッジ状とし、電波が内部に侵入するに従って徐々に電波を減衰させて吸収する構造となっている。よって電波の波長の変化や入射角度の変化が生じた場合でも、吸収層の表面における入射界面でのインピーダンスは空気のインピーダンスから連続的に変化するため、吸収特性に大きな劣化が生じない。そのため、広い周波数域に対応でき高角度特性も有しており、高い吸収性能を発揮する。しかしこのタイプの吸収体は、構造が大型になってしまうという欠点がある。   In this structure, the impedance to the radio wave is gradually changed from the impedance of the air in order to suppress the surface reflection of the incident radio wave, so a pyramid or wedge shape with a sharp tip is formed, and gradually as the radio wave enters the inside. It has a structure that attenuates and absorbs radio waves. Therefore, even when a change in the wavelength of the radio wave or a change in the incident angle occurs, the impedance at the incident interface on the surface of the absorption layer continuously changes from the impedance of the air, so that the absorption characteristics do not greatly deteriorate. Therefore, it can cope with a wide frequency range, has high angle characteristics, and exhibits high absorption performance. However, this type of absorber has the disadvantage that the structure becomes large.

この他に、円筒型電波吸収体や紐状電波吸収体なども提案されている。円筒型電波吸収体は、電波を反射する円筒状導体の表面に電波吸収体を含む被覆層が設けられており、円筒状導体からの電波反射を抑えている。この円筒型電波吸収体を複数並べて構成される電波反射の抑制された電波吸収構造体も数々提案されている。   In addition, cylindrical wave absorbers and string-like wave absorbers have also been proposed. The cylindrical radio wave absorber is provided with a coating layer including a radio wave absorber on the surface of a cylindrical conductor that reflects radio waves, and suppresses radio wave reflection from the cylindrical conductor. A number of radio wave absorption structures in which a plurality of cylindrical radio wave absorbers are arranged to suppress radio wave reflection have been proposed.

円筒型電波吸収体は、電波吸収体が円筒形状であるため、平面型のものと比較して、仮に電波が表面で反射しても、平面型の吸収体のように後方に強く反射されず、周囲に分散して散乱される。よって形状そのものが電波反射を抑えるには好都合の形態となっている。そして、それらに電波反射を抑える吸収層(反射防止層)を被覆して配列することで、反射強度をより低下させることができる。しかしこのような構造では、入射した電波が円筒状吸収体の隙間から透過するので、十分に電波を吸収できるわけではない。   Cylindrical radio wave absorbers are cylindrically shaped, so even if radio waves are reflected on the surface, they are not strongly reflected backwards like flat type absorbers, compared to flat type ones. , Scattered around. Therefore, the shape itself is a convenient form for suppressing radio wave reflection. And the reflection intensity | strength can be reduced more by covering and arranging the absorption layer (antireflection layer) which suppresses radio wave reflection to them. However, in such a structure, the incident radio wave is transmitted through the gap between the cylindrical absorbers, so that the radio wave cannot be sufficiently absorbed.

一般に電波の透過を抑えるには、例えば金属導体のワイヤなどを網目状に組む場合、ワイヤの間隔を電波波長に比べて充分小さくする必要がある。具体的にはワイヤ間の間隔を電波波長の1/10程度以下とすれば、電波の透過強度を10dB程度以下におさえることができる。しかし導体表面に電波吸収層が形成されている場合には、電波の透過が促進されるので、電波透過強度を充分低下させるためには、ワイヤ間の間隔をより一層小さくする必要がある。また仮に密着して並べたとしても、金属導体同士を完全に密着させることはできず、金属導体間に存在する吸収層を入射電波が透過するため、透過を完全に抑えることはできない。従って、単純に吸収層を被覆した電波吸収被覆棒を並べても、入射電波を十分に吸収することは難しい。   In general, in order to suppress transmission of radio waves, for example, when metal conductor wires or the like are assembled in a mesh pattern, the interval between the wires needs to be sufficiently smaller than the radio wave wavelength. Specifically, if the distance between the wires is about 1/10 or less of the radio wave wavelength, the radio wave transmission intensity can be reduced to about 10 dB or less. However, when a radio wave absorption layer is formed on the conductor surface, radio wave transmission is promoted. Therefore, in order to sufficiently reduce the radio wave transmission intensity, it is necessary to further reduce the interval between the wires. Even if the metal conductors are arranged in close contact with each other, the metal conductors cannot be brought into close contact with each other, and since the incident radio wave passes through the absorption layer existing between the metal conductors, the transmission cannot be completely suppressed. Therefore, it is difficult to sufficiently absorb the incident radio wave even if the radio wave absorption covering rods simply covering the absorption layer are arranged.

上記様々な電波吸収体の具体例として、例えば特許文献1には、円筒の表面にエポキシ樹脂とカーボン樹脂を被覆した円筒状の電波吸収体が提案されている。円筒の外面に電波吸収特性を発揮する層を被覆することにより、従来、平面にのみ施工されていた電波吸収体を、曲面形状を有する船のマスト等へ適用可能となったことが示されている。本件では、適切な吸収材を被覆することにより電波の反射を効果的に低減できる旨示されているが、一本の円柱からの反射を抑制するものであり、広い領域で電波を吸収できるものではない。   As specific examples of the various radio wave absorbers, for example, Patent Document 1 proposes a cylindrical radio wave absorber in which an epoxy resin and a carbon resin are coated on the surface of a cylinder. By covering the outer surface of the cylinder with a layer that exhibits electromagnetic wave absorption characteristics, it has been shown that the electromagnetic wave absorber that has been applied only to a plane can be applied to the mast of a ship having a curved surface. Yes. In this case, it is shown that the reflection of radio waves can be effectively reduced by coating with an appropriate absorber, but it is intended to suppress reflection from a single cylinder and absorb radio waves in a wide area. is not.

また特許文献2には、金属線の周囲に磁性損失体を被覆した複合線を、複数本並べた磁性体被覆金属線列の電波吸収体が提案されている。具体的には、磁性体粉末を被着した金属線の平行線列、あるいはそれを互いに重ねて格子状にした吸収体が例示されており、この様な構造とすることで、通気性と光の透過性を兼備させることができると示されている。   Further, Patent Document 2 proposes a radio wave absorber of a magnetic material coated metal wire array in which a plurality of composite wires each having a magnetic loss material coated around a metal wire are arranged. Specifically, parallel line arrays of metal wires coated with magnetic powder, or absorbers in which they are overlapped with each other in a lattice shape are exemplified. By adopting such a structure, air permeability and light can be obtained. It is shown that it is possible to combine the permeability.

原理的には、金属線に磁性材料を被覆することで未被覆の金属線列や格子と比較して電波の反射強度が低下するので、ある程度の電波吸収性を示す。しかし、間隔を空けて磁性体被覆金属線列を並べているため、電波の反射は低減できるが、開口部を通過する電波の透過強度は逆に増加することから、入射した電波電力を実効的に吸収するには不十分であるといえる。また、線列の間隔や太さと電波反射抑制効果との関係についてまでは具体的に検討されておらず、実効的な吸収性能は低いと考えられる。   In principle, by coating a metal wire with a magnetic material, the reflection intensity of the radio wave is reduced as compared with an uncoated metal wire array or grating, and therefore, a certain level of radio wave absorptivity is exhibited. However, since the magnetic-coated metal wire arrays are arranged at intervals, the reflection of radio waves can be reduced, but the transmission intensity of radio waves passing through the opening increases conversely, so that the incident radio wave power is effectively reduced. It can be said that it is insufficient for absorption. In addition, the relationship between the spacing and thickness of the line arrays and the radio wave reflection suppression effect has not been specifically studied, and the effective absorption performance is considered to be low.

特許文献3には、導電性の材料からなる心材に粉末状フェライトを接着または塗装した電波吸収材や、心材として炭素繊維を用いた吸収材、さらにこれを糸状、紐状とした後、格子状に編んだ電波吸収体等が示されている。また心材に導電性が無い場合には、導体の終端短絡板と組み合わせる必要があることが示されている。   In Patent Document 3, a radio wave absorber in which powdered ferrite is bonded or painted to a core material made of a conductive material, an absorber using carbon fiber as a core material, and further, this is made into a string shape, a string shape, A knitted radio wave absorber and the like are shown. Further, it is shown that when the core material is not conductive, it needs to be combined with a terminal short-circuit plate of a conductor.

上記文献では、上記格子状とすることで通気性を確保することが可能であり、紐の太さや間隔を調整して電波吸収特性を変更できると示されている。また、カーボンを糸に含侵させた通気構造の電波吸収層および紐状吸収体を格子状にして成形した吸収層を重ね、終端短絡導体として金網を組み合わせることで、通気性を有する電波吸収体を構成できると示されている。   In the above-mentioned document, it is shown that air permeability can be ensured by adopting the lattice shape, and the radio wave absorption characteristics can be changed by adjusting the thickness and interval of the strings. In addition, a radio wave absorber having air permeability by combining a radio wave absorption layer having a ventilation structure in which carbon is impregnated with a yarn and an absorption layer formed by forming a string-like absorber in a lattice shape, and combining a wire mesh as a terminal short-circuit conductor It can be configured.

しかし実質的には、糸または紐に粉末状吸収材料を被着あるいは含侵させこれを集めて吸収体にしているもので、通気性があるという特徴以外は、従来のゴム中にフェライトなどの吸収体を分散させ、板状に成形して裏面に終端短絡板を設けた吸収体と構成が同じである。つまり、心材の形状や太さに関しては具体的に検討されておらず、十分な電波吸収性能が得られているとは言いがたい。   In practice, however, powdered absorbent material is attached to or impregnated into thread or string, and this is collected to make an absorbent body. The structure is the same as that of the absorbent body in which the absorbent body is dispersed and formed into a plate shape and a terminal short circuit plate is provided on the back surface. In other words, the shape and thickness of the core are not specifically studied, and it is difficult to say that sufficient radio wave absorption performance is obtained.

特許文献4には、電波吸収体の整合特性の変更方法とそれを利用した電波吸収壁が示されている。具体的には、導電性材料で構成した平板、三角柱、円筒状のものの表面に、異なる特性の電波吸収材料を分割して取り付け、これらを密に並べて、必要に応じて各要素を回転し電波が入射する側の面を変更することで、整合特性を変更できる旨示されている。本件は、異なる波長の電波に対応するための有効な一手法ではあるが、電波吸収体のサイズが電波吸収特性に及ぼす影響まで具体的に検討されたものでない。   Patent Document 4 discloses a method for changing matching characteristics of a radio wave absorber and a radio wave absorption wall using the method. Specifically, radio wave absorption materials with different characteristics are divided and mounted on the surface of a flat plate, triangular prism, or cylindrical object made of a conductive material, these are arranged closely, and each element is rotated as necessary to generate radio waves. It is shown that the matching characteristics can be changed by changing the surface on the side where the light is incident. Although this case is an effective method for dealing with radio waves of different wavelengths, the effect of the size of the radio wave absorber on the radio wave absorption characteristics has not been specifically studied.

特許文献5には、電波遮蔽体及び吸収体の記載があり、具体的には光を透過できる電波吸収体が提案されている。電波吸収体として、線状、棒状、円筒状、テープ状のものや、木綿綿にカーボンやフェライトを含侵させたものを電波吸収素子とし、それを面状導体板の上に配置することで電波吸収体となすことができると記載されている。面状導体板として金網や炭素繊維などの導電性糸を用いれば、通気性も確保でき、導電性光透過膜を用いれば透光性も得られることが提案されている。   Patent Document 5 describes a radio wave shield and an absorber, and specifically proposes a radio wave absorber that can transmit light. As a wave absorber, a wire, rod, cylinder, tape, or cotton impregnated with carbon or ferrite is used as a wave absorber and placed on a planar conductor plate. It is described that it can be a radio wave absorber. It has been proposed that if a conductive thread such as a wire mesh or carbon fiber is used as the planar conductor plate, air permeability can be secured, and if a conductive light-transmitting film is used, a light-transmitting property can also be obtained.

また特許文献6には、金属板と該金属板上にコア軸をほぼ垂直にして設けられたハニカムコアとを備えた電波吸収体が提案されており、該ハニカムコア中にフェライトおよびカーボン粉末がコア軸方向に所定の連続的濃度変化で充填されるようにした広帯域の電波吸収体が開示されている。   Patent Document 6 proposes a radio wave absorber including a metal plate and a honeycomb core provided on the metal plate with the core axis substantially vertical, and ferrite and carbon powder are contained in the honeycomb core. A broadband electromagnetic wave absorber that is filled with a predetermined continuous concentration change in the core axis direction is disclosed.

フェライトおよびカーボン粉末の濃度を連続的に変化させることで、空気中より入射する電波に対して、インピーダンスの不連続を低減して表面反射を抑え、内部に侵入した電波を効率的に吸収させているが、これは、ピラミッド型やウエッジ型の電波吸収体と同様の吸収原理、または多層型の平板型吸収体の吸収原理に基づいて構成されたものと考えられる。   By continuously changing the concentration of ferrite and carbon powder, it reduces the impedance discontinuity for radio waves entering from the air, suppresses surface reflection, and efficiently absorbs radio waves that have entered the interior. However, this is considered to be configured based on an absorption principle similar to that of a pyramid-type or wedge-type electromagnetic wave absorber, or an absorption principle of a multi-layered plate-type absorber.

上記文献では構造体の厚みは記述されていないが、ピラミッド型吸収体と同様の厚さになると思われる。また多層型吸収体と同様に各層の特性制御が難しく、実用上、品質の安定性に欠けるなどの問題が生じるものと推察される。
特開平2517849号公報 特開昭47−24253号公報 特開平4−122098号公報 特許第2941436号公報 特開平6−235281号公報 特開平5−90832号公報
Although the thickness of the structure is not described in the above document, it is considered that the thickness is the same as that of the pyramidal absorber. Further, it is presumed that, like the multilayer type absorber, it is difficult to control the characteristics of each layer, and problems such as lack of quality stability in practice occur.
Japanese Patent Laid-Open No. 2517849 JP 47-24253 A Japanese Patent Laid-Open No. 4-122098 Japanese Patent No. 2914436 JP-A-6-235281 JP-A-5-90832

既存の平板型吸収体、あるいはピラミッド型やウェッジ型の電波吸収体では、電波吸収特性、広帯域性、薄型・軽量であること及び安価であること等の要件を全て満たすには限界があり、それ以外の形態の吸収体でも、これらの要件を全て満足するものは提案されていない。本発明はこの様な事情に鑑みてなされたものであって、その目的は、上記特性を同時に満たす電波吸収体と、該電波吸収体を構成する被覆棒の製造方法を提供することにある。   Existing flat plate absorbers, pyramid-type and wedge-type wave absorbers have limitations in meeting all the requirements such as radio wave absorption characteristics, wide bandwidth, thin and light weight, and low cost. No other type of absorber that satisfies all these requirements has been proposed. This invention is made | formed in view of such a situation, The objective is to provide the manufacturing method of the coating rod which comprises the electromagnetic wave absorber which satisfy | fills the said characteristic simultaneously, and this electromagnetic wave absorber.

本発明に係る被覆棒列型電波吸収体は、電波吸収材の被覆された円柱状導体芯線(以下「被覆棒」という)で構成された被覆棒列が、導体反射板または電波吸収材の被覆された導体反射板の電波入射側に形成されてなる電波吸収体であって、該円柱状導体芯線の直径が対象電波波長の1/20以上であり、かつ隣り合う前記被覆棒間の間隔(ピッチ)が対象電波波長以下であるところに特徴を有するものである。   The coated rod array type electromagnetic wave absorber according to the present invention is a coated rod array composed of a cylindrical conductor core wire (hereinafter referred to as “coated rod”) coated with a radio wave absorber, and is coated with a conductor reflector or a radio wave absorber. A radio wave absorber formed on the radio wave incident side of the conductor reflecting plate, wherein the diameter of the cylindrical conductor core wire is 1/20 or more of the target radio wave wavelength, and the interval between the adjacent coating rods ( (Pitch) is characterized by being equal to or less than the target radio wave wavelength.

複数の前記被覆棒列が、導体反射板または電波吸収材の被覆された導体反射板の電波入射側に形成されたものであれば、より高い電波吸収性能が得られるので好ましい。また前記電波吸収材として、平均厚み30μm以下である偏平酸化鉄粉末を含むものを用いれば、被覆棒列や電波吸収材の被覆された導体反射板において、効率よく電波を吸収できるので好ましい。   It is preferable that the plurality of the covering rod rows are formed on the radio wave incident side of the conductor reflecting plate or the conductor reflecting plate coated with the radio wave absorber because higher radio wave absorbing performance can be obtained. Further, it is preferable to use a material containing flat iron oxide powder having an average thickness of 30 μm or less as the radio wave absorber because the radio wave can be efficiently absorbed in the coated bar array or the conductor reflector coated with the radio wave absorber.

本発明は、前記被覆棒列型電波吸収体を構成する被覆棒の製造方法も規定するものであって、該方法は、前記電波吸収材とバインダーの混合物を押し出し法により前記円柱状導体芯線に被覆するところに特徴を有する。   The present invention also stipulates a method of manufacturing a covering rod that constitutes the covering rod array type electromagnetic wave absorber, and the method includes applying the mixture of the electromagnetic wave absorbing material and the binder to the cylindrical conductor core wire by an extrusion method. It is characterized by where it is coated.

本発明によれば、従来の共鳴型単層シートに比べて広帯域で良好な電波吸収特性を示し、また、従来の広帯域特性を有する電波暗室用のピラミッド型電波吸収体よりも著しく薄い電波吸収体を提供できる。また本発明の電波吸収体は、電波が反射板の反射面に対して斜め方向から入射した場合でも、閉じ込め効果を発揮して電波吸収特性を確実に高めることができる。   According to the present invention, a radio wave absorber that exhibits good radio wave absorption characteristics in a wide band as compared with a conventional resonance type single-layer sheet, and is significantly thinner than a conventional pyramid type radio wave absorber for an anechoic chamber having wide band characteristics. Can provide. In addition, the radio wave absorber of the present invention can exhibit a confinement effect and reliably improve radio wave absorption characteristics even when radio waves are incident on the reflecting surface of the reflector from an oblique direction.

本発明者らは、ほとんど反射・透過させることなく、入射してきた電波を吸収することのできる電波吸収体を実現すべく鋭意研究を行なった。その結果、電波吸収材の被覆された円柱状導体芯線(以下「被覆棒」という)で構成される被覆棒列を、導体反射板または電波吸収材の被覆された導体反射板の電波入射側に形成し、被覆棒で電波を吸収すると共に、この被覆棒列と反射板との間に電波を閉じ込めれば、電波吸収特性を確実に高めうることを見出した。   The inventors of the present invention have intensively studied to realize a radio wave absorber that can absorb incident radio waves with almost no reflection / transmission. As a result, a coated bar array composed of cylindrical conductor core wires (hereinafter referred to as “coated bars”) coated with a radio wave absorber is placed on the radio wave incident side of the conductor reflector or the conductor reflector coated with the radio wave absorber. It was found that radio wave absorption characteristics can be improved reliably by forming and absorbing radio waves with a covering rod and confining radio waves between the covering rod array and the reflecting plate.

この機構は次のように考えられる。まず、前面の被覆棒列に入射した電波は被覆棒列の表面で一部は吸収され、残りは電波の入射してきた方向や側方へ散乱される。また、被覆棒列の間から入射波の一部が透過する。被覆棒列で吸収されず散乱された電波や被覆棒列の間を透過した電波は、入射方向からみて被覆棒列の後方に配置された反射板で反射し、電波の入射してきた方向に反射される。反射板で反射された電波は再び被覆棒列に入射し、一部は被覆棒表面で吸収され、残りが再び散乱される。この様に被覆棒列と背面の反射板を間隔をあけて配置した電波吸収体における電波の多重散乱状態を図1に示す。図1中には電波の伝播パスを例示しており、入射する電波が、多数の被覆棒と反射板の間の空間に閉じ込められることで、多重反射が生じて極めて効率的に電波を吸収することが可能となる。   This mechanism is considered as follows. First, a part of the radio wave incident on the front covering rod row is absorbed by the surface of the covering rod row, and the rest is scattered in the direction and side where the radio wave has entered. Moreover, a part of incident wave permeate | transmits from between covering rod rows. Radio waves that are not absorbed by the covering rod row and scattered or transmitted between the covering rod rows are reflected by a reflector placed behind the covering rod row when viewed from the incident direction, and reflected in the direction in which the radio wave enters. Is done. The radio wave reflected by the reflecting plate is incident on the covering rod row again, a part is absorbed by the surface of the covering rod, and the rest is scattered again. FIG. 1 shows a multiple scattering state of radio waves in the radio wave absorber in which the covering bar array and the back reflector are arranged with a space therebetween. FIG. 1 exemplifies a propagation path of radio waves. When incident radio waves are confined in a space between a large number of coating rods and reflectors, multiple reflections occur and the radio waves can be absorbed very efficiently. It becomes possible.

電波を被覆棒列、及び反射板あるいは吸収板の間の空間に効果的に閉じ込めて効率よく吸収させるには、一本の被覆棒表面での対象周波数の電波の反射減衰特性を充分高めておくと共に、被覆棒の芯線径や隣り合う被覆棒間の間隔を最適化することが重要である。   In order to effectively confine radio waves in the space between the covering rod row and the reflecting plate or the absorbing plate and efficiently absorb it, the reflection attenuation characteristics of the radio waves of the target frequency on the surface of one covering rod are sufficiently enhanced, It is important to optimize the core wire diameter of the covering rod and the spacing between the adjacent covering rods.

尚、本発明では、上記の通り、被覆棒型吸収体として円筒形のものを用いることで、入射角度依存性を抑え、斜め方向からの入射に対しても十分に電波を吸収できる。   In the present invention, as described above, the cylindrical rod is used as the covering rod type absorber, so that the incident angle dependency is suppressed, and the radio wave can be sufficiently absorbed even when incident from an oblique direction.

まず、被覆棒の芯線径を制御することが重要である。その理由として、被覆棒の芯線径が極端に小さいと、一本の被覆棒に入射した電波がほぼ等方的に散乱されて、電波の入射してきた方へ散乱される確率が高くなり、電波の閉じ込め効果が得られず結果として充分な吸収性能が得られないことが挙げられる。実験で確認したところ、被覆棒の芯線径が波長の1/20を下回ると全体としての吸収効果が大きく低下することがわかった。本発明では、被覆棒の芯線径を波長の1/20以上と大きくすれば、入射電波は大きく回折して反射板とその電波入射側に配置された被覆棒列との間の空間に侵入し、該空間での多重反射で効果的に吸収されることが判明した。好ましくは被覆棒の芯線径を対象波長の1/15以上とする。一方、被覆棒の芯線の径が大きすぎても効果が飽和することと、後記する被覆棒間の間隔(ピッチ)との関係から対象波長の1/2未満、好ましくは1/3以下とする。   First, it is important to control the core wire diameter of the covering rod. The reason for this is that if the core wire diameter of the coating rod is extremely small, the radio wave incident on one coating rod is scattered almost isotropically, and the probability that the radio wave is incident is increased. It is mentioned that a sufficient absorption performance cannot be obtained as a result. When it confirmed by experiment, when the core wire diameter of the coating rod was less than 1/20 of a wavelength, it turned out that the absorption effect as a whole falls large. In the present invention, if the core wire diameter of the covering rod is increased to 1/20 or more of the wavelength, the incident radio wave is greatly diffracted and enters the space between the reflector and the covering rod row arranged on the radio wave incident side. It was found that the light was effectively absorbed by multiple reflection in the space. Preferably, the core wire diameter of the covering rod is set to 1/15 or more of the target wavelength. On the other hand, the effect is saturated even if the core wire diameter of the covering rod is too large, and the relationship between the interval (pitch) between the covering rods described later is less than 1/2 of the target wavelength, preferably 1/3 or less. .

また、被覆棒間の間隔(ピッチ)を制御することも上述の通り重要である。被覆棒列の間隔が極端に大きくなりまばらになった場合には、当然のことながら、電波が被覆棒間を透過して反射板で反射し全体の吸収性能は著しく低下する。しかし被覆棒列の間隔が一定値以下である場合には、被覆棒列と反射板や電波吸収板との間に侵入した透過波を該空間で閉じ込めることができると共に、被覆棒列間を透過して反射板で反射された電波の強度も充分に低下させることができる。   It is also important to control the interval (pitch) between the covering rods as described above. When the intervals between the covering rod rows become extremely large and sparse, it is a matter of course that radio waves are transmitted between the covering rods and reflected by the reflecting plate, so that the overall absorption performance is significantly reduced. However, when the interval between the covering rod rows is a certain value or less, the transmitted wave that has entered between the covering rod rows and the reflecting plate or the wave absorbing plate can be confined in the space and transmitted between the covering rod rows. Thus, the intensity of the radio wave reflected by the reflecting plate can be sufficiently reduced.

一本の被覆棒で反射された反射波が側方にある他の被覆棒に入射する際に多重散乱が生じるが、このとき、各被覆棒からの反射波の位相がランダムとなるようピッチを選択すれば、反射波の強度低下をより一層助長することが可能となる。該作用効果を実現させるには、被覆棒間の間隔を波長以下とする必要がある。この様に被覆棒間の間隔を波長以下にすることで、入射電波を被覆棒列と反射板の間の空間に効果的に閉じ込めることができ、内部で生じた多重散乱で効果的な電波吸収をもたらし、更に、被覆棒からの散乱波同士の位相キャンセルによる減衰効果を高めて、総合的に電波強度を減衰させることができる。   Multiple reflections occur when the reflected wave reflected by one coating rod enters the other coating rod on the side. At this time, the pitch is set so that the phase of the reflected wave from each coating rod is random. If selected, it is possible to further promote a reduction in the intensity of the reflected wave. In order to realize this function and effect, it is necessary to set the interval between the coating rods to a wavelength or less. In this way, by setting the distance between the coating rods to be equal to or less than the wavelength, the incident radio wave can be effectively confined in the space between the coating rod array and the reflector, and effective radio wave absorption is caused by the internally generated multiple scattering. Furthermore, it is possible to enhance the attenuation effect by the phase cancellation of the scattered waves from the covering rod, and to attenuate the radio wave intensity comprehensively.

本発明の電波吸収体は、複数の前記被覆棒列が、導体反射板あるいは電波吸収材で被覆した導体反射板の電波入射側に配列されていることを好ましい形態とする。例えば2列の被覆棒列が導体反射板あるいは電波吸収材で被覆した導体反射板の電波入射側に配列されている場合、最初に電波の入射する第1の被覆棒列で電波の一部が吸収され、透過した透過波は、次の被覆棒列(第2の被覆棒列)で吸収されるが、それに加えて、第1の被覆棒列と第2の被覆棒列の間と、第2の被覆棒列とその背面に配置される反射板との間の2層の空間に電波が閉じ込められるため、内部での多重散乱による吸収効果の増大、あるいはさまざまな方向の偏波に対する吸収特性の等方化等により、より高性能の吸収体を実現することが可能となる。   The radio wave absorber according to the present invention preferably has a plurality of the covering rod rows arranged on the radio wave incident side of the conductor reflector or the conductor reflector coated with the radio wave absorber. For example, when two rows of covered rods are arranged on the radio wave incident side of a conductor reflector or a conductor reflector coated with a radio wave absorber, a part of the radio waves is first covered by the first covered rod row on which radio waves are incident. Absorbed and transmitted transmitted waves are absorbed by the next coating rod row (second coating rod row), and in addition, between the first coating rod row and the second coating rod row, Because radio waves are confined in a two-layer space between the two coated rod rows and the reflector placed behind it, the absorption effect increases due to multiple internal scattering, or the absorption characteristics for polarized waves in various directions It is possible to realize a higher-performance absorber by isotropy.

この様に複数の前記被覆棒列を複数配置することで、隙間のある被覆棒列の間を透過した透過波を吸収できるが、第2の被覆棒列は第1の被覆棒列ほどの吸収性能を発揮しなくても一定の反射減衰性能があれば、全体として十分な吸収特性が得られる。更に、反射板が単なる金属反射板であっても、上述の通り、被覆棒の円柱状導体芯線の直径や被覆棒間の間隔の制御に加えて、被覆棒列と前記金属板との距離を適正範囲に制御すれば、充分高い吸収特性を実現できる。   By arranging a plurality of the covering rod rows in this way, it is possible to absorb the transmitted wave transmitted between the covering rod rows with a gap, but the second covering rod row absorbs as much as the first covering rod row. Even if the performance is not exhibited, if there is a certain reflection attenuation performance, sufficient absorption characteristics as a whole can be obtained. Furthermore, even if the reflecting plate is a simple metallic reflecting plate, as described above, in addition to controlling the diameter of the cylindrical conductor core wire of the covering rod and the spacing between the covering rods, the distance between the covering rod row and the metal plate is set as follows. If it is controlled within an appropriate range, sufficiently high absorption characteristics can be realized.

被覆棒列と前記金属板の距離を制御する場合には、具体的に次の様に行なうことが挙げられる。即ち、金属板に反射した反射波の位相を最適な値に制御することが重要であり、被覆棒列と金属板との距離に対して全体の反射強度は半波長の周期で振動するため、被覆棒列と金属板との間の距離は、全体の反射強度が極小値を取るようにし、かつ吸収体全体の厚みが厚くなり過ぎないように調整するのがよい。   In the case of controlling the distance between the covering rod row and the metal plate, it can be specifically performed as follows. That is, it is important to control the phase of the reflected wave reflected on the metal plate to an optimum value, and the overall reflection intensity vibrates with a half-wavelength period with respect to the distance between the covering rod row and the metal plate. The distance between the covering rod row and the metal plate is preferably adjusted so that the overall reflection intensity takes a minimum value and the thickness of the entire absorber is not too thick.

被覆棒列における被覆棒の間隔は、全ての被覆棒間で同一である必要はなく、各被覆棒間の間隔が本発明の規定範囲に入っていれば所定の効果を得ることができる。また一直線に配列せず、ジグザグに配置したり、曲線を描くように配置してもよい。更に、前記反射板が湾曲している場合には、図2(a)や図2(b)に示す通り、該反射板の壁面に沿うよう曲線状に被覆棒を配列しても、反射板と被覆棒列との間の電波閉じ込めと多重散乱による吸収効果を得ることができる。   The intervals between the coating rods in the coating rod array need not be the same among all the coating rods, and a predetermined effect can be obtained if the intervals between the coating rods are within the specified range of the present invention. Further, they may be arranged in a zigzag pattern or in a curved line instead of being arranged in a straight line. Further, when the reflecting plate is curved, as shown in FIGS. 2A and 2B, the reflecting plate may be arranged even if the covering rods are arranged along the wall surface of the reflecting plate. And the absorption effect by multiple scattering can be obtained.

上記被覆棒は、円柱状金属導体、あるいは円筒状(中空)金属パイプ、又は表面に金属メッキ等を施した電波反射処理済の円筒支持体に、一定厚みの電波吸収層を被覆することにより形成することができる。吸収層としては、一般的なカーボンやフェライトなどの電波損失材をプラスチックやゴム、その他の樹脂中に分散させて円柱状導体表面に塗布することにより形成することができるが、該被覆棒や導体反射板に被覆する電波吸収材として特に、既に提案されている平均厚みが30μm以下の偏平酸化鉄粉末(例えば、特開2004−96084号)が適している。偏平酸化鉄粉は、入射電波の電場及び磁場方向に平行に粉末を配向させることにより大きな誘電率、透磁率、及びそれらの大きな損失項を示し、薄皮膜で十分な吸収特性を得やすいからである。   The covering rod is formed by covering a cylindrical metal conductor, a cylindrical (hollow) metal pipe, or a radio wave-reflecting cylindrical support whose surface is subjected to metal plating or the like with a radio wave absorption layer having a certain thickness. can do. The absorbing layer can be formed by dispersing a general electromagnetic wave loss material such as carbon or ferrite in plastic, rubber, or other resin and applying it to the surface of the cylindrical conductor. In particular, the proposed flat iron oxide powder having an average thickness of 30 μm or less (for example, Japanese Patent Application Laid-Open No. 2004-96084) is suitable as the radio wave absorber covering the reflector. The flat iron oxide powder has a large dielectric constant, magnetic permeability, and large loss term due to the orientation of the powder parallel to the direction of the electric field and magnetic field of the incident radio wave, and it is easy to obtain sufficient absorption characteristics with a thin film. is there.

前記吸収材を導体芯線に被覆して被覆棒を製造する方法としては、例えば被覆アーク溶接棒のフラックスの塗装方法として用いられている押し出し塗装法を採用することが好適である。上記被覆アーク溶接棒のフラックス塗装では、周囲からフラックスを供給しながら芯線をダイス中に軸方向にフラックスと共に押し出すことで、均一厚みで非常に緻密な被覆を形成することができる。本発明でもこの方法を採用して導体芯線に前記吸収材を被覆すれば、全周における厚みが均一となり、また電波吸収材として用いる偏平酸化鉄粉が、押し出しによる軸方向の強い剪断力により芯線表面に平行に強く配向し、円筒導体表面近傍の電場及び磁場を極めて効果的に吸収できる。   As a method for producing a coated rod by coating the conductor core wire with the absorbent material, it is preferable to employ, for example, an extrusion coating method used as a flux coating method for a coated arc welding rod. In the above-described flux coating of the coated arc welding rod, a very dense coating with a uniform thickness can be formed by extruding the core wire together with the flux in the axial direction into a die while supplying the flux from the surroundings. In the present invention, if this method is also used to coat the conductor core wire with the absorbent, the thickness of the entire circumference becomes uniform, and the flat iron oxide powder used as the radio wave absorber becomes a core wire by a strong axial axial shearing force. It is strongly oriented parallel to the surface and can absorb the electric and magnetic fields near the cylindrical conductor surface very effectively.

尚、被覆棒における吸収層は、対象とする周波数の電波の反射減衰率ができるだけ大きくなるように設計(具体的には吸収剤の材質、充填率[体積率]、厚みの3つのファクターを制御)するのが好ましいが、特性の被覆棒の反射減衰特性を高めても、構造体全体の電波吸収特性が比例して向上するものでなく、上述の通り、被覆棒の円柱状導体芯線の直径や、隣り合う被覆棒間の間隔を制御することが重要であり、これらの条件を制御した上で、更に上記吸収層の設計や、反射板と被覆棒列の距離等を行なえば、電波吸収体の性能をより高めることができる。尚、吸収層の厚みは、波長と概ね比例関係があるので、対象とする電波の波長に応じてその最適値を決定すればよい。   In addition, the absorption layer in the covering rod is designed so that the return loss rate of the radio wave of the target frequency is as large as possible (specifically, the three factors of the material of the absorbent, the filling rate [volume ratio], and the thickness are controlled) However, increasing the reflection attenuation characteristic of the characteristic covering rod does not improve the radio wave absorption characteristic of the entire structure in proportion, and as described above, the diameter of the cylindrical conductor core wire of the covering rod In addition, it is important to control the spacing between adjacent covering rods, and if these conditions are controlled, the absorption layer can be designed and the distance between the reflecting plate and the covering rod row can be further reduced. The body performance can be further enhanced. In addition, since the thickness of the absorption layer is generally proportional to the wavelength, the optimum value may be determined according to the wavelength of the target radio wave.

被覆棒を製造するにあたり、前記電波吸収材と混合させるバインダーとしては、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、アルキド樹脂、不飽和ポリエステル樹脂等を用いることができ、バインダーの配合比率は、被覆材全体の20〜90体積%とするのが好ましい。20体積%未満だと結着力が不足し易く、また90体積%を超えると相対的に吸収剤の添加量が不足ぎみとなるからである。   In manufacturing the covering rod, as the binder to be mixed with the radio wave absorbing material, epoxy resin, silicone resin, acrylic resin, alkyd resin, unsaturated polyester resin, etc. can be used. It is preferable to set it as 20 to 90 volume%. This is because when the amount is less than 20% by volume, the binding force tends to be insufficient, and when the amount exceeds 90% by volume, the amount of the absorbent added is relatively insufficient.

また反射板としては、様々な金属からなる金属板を使用することができ、例えばアルミニウムからなる金属板を使用することができる。   Moreover, as a reflecting plate, the metal plate which consists of various metals can be used, for example, the metal plate which consists of aluminum can be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

電波吸収材として平均厚みが10μmである偏平酸化鉄粉末を用いて被覆棒を形成した。具体的には、まず前記偏平酸化鉄粉末とバインダーである水ガラスを混練し、φ11mmのダイスを用いた押し出し塗装法で、長さ500mm、φ8mmの軟鉄芯線に約1.5mmの吸収層を被覆したのち乾燥させ、それから吸湿防止としてエポキシ系の塗装を施して電波吸収被覆棒を得た。水ガラスと偏平酸化鉄粉の質量比は100:350とした。また、吸収層中の偏平酸化鉄粉の体積率は、被覆直後の吸収層の質量と最終吸収層厚みを実測して約50%であると算出された。   A coated rod was formed using flat iron oxide powder having an average thickness of 10 μm as a radio wave absorber. Specifically, the flat iron oxide powder and water glass as a binder are first kneaded, and an approximately 1.5 mm absorbing layer is coated on a 500 mm long and 8 mm soft iron core wire by extrusion coating using a φ11 mm die. After that, it was dried, and then an epoxy coating was applied to prevent moisture absorption to obtain a radio wave absorbing coated rod. The mass ratio of water glass and flat iron oxide powder was 100: 350. The volume ratio of the flat iron oxide powder in the absorbent layer was calculated to be about 50% by actually measuring the mass of the absorbent layer immediately after coating and the final absorbent layer thickness.

得られた被覆棒14を、図3に示す通り、電波反射板であるアルミ板15の上に一定間隔で配置(乗せている状態)し、その上部から電波を被覆棒列に向けて出射して電波反射特性を測定した。電波吸収特性の測定は、具体的にネットワークアナライザ11と誘電体レンズ13つきホーンアンテナ12を用い、ワンポートでの反射特性を基準の金属板からの反射特性を用いて校正する一般的な方法(フリースペース法)で行った。測定結果を図4〜7に示す。   As shown in FIG. 3, the obtained covering rod 14 is arranged (mounted) on the aluminum plate 15 which is a radio wave reflecting plate at regular intervals, and the radio wave is emitted from the upper part toward the covering rod row. The radio wave reflection characteristics were measured. The measurement of the radio wave absorption characteristic is a general method (specifically, using a network analyzer 11 and a horn antenna 12 with a dielectric lens 13 to calibrate the reflection characteristic at one port using the reflection characteristic from a reference metal plate ( The free space method). The measurement results are shown in FIGS.

尚、図4および図5は、図8(図中Eは電場方向、Hは磁場方向を示す。図9についても同じ)の通り被覆棒を配列した場合の結果を示し、図6および図7は、図9の通り被覆棒を配列した場合の結果を示している。   4 and 5 show the results when the covering rods are arranged as shown in FIG. 8 (E is the electric field direction and H is the magnetic field direction. The same applies to FIG. 9). These show the results when the covering rods are arranged as shown in FIG.

この図4〜7から、反射減衰特性は、被覆棒の間隔(ピッチ)が対象電波波長(6GHzに対して約50mm)を下回るように被覆棒を配列すれば大幅に改善されることがわかる。一方、該ピッチが対象波長より大きくなると、被覆棒の配列方向と電場方向が垂直の場合も平行の場合も、反射減衰量は5dB程度まで大きく低下し、入射電波は電波吸収体で吸収されず、主として反射板で反射され電波吸収体外へ放出されるものと考えられる。   4 to 7, it can be seen that the reflection attenuation characteristics are greatly improved by arranging the covering rods so that the interval (pitch) of the covering rods is less than the target radio wave wavelength (about 50 mm with respect to 6 GHz). On the other hand, when the pitch is larger than the target wavelength, the return loss is greatly reduced to about 5 dB, regardless of whether the covering rod is arranged in parallel with the electric field direction, and the incident radio wave is not absorbed by the radio wave absorber. It is considered that the light is mainly reflected by the reflecting plate and released to the outside of the radio wave absorber.

前記実施例1と同様に、電波吸収材として平均厚み10μmである偏平酸化鉄粉末を用いて被覆棒を形成した。具体的には、バインダーである水ガラスと偏平酸化鉄粉を混練し、φ22mmのダイスを用いた押し出し塗装法で、長さ500mm、φ20mmの軟鉄芯線に約1mmの吸収層を被覆したのち乾燥させ、それから吸湿防止としてエポキシ系の塗装を施して電波吸収被覆棒を得た。水ガラスと偏平酸化鉄粉の質量比は、前記実施例1と同じ100:350とした。また、吸収層中の偏平酸化鉄粉の体積率も前記実施例1と同様に約50%であった。   In the same manner as in Example 1, a coated rod was formed using flat iron oxide powder having an average thickness of 10 μm as a radio wave absorber. Specifically, water glass, which is a binder, and flat iron oxide powder are kneaded, and an about 1 mm absorption layer is coated on a 500 mm long, 20 mm long soft iron core wire by an extrusion coating method using a φ22 mm die, followed by drying. Then, an epoxy-based coating was applied to prevent moisture absorption to obtain a radio wave absorption covering rod. The mass ratio of water glass and flat iron oxide powder was 100: 350, the same as in Example 1. Further, the volume ratio of the flat iron oxide powder in the absorbing layer was about 50% as in Example 1.

得られた被覆棒を、電波反射板であるアルミ板の上に一定間隔で配置し、電波反射特性を前記実施例1と同様にして測定した。その測定結果を図10〜13に示す。   The obtained covering rods were placed on an aluminum plate as a radio wave reflector at regular intervals, and the radio wave reflection characteristics were measured in the same manner as in Example 1. The measurement results are shown in FIGS.

尚、図10および図11は、図8の通り被覆棒を配列した場合の結果を示し、図12および図13は、図9の通り被覆棒を配列した場合の結果を示している。   10 and 11 show the results when the covering rods are arranged as shown in FIG. 8, and FIGS. 12 and 13 show the results when the covering rods are arranged as shown in FIG.

この図10〜13から、反射減衰特性は、被覆棒の間隔(ピッチ)が対象電波波長(9.4GHzに対して約32mm)を下回るように被覆棒を配列すれば大幅に改善されることがわかる。一方、該ピッチが対象波長より大きくなると、被覆棒の配列方向と電場方向が垂直の場合も平行の場合も、反射減衰量は5dB程度まで大きく低下し、入射電波は電波吸収体で吸収されず、主として反射板で反射され電波吸収体外へ放出されるものと考えられる。   From FIG. 10 to FIG. 13, the reflection attenuation characteristics can be greatly improved if the covering rods are arranged so that the interval (pitch) of the covering rods is less than the target radio wave wavelength (about 32 mm with respect to 9.4 GHz). Recognize. On the other hand, when the pitch is larger than the target wavelength, the return loss is greatly reduced to about 5 dB, regardless of whether the covering rod is arranged in parallel with the electric field direction, and the incident radio wave is not absorbed by the radio wave absorber. It is considered that the light is mainly reflected by the reflecting plate and released to the outside of the radio wave absorber.

本実施例では、ETCに用いられる電波周波数:5.8GHz円偏波に対する反射減衰効果を調査した(以下、実施例4〜8も同じ)。用いる電波吸収材と被覆棒の作成方法は前記実施例1と同様とした。尚、軟鉄芯線として様々な各種芯線径のものを用意し、被覆する吸収層の厚みを5.8GHz付近での反射減衰量が最大となるように被覆厚みを調整して各種被覆棒を作製した。詳細には、芯線径がφ2mm、φ3mmおよびφ5mmのものには、吸収周波数を5.8GHz近傍にそろえるため吸収層を比較的厚めに被覆した。また、より芯線径の大きな芯線には厚みが1.5mmの吸収層を被覆した。尚、該反射減衰量は、この様にして得られた被覆棒1本からの反射強度と、被覆されていない裸線からの反射強度を比較して求めたものであり、被覆棒から1m離れた箇所においての裸線に対する減衰量を求めた。尚、電場と芯線は平行とした。これらの測定結果を表1に示す。   In this example, the reflection attenuation effect with respect to the radio frequency of 5.8 GHz circularly polarized wave used for ETC was investigated (hereinafter the same applies to Examples 4 to 8). The radio wave absorber used and the method for producing the covering rod were the same as in Example 1. In addition, various types of core wire diameters were prepared as soft iron core wires, and various coating rods were prepared by adjusting the coating thickness so that the thickness of the absorbing layer to be coated was maximized in the amount of return loss near 5.8 GHz. . Specifically, for the core wire diameters of φ2 mm, φ3 mm, and φ5 mm, the absorption layer was coated relatively thick in order to make the absorption frequency close to 5.8 GHz. Further, the core wire having a larger core wire diameter was covered with an absorption layer having a thickness of 1.5 mm. The reflection attenuation amount is obtained by comparing the reflection intensity from one coated rod obtained in this way and the reflection intensity from an uncoated bare wire, and is 1 m away from the coated rod. The amount of attenuation with respect to the bare wire was determined. The electric field and the core wire were parallel. These measurement results are shown in Table 1.

Figure 2006140298
Figure 2006140298

この表1より、それぞれの芯線径に対して吸収周波数を5.8GHz付近に調整することができることがわかる。しかし径が2mmの場合は、波長の1/20を下回っているので、被覆棒後方(電波が入射してくる方向)への散乱が大きく、反射減衰量が低くなっている。   From Table 1, it can be seen that the absorption frequency can be adjusted to around 5.8 GHz for each core wire diameter. However, when the diameter is 2 mm, it is less than 1/20 of the wavelength, so that the scattering to the rear of the covering rod (in the direction in which the radio wave enters) is large and the return loss is low.

また、得られた被覆棒をピッチを変化させてアルミ板の上に配置して電波反射特性を測定した。電波吸収特性の測定は、ネットワークアナライザと送信用と受信用に誘電体レンズつき円偏波アンテナ2本を用い、入射角15°での反射特性を基準の金属板からの反射特性を用いて校正する方法で行った。表2に芯線径、被覆棒の間隔(ワイヤピッチ)および5.8GHz円偏波での反射減衰量の測定値を示す。   Further, the obtained covering rod was placed on an aluminum plate with the pitch changed, and the radio wave reflection characteristics were measured. Radio wave absorption characteristics are measured using a network analyzer and two circularly polarized antennas with dielectric lenses for transmission and reception, and the reflection characteristics at an incident angle of 15 ° are calibrated using the reflection characteristics from a standard metal plate. It was done by the method. Table 2 shows the measured values of the core wire diameter, the distance between the coating rods (wire pitch), and the return loss at 5.8 GHz circular polarization.

Figure 2006140298
Figure 2006140298

またこの表2のデータを整理して得た芯線径:8mm、被覆厚み:1.5mmの被覆棒を配置した場合の反射減衰量のワイヤピッチ依存性についてのグラフを図14に示す。更に、被覆棒列の反射減衰量の芯線径とピッチの依存性を図15に、被覆棒間隔最適化後の反射減衰量の芯線径依存性を図16に示す。   FIG. 14 is a graph showing the dependence of the return loss on the wire pitch when a covering rod having a core wire diameter of 8 mm and a covering thickness of 1.5 mm obtained by arranging the data in Table 2 is arranged. Further, FIG. 15 shows the dependency of the reflection attenuation amount of the covering rod row on the core wire diameter and the pitch, and FIG. 16 shows the dependency of the reflection attenuation amount on the core rod diameter after the coating rod interval optimization.

前記図15,16の結果から、芯線径が2mmの場合を除き、被覆棒の間隔(ピッチ)を制御することで、実用的な反射減衰量である20dB以上を達成できることがわかる。即ち、芯線径が一定以上であれば、被覆棒の間隔を制御することで、入射電波の被覆棒列−反射板間への閉じ込め効果を最大限として充分な吸収特性を得ることができるが、芯線径が2mmと電波波長に比べて極端に小さい場合には、被覆棒列を透過して反射板で反射する電波が多くなるので、被覆棒の間隔を最適化しても充分な吸収効果が得られないことがわかる。これらの結果から、実用的な吸収特性を達成するには、芯線径を波長の1/20以上とする必要があることがわかった。   From the results of FIGS. 15 and 16, it can be seen that a practical return loss of 20 dB or more can be achieved by controlling the interval (pitch) of the covering rods, except when the core wire diameter is 2 mm. That is, if the core diameter is a certain value or more, by controlling the interval between the covering rods, it is possible to obtain a sufficient absorption characteristic by maximizing the confinement effect of the incident radio wave between the covering rod row and the reflecting plate, When the core wire diameter is 2 mm, which is extremely small compared to the radio wave wavelength, more radio waves are transmitted through the covering rod row and reflected by the reflecting plate. Therefore, even if the interval between the covering rods is optimized, a sufficient absorption effect can be obtained. I can't understand. From these results, it was found that the core wire diameter must be 1/20 or more of the wavelength in order to achieve practical absorption characteristics.

また、被覆棒の間隔(ピッチ)が一定値を上回ると、芯線径を制御しても充分な反射減衰量を達成できないことも分かった。このときの対象波長は約50mmであり、被覆棒の間隔(ピッチ)を対象波長の50mm以下とすれば、その他の条件として芯線径と被覆厚みを最適化することで、十分優れた反射減衰特性が得られる。   It was also found that if the spacing (pitch) between the covering rods exceeds a certain value, a sufficient return loss cannot be achieved even if the core wire diameter is controlled. The target wavelength at this time is about 50 mm. If the interval (pitch) of the coating rods is 50 mm or less of the target wavelength, the core wire diameter and the coating thickness are optimized as other conditions, so that the reflection attenuation characteristics are sufficiently excellent. Is obtained.

前記実施例3と同様にして作製した被覆棒を、アルミ板の上に一定間隔で配置して被覆棒列型電波吸収体Aを作製した。具体的には、長さ500mmで直径8mmの芯線に1.5mmの被覆を施して直径11mmとした被覆棒を、25mmの間隔でアルミ板の上に配置したものを被覆棒列型吸収体Aとした。そして電波をアルミ板に対して斜め方向から入射して、該被覆棒列型電波吸収体Aの斜め入射での電波反射特性を測定した。尚、電波の入射面(入射波と反射波の波数ベクトルを含む面)と被覆棒列を垂直とした。   The covering rods produced in the same manner as in Example 3 were arranged on the aluminum plate at regular intervals to produce a covering rod array type electromagnetic wave absorber A. Specifically, a coated rod array absorber A in which a coating rod having a length of 500 mm and a diameter of 8 mm coated on a core wire having a diameter of 11 mm and disposed on an aluminum plate at an interval of 25 mm is provided. It was. Then, radio waves were incident on the aluminum plate from an oblique direction, and the radio wave reflection characteristics at the oblique incidence of the coated bar array type radio wave absorber A were measured. The incident surface of the radio wave (the surface including the wave number vector of the incident wave and the reflected wave) and the covering rod row were set to be vertical.

電波吸収特性の測定は、具体的に、ネットワークアナライザと送信用及び受信用に誘電体レンズつき円偏波アンテナ2本を用い、各入射角での反射減衰量を基準の金属板からの反射強度との対比により求めた。具体的には、図17に矢印で示す円偏波の方向を被覆棒列に対し45°とした場合の円偏波の反射強度を測定した。   Specifically, the radio wave absorption characteristics are measured using a network analyzer and two circularly polarized antennas with dielectric lenses for transmission and reception, and the return loss at each incident angle is the reflection intensity from the reference metal plate. It was obtained by comparison with. Specifically, the reflection intensity of the circularly polarized wave was measured when the direction of the circularly polarized wave indicated by the arrow in FIG.

その測定結果として、入射角15°での反射減衰スペクトルを図18に、各入射角での反射減衰スペクトルを図19に示す。また5.8GHzでの反射減衰量の入射角依存性を図20に示す。図20中の入射角0°での反射減衰特性は、直線偏波の垂直入射での反射減衰量から推定した。   As a result of the measurement, the reflection attenuation spectrum at an incident angle of 15 ° is shown in FIG. 18, and the reflection attenuation spectrum at each incident angle is shown in FIG. FIG. 20 shows the incident angle dependence of the return loss at 5.8 GHz. The return loss characteristics at an incident angle of 0 ° in FIG. 20 were estimated from the return loss amount at the normal incidence of linearly polarized waves.

これら図18〜20の結果から、本実施例の被覆棒列型電波吸収体は、電波の入射角が0°から60°の範囲で反射減衰量が25dB以上と優れた吸収特性を示すことがわかる。この様に電波の入射角が斜め方向である場合も優れた吸収特性を示すのは、被覆棒の形態が円筒状であるため、垂直入射と同等の電波応答を示し、電波の閉じ込めによる高い吸収特性を確保できたことによると考えられる。   From these results shown in FIGS. 18 to 20, the coated bar array type radio wave absorber of this example shows an excellent absorption characteristic with a return loss of 25 dB or more in the range of the incident angle of the radio wave from 0 ° to 60 °. Recognize. In this way, even when the incident angle of the radio wave is oblique, it exhibits excellent absorption characteristics because the shape of the covering rod is cylindrical, which shows a radio wave response equivalent to normal incidence, and high absorption due to radio wave confinement This is thought to be due to the fact that the characteristics were secured.

前記実施例3と同様にして作製した被覆棒を、アルミ板の上に一定間隔で配置して被覆棒列型電波吸収体Bを作製した。具体的には、直径8mmの芯線に1.5mmの被覆を施して直径11mmとした被覆棒を、25mmの間隔でアルミ板の上に配置し、更に、図21に示す通り同上の被覆棒を90mm間隔で最初に配置した被覆棒列に対して直角に配置した被覆棒列型吸収体Bとした。そして電波をアルミ板に対して斜め方向から入射して、該被覆棒列型電波吸収体Bの斜め入射での電波反射特性を測定した。尚、電波の入射面(入射波と反射波の波数ベクトルを含む面)は、下層の被覆棒列と平行とした。   The covering rods produced in the same manner as in Example 3 were arranged on the aluminum plate at regular intervals to produce a covering rod array type electromagnetic wave absorber B. Specifically, a coating rod having a diameter of 11 mm is applied to a core wire having a diameter of 8 mm by placing a coating rod having a diameter of 11 mm on an aluminum plate at an interval of 25 mm. Further, as shown in FIG. The coated bar array type absorbent body B was disposed at a right angle to the first coated bar array disposed at 90 mm intervals. Then, radio waves were incident on the aluminum plate from an oblique direction, and the radio wave reflection characteristics at the oblique incidence of the covered bar array type radio wave absorber B were measured. The radio wave incident surface (the surface including the wave number vectors of the incident wave and the reflected wave) was parallel to the lower covering rod row.

電波吸収特性の測定は、具体的に、ネットワークアナライザと送信用及び受信用に誘電体レンズつき円偏波アンテナ2本を用い、各入射角での反射減衰量を基準の金属板からの反射強度との比較によって求めた。   Specifically, the radio wave absorption characteristics are measured using a network analyzer and two circularly polarized antennas with dielectric lenses for transmission and reception, and the return loss at each incident angle is the reflection intensity from the reference metal plate. It was calculated by comparison.

その測定結果として、入射角15°での反射減衰スペクトルを図22に示す。また5.8GHzでの反射減衰量の入射角依存性を図23に示す。図23中の入射角0°での反射減衰特性は、直線偏波の垂直入射での反射減衰量から推定した。   As a measurement result, a reflection attenuation spectrum at an incident angle of 15 ° is shown in FIG. Further, FIG. 23 shows the incident angle dependence of the return loss at 5.8 GHz. The reflection attenuation characteristics at an incident angle of 0 ° in FIG. 23 were estimated from the reflection attenuation amount at normal incidence of linearly polarized waves.

これら図22、23の結果から、本実施例の被覆棒列型電波吸収体Bの反射減衰特性は、被覆棒列が1層である前記実施例4の被覆棒列型吸収体Aの性能を大きく上回り、図22から、入射角15°で最大60dBの反射減衰量を示し、周波数5GHzから7GHzの広帯域にわたり20dB以上の反射減衰量を示すことがわかる。また図23から、入射角が0°から60°の範囲で反射減衰量が20dB以上と斜め入射の場合でも優れた吸収特性を示すことがわかる。   From these results of FIGS. 22 and 23, the reflection attenuation characteristics of the coated rod array type electromagnetic wave absorber B of this example are the same as those of the coated rod array type absorber A of Example 4 in which the coated rod array is one layer. FIG. 22 shows a large return loss of 60 dB at an incident angle of 15 °, and a return loss of 20 dB or more over a wide band of frequencies from 5 GHz to 7 GHz. FIG. 23 also shows that the absorption characteristics are excellent even when the incident angle is in the range of 0 ° to 60 ° and the return loss is 20 dB or more and oblique incidence.

この様に被覆棒列を2層重ねることにより、吸収周波数帯域や吸収量などの特性が大きく改善されているが、これは、電波の閉じ込めと内部での多重散乱の効果がより助長されて高い吸収特性が実現されたためと考えられる。   By overlapping two layers of the covering rod row in this way, the characteristics such as the absorption frequency band and the amount of absorption are greatly improved, but this is enhanced by the effect of confinement of radio waves and the effect of multiple scattering inside. This is probably because the absorption characteristics were realized.

前記実施例5と同様に、互いに直交する方向で2層に重ねた被覆棒列型電波吸収体を作製して吸収特性を評価した。具体的には、図24に示す通り直径8mmの芯線に1.5mmの被覆を施して直径11mmとした被覆棒を、対象電波波長である50mmを下回る40mm間隔でアルミ板の上に第1層目として配置し、さらにその上に、同上の被覆棒を40mm間隔で第一層目の被覆棒に対して直角に配置した被覆棒列型吸収体Cを得た。そして電波をアルミ板に対して斜め方向から入射して、該被覆棒列型電波吸収体Cの斜め入射での電波反射特性を測定した。尚、電波の入射面(入射波と反射波の波数ベクトルを含む面)は、下層の被覆棒列と垂直とした。   In the same manner as in Example 5, a coated bar array type radio wave absorber laminated in two layers in directions orthogonal to each other was produced, and the absorption characteristics were evaluated. Specifically, as shown in FIG. 24, a coating rod having a diameter of 11 mm by coating a core wire having a diameter of 8 mm with a diameter of 11 mm is placed on the aluminum plate at an interval of 40 mm below the target radio wave wavelength of 50 mm. A coated bar array type absorber C was obtained in which the above-mentioned coated rods were disposed at right angles to the first layer coated rods at intervals of 40 mm. Then, radio waves were incident on the aluminum plate from an oblique direction, and the radio wave reflection characteristics at the oblique incidence of the coated bar array type radio wave absorber C were measured. The radio wave incident surface (the surface including the wave number vectors of the incident wave and the reflected wave) was perpendicular to the lower covering rod row.

電波吸収特性の測定は、具体的に、ネットワークアナライザと送信用及び受信用に誘電体レンズつき円偏波アンテナ2本を用い、各入射角での反射減衰量を基準の金属板からの反射強度との比較によって求めた。   Specifically, the radio wave absorption characteristics are measured using a network analyzer and two circularly polarized antennas with dielectric lenses for transmission and reception, and the return loss at each incident angle is the reflection intensity from the reference metal plate. It was calculated by comparison.

その測定結果として、入射角15°での反射減衰スペクトルを図25に示す。また5.8GHzでの反射減衰量の入射角依存性を図26に示す。図26中の入射角0°での反射減衰特性は、直線偏波の垂直入射での反射減衰量から推定した。   As a measurement result, the reflection attenuation spectrum at an incident angle of 15 ° is shown in FIG. FIG. 26 shows the incident angle dependence of the return loss at 5.8 GHz. The reflection attenuation characteristics at an incident angle of 0 ° in FIG. 26 were estimated from the reflection attenuation amount at normal incidence of linearly polarized waves.

これら図25、26の結果から、本実施例の被覆棒列型電波吸収体Cの反射減衰特性は、前記被覆棒列型電波吸収体Bと同様に、5.8GHzで斜めに入射した場合でも、入射角が0°から60°の範囲で反射減衰量が20dB以上と斜め入射の場合でも優れた吸収特性を示すことがわかる。   From the results of FIGS. 25 and 26, the reflection attenuation characteristics of the coated bar array type radio wave absorber C of this example are the same as those of the coated bar array type radio wave absorber B even when it is incident obliquely at 5.8 GHz. It can be seen that even in the case where the incident angle is in the range of 0 ° to 60 ° and the return loss is 20 dB or more and oblique incidence, excellent absorption characteristics are exhibited.

また、この様に被覆棒列の間隔を本発明で規定する様に電波波長以下とすれば、電波の閉じ込めと内部での多重散乱の効果による高い電波吸収性能が得られることがわかる。   Further, it can be seen that when the interval between the covering rod rows is set to be equal to or smaller than the radio wave wavelength as defined in the present invention, high radio wave absorption performance can be obtained due to the effect of confinement of radio waves and internal multiple scattering.

前記実施例4の被覆棒列型電波吸収体の被覆棒列の配列を変えたものを用意した。詳細には、被覆棒が図27に示す様にジグザグに配置され、該被覆棒の平均間隔を前記実施例4と同じ25mmとした被覆棒列型吸収体Dを用意した。ここで被覆棒間の間隔は、図28におけるaとbの距離を測定し(a+b)/2を求めたものである。   A coating rod array in which the arrangement of the coating rod array of the coated rod array type wave absorber of Example 4 was changed was prepared. Specifically, a covering rod array type absorber D in which the covering rods are arranged in a zigzag manner as shown in FIG. 27 and the average interval of the covering rods is 25 mm as in Example 4 was prepared. Here, the distance between the covering rods is obtained by measuring the distance between a and b in FIG. 28 and obtaining (a + b) / 2.

そして前記実施例4と同様に、電波をアルミ板に対して斜め方向から入射して、該被覆棒列型電波吸収体Dの斜め入射での電波反射特性を測定した。尚、電波の入射面(入射波と反射波の波数ベクトルを含む面)は、図29に示す被覆棒列の平均的方向に対して垂直とした。   Then, in the same manner as in Example 4, radio waves were incident on the aluminum plate from an oblique direction, and the radio wave reflection characteristics at the oblique incidence of the coated bar array type radio wave absorber D were measured. The incident surface of the radio wave (the surface including the wave number vectors of the incident wave and the reflected wave) was perpendicular to the average direction of the covering rod row shown in FIG.

その測定結果として、入射角15°での反射減衰スペクトルを図30、5.8GHzでの反射減衰量の入射角依存性を図31に示す。尚、図31中の入射角0°での反射減衰特性は直線偏波の垂直入射での反射減衰量から推定した。   As a measurement result, the reflection attenuation spectrum at an incident angle of 15 ° is shown in FIG. 30, and the incident angle dependence of the return loss at 5.8 GHz is shown in FIG. Note that the return loss characteristics at an incident angle of 0 ° in FIG. 31 were estimated from the return loss amount at the normal incidence of linearly polarized waves.

これら図30、31の結果から、本実施例の被覆棒列型電波吸収体Dの様に被覆棒の配置を多少変化させても、被覆棒の平均間隔が本発明の規定範囲内にあれば、反射減衰特性は、前記実施例4の被覆棒列型電波吸収体Aとほぼ同等の特性を示すことがわかる。   From the results of FIGS. 30 and 31, even if the arrangement of the covering rods is slightly changed as in the covering rod array type electromagnetic wave absorber D of this embodiment, the average interval of the covering rods is within the specified range of the present invention. It can be seen that the reflection attenuation characteristics are substantially the same as those of the coated rod array type electromagnetic wave absorber A of the fourth embodiment.

前記実施例4の被覆棒列型電波吸収体Aの反射板を、表面に電波吸収体の被覆された反射板に変えた被覆棒列型吸収体Eを用意した。この反射板の表面に被覆させた電波吸収体は、カーボンブラックをゴム中に50PHR混入させたタイプのもので厚みが2.5mmである。図32にカーボン含有ゴムシート吸収体で被覆した反射板の直線偏波と垂直入射の反射減衰特性を示す。図32から、この吸収板は、5GHzから7GHzの領域で最大10dB程度の反射減衰特性を示すことがわかる。   A coated bar array type absorber E in which the reflecting plate of the coated bar array type radio wave absorber A of Example 4 was changed to a reflecting plate whose surface was coated with the radio wave absorber was prepared. The radio wave absorber coated on the surface of the reflecting plate is a type in which carbon black is mixed with 50 PHR in rubber and has a thickness of 2.5 mm. FIG. 32 shows the reflection attenuation characteristics of the linearly polarized wave and the normal incidence of the reflector coated with the carbon-containing rubber sheet absorber. From FIG. 32, it can be seen that this absorption plate exhibits a reflection attenuation characteristic of about 10 dB at maximum in the region of 5 GHz to 7 GHz.

この吸収板を背面に配した被覆棒型吸収体Eを用いて、前記実施例4と同様に、電波をアルミ板に対して斜め方向から入射して、該被覆棒列型電波吸収体Eの斜め入射での電波反射特性を測定した。尚、電波の入射面(入射波と反射波の波数ベクトルを含む面)と被覆棒列を垂直とした。   Using the coated rod type absorber E with the absorber plate disposed on the back surface, similarly to the fourth embodiment, a radio wave is incident on the aluminum plate from an oblique direction, and the coated rod array type electromagnetic wave absorber E The radio wave reflection characteristics at oblique incidence were measured. The incident surface of the radio wave (the surface including the wave number vector of the incident wave and the reflected wave) and the covering rod row were set to be vertical.

その測定結果として、入射角15°での反射減衰スペクトルを図33に、また5.8GHzでの反射減衰量の入射角依存性を図34に示す。尚、図33中の入射角0°での反射減衰特性は直線偏波の垂直入射での反射減衰量から推定した。   As a result of the measurement, the reflection attenuation spectrum at an incident angle of 15 ° is shown in FIG. 33, and the incident angle dependence of the return loss at 5.8 GHz is shown in FIG. In FIG. 33, the return loss characteristic at an incident angle of 0 ° was estimated from the return loss amount at the normal incidence of linearly polarized waves.

これら図33、34の結果から、背面に配置する反射板にも電波反射減衰性能を付与することで、前記実施例4の様に金属製反射板を用いたときよりも反射減衰量の最大値は増大することがわかる。また、5.8GHzで斜めに入射した場合でも、入射角が0°から60°の範囲で反射減衰量が30dB以上と著しく優れた反射減衰特性を示した。これは、被覆棒列と反射板の間での多重反射において、反射板にも反射減衰特性を付与することで、より一層効果的に電波が吸収されたためと考えられる。   From the results shown in FIGS. 33 and 34, the maximum value of the return loss can be obtained by applying the radio wave reflection attenuation performance to the reflection plate arranged on the back surface as compared with the case of using the metal reflection plate as in the fourth embodiment. It can be seen that increases. In addition, even when incident obliquely at 5.8 GHz, the reflection attenuation characteristic was remarkably excellent with a return loss of 30 dB or more in an incident angle range of 0 ° to 60 °. This is presumably because radio waves were absorbed more effectively by providing reflection attenuation characteristics to the reflection plate in the multiple reflection between the covering rod row and the reflection plate.

被覆棒列と背面の反射板からなる電波吸収体における電波の多重散乱状態を示した模式図である。It is the schematic diagram which showed the multiple scattering state of the electromagnetic wave in the electromagnetic wave absorber which consists of a covering rod row | line | column and a back reflector. 反射板が湾曲している場合の被覆棒の配置を例示した上面模式図である。It is the upper surface schematic diagram which illustrated arrangement | positioning of the covering stick | rod when the reflecting plate is curving. 実施例における電波反射特性の測定方法を模式的に示した上面図である。It is the top view which showed typically the measuring method of the electromagnetic wave reflection characteristic in an Example. 反射減衰量の周波数・ピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が垂直)である。It is a graph (linearly polarized wave, electric field direction and covering rod perpendicular) showing the frequency / pitch dependence of the return loss. 反射減衰量のピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が垂直)である。6 is a graph showing the pitch dependence of return loss (linear polarization, electric field direction and covering rod perpendicular). 反射減衰量の周波数・ピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が平行)である。It is a graph (linear polarization, electric field direction and covering rod are parallel) showing the frequency / pitch dependence of the return loss. 反射減衰量のピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が平行)である。It is a graph (linearly polarized wave, electric field direction and covering rod are parallel) showing the pitch dependence of the return loss. 実施例1における被覆棒の配列を模式的に示す上面図である。4 is a top view schematically showing the arrangement of the covering rods in Example 1. FIG. 実施例1における被覆棒の別の配列を模式的に示す上面図である。6 is a top view schematically showing another arrangement of the covering rods in Example 1. FIG. 反射減衰量の周波数・ピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が垂直)である。It is a graph (linearly polarized wave, electric field direction and covering rod perpendicular) showing the frequency / pitch dependence of the return loss. 反射減衰量のピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が垂直)である。6 is a graph showing the pitch dependence of return loss (linear polarization, electric field direction and covering rod perpendicular). 反射減衰量の周波数・ピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が平行)である。It is a graph (linear polarization, electric field direction and covering rod are parallel) showing the frequency / pitch dependence of the return loss. 反射減衰量のピッチ依存性を示すグラフ(直線偏波,電場方向と被覆棒が平行)である。It is a graph (linearly polarized wave, electric field direction and covering rod are parallel) showing the pitch dependence of the return loss. 一定形状の被覆棒を用いたときの反射減衰量のピッチ依存性を示すグラフである。It is a graph which shows the pitch dependence of the return loss when a fixed-shaped covering rod is used. 反射減衰量の芯線径・ピッチ依存性を示すグラフである。It is a graph which shows the core wire diameter and pitch dependence of a return loss. 反射減衰量の芯線径依存性を示すグラフである。It is a graph which shows the core wire diameter dependence of return loss. 実施例4における被覆棒列と偏波との位置関係を示す側面図である。It is a side view which shows the positional relationship of the covering rod row | line | column in Example 4 and a polarized wave. 実施例4における入射角15°での反射減衰スペクトルを示す。The reflection attenuation spectrum in the incident angle of 15 degrees in Example 4 is shown. 実施例4における各入射角での反射減衰スペクトルを示す。The reflection attenuation spectrum in each incident angle in Example 4 is shown. 実施例4における5.8GHzでの反射減衰量の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the return loss in 5.8 GHz in Example 4. 実施例5における被覆棒の配列を模式的に示す上面図である。FIG. 10 is a top view schematically showing the arrangement of covering rods in Example 5. 実施例5における入射角15°での反射減衰スペクトルを示している。10 shows a reflection attenuation spectrum at an incident angle of 15 ° in Example 5. 実施例5における5.8GHzでの反射減衰量の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the return loss in 5.8 GHz in Example 5. 実施例6における被覆棒列吸収体と電波の入射・反射方向を模式的に示した斜視図である。It is the perspective view which showed typically the covering rod row absorber in Example 6, and the incident / reflection direction of an electromagnetic wave. 実施例6における入射角15°での反射減衰スペクトルを示す。The reflection attenuation spectrum in Example 6 in the incident angle of 15 degrees is shown. 実施例6における5.8GHzでの反射減衰量の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the return loss in 5.8 GHz in Example 6. 実施例7における被覆棒列の配列を示す。The arrangement | sequence of the covering rod row | line | column in Example 7 is shown. 被覆棒間の間隔〔(a+b)/2〕の算出におけるa,bの長さを示す図である。It is a figure which shows the length of a and b in calculation of the space | interval [(a + b) / 2] between covering rods. ジグザグに配置した被覆棒列の平均的方向を示す図である。It is a figure which shows the average direction of the covering rod row | line | column arrange | positioned at a zigzag. 実施例7における入射角15°での反射減衰スペクトルを示す。The reflection attenuation spectrum in Example 7 in the incident angle of 15 degrees is shown. 実施例7における5.8GHzでの反射減衰量の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the return loss in 5.8 GHz in Example 7. 実施例8におけるカーボン含有ゴムシート吸収体の反射減衰特性を示す。The reflection attenuation characteristic of the carbon containing rubber sheet absorber in Example 8 is shown. 実施例8における入射角15°での反射減衰スペクトルを示す。10 shows a reflection attenuation spectrum at an incident angle of 15 ° in Example 8. 実施例8における5.8GHzでの反射減衰量の入射角依存性を示すグラフである。It is a graph which shows the incident angle dependence of the return loss in 5.8 GHz in Example 8.

符号の説明Explanation of symbols

1,14,21 被覆棒
2 反射板
3 電波の伝播パス
11 ネットワークアナライザ
12 ホーンアンテナ
13 誘導体レンズ
15 反射板(アルミ板)
22 背面アルミ板
1,14,21 Cover rod 2 Reflector 3 Radio wave propagation path 11 Network analyzer 12 Horn antenna 13 Derivative lens 15 Reflector (aluminum plate)
22 Rear aluminum plate

Claims (4)

電波吸収材の被覆された円柱状導体芯線(以下「被覆棒」という)で構成された被覆棒列が、導体反射板または電波吸収材の被覆された導体反射板の電波入射側に形成されてなる電波吸収体であって、該円柱状導体芯線の直径が対象電波波長の1/20以上であり、かつ隣り合う該被覆棒同士の間隔(ピッチ)が対象電波波長以下であることを特徴とする被覆棒列型電波吸収体。   A covered bar array composed of a cylindrical conductor core wire (hereinafter referred to as a “cover bar”) coated with a radio wave absorber is formed on the radio wave incident side of the conductor reflector or the conductor reflector coated with the radio wave absorber. The diameter of the cylindrical conductor core wire is 1/20 or more of the target radio wave wavelength, and the interval (pitch) between the adjacent coating rods is equal to or less than the target radio wave wavelength. Coated bar array type electromagnetic wave absorber. 複数の前記被覆棒列が、導体反射板または電波吸収材の被覆された導体反射板の電波入射側に形成されている請求項1に記載の被覆棒列型電波吸収体。   The coated rod array type radio wave absorber according to claim 1, wherein the plurality of coated rod arrays are formed on a radio wave incident side of a conductor reflector or a conductor reflector coated with a radio wave absorber. 前記電波吸収材は、平均厚みが30μm以下の偏平酸化鉄粉末を含むものである請求項1または2に記載の被覆棒列型電波吸収体。   The coated radio wave absorber according to claim 1 or 2, wherein the radio wave absorber contains flat iron oxide powder having an average thickness of 30 µm or less. 前記請求項1〜3のいずれかに記載の被覆棒列型電波吸収体を構成する被覆棒の製造方法であって、前記電波吸収材とバインダーの混合物を押し出し法により前記円柱状導体芯線に被覆することを特徴とする電波吸収体用被覆棒の製造方法。   It is a manufacturing method of the covering rod which comprises the covering rod row | line | column type | formula electromagnetic wave absorber in any one of the said Claims 1-3, Comprising: The mixture of the said electromagnetic wave absorber and a binder is coat | covered by the extrusion method. A method for producing a covering rod for a radio wave absorber, comprising:
JP2004328204A 2004-11-11 2004-11-11 Coated bar array type electromagnetic wave absorber and method for producing coated bar for radio wave absorber Expired - Fee Related JP4284267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328204A JP4284267B2 (en) 2004-11-11 2004-11-11 Coated bar array type electromagnetic wave absorber and method for producing coated bar for radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328204A JP4284267B2 (en) 2004-11-11 2004-11-11 Coated bar array type electromagnetic wave absorber and method for producing coated bar for radio wave absorber

Publications (2)

Publication Number Publication Date
JP2006140298A true JP2006140298A (en) 2006-06-01
JP4284267B2 JP4284267B2 (en) 2009-06-24

Family

ID=36620919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328204A Expired - Fee Related JP4284267B2 (en) 2004-11-11 2004-11-11 Coated bar array type electromagnetic wave absorber and method for producing coated bar for radio wave absorber

Country Status (1)

Country Link
JP (1) JP4284267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316279B2 (en) 2017-03-29 2022-04-26 Fujifilm Corporation Radio wave absorber and manufacturing method of radio wave absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11316279B2 (en) 2017-03-29 2022-04-26 Fujifilm Corporation Radio wave absorber and manufacturing method of radio wave absorber

Also Published As

Publication number Publication date
JP4284267B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR101253688B1 (en) Wave absorber
EP2573864B1 (en) Man-made microstructure and artificial electromagnetic material
CN103490171A (en) Composite wave-absorbing material with wide frequency bands
Jeong et al. Meta-dome for broadband radar absorbing structure
WO2011099183A1 (en) Radiowave absorber and parabolic antenna
WO2016209181A1 (en) A radar absorber
CN114865327A (en) Attenuator composed of resonant ring array
CN112003025A (en) Reflecting surface and compact range measuring system with same
JPH09186484A (en) Wide band electronic waves absorber
JP2003243876A (en) Method of changing characteristics of electric wave absorption material
CN110829036A (en) Ultra-thin ultra-wideband electromagnetic wave absorber
JP4284267B2 (en) Coated bar array type electromagnetic wave absorber and method for producing coated bar for radio wave absorber
Jia et al. Low-pass spatial filter based on 3D metamaterial rasorber with wideband absorption at high frequency
CN117042425B (en) Electromagnetic shielding structure of wave-absorbing frequency selective surface
CN110600885B (en) Frequency selective surface with absorption-reflection-absorption characteristics
US5642118A (en) Apparatus for dissipating electromagnetic waves
CN111355034A (en) Double-passband wave-transmitting structure with wave absorbing function
Hussain et al. Electromagnetic shielding for WLAN using modified-Hilbert fractals
Dewani et al. Transmission bandwidth enhancement using lateral displacement in a thin flexible single layer double sided FSS
Oraizi et al. Design of metamaterial multilayer structures as frequency selective surfaces
JP4259078B2 (en) Building materials
US6567057B1 (en) Hi-Z (photonic band gap isolated) wire
US8164505B2 (en) Structure for reducing scattering of electromagnetic waves
JP4948810B2 (en) Radio wave absorber
CN215579081U (en) Single-layer broadband frequency selective wave absorber with trap wave band

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090311

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees