JP2006138855A - Rotation measuring apparatus and fabricating method - Google Patents

Rotation measuring apparatus and fabricating method Download PDF

Info

Publication number
JP2006138855A
JP2006138855A JP2005327591A JP2005327591A JP2006138855A JP 2006138855 A JP2006138855 A JP 2006138855A JP 2005327591 A JP2005327591 A JP 2005327591A JP 2005327591 A JP2005327591 A JP 2005327591A JP 2006138855 A JP2006138855 A JP 2006138855A
Authority
JP
Japan
Prior art keywords
pair
electrostatic
vibration
substrate
rotation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327591A
Other languages
Japanese (ja)
Inventor
Kai-Cheng Chang
凱程 張
Bunen Ryu
文淵 劉
Ryutoku Chin
龍徳 陳
Kanin Yo
佳任 余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2006138855A publication Critical patent/JP2006138855A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • G01C19/24Suspensions; Bearings using magnetic or electrostatic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • G01P9/04

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation measuring apparatus, achieving stability in manufacturing process, cost reduction, and refinement in structure, and to provide a fabrication method therefor. <P>SOLUTION: The rotation measuring apparatus comprises a pair of vibrating sections on a substrate having electrostatic vibrators, support bodies connected to the substrate, elastic bodies mutually connecting the support bodies and the electrostatic vibrators, and a pair of measurement electrodes placed on the substrate, mutually corresponding to the pair of vibrating sections. When vibration is generated by electrostatic force and rotation is generated due to the influence of the Coriolis force in the pair of vibrating sections, by making the pair of vibrating sections swing vertically to the substrate and the changing the amounts of the electrical capacities between the measuring electrodes and the vibrating sections, the amount of rotation is measured. The fabricating method of the rotation measuring apparatus can be completed, using one mask during the semiconductor manufacturing process, which prevents generation of influence on measurement results, together with the unsymmetrical structures, with errors generated among different masks during the manufacturing process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、単一製造プロセスマスクが形成する対称性振動構造体を利用することを特徴としたジャイロスコープ等の振動式の回転量(角速度・角加速度)計測装置とその作製方法を提供する。更に詳しくは、回転量計測装置は静電力を利用し初期振動を発生させ、コリオリ力の原理により回転量が発生する時に該振動構造体を該初期振動方向及び回転軸方向と垂直に振動させ、回転量(角速度・角加速度)を計測する。   The present invention provides an oscillating rotation amount (angular velocity / angular acceleration) measuring device such as a gyroscope and a method for manufacturing the same, which uses a symmetric vibrating structure formed by a single manufacturing process mask. More specifically, the rotation amount measuring device generates an initial vibration using electrostatic force, and when the rotation amount is generated according to the principle of Coriolis force, the vibration structure is vibrated perpendicularly to the initial vibration direction and the rotation axis direction, Measure the amount of rotation (angular velocity / acceleration).

ジャイロスコープは慣性計測素子であり、主に慣性原理を利用し回転の角速度を計測し、伝統的には主に軍事、航空及び航海の導航用途上に応用されている。伝統的ジャイロスコープの原理は角運動量の保存を利用し達成されるが、伝統的ジャイロスコープは構造が複雑であったり、高速回転時に摩耗が生じる等の問題があり、伝統的ジャイロスコープは使用寿命に制限を受け、高価格且つ大重量等の問題がある。   A gyroscope is an inertial measurement element that mainly measures the angular velocity of rotation using the principle of inertia and is traditionally applied mainly to military, aviation, and navigation navigation applications. The principle of the traditional gyroscope is achieved by using the conservation of angular momentum, but the traditional gyroscope has problems such as complicated structure and wear during high-speed rotation. However, there are problems such as high price and large weight.

民生工業の発展に従い、分野を問わず、例えば:慣性導航、自動車、ロボット、医学工程、電子機器関連消耗品及び電子娯楽製品等に利用される中、軽量、低価格及び長寿命のジャイロスコープの需要が増加している。しかし、近頃の半導体技術の技術発展により、半導体製造工程、機械及び電子技術を合わせたマイクロカレント電流(MENS)製造プロセス技術もますます進歩している。こうしてマイクロ機の技術領域を利用し軽量及び低価格なマイクロジャイロスコープの製造が可能になってきている。   According to the development of consumer industry, regardless of the field, such as: Inertial navigation, automobiles, robots, medical processes, electronic equipment-related consumables and electronic entertainment products, etc. Demand is increasing. However, with recent technological development of semiconductor technology, microcurrent current (MENS) manufacturing process technology that combines semiconductor manufacturing process, mechanical and electronic technology is also progressing more and more. In this way, it has become possible to manufacture a lightweight and low-cost micro gyroscope by utilizing the technical field of the micro machine.

ジャイロスコープは、振動式の回転量(角速度・角加速度)計測器がその主であり、文献中の公開技術も相当に多く、例えば、U.S.Pat.No.4,381,672(特許文献1)に掲載の技術は単独な片持梁構造を通じて回転量を計測している。しかし単一片持梁は振動する時、該片持梁構造の重心が振動の縁故により絶え間なく変化し、ノイズが生じ不正確な測定結果になる。U.S.Pat.No.5,445,025(特許文献2)、及び、U.S.Pat.No.6,201,341(特許文献3)(他にも、特許文献4、5)は対称性振動構造を利用し重心が変化する問題を解決している。
しかし、上述の2件の特許に掲載の技術は、非対称構造により生じる重心変化の問題は解決しているが、構造上マイクロ機製造プロセス技術によってその構造を縮小することが不可能である。
The gyroscope is mainly a vibratory rotation amount (angular velocity / acceleration) measuring instrument, and there are a lot of published technologies in the literature. For example, the technology described in US Pat. No. 4,381,672 (Patent Document 1) The amount of rotation is measured through a single cantilever structure. However, when a single cantilever beam vibrates, the center of gravity of the cantilever structure constantly changes due to the vibration, resulting in noise and inaccurate measurement results. USPat.No.5,445,025 (Patent Document 2) and USPat.No.6,201,341 (Patent Document 3) (In addition, Patent Documents 4 and 5) solve the problem of changing the center of gravity using a symmetrical vibration structure. ing.
However, although the techniques described in the above two patents solve the problem of the change in the center of gravity caused by the asymmetric structure, it is impossible to reduce the structure by the micro-manufacturing process technology.

U.S.P.4,381,672U.S.P.4,381,672 U.S.P.5,445,025U.S.P.5,445,025 U.S.P.6,201,341U.S.P.6,201,341 特開2002-13931JP2002-13931 特開2004-205492JP2004-205492

本発明では、対称性構造の組み合わせを利用し、コリオリ力の原理を利用し回転が生じる時に振動構造体が振動方向に垂直に運動し、回転量の計測を達成する回転量(角速度・角加速度)計測装置とその製作方法を提供することを目的とする。   In the present invention, a combination of symmetrical structures is used, and when the rotation occurs using the principle of Coriolis force, the vibration structure moves perpendicular to the vibration direction, and the rotation amount (angular velocity / angular acceleration) that achieves measurement of the rotation amount is achieved. ) It aims at providing a measuring device and its manufacturing method.

また、本発明では、対称性構造の組み合わせにより生じる共振効果を利用し、素子の消耗電力量を低下させ、静電駆動電圧を下げることが可能な回転量計測装置とその製作方法を提供することを目的とする。
更に、本発明では、回転量計測装置を駆動時、重心の位置が決して変化しない設計を利用し、ノイズの低減を達成する回転量計測装置とその製作方法を提供することを目的とする。
また、本発明では、単一製造プロセスマスクが形成する複数軸の計測構造を利用し、製造プロセスの安定、コストの低下及び構造の精密化を達成する回転量計測装置とその製作方法を提供することを目的とする。
In addition, the present invention provides a rotation amount measuring device and a method for manufacturing the same that can reduce the amount of power consumed by the element and reduce the electrostatic drive voltage by utilizing the resonance effect caused by the combination of symmetrical structures. With the goal.
Furthermore, an object of the present invention is to provide a rotation amount measuring device that achieves noise reduction by using a design in which the position of the center of gravity never changes when the rotation amount measuring device is driven, and a manufacturing method thereof.
In addition, the present invention provides a rotation amount measuring apparatus that uses a multi-axis measuring structure formed by a single manufacturing process mask, achieves stable manufacturing process, lowers costs, and refines the structure, and a manufacturing method thereof. For the purpose.

上述の目的を達成するため、本発明の回転量(角速度・角加速度)計測装置は、特徴として、第一対振動部を設けてなり、基板上に対称に設置し、該振動部は、静電振動体、該基板と相互に連接される支持体で、支持体と該静電振動体を相互に連接すると共に該支持体上に固定し、該静電振動体と該基板の距離を一定にする弾性体、及び該基板上に設置されると共に該第一対振動部と相互に対応する計測電極部より構成される。
また、前記静電振動体は更に複数個の質量体を設けてなることが望ましく、該複数個の質量体は該静電振動体上に適当な間隔で排列され、該静電振動体の慣性運動を増加させる。
前記回転量計測装置は更に導電板体を設けてなることが望ましく、該導電板体は該計測電極部の下方に設置され該振動部と相互に連接される。
前記第一対振動部の二つの静電振動体は電気結合されていることが望ましい。
前記回転量計測装置は更に第二対振動部を設けてなることが望ましく、該第一対振動部と第二対振動部は直交し、該計測電極部は該基板上に設置されると共に該第一対振動部及び第二対振動部と相互に対応して設置される。該第一対振動部の該静電振動体と隣り合う該第二対振動部の該静電振動体の間は片側には相互に交錯するように排列される櫛型電極構造を備えてなる。該第一対振動部及び第二対振動部の二つの静電振動体は電気的に別れて接続される。
In order to achieve the above-mentioned object, the rotation amount (angular velocity / acceleration) measuring apparatus of the present invention is characterized by providing a first pair of vibration parts, which are installed symmetrically on a substrate, and the vibration parts are static. An electro-vibration body, a support body connected to the substrate, the support body and the electrostatic vibration body are connected to each other and fixed on the support body, and the distance between the electrostatic vibration body and the substrate is constant. And a measurement electrode unit that is installed on the substrate and corresponds to the first pair of vibration units.
Preferably, the electrostatic vibrator is further provided with a plurality of mass bodies, and the plurality of mass bodies are arranged on the electrostatic vibrator at an appropriate interval. Increase exercise.
The rotation amount measuring device preferably further includes a conductive plate, and the conductive plate is installed below the measurement electrode unit and is connected to the vibration unit.
It is desirable that the two electrostatic vibrators of the first pair of vibration parts are electrically coupled.
The rotation amount measuring device preferably further includes a second pair of vibration parts, the first pair of vibration parts and the second pair of vibration parts are orthogonal to each other, and the measurement electrode part is installed on the substrate and the The first pair of vibration parts and the second pair of vibration parts are installed corresponding to each other. Between the electrostatic vibrators of the second pair of vibrating parts adjacent to the electrostatic vibrators of the first pair of vibrators, a comb electrode structure is arranged on one side so as to cross each other. . The two electrostatic vibrating bodies of the first pair of vibration parts and the second pair of vibration parts are electrically separated and connected.

すなわち、請求項1の発明は、第一対振動部、静電振動体、支持体、弾性体、計測電極部から構成され、前記第一対振動部は基板上に対称に設置されてなり、該振動部は静電振動体を設けてなり、前記支持体は前記基板と相互に連接されてなり、前記弾性体は前記静電振動体と相互に連接されると共に該支持体上に固定され、該静電振動体に該基板と一定の間隔を持たせてなり、前記計測電極部は該基板上に設置されると共に該第一対振動部と相互に対応されてなることを特徴とした回転量計測装置である。
請求項2の発明は、前記静電振動体は更に複数の質量体を設けてなり、該複数の質量体は該静電振動体上に適当な間隔で配列され、該静電振動体の慣性運動を増加させることを特徴とした請求項1に記載の回転量計測装置である。
請求項3の発明は、導電板体を設けてなり、該導電板体は前記基板と前記計測電極部との間に設置されると共に前記該振動部と相互に連接されてなることを特徴とした、請求項1に記載の回転量計測装置である。
請求項4の発明は、第二対振動部を設けてなり、前記第一対振動部は第二対振動部と直交し、前記計測電極部は前記基板上に設置されると共に該第一対振動部及び該第二対振動部と相互に対応されてなることを特徴とした請求項1に記載の回転量計測装置である。
請求項5の発明は、前記第一対振動部の前記静電振動体と相互に隣接する前記第二対振動部の静電振動体との間に櫛型電極構造が相互に交錯して配列されて設けらることを特徴とした請求項4に記載の回転量計測装置である。
That is, the invention of claim 1 is composed of a first pair of vibration parts, an electrostatic vibration body, a support body, an elastic body, and a measurement electrode part, and the first pair of vibration parts are symmetrically installed on a substrate, The vibrating portion includes an electrostatic vibrating body, the support body is connected to the substrate, and the elastic body is connected to the electrostatic vibration body and fixed on the support body. The electrostatic vibrating body has a certain distance from the substrate, and the measurement electrode unit is installed on the substrate and is mutually associated with the first pair of vibrating units. This is a rotation amount measuring device.
According to a second aspect of the present invention, the electrostatic vibrator is further provided with a plurality of mass bodies, the plurality of mass bodies are arranged on the electrostatic vibrator at appropriate intervals, and the inertia of the electrostatic vibrator is provided. The rotation amount measuring device according to claim 1, wherein the movement is increased.
The invention according to claim 3 is characterized in that a conductive plate is provided, and the conductive plate is installed between the substrate and the measurement electrode part and is connected to the vibration part. The rotation amount measuring apparatus according to claim 1.
According to a fourth aspect of the present invention, the second pair of vibration parts is provided, the first pair of vibration parts is orthogonal to the second pair of vibration parts, and the measurement electrode part is installed on the substrate and the first pair of vibration parts. The rotation amount measuring apparatus according to claim 1, wherein the rotation amount measuring apparatus corresponds to the vibrating portion and the second pair of vibrating portions.
According to a fifth aspect of the present invention, an interdigitated electrode structure is arranged between the electrostatic vibrators of the first pair of vibrators and the electrostatic vibrators of the second pair of vibrators adjacent to each other. The rotation amount measuring device according to claim 4, wherein the rotation amount measuring device is provided.

上述の目的を達成する為、本発明は以下の工程・段階を設けてなる。まず、基板上に第一導体層を形成し、第一導体層上に絶縁層を形成、続いて第一導体層上の一部の絶縁層を取り除き凹溝を形成し、該絶縁層上に犠牲層を形成し該凹溝を覆蓋し、該凹溝の覆蓋する一部の犠牲層を取り除き接触孔を形成し、該犠牲層上に第二導体層を形成し接触孔を覆蓋し、第二導体層の一部を取り除き、少なくとも一対の静電振動構造を形成し、最後に該犠牲層を取り除く。
前記の少なくとも一対の静電振動構造上には、更に慣性陳列層が形成されることが望ましい。
前記基板と該第一導体層との間に、更に第三導体層が形成され、該第三導体層は該第二導体層と相互に連接されることが望ましい。
In order to achieve the above-mentioned object, the present invention includes the following processes and steps. First, a first conductor layer is formed on a substrate, an insulating layer is formed on the first conductor layer, and then a part of the insulating layer on the first conductor layer is removed to form a concave groove on the insulating layer. A sacrificial layer is formed to cover the groove, a part of the sacrificial layer covering the groove is removed to form a contact hole, a second conductor layer is formed on the sacrificial layer to cover the contact hole, A part of the two-conductor layer is removed to form at least a pair of electrostatic vibration structures, and finally the sacrificial layer is removed.
It is desirable that an inertial display layer is further formed on the at least one pair of electrostatic vibration structures.
It is desirable that a third conductor layer is further formed between the substrate and the first conductor layer, and the third conductor layer is connected to the second conductor layer.

すなわち、請求項6の発明は、基板上に第一導体層を形成し、該第一導体層上に絶縁層を形成し、第一導体層上の絶縁層の一部を取り除いて凹溝を形成し、該絶縁層上に犠牲層を形成し該凹溝を覆蓋し、凹溝を覆蓋する犠牲層の一部を取り除いて接触孔を形成し、犠牲層上に第二導体層を形成し接触孔を覆蓋し、蓋第二導体層の一部を取り除いて一対の静電振動構造を形成し、犠牲層を除去する段階にて構成される回転量計測装置の製作方法である。
請求項7の発明は、前記一対の静電振動構造上に更に慣性陳列層を形成する段階を含めた、請求項6に記載の回転量計測装置の製作方法である。
請求項8の発明は、前記基板と第一導体層と間に更に第二導体層と相互に連接される第三導体層を形成する段階を含めた、請求項6に記載の回転量計測装置の製作方法である。
That is, in the invention of claim 6, a first conductor layer is formed on a substrate, an insulating layer is formed on the first conductor layer, a part of the insulating layer on the first conductor layer is removed, and a concave groove is formed. Forming a sacrificial layer on the insulating layer, covering the groove, removing a part of the sacrificial layer covering the groove, forming a contact hole, and forming a second conductor layer on the sacrificial layer. This is a method of manufacturing a rotation amount measuring device configured to cover the contact hole, remove a part of the lid second conductor layer to form a pair of electrostatic vibration structures, and remove the sacrificial layer.
The invention according to claim 7 is the method of manufacturing the rotation amount measuring device according to claim 6, further comprising the step of forming an inertial display layer on the pair of electrostatic vibration structures.
The invention according to claim 8 includes the step of forming a third conductor layer, which is further connected to the second conductor layer, between the substrate and the first conductor layer. This is the production method.

本発明によれば、対称性構造の組み合わせにより生じる共振効果を利用し、素子の消耗電力量を低下させ、静電駆動電圧を下げ、回転量計測装置を駆動する時に、重心の位置が決して変化しない設計を利用し、ノイズの低減を達成し、単一製造プロセスマスクが形成する複数軸の計測構造を利用し、製造プロセスの安定、コストの低下及び構造の精密化を達成することができる。   According to the present invention, the position of the center of gravity never changes when using the resonance effect caused by the combination of symmetrical structures, reducing the power consumption of the element, lowering the electrostatic drive voltage, and driving the rotation amount measuring device. A design that does not, can achieve noise reduction, and can utilize a multi-axis metrology structure formed by a single manufacturing process mask to achieve manufacturing process stability, cost reduction, and structure refinement.

本発明は、一種のジャイロスコープである振動式の慣性計測素子に関するものであり、本発明の回転量計測装置の特徴は、基板上に一対の振動部を設けてなり、該振動部は静電振動体、該基板と連接される支持体、支持体と該静電振動体を相互に連接すると共に支持体上に固定する弾性体、及び基板上に設置され該一対の振動部と相互に対応してなる計測電極部より構成されるが、該一対の振動部は静電力により振動を生じ、コリオリ力の影響により回転が生じるとき、該一対の振動部を基板に垂直に揺れ動かし、該計測電極部と該静電振動体の電気容量の変化量を測定することにより該回転量が計測される。
また、本発明の回転量計測装置の製作方法は、一つの半導体製造プロセスマスクで完成することができ、製造プロセス中に異なるマスクの間に生じる誤差のある非対称な構造を合わせて計測結果に影響が生じること防ぐことである。
以下、本発明の好適な回転量計(角速度・角加速度)測装置の実施例を、図面を参照して説明する。
図1に示すように、本発明の回転量計測装置の実施例の説明図である。該回転量(角速度・角加速度)計測装置2は、基板20上の第一対振動部21a、21b、第二対振動部22a、22b、計測電極部23、帰還電極部24より形成される。
そして、該第一対振動部21a、21bは該第二対振動部22a、22bと同構造であり、該第一対振動部21a、21bは、該第二対振動部22a、22bと直交する。
The present invention relates to a vibration type inertial measurement element which is a kind of gyroscope, and the feature of the rotation amount measuring device of the present invention is that a pair of vibration parts are provided on a substrate, and the vibration part is electrostatically A vibrating body, a support body connected to the substrate, an elastic body that connects the support body and the electrostatic vibration body to each other and is fixed on the support body, and a pair of vibration parts that are installed on the substrate and correspond to each other The pair of vibrating parts is vibrated by an electrostatic force, and when the rotation is caused by the influence of Coriolis force, the pair of vibrating parts are swung vertically with respect to the substrate, and the measurement is performed. The amount of rotation is measured by measuring the amount of change in the capacitance between the electrode section and the electrostatic vibrator.
In addition, the manufacturing method of the rotation amount measuring device of the present invention can be completed with one semiconductor manufacturing process mask, and affects the measurement result by combining an asymmetric structure with an error generated between different masks during the manufacturing process. Is to prevent the occurrence of
Hereinafter, preferred embodiments of a rotation meter (angular velocity / angular acceleration) measuring device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, it is explanatory drawing of the Example of the rotation amount measuring apparatus of this invention. The rotation amount (angular velocity / angular acceleration) measuring device 2 is formed of a first pair of vibration portions 21 a and 21 b, a second pair of vibration portions 22 a and 22 b, a measurement electrode portion 23, and a feedback electrode portion 24 on the substrate 20.
The first pair of vibrating portions 21a and 21b have the same structure as the second pair of vibrating portions 22a and 22b, and the first pair of vibrating portions 21a and 21b are orthogonal to the second pair of vibrating portions 22a and 22b. .

図2に示すように、該図は本発明の回転量(角速度・角加速度)計測装置振動部の説明図であるが、該第一対振動部21a、21bの振動部21aにより構成を説明する。
該振動部21aは静電振動体211、支持体212、及び弾性体213を備えてなる。該静電振動体211は導体にてなる。該支持体212は、該静電振動体211の重心に設置されると共に該基板20と相互に連接される。該弾性体213は該静電振動体211と相互に連接すると共に該支持体212上に固定され、該静電振動体211を該基板20上で宙に浮かせると共に該基板20と相互の距離を一定にする。該弾性体213は、該静電振動体211が第一方向6に沿って振動を繰り返し、慣性運動を発生させると共に、該静電振動体211が第一方向6に直交する第二方向9に沿った振動をすることを防ぐことを目的としている。
As shown in FIG. 2, this figure is an explanatory view of the vibration amount measuring device of the rotation amount (angular velocity / angular acceleration) measuring device of the present invention. .
The vibration part 21 a includes an electrostatic vibration body 211, a support body 212, and an elastic body 213. The electrostatic vibrator 211 is made of a conductor. The support 212 is installed at the center of gravity of the electrostatic vibrator 211 and is connected to the substrate 20. The elastic body 213 is connected to the electrostatic vibrating body 211 and fixed on the support body 212, and the electrostatic vibrating body 211 is suspended on the substrate 20 and the mutual distance from the substrate 20 is increased. Keep it constant. The elastic body 213 is configured such that the electrostatic vibrating body 211 repeats vibration along the first direction 6 to generate an inertial motion, and the electrostatic vibrating body 211 is moved in a second direction 9 orthogonal to the first direction 6. The purpose is to prevent vibration along the line.

必要とされる振動方向及び支持構造の強度を考慮すると、本実施例中では、該弾性体213は連接する該竿状体2130及び4つの長竿状体2131〜2134を設けてなるが、これに限るものではない。前記4つの長竿状体2131〜2134の同一端は該竿状体2130と連接されが、外側の二つの長竿状体2131、2132の他端は該静電振動体211と相互に連接され、内部の二つの長竿状体2133、2134の他端は該支持体212と相互に連接される。
該長竿状体の縦横比構造は、該静電振動体211の第一方向6に沿った振動を制御可能であり、支持構造の強度が配慮されている。本実施例中、該静電振動体211は該弾性体213と該支持体212の連接箇所及び該弾性体213と該静電振動体211の連接箇所を結ぶ線を中心線とし対称に構成する。
In consideration of the required vibration direction and the strength of the support structure, in this embodiment, the elastic body 213 is provided with the hook-like body 2130 and four long rod-like bodies 2131 to 2134 that are connected to each other. It is not limited. The same ends of the four long rods 2131 to 2134 are connected to the rod 2130, and the other ends of the two outer long rods 2131 and 2132 are connected to the electrostatic vibrator 211, The other ends of the two long rod-like bodies 2133 and 2134 are connected to the support 212.
The aspect ratio structure of the long rod-shaped body can control the vibration along the first direction 6 of the electrostatic vibrating body 211, and the strength of the support structure is taken into consideration. In the present embodiment, the electrostatic vibrating body 211 is configured symmetrically with a line connecting the connecting portion between the elastic body 213 and the support body 212 and a connecting portion between the elastic body 213 and the electrostatic vibrating body 211 as a center line. .

該静電振動体211の慣性を増加させる為、該静電振動体211上には複数個の質量体214が設けてなり、よって該静電振動体211の慣性質量は増加される。該質量体214は、該静電振動体211上に適当な間隔により配列され、該質量体間が相互に間隔を取る目的は、2種の異なる材料(静電振動体、質量体)が熱せられ、熱膨張係数の違いにより該静電振動体が変形してしまうことを避けることである。
該質量体214は導体材料と半導体材料の内一つを選択可能であり、本実施例中は、該複数個の質量体214の材料は金属類内の金(Au)を選択している。この外、該静電振動体211の側面には、帰還櫛型体215を設けてなる。
In order to increase the inertia of the electrostatic vibrating body 211, a plurality of mass bodies 214 are provided on the electrostatic vibrating body 211, so that the inertial mass of the electrostatic vibrating body 211 is increased. The mass bodies 214 are arranged on the electrostatic vibrator 211 at an appropriate interval, and the purpose of spacing the mass bodies from each other is to heat two different materials (electrostatic vibrator, mass body). In other words, the electrostatic vibrator is prevented from being deformed due to a difference in thermal expansion coefficient.
The mass body 214 can select one of a conductor material and a semiconductor material. In this embodiment, the material of the plurality of mass bodies 214 is gold (Au) in metals. In addition, a feedback comb body 215 is provided on the side surface of the electrostatic vibrator 211.

図1に示すように、静電力を強化し振動の効果を増加させる為、該第一対振動部21a、21b及び第二対振動部22a、22bは、相互に隣接する部分に相互に交錯するよう排列された櫛型電極構造216を設けてなる。該計測電極部23は基板20上に設置されると共に、該第一対振動部21a、21b及び該第二対振動部22a、22bと相互に対応する。該帰還電極部24は該静電振動体211の片側に位置し、該帰還電極部24は該静電振動体211、211’、221、221’の駆動を利用し振動時の閉回路を制御し、該静電振動体211、211’221、221’の振動を更に安定させる。該帰還電極部24と該静電振動体211、211’221、221’の間は、櫛形電極構造241と該帰還櫛型体215、215’、225、225’の交錯する配列を備えてなる。   As shown in FIG. 1, in order to enhance electrostatic force and increase the effect of vibration, the first pair of vibrating portions 21a and 21b and the second pair of vibrating portions 22a and 22b cross each other in adjacent portions. A comb-shaped electrode structure 216 arranged in such a manner is provided. The measurement electrode unit 23 is installed on the substrate 20 and corresponds to the first pair of vibration units 21a and 21b and the second pair of vibration units 22a and 22b. The feedback electrode unit 24 is located on one side of the electrostatic vibrator 211, and the feedback electrode unit 24 controls the closed circuit during vibration using the driving of the electrostatic vibrators 211, 211 ′, 221, and 221 ′. Then, the vibrations of the electrostatic vibrators 211, 211′221, 221 ′ are further stabilized. Between the feedback electrode section 24 and the electrostatic vibrators 211, 211′221, 221 ′, an interlaced arrangement of the comb electrode structure 241 and the feedback comb bodies 215, 215 ′, 225, 225 ′ is provided. .

該第一対振動部21a、21b及び第二対振動部22a、22bは駆動電圧を受けて駆動した後、導線及び基板間に生じる寄生容量により発生する寄生効果(parasitic effect)が、該第一対振動部21a、21b及び第二対振動部22a、22bと該基板20とに異符号電荷が相互に吸引される現象を発生させ、該振動部が該基板20に対し垂直方向に振動(この振動は回転運動により生じるのではなく、コリオリ力が作り出す振動量により生じる)し、計測結果に影響が生じることを防ぐ為、各静電振動体211の下方に更に誘電板体を連接させてなり、該第一対振動部及び第二対振動部21a、21b、22a、22bと該基板20とを隔絶している。
図2は振動部21aを例とし、該静電振動体は該導電板体25に連接されることを説明しているが、図2の該導電板体は、図中に示されるように領域形状に制限するものではない。該第一対振動部21a、21b及び該第二対振動部22a、22bを駆動し易くする為、該振動部21aは振動部21bと電気的に連接され、該振動部22aは振動部22bと電気的に連接される。
After the first pair of vibrating portions 21a and 21b and the second pair of vibrating portions 22a and 22b are driven by receiving a driving voltage, the parasitic effect generated by the parasitic capacitance generated between the conductor and the substrate is the first effect. A phenomenon in which different sign charges are mutually attracted to the substrate 20 by causing the vibration parts 21a and 21b and the second vibration parts 22a and 22b and the substrate 20 to vibrate, the vibration part vibrates in a direction perpendicular to the substrate 20 (this To prevent the vibration from being generated by the amount of vibration generated by the Coriolis force and not from the rotational movement), a dielectric plate is further connected below each electrostatic vibrator 211. The substrate 20 is isolated from the first and second vibrating portions 21a, 21b, 22a, 22b.
FIG. 2 illustrates the vibration part 21a as an example and explains that the electrostatic vibration member is connected to the conductive plate 25. However, the conductive plate in FIG. The shape is not limited. In order to facilitate driving of the first pair of vibration parts 21a and 21b and the second pair of vibration parts 22a and 22b, the vibration part 21a is electrically connected to the vibration part 21b, and the vibration part 22a is connected to the vibration part 22b. Electrically connected.

続いて、本発明の実施例の回転量(角速度・角加速度)計測装置を製造する方法は、図3から図10に示すように、下記の工程・段階を設けてなる。
まず、基板311(20)上に第一導体層312を形成する(図3参照)。次に、第一導体層312上に絶縁層321を形成、続いて第一導体層312上の一部の絶縁層321を取り除き凹溝331を形成する(図4参照)。そして、該絶縁層321上に犠牲層341を形成し該凹溝331を覆蓋する(図5参照)。
該凹溝の覆蓋する一部の犠牲層341を取り除き接触孔351を形成する(図6参照)。
次に、該犠牲層341上に第二導体層361を形成し接触孔351を覆蓋する(図7参照)。第二導体層361の一部を取り除き、少なくとも一対の静電振動構造371(21a、21b、25)を形成する(図8参照)。静電振動構造371上に少なくとも一つの慣性陳列層381(214)を形成する(図9参照)。最後に、該犠牲層341を取り除く(図10参照)。こうして、静電振動構造371や慣性陳列層381を該基板311上で宙に浮かせる強固な構造を簡単に製造することができ、かつ、熱膨張係数の違いにより該静電振動体が変形してしまうことを避けることができる。また、製造プロセスの安定、コストの低下及び精密な構造を的確に製造することができる。
Subsequently, as shown in FIGS. 3 to 10, the method for manufacturing the rotation amount (angular velocity / acceleration) measuring device of the embodiment of the present invention includes the following steps and steps.
First, the first conductor layer 312 is formed on the substrate 311 (20) (see FIG. 3). Next, an insulating layer 321 is formed on the first conductor layer 312, and then a part of the insulating layer 321 on the first conductor layer 312 is removed to form a concave groove 331 (see FIG. 4). Then, a sacrificial layer 341 is formed on the insulating layer 321 and the concave groove 331 is covered (see FIG. 5).
Part of the sacrificial layer 341 covering the concave groove is removed to form a contact hole 351 (see FIG. 6).
Next, a second conductor layer 361 is formed on the sacrificial layer 341, and the contact hole 351 is covered (see FIG. 7). Part of the second conductor layer 361 is removed to form at least a pair of electrostatic vibration structures 371 (21a, 21b, 25) (see FIG. 8). At least one inertial display layer 381 (214) is formed on the electrostatic vibration structure 371 (see FIG. 9). Finally, the sacrificial layer 341 is removed (see FIG. 10). In this way, a strong structure in which the electrostatic vibration structure 371 and the inertial display layer 381 are suspended in the air on the substrate 311 can be easily manufactured, and the electrostatic vibration body is deformed due to a difference in thermal expansion coefficient. Can be avoided. In addition, it is possible to accurately manufacture a stable manufacturing process, a reduction in cost, and a precise structure.

次に、本発明の実施例において、導電板体を設けてなることにより寄生容量の問題を解決した回転量(角速度・角加速度)計測装置の製造方法を説明する。
図11〜図19は、本発明の実施例の制作段階のフロー説明図である。
まず、基板40(20)上に第三導体層41を形成し、絶縁層42で覆蓋する(図11参照)。続いて、絶縁層42上に第一導体層43を形成する(図12参照)。第一導体層43上に絶縁層44で覆蓋し、該絶縁層44上方一部の絶縁層材料を取り除き凹溝441を形成する(図13参照)。該絶縁層44上に犠牲層45を形成し該凹溝441を覆蓋する(図14参照)。該凹溝441を覆蓋する犠牲層の一部を取り除き、該第三導体層41の一部を露出させ、接触空洞(孔)451を形成する(図15参照)。
続いて、該犠牲層45上に第二導体層46を形成し該接触空洞(孔)451を覆蓋し、該第二導体層46と該第三導体層41を相互に連接させる(図16参照)。該第二導体層46の一部分をエッチングして、静電振動構造48(21a、21b、25)を形成する(図17、図18参照)。更に該静電振動構造48上に少なくとも一つの上部に凸部を有する慣性陳列層47(214)を形成する(図18参照)。最後は、該犠牲層45を取り除き、該静電振動構造48を基板40上に浮かせる強固な構造(図19)を簡単に製造することができ、かつ、熱膨張係数の違いにより該静電振動体が変形してしまうことを避けることができる。製造プロセスの安定、コストの低下及び精密な構造を的確に製造することができる。
Next, in the embodiment of the present invention, a method for manufacturing a rotation amount (angular velocity / acceleration) measuring device that solves the problem of parasitic capacitance by providing a conductive plate will be described.
FIGS. 11 to 19 are flowcharts for explaining the production stage of the embodiment of the present invention.
First, the third conductor layer 41 is formed on the substrate 40 (20) and covered with the insulating layer 42 (see FIG. 11). Subsequently, the first conductor layer 43 is formed on the insulating layer 42 (see FIG. 12). The first conductor layer 43 is covered with an insulating layer 44, and a part of the insulating layer material above the insulating layer 44 is removed to form a concave groove 441 (see FIG. 13). A sacrificial layer 45 is formed on the insulating layer 44, and the concave groove 441 is covered (see FIG. 14). A part of the sacrificial layer covering the concave groove 441 is removed, and a part of the third conductor layer 41 is exposed to form a contact cavity (hole) 451 (see FIG. 15).
Subsequently, a second conductor layer 46 is formed on the sacrificial layer 45, the contact cavity (hole) 451 is covered, and the second conductor layer 46 and the third conductor layer 41 are connected to each other (see FIG. 16). ). A portion of the second conductor layer 46 is etched to form the electrostatic vibration structure 48 (21a, 21b, 25) (see FIGS. 17 and 18). Further, an inertial display layer 47 (214) having a protrusion on at least one upper portion is formed on the electrostatic vibration structure 48 (see FIG. 18). Finally, the sacrificial layer 45 is removed, and a strong structure (FIG. 19) for floating the electrostatic vibration structure 48 on the substrate 40 can be easily manufactured. The body can be prevented from being deformed. It is possible to accurately manufacture a stable manufacturing process, cost reduction, and a precise structure.

なお、前記の静電振動構造371、48は、図1において、第一対振動部21a,21bが正電荷を備え、第二対振動部22a、22bが負電荷を備える時、該振動部21aは振動部22aとの間に静電吸引力が生じ、該振動部21bとの間に静電吸引力が生じる。また、図2における静電振動構造371、48は、帰還櫛型体215 215’と 静電櫛型体216を含めた静電振動体211、211’の六角形の部分である。
本実施例中、該犠牲層45は光学用合成石英ガラス材料を選択してなり、該絶縁層42、44は一酸化ケイ素材料を選択している。該慣性陳列層47は導体材料及び半導体材料のどちらか一つを選択可能であり、本実施例では金(Au)を選択している。
The electrostatic vibration structures 371 and 48 in FIG. 1 are shown in FIG. 1 when the first pair of vibration portions 21a and 21b have a positive charge and the second pair of vibration portions 22a and 22b have a negative charge. Generates an electrostatic attraction force between the vibrating portion 22a and an electrostatic attraction force between the vibrating portion 21b. Further, the electrostatic vibration structures 371 and 48 in FIG. 2 are hexagonal portions of the electrostatic vibration bodies 211 and 211 ′ including the feedback comb body 215 215 ′ and the electrostatic comb body 216.
In this embodiment, the sacrificial layer 45 is made of an optical synthetic quartz glass material, and the insulating layers 42 and 44 are made of a silicon monoxide material. The inertial display layer 47 can select one of a conductor material and a semiconductor material, and gold (Au) is selected in this embodiment.

続いて、本発明の実施例の作動(運用方式)を説明する。
図20に示すように、該回転量計測装置2は二つの軸の回転量を計測でき、本実施例中はX軸とY軸の回転量をΩxとΩyとする。該第一対振動部21a、21bは正電荷を備えてなり、第二対振動部22a、22bは負電荷を備えてなる時、該振動部21aは振動部22aとの間に静電吸引力が生じ、該振動部21bは振動部22bとの間に静電吸引力が生じる。反対に該第一振動部21a、21bが正電荷を備えてなり、第二対振動部22a、22bも正電荷を備えてなる場合は、該振動部21aは該振動部22aと静電反発力が生じ、該振動部21bは振動部22bと間に静電反発力が生じる。
Next, the operation (operation method) of the embodiment of the present invention will be described.
As shown in FIG. 20, the rotation amount measuring device 2 can measure the rotation amounts of the two axes, and in this embodiment, the rotation amounts of the X axis and the Y axis are Ωx and Ωy. When the first pair of vibrating portions 21a and 21b have a positive charge and the second pair of vibrating portions 22a and 22b have a negative charge, the vibrating portion 21a has an electrostatic attraction force between the vibrating portion 22a. And an electrostatic attraction force is generated between the vibrating portion 21b and the vibrating portion 22b. On the other hand, when the first vibrating portions 21a and 21b have a positive charge and the second pair of vibrating portions 22a and 22b also have a positive charge, the vibrating portion 21a and the electrostatic repulsive force And an electrostatic repulsive force is generated between the vibrating portion 21b and the vibrating portion 22b.

上述の原則に基づいて、駆動回路部27は交流電場を該第一対振動部へ提供し、又直流電場を第二対振動部へ提供することにより、該第一対振動部21a、21bと第二対振動部22a、22bが相互に吸引及び反発する静電力5を発生させる。該静電力5はX軸及びY軸上の変位を備えてなる。該弾性体213の構造により、該静電振動体211、211’、221、221’は該基板に沿って平行に第一方向6へ振動する。振動周波数を制御し良好な共振効果を発生させる為、本発明は帰還制御回路8を制御し該回帰電極部24へ連接し、該回帰電力部24が該静電振動体211、211’の振動形態を計測し、該帰還制御回路8へ帰還する。本実施例中の該振動部構造は全て等しく、同等な振動周波数である為、共振効果を発生することができ、駆動静電力の電圧を低減させる。又、振動構造体が再駆動時にその重心位置が変化することがなく、不要なノイズを防ぎ、バックエンド信号を処理する時の信号を安定させる。   Based on the above-described principle, the drive circuit unit 27 provides an alternating electric field to the first pair of vibrating units, and provides a direct current electric field to the second pair of vibrating units, whereby the first pair of vibrating units 21a, 21b and The second pair of vibrating portions 22a and 22b generates an electrostatic force 5 that attracts and repels each other. The electrostatic force 5 includes displacements on the X axis and the Y axis. Due to the structure of the elastic body 213, the electrostatic vibrators 211, 211 ′, 221, 221 ′ vibrate in the first direction 6 in parallel along the substrate. In order to control the vibration frequency and generate a good resonance effect, the present invention controls the feedback control circuit 8 to be connected to the return electrode unit 24, and the return power unit 24 vibrates the electrostatic vibrators 211 and 211 ′. The form is measured and returned to the feedback control circuit 8. Since all the vibration part structures in the present embodiment are equal and have the same vibration frequency, a resonance effect can be generated, and the voltage of the driving electrostatic force is reduced. Further, the center of gravity position does not change when the vibrating structure is re-driven, unnecessary noise is prevented, and the signal when processing the back-end signal is stabilized.

ここで、転向力Fは、(数式1)

Figure 2006138855
にて表され、
(記号1)
Figure 2006138855
は慣性座標系統の速度を表し、
(記号2)
Figure 2006138855
は角速度の測定値を表す。
該第一対振動部21a、21b及び該第二対振動部22a、22bは静電力が生む
振動によって速度(記号1)
Figure 2006138855
が提供され、このように、該計測装置2は角速度の影響を受ける時に転向力を生じるのである。
図21は、本発明の実施例の回転量(角速度・角加速度)計測装置がX軸の回転量を受けた時に振動部の該第一対振動部が受ける転向力を示した図である。
該第一対振動部21a、21b及び第二対振動部22a、22b静電力を受けて駆動し振動している状態下で、該計測装置2がX軸方向に回転する角速度の影響を受ける時、該第一対振動部21a、21bは基板20に垂直に揺れ動き、該第一対振動部21a、21bが揺れ動くことにより、該第一対振動部21a、21bと該計測電極部23の距離が変化し、該第一対振動部21a、21bと該計測電極部23の間の電気容量に変化が生じ、この時、該計測回路部26を通して電気容量の変化量ΔC1、ΔC2を測定でき、回路信号を通じて回転量(角速度・角加速度)の大きさへ反映することができる。 Here, the turning force F is given by (Formula 1)
Figure 2006138855
Represented by
(Symbol 1)
Figure 2006138855
Represents the velocity of the inertial coordinate system,
(Symbol 2)
Figure 2006138855
Represents the measured value of angular velocity.
The first pair of vibrating portions 21a and 21b and the second pair of vibrating portions 22a and 22b are driven at speed (symbol 1) by vibration generated by electrostatic force.
Figure 2006138855
Thus, the measuring device 2 generates a turning force when affected by the angular velocity.
FIG. 21 is a diagram illustrating the turning force received by the first vibration portion of the vibration portion when the rotation amount (angular velocity / angular acceleration) measuring apparatus according to the embodiment of the present invention receives the rotation amount of the X axis.
When the measuring device 2 is affected by the angular velocity of rotation in the X-axis direction in a state where it is driven and vibrated by receiving the electrostatic force of the first pair of vibrating portions 21a and 21b and the second pair of vibrating portions 22a and 22b The first pair of vibrating portions 21a and 21b swings perpendicularly to the substrate 20, and the distance between the first pair of vibrating portions 21a and 21b and the measurement electrode portion 23 is increased by swinging the first pair of vibrating portions 21a and 21b. The capacitance between the first vibrating portions 21a and 21b and the measurement electrode portion 23 changes, and at this time, the change amounts ΔC1 and ΔC2 of the capacitance can be measured through the measurement circuit portion 26. The amount of rotation (angular velocity / angular acceleration) can be reflected through the signal.

上述の2対の振動部の組み合わせにより2次元の回転量を計測する以外に、本発明の実施例は、一対の振動部(例:第一対振動部21a、21b)を使用し一次元の回転量を測定することができる。
図22は、本発明の回転量(角速度・角加速度)計測装置の他の実施例の図である。該第一対振動部21a、21bを振動させる為、振動部が設ける櫛型電極構造216の位置に固定電極1を設置してなる。本実施例中、該第一対振動部21a、21bは相互に接続され、該二つ固定電極1も相互に接続される。
よって、交流電圧を該第一対振動部21a、21bへ入圧し、直流電圧を固定電極1へ入力するだけで、該第一対振動部21a、21bを駆動させ第一方向6へ沿って振動させ、一次元の回転量が測定可能である。
In addition to measuring the two-dimensional rotation amount by the combination of the two pairs of vibration parts described above, the embodiment of the present invention uses a pair of vibration parts (for example, the first pair of vibration parts 21a, 21b) and uses a one-dimensional The amount of rotation can be measured.
FIG. 22 is a diagram of another embodiment of the rotation amount (angular velocity / angular acceleration) measuring apparatus of the present invention. In order to vibrate the first pair of vibrating portions 21a and 21b, the fixed electrode 1 is installed at the position of the comb electrode structure 216 provided by the vibrating portion. In the present embodiment, the first pair of vibrating portions 21a and 21b are connected to each other, and the two fixed electrodes 1 are also connected to each other.
Therefore, the first pair of vibrating portions 21a and 21b are driven to vibrate along the first direction 6 simply by applying an AC voltage to the first pair of vibrating portions 21a and 21b and inputting a DC voltage to the fixed electrode 1. The one-dimensional rotation amount can be measured.

前記実施例は、以上のような構成であるから、対称性構造の組み合わせにより生じる共振効果を利用し、素子の消耗電力量を低下させ、静電駆動電圧を下げ、回転量計測装置を駆動する時に、重心の位置が決して変化しない設計を利用し、ノイズの低減を達成し、単一製造プロセスマスクが形成する複数軸の計測構造を利用し、製造プロセスの安定、コストの低下及び精密な構造を的確に製造することができる。   Since the embodiment has the above-described configuration, the resonance effect generated by the combination of the symmetric structures is used to reduce the power consumption of the element, lower the electrostatic drive voltage, and drive the rotation amount measuring device. Sometimes using a design where the position of the center of gravity never changes, achieving noise reduction, utilizing a multi-axis measurement structure formed by a single manufacturing process mask, stabilizing the manufacturing process, reducing costs and precise structure Can be accurately manufactured.

本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変更を加えることができることは勿論である。   In the present invention, preferred embodiments have been disclosed as described above. However, the present invention is not limited to the present invention, and any person who is familiar with the technology can make various modifications within the spirit and scope of the present invention. Of course, changes can be made.

本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention. 本発明の実施例の振動部構造の説明図である。It is explanatory drawing of the vibration part structure of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of the Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の製作方法のフロー説明図である。It is flow explanatory drawing of the manufacturing method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の別の実施例の制作方法のフロー説明図である。It is flow explanatory drawing of the production method of another Example of this invention. 本発明の実施例の回転量計測装置の振動の説明図である。It is explanatory drawing of the vibration of the rotation amount measuring apparatus of the Example of this invention. 本発明の実施例の回転量計測装置がX軸に回転量を受ける時の振動部の第一対振動部が受ける転向力の側面からの説明図である。It is explanatory drawing from the side of the turning force which the 1st pair vibration part of a vibration part receives when the rotation amount measuring apparatus of the Example of this invention receives rotation amount to a X-axis. 本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention.

符号の説明Explanation of symbols

1 固定電極
2 回転量計測装置
20 基板
21a、21b 第一対振動部
211、211’静電振動体
212 支持体
213 弾性体
2130 竿状体
2131〜2134 長竿状体
214 質量体
215 215’帰還櫛型体
216 静電櫛型体
22a、22b 第二対振動部
221、221’静電振動体
225、225’帰還櫛型体
23 計測電極部
24 帰還電極部
241 櫛型電極構造
25 導電板体
26 計測回路部
27 駆動回路部
311 基板
312 第一導体層
321 絶縁層
331 凹溝
341 犠牲層
351 接触孔
361 第二導体層
371 静電振動構造
381 慣性陳列層
40 基板
41 第三導体層
42 絶縁層
43 第一導体層
44 絶縁層
441 凹溝
45 犠牲層
451 接触空洞
46 第二導体層
47 慣性陳列層
48 静電振動構造
5 静電力
6 第一方向
7 転向力
8 帰還制御回路
9 第二方向
DESCRIPTION OF SYMBOLS 1 Fixed electrode 2 Rotation amount measuring apparatus 20 Board | substrate 21a, 21b 1st pair vibration part 211, 211 'Electrostatic vibration body 212 Support body 213 Elastic body 2130 Rod-shaped body 2131-2134 Long rod-shaped body 214 Mass body 215 215' Feedback comb Mold body 216 Electrostatic comb bodies 22a, 22b Second pair vibrating sections 221, 221 ′ electrostatic vibrator 225, 225 ′ feedback comb body 23 Measurement electrode section 24 Feedback electrode section 241 Comb electrode structure 25 Conductive plate body 26 Measurement circuit unit 27 Drive circuit unit 311 Substrate 312 First conductor layer 321 Insulating layer 331 Concave groove 341 Sacrificial layer 351 Contact hole 361 Second conductor layer 371 Electrostatic vibration structure 381 Inertial display layer 40 Substrate 41 Third conductor layer 42 Insulating layer 43 first conductor layer 44 insulating layer 441 concave groove 45 sacrificial layer 451 contact cavity 46 second conductor layer 47 inertial display layer 48 electrostatic vibration structure 5 electrostatic force 6 first direction 7 rotation Force 8 feedback control circuit 9 the second direction

Claims (8)

第一対振動部、静電振動体、支持体、弾性体、計測電極部から構成され、
前記第一対振動部は基板上に対称に設置されてなり、該振動部は静電振動体を設けてなり、
前記支持体は前記基板と相互に連接されてなり、
前記弾性体は前記静電振動体と相互に連接されると共に該支持体上に固定され、該静電振動体に該基板と一定の間隔を持たせてなり、
前記計測電極部は該基板上に設置されると共に該第一対振動部と相互に対応されてなることを特徴とした、回転量計測装置。
It is composed of a first pair of vibration parts, an electrostatic vibration body, a support body, an elastic body, a measurement electrode part,
The first pair of vibration parts are arranged symmetrically on a substrate, the vibration part is provided with an electrostatic vibration body,
The support is interconnected with the substrate;
The elastic body is connected to the electrostatic vibrating body and fixed on the support, and the electrostatic vibrating body has a certain distance from the substrate.
The rotation amount measuring apparatus according to claim 1, wherein the measurement electrode unit is disposed on the substrate and corresponds to the first pair of vibration units.
前記静電振動体は更に複数の質量体を設けてなり、該複数の質量体は該静電振動体上に適当な間隔で配列され、該静電振動体の慣性運動を増加させることを特徴とした、請求項1に記載の回転量計測装置。   The electrostatic vibrator is further provided with a plurality of mass bodies, and the plurality of mass bodies are arranged on the electrostatic vibrator at appropriate intervals to increase the inertial motion of the electrostatic vibrator. The rotation amount measuring device according to claim 1. 導電板体を設けてなり、該導電板体は前記基板と前記計測電極部との間に設置されると共に前記該振動部と相互に連接されてなることを特徴とした、請求項1に記載の回転量計測装置。   The conductive plate body is provided, and the conductive plate body is installed between the substrate and the measurement electrode unit and is connected to the vibration unit. Rotation amount measuring device. 第二対振動部を設けてなり、前記第一対振動部は第二対振動部と直交し、前記計測電極部は前記基板上に設置されると共に該第一対及び該第二対振動部と相互に対応されてなることを特徴とした、請求項1に記載の回転量計測装置。   The second pair of vibration parts is provided, the first pair of vibration parts is orthogonal to the second pair of vibration parts, the measurement electrode unit is installed on the substrate, and the first pair and the second pair of vibration parts The rotation amount measuring device according to claim 1, wherein the rotation amount measuring device corresponds to each other. 前記第一対振動部の前記静電振動体と相互に隣接する前記第二対振動部の静電振動体との間に櫛型電極構造が相互に交錯して配列されて設けられることを特徴とした、請求項4に記載の回転量計測装置。   A comb-shaped electrode structure is provided so as to be interlaced with each other between the electrostatic vibrator of the first pair of vibrators and the electrostatic vibrator of the second pair of vibrators adjacent to each other. The rotation amount measuring device according to claim 4. 基板上に第一導体層を形成し、該第一導体層上に絶縁層を形成し、第一導体層上の絶縁層の一部を取り除いて凹溝を形成し、該絶縁層上に犠牲層を形成し該凹溝を覆蓋し、凹溝を覆蓋する犠牲層の一部を取り除いて接触孔を形成し、犠牲層上に第二導体層を形成し接触孔を覆蓋し、蓋第二導体層の一部を取り除いて一対の静電振動構造を形成し、犠牲層を除去する段階にて構成される回転量計測装置の製作方法。   A first conductor layer is formed on the substrate, an insulating layer is formed on the first conductor layer, a part of the insulating layer on the first conductor layer is removed to form a concave groove, and a sacrifice is formed on the insulating layer. Forming a layer, covering the groove, removing a part of the sacrificial layer covering the groove, forming a contact hole, forming a second conductor layer on the sacrificial layer, covering the contact hole, A method of manufacturing a rotation amount measuring device configured in a stage in which a part of a conductor layer is removed to form a pair of electrostatic vibration structures and a sacrificial layer is removed. 前記一対の静電振動構造上に更に慣性陳列層を形成する段階を含めた、請求項6に記載の回転量計測装置の製作方法。   The manufacturing method of the rotation amount measuring device according to claim 6, further comprising forming an inertial display layer on the pair of electrostatic vibration structures. 前記基板と第一導体層と間に更に第二導体層と相互に連接される第三導体層を形成する段階を含めた、請求項6に記載の回転量計測装置の製作方法。
The method of manufacturing a rotation amount measuring device according to claim 6, further comprising forming a third conductor layer connected to the second conductor layer between the substrate and the first conductor layer.
JP2005327591A 2004-11-12 2005-11-11 Rotation measuring apparatus and fabricating method Pending JP2006138855A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093134558A TWI245110B (en) 2004-11-12 2004-11-12 Apparatus of micro angular motion detector and fabrication method thereof

Publications (1)

Publication Number Publication Date
JP2006138855A true JP2006138855A (en) 2006-06-01

Family

ID=36619759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327591A Pending JP2006138855A (en) 2004-11-12 2005-11-11 Rotation measuring apparatus and fabricating method

Country Status (3)

Country Link
JP (1) JP2006138855A (en)
KR (1) KR20060052448A (en)
TW (1) TWI245110B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517781A (en) * 2008-04-16 2011-06-16 ヴィーティーアイ テクノロジーズ オーワイ Vibration type micro mechanical angular velocity sensor
JP2012519270A (en) * 2009-02-27 2012-08-23 センサーダイナミックス ゲーエムベーハー Micro-gyroscope that measures rotational movement of X-axis or / and Y-axis and Z-axis
US8272267B2 (en) 2008-01-07 2012-09-25 Murata Manufacturing Co., Ltd. Angular velocity sensor

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123632A (en) * 1992-10-13 1994-05-06 Nippondenso Co Ltd Dynamic quantity sensor
JPH0791958A (en) * 1993-09-27 1995-04-07 Canon Inc Angular velocity sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
JPH08125199A (en) * 1994-10-28 1996-05-17 Nippondenso Co Ltd Semiconductor dynamic quantity sensor and fabrication thereof
JPH09119837A (en) * 1995-05-25 1997-05-06 Samsung Electron Co Ltd Vibration-type gyroscope
JPH09119942A (en) * 1995-08-16 1997-05-06 Robert Bosch Gmbh Rotational angular velocity sensor
JPH09325032A (en) * 1996-06-03 1997-12-16 Ngk Spark Plug Co Ltd Angular velocity sensor
JPH102811A (en) * 1996-06-14 1998-01-06 Murata Mfg Co Ltd External force measuring device and manufacture of the same
JPH1089968A (en) * 1996-09-12 1998-04-10 Murata Mfg Co Ltd Angular velocity sensor
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JP2001147236A (en) * 1999-09-10 2001-05-29 Stmicroelectronics Srl Electromechanical microstructure insensitive to mechanical stress
JP2001153662A (en) * 1999-11-30 2001-06-08 Kyocera Corp Piezoelectric sensor
JP2001513885A (en) * 1997-02-24 2001-09-04 ザ チャールズ スターク ドレイパー ラボラトリー インコーポレイテッド Tuning fork gyro with split electrode
US6470747B1 (en) * 1992-10-13 2002-10-29 Denso Corporation Dynamical quantity sensor
JP2004004119A (en) * 2003-08-06 2004-01-08 Denso Corp Semiconductor dynamic quantity sensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123632A (en) * 1992-10-13 1994-05-06 Nippondenso Co Ltd Dynamic quantity sensor
US6470747B1 (en) * 1992-10-13 2002-10-29 Denso Corporation Dynamical quantity sensor
JPH0791958A (en) * 1993-09-27 1995-04-07 Canon Inc Angular velocity sensor
JPH07218268A (en) * 1994-01-28 1995-08-18 Charles Stark Draper Lab Inc:The Inertia-rate sensor
JPH08125199A (en) * 1994-10-28 1996-05-17 Nippondenso Co Ltd Semiconductor dynamic quantity sensor and fabrication thereof
US6137150A (en) * 1994-10-28 2000-10-24 Nippondenso Co., Ltd. Semiconductor physical-quantity sensor having a locos oxide film, for sensing a physical quantity such as acceleration, yaw rate, or the like
JPH09119837A (en) * 1995-05-25 1997-05-06 Samsung Electron Co Ltd Vibration-type gyroscope
US5728936A (en) * 1995-08-16 1998-03-17 Robert Bosch Gmbh Rotary speed sensor
JPH09119942A (en) * 1995-08-16 1997-05-06 Robert Bosch Gmbh Rotational angular velocity sensor
JPH09325032A (en) * 1996-06-03 1997-12-16 Ngk Spark Plug Co Ltd Angular velocity sensor
JPH102811A (en) * 1996-06-14 1998-01-06 Murata Mfg Co Ltd External force measuring device and manufacture of the same
JPH1089968A (en) * 1996-09-12 1998-04-10 Murata Mfg Co Ltd Angular velocity sensor
US5955668A (en) * 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JP2001513885A (en) * 1997-02-24 2001-09-04 ザ チャールズ スターク ドレイパー ラボラトリー インコーポレイテッド Tuning fork gyro with split electrode
JP2001147236A (en) * 1999-09-10 2001-05-29 Stmicroelectronics Srl Electromechanical microstructure insensitive to mechanical stress
JP2001153662A (en) * 1999-11-30 2001-06-08 Kyocera Corp Piezoelectric sensor
JP2004004119A (en) * 2003-08-06 2004-01-08 Denso Corp Semiconductor dynamic quantity sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272267B2 (en) 2008-01-07 2012-09-25 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP2011517781A (en) * 2008-04-16 2011-06-16 ヴィーティーアイ テクノロジーズ オーワイ Vibration type micro mechanical angular velocity sensor
JP2012519270A (en) * 2009-02-27 2012-08-23 センサーダイナミックス ゲーエムベーハー Micro-gyroscope that measures rotational movement of X-axis or / and Y-axis and Z-axis

Also Published As

Publication number Publication date
KR20060052448A (en) 2006-05-19
TWI245110B (en) 2005-12-11
TW200615515A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
KR101100021B1 (en) Z-axis angular rate sensor
JP3811444B2 (en) MEMS gyroscope with vertical vibrating mass
KR100431004B1 (en) Rotation type MEMS gyroscpoe of a decoupled structure
KR101166866B1 (en) Mems gyroscope with horizontally oriented drive electrodes
JP3924026B2 (en) Vibration structure and method for controlling natural frequency of vibration structure
KR100476562B1 (en) Horizontal and tuning fork vibratory micro gyroscope
KR100652952B1 (en) The MEMS gyroscope with coupling spring
KR100720605B1 (en) Angular velocity detector having inertial mass oscillating in rotational direction
JP2006517301A (en) Method and system for simultaneous processing of multi-frequency MEMS devices
JP2006162584A (en) Tuning-fork type vibrating mems gyroscope
US7155976B2 (en) Rotation sensing apparatus and method for manufacturing the same
CN104964679A (en) Gyro sensor and electronic device
JPH10239347A (en) Motion sensor
JP2004518971A (en) Rotation rate sensor
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
CN107003130A (en) Micro-electro-mechanical gyroscope
JP2013024721A (en) Vibration gyro element, gyro sensor and electronic apparatus
JPH10170275A (en) Vibratory angular velocity sensor
JP2013134064A (en) Oscillatory angular velocity sensor
JP2006138855A (en) Rotation measuring apparatus and fabricating method
JPH1144541A (en) Angular velocity sensor
JP5360020B2 (en) Angular velocity sensor
JP2018004451A (en) Physical quantity sensor
JP2010008300A (en) Inertia sensor
JP2002323323A (en) Angular speed sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080303

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080402

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323