JP2006138773A - Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof - Google Patents

Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof Download PDF

Info

Publication number
JP2006138773A
JP2006138773A JP2004329657A JP2004329657A JP2006138773A JP 2006138773 A JP2006138773 A JP 2006138773A JP 2004329657 A JP2004329657 A JP 2004329657A JP 2004329657 A JP2004329657 A JP 2004329657A JP 2006138773 A JP2006138773 A JP 2006138773A
Authority
JP
Japan
Prior art keywords
sliding
component
wear
recess
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004329657A
Other languages
Japanese (ja)
Inventor
Masahiro Kada
雅博 加田
Katsutoshi Kondo
克敏 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004329657A priority Critical patent/JP2006138773A/en
Publication of JP2006138773A publication Critical patent/JP2006138773A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the amount of wear in a sliding component made of a thermoplastic resin without using any materials of complex composition, and to provide an inexpensive sliding component using the method. <P>SOLUTION: The pair of sliding components is made of the sliding component A made of a thermoplastic resin and the sliding component B made of a thermoplastic resin having smaller amount of wear by sliding as compared with the sliding component A, stores abrasion powder generated by sliding on the sliding surfaces of the sliding component A and has a recess for supplying the stored abrasion powder between the sliding surfaces. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、摺動部品の摩耗量の低減方法、低摩耗性摺動部品対及びその部品に関する。   The present invention relates to a method for reducing the amount of wear of a sliding component, a low wear sliding component pair, and the component.

摺動部を有する動力伝達部品としては、歯車、軸受、カム、クラッチ、ワッシャー、コロなどが挙げられる。それに使用される材料も、金属、セラミック、ガラス、樹脂、木材等が用いられている。特に樹脂に関しては、安価で成形が容易であることや、無給油で使用できるために、ポリアセタール、ポリブチレンテレフタレート、ポリアミド、ポリフェニレンサルファイド等が採用され、その特長を生かした用途に使用されている。
動力伝達部品は高速化、軽量化、要求性能の高度化に伴い、摺動部分に与える負担は増加する一方である。これに対応し、高性能な潤滑剤の材料への配合、高価なグリスの使用、冷却機構の設置などが講じられてきたが、製造コストの増加、潤滑剤の配合による物性低下、グリスによる材料の劣化などの問題があった。
Examples of the power transmission component having the sliding portion include a gear, a bearing, a cam, a clutch, a washer, and a roller. Metals, ceramics, glass, resin, wood, and the like are also used for the materials used therefor. Particularly for resins, polyacetal, polybutylene terephthalate, polyamide, polyphenylene sulfide, and the like are employed because they are inexpensive and easy to mold, and can be used without lubrication.
As the power transmission parts increase in speed, weight, and sophistication of required performance, the burden on the sliding part is increasing. In response to this, blending of high-performance lubricants into materials, the use of expensive grease, and the installation of cooling mechanisms have been taken, but manufacturing costs increased, physical properties decreased due to blending of lubricants, and materials due to grease There were problems such as deterioration.

文献「オイルレスベアリング」には、摩耗、摩擦面の損傷を防ぐため、摩擦係数、面圧及びすべり速度の積を低減させることや、摺動面の粗さを低減させることなどを推奨している。(非特許文献1参照)
しかし、摩擦係数を低下させるために、グリスの塗布や潤滑剤の配合を行うと上記のような問題を生じる。すべり速度を低減させるため、動力伝達速度を低下させると製品性能の低下に直結する。また摺動面の粗さを低下させるためには表面の研摩が必要であり、コストアップとなる。
The document “oilless bearings” recommends reducing the product of the coefficient of friction, surface pressure and sliding speed, and reducing the roughness of the sliding surface to prevent wear and damage to the friction surface. Yes. (See Non-Patent Document 1)
However, if the grease is applied or the lubricant is blended in order to reduce the friction coefficient, the above-described problems occur. In order to reduce the sliding speed, reducing the power transmission speed directly leads to a decline in product performance. Further, in order to reduce the roughness of the sliding surface, it is necessary to polish the surface, which increases costs.

特開平5−65877号公報には、金属製のシリンダー内を金属製のピストンが上下動する往復圧縮機において、ピストンピンに対して連接棒を揺動自在に支持するピストンピン支持軸受けの内周面に、一方の軸受け端面部にかけて貫通する溝を形成することにより、異常摩耗、ロッキングを改善する手法が紹介されている。発生した金属摩耗粉が砥粒となって異常摩耗を促進することを防止するため、溝を形成し金属摩耗粉を溝中に逃がすことにより、異常摩耗を防止するものである。(特許文献1参照)
しかし、この技術は、樹脂製摺動部品同士から生じる樹脂摩耗粉を凹部に収容し、摺動に伴って自動的に凹部内の該摩耗粉が摺動面間に供給され、樹脂摩耗粉が摺動面間に膜状に形成されて、摺動面の摩耗量を低減させるようにすることは、開示も示唆もしていない。
In JP-A-5-65877, in a reciprocating compressor in which a metal piston moves up and down in a metal cylinder, an inner periphery of a piston pin support bearing that swingably supports a connecting rod with respect to the piston pin. There has been introduced a technique for improving abnormal wear and rocking by forming a groove penetrating one end face of a bearing surface. In order to prevent the generated metal wear powder from becoming abrasive grains and promoting abnormal wear, a groove is formed and the metal wear powder is allowed to escape into the groove to prevent abnormal wear. (See Patent Document 1)
However, in this technique, resin wear powder generated from resin sliding parts is accommodated in the recesses, and the wear powder in the recesses is automatically supplied between the sliding surfaces as the slide slides. There is no disclosure or suggestion that a film is formed between the sliding surfaces to reduce the amount of wear on the sliding surfaces.

実開平6−7924号公報には、PPSなどの樹脂母材にポリテトラフルオロエチレン、潤滑油、二硫化モリブデンを加えた合成樹脂からなるタイバーブッシュの内壁摺動部に金属製タイバーの摺動方向に対して交差するダスト吸収溝を設けた無給油タイバーブッシュが紹介されている。(特許文献2参照)
しかし、この技術では、上記特定の組合わせの充填材を配合しなければならなく、樹脂製タイバーブッシュの物性低下をもたらす上、コストアップとなるし、さらに、金属と組み合わされる樹脂摺動面にダスト吸収溝を設ける場合、ダスト吸収溝が金属側に付着した摩耗粉をつぎつぎと掻きとって吸収してしまう。金属の表面は一見滑らかでも、粗さは存在しており、硬度の著しく高い金属の粗面が常に樹脂と直接接触して樹脂を削ることや、金属の摩耗粒子が砥粒として発生すると、特に鉄製タイバーでは鉄粉に対する耐摩耗性が極めて悪いため、砥粒鉄粉の発生を加速し、摩耗が急速に進行するという問題がある。
Japanese Utility Model Publication No. 6-7924 discloses a sliding direction of a metal tie bar on an inner wall sliding portion of a tie bar bush made of a synthetic resin obtained by adding polytetrafluoroethylene, lubricating oil, and molybdenum disulfide to a resin base material such as PPS. An oil-free tie bar bush with a dust-absorbing groove that intersects is introduced. (See Patent Document 2)
However, with this technology, the specific combination of fillers described above must be blended, resulting in a decrease in the physical properties of the resin tie bar bush, an increase in cost, and a resin sliding surface combined with metal. When providing the dust absorption groove, the dust absorption groove scrapes and absorbs the wear powder adhering to the metal side one after another. Even if the surface of the metal is seemingly smooth, there is roughness, and if the rough surface of the metal with extremely high hardness is always in direct contact with the resin to scrape the resin, or if metal wear particles are generated as abrasive grains, Since iron tie bars have extremely poor wear resistance against iron powder, there is a problem that the generation of abrasive iron powder is accelerated and wear proceeds rapidly.

特開平5−65877号公報(請求項1と3、[0008]、図2)JP-A-5-65877 (Claims 1 and 3, [0008], FIG. 2) 実開平6−7924号公報(請求項1と2、[0010]〜[0011]、[0016]、図1)Japanese Utility Model Publication No. 6-7924 (Claims 1 and 2, [0010] to [0011], [0016], FIG. 1) 「オイルレスベアリング」、株式会社アグネ発行、川崎景民著、1980年10月10日改定第1版(p.227(摩擦係数、面圧及びすべり速度の積を低減させること)、p.249(摺動面の粗さの低減))"Oilless bearing", published by Agne Co., Ltd., written by Keisumi Kawasaki, revised on October 10, 1980, first edition (p.227 (reducing the product of friction coefficient, surface pressure and sliding speed), p.249 (Reduction of sliding surface roughness)

複雑な組成の材料を用いない熱可塑性樹脂製摺動部品の摩耗量の低減方法及びそれを使用した安価な摺動部品を提供する。   Provided are a method for reducing the amount of wear of a sliding part made of a thermoplastic resin that does not use a material having a complicated composition, and an inexpensive sliding part using the same.

従来の技術では、発生した摩耗粉は、通常異物として摺動面に介在することは望ましくないので、孔や凹部に排出している。
本発明者らは、異なる摩耗特性を有する樹脂材料を摺動部品として組み合わせるときに、摩耗特性の劣る部品側の摺動面に、凹部の開口部が摺動方向に交差する形状に凹部を設け、摩耗特性の劣る部品からの発生摩耗粉を凹部に貯留し、貯留された摩耗粉が摺動面に自然に供給されて膜状に付着し、摺動面を保護することにより、摩耗が低減可能であることを見出し、本発明を完成させるに至った。
In the conventional technique, since the generated wear powder is not normally desirable to be present on the sliding surface as a foreign substance, it is discharged into a hole or a recess.
When the present inventors combine resin materials having different wear characteristics as sliding parts, the recesses are provided in a shape where the opening of the recessed part intersects the sliding direction on the sliding surface of the part having inferior wear characteristics. , Wear powder generated from parts with inferior wear characteristics is stored in the recesses, and the stored wear powder is naturally supplied to the sliding surface and adheres to the film to protect the sliding surface, thereby reducing wear. The inventors have found that this is possible and have completed the present invention.

すなわち、本発明の第1は、熱可塑性樹脂製摺動部品(A)、及び、摺動部品(A)よりも摺動による摩耗量が多くない熱可塑性樹脂製摺動部品(B)からなる摺動部品対であって、摺動部品(A)の摺動面に、
摺動により生じる摩耗粉を収容し且つ収容された摩耗粉を摺動面間に供給する作用を行う凹部を有する摺動部品対を提供する。
本発明の第2は、凹部が溝及び/又は有底穴である本発明の第1に記載の摺動部品対を提供する。
本発明の第3は、凹部の開口部の少なくとも一部が、摺動方向に対し角度を有する本発明の第1又は2に記載の摺動部品対を提供する。
本発明の第4は、凹部が設けられた摺動部品から見て、摺動方向に後ろ側の凹部の頂部の少なくとも一部が、摺動方向に対し角度を有する本発明の第1〜3のいずれかに記載の摺動部品対を提供する。
本発明の第5は、摺動方向に対する角度が、90±80度以内である本発明の第3又は4に記載の摺動成形品対を提供する。
本発明の第6は、凹部の開口部の頂部の少なくとも一部が、平面状もしくは曲面状に面取り処理されている本発明の第1〜5のいずれかに記載の摺動部品対を提供する。
本発明の第7は、凹部が幅0.02mm以上及び深さ0.01〜20mmである本発明の第1〜6のいずれかに記載の摺動部品対を提供する。
本発明の第8は、本発明の第1〜7のいずれかに記載の摺動部品対に使用される摺動部品(A)を提供する。
本発明の第9は、熱可塑性樹脂製摺動部品(A)、及び、摺動部品(A)よりも摺動による摩耗量が多くない熱可塑性樹脂製の摺動部品(B)からなる摺動部品対を使用して、摺動部品(A)の摺動面に凹部を設け、摺動時に生じる摩耗粉を凹部に収容し、摺動に伴って自動的に凹部内の該摩耗粉が摺動面間に供給されることを特徴とする摺動部品の摩耗量の低減方法を提供する。
That is, the first of the present invention consists of a sliding part (A) made of a thermoplastic resin and a sliding part (B) made of a thermoplastic resin in which the amount of wear due to sliding is less than that of the sliding part (A). A pair of sliding parts, on the sliding surface of the sliding part (A),
Provided is a pair of sliding parts having a recess for accommodating the wear powder generated by sliding and supplying the contained wear powder between sliding surfaces.
A second aspect of the present invention provides the sliding component pair according to the first aspect of the present invention, wherein the recess is a groove and / or a bottomed hole.
A third aspect of the present invention provides the sliding component pair according to the first or second aspect of the present invention, wherein at least a part of the opening of the recess has an angle with respect to the sliding direction.
A fourth aspect of the present invention is the first to third aspects of the present invention in which at least a part of the top of the rear concave portion in the sliding direction has an angle with respect to the sliding direction when viewed from the sliding component provided with the concave portion. A sliding component pair according to any of the above is provided.
A fifth aspect of the present invention provides the sliding molded product pair according to the third or fourth aspect of the present invention, wherein an angle with respect to the sliding direction is within 90 ± 80 degrees.
A sixth aspect of the present invention provides the sliding component pair according to any one of the first to fifth aspects of the present invention, wherein at least a part of the top of the opening of the recess is chamfered into a flat shape or a curved shape. .
A seventh aspect of the present invention provides the sliding component pair according to any one of the first to sixth aspects of the present invention, wherein the recess has a width of 0.02 mm or more and a depth of 0.01 to 20 mm.
8th of this invention provides the sliding component (A) used for the sliding component pair in any one of 1st-7th of this invention.
A ninth aspect of the present invention is a sliding part made of a thermoplastic resin sliding part (A) and a sliding part (B) made of a thermoplastic resin that does not wear much more by sliding than the sliding part (A). A pair of moving parts is used to provide a recess on the sliding surface of the sliding component (A), and wear powder generated during sliding is accommodated in the recess, and the wear powder in the recess automatically moves with the sliding. Provided is a method for reducing the amount of wear of a sliding component, characterized in that it is supplied between sliding surfaces.

本発明に基づいて製造された摺動部品を用いることにより、高価な又は複雑な組成の材料を用いず、低摩耗摺動部品が低コストで製造できる。   By using the sliding component manufactured according to the present invention, a low-wear sliding component can be manufactured at low cost without using an expensive or complicated composition material.

摺動形態は以下に示す如く3種に分類され、本発明は、いずれの摺動形態にも好適に用いられる。
(イ)両連続摺動形態:JIS K7218/A法に記載の試験形態が代表例であるが、摺動接触面が面と面であり、摺動する互いの部品の全摺動面が見掛け上、常に摺動接触している形態である。具体的には、平板摩擦クラッチ、フューエルインペラーなどがこれに該当する。
(ロ)連続−間欠摺動形態:JIS K7218/B法に記載の試験形態が代表例であるが、組み合わされる片方の部品の全摺動面は常に相手部品と摺動接触し、他方の部品は、全摺動面の内、摺動する部位が時間と共に変化し、全摺動面は相手部品と同時には摺動接触しない形態である。具体的には、カム機構等が該当する。
(ハ)両間欠摺動形態:組み合わされるそれぞれの部品の摺動する部位が互いに時間とともに変化し、双方の全摺動面が同時には摺動接触しない形態である。ギヤなどがこれに該当する。
The sliding form is classified into three types as shown below, and the present invention is suitably used for any sliding form.
(B) Both continuous sliding forms: The test form described in the JIS K7218 / A method is a representative example, but the sliding contact surface is a surface and the entire sliding surface of each sliding component is apparent. Above, it is a form which is always in sliding contact. Specifically, a flat friction clutch, a fuel impeller, etc. correspond to this.
(B) Continuous-intermittent sliding configuration: The test configuration described in the JIS K7218 / B method is a representative example, but the entire sliding surface of one of the combined components is always in sliding contact with the counterpart component, and the other component. Is a form in which the sliding portion of the entire sliding surface changes with time, and the entire sliding surface is not in sliding contact with the counterpart component. Specifically, a cam mechanism or the like is applicable.
(C) Both intermittent sliding forms: The sliding parts of the combined parts change with time, and all the sliding surfaces are not in sliding contact at the same time. This applies to gears.

摺動により発生する摩耗粉は、例えば、JIS K7218/A法に記載の中空円筒試験片(図1参照)では、摺動部の内周や外周から排出される。
本発明では、摺動部品(A)のみに凹部を設ける。本発明では、部品対の内、片方のみに凹部を設けることが特徴である。
なお、摺動部品(B)の材質は、摺動部品(A)よりも摺動による摩耗量が多くない材質であり、摺動部品(A)の材質と同じであってもよい。
図2に、各種の凹部の例を示すが、本発明はこれらに限定されるものではない。
図2(a)は、図1に示す試験片を切削加工することによって、例えば8本のスリット溝を、摺動方向との交差角度90度で、設けた例である。本発明では、特に、凹部の摺動方向に後ろ側の開口部(以下、後ろ側頂部ということもある。)と摺動方向との交差角度が重要である。なお、凹部の摺動方向に前側の開口部を、前側頂部ということもある。
その変形例として、前側頂部は凹部の底部までの深さが0であり、後ろ側頂部が凹部の底部までの深さを持つようにしてもよい。
なお、溝の幅は一定であっても円筒の中心部から外側に向けて広くなっていても、同じでも、狭くなっていてもよい。又各溝は形状や幅や深さが同じであっても異なっていてもよい。
摺動のさせ方が時間と共に変化することにより、ある時刻に後ろ側頂部であった位置が前側頂部になったり、それらの中間の位置になったりする場合がある。
図2(b)は、図1に示す試験片を切削加工することによって、例えば等間隔に8本の平行なスリット溝を、摺動方向との交差角度30度で、設けた例である。
図2(c)は、図1に示す試験片を切削加工することによって、例えば同心円状環状溝を4分割して、摺動方向との交差角度0度であるが、後ろ側頂部と前側頂部とが摺動方向と交差角度を有するように設けた例である。この場合、各分割された溝の間は、摺動面をなしている。
特定の凹部を設けることにより、摩耗粉が一旦凹部に溜まり、その後再度摺動面に供給、付着されることにより、即ち、結果的に樹脂摩耗粉の少なくとも一部が摺動面間に膜状に維持されることにより、保護膜として働き、摩耗が大きく抑制される。
膜状物は完全に一体でなくてもよいが、樹脂摩耗粉の殆ど大部分が樹脂摩耗粉のまま残存していてはならない。
膜状物を形成することは、色の異なる二つの摺動部品を組み合わせて摺動試験を行うことにより、確認される。
For example, in the hollow cylindrical test piece (see FIG. 1) described in the JIS K7218 / A method, the wear powder generated by sliding is discharged from the inner periphery and outer periphery of the sliding portion.
In the present invention, the concave portion is provided only in the sliding component (A). The present invention is characterized in that a concave portion is provided on only one of the component pairs.
Note that the material of the sliding component (B) is a material that does not have much wear due to sliding compared to the sliding component (A), and may be the same as the material of the sliding component (A).
Although the example of various recessed parts is shown in FIG. 2, this invention is not limited to these.
FIG. 2A shows an example in which, for example, eight slit grooves are provided at an intersecting angle of 90 degrees with the sliding direction by cutting the test piece shown in FIG. In the present invention, the angle of intersection between the rear opening (hereinafter sometimes referred to as the rear top) and the sliding direction is particularly important in the sliding direction of the recess. The opening on the front side in the sliding direction of the recess may be referred to as the front top.
As a modification thereof, the front top may have a depth of 0 to the bottom of the recess, and the rear top may have a depth to the bottom of the recess.
In addition, even if the width | variety of a groove | channel is constant, it may become wide toward the outer side from the center part of a cylinder, and it may be the same or narrow. Each groove may have the same shape, width or depth or may be different.
When the sliding method changes with time, the position of the rear side top at a certain time may become the front side top or the middle position between them.
FIG. 2B shows an example in which eight parallel slit grooves are provided at equal intervals, for example, at an intersecting angle of 30 degrees with the sliding direction by cutting the test piece shown in FIG.
FIG. 2 (c) shows, for example, that the concentric annular groove is divided into four parts by cutting the test piece shown in FIG. 1, and the crossing angle with the sliding direction is 0 degree. Are provided so as to have a crossing angle with the sliding direction. In this case, a sliding surface is formed between the divided grooves.
By providing a specific recess, the wear powder once accumulates in the recess, and then is supplied and adhered to the sliding surface again. That is, at least a part of the resin wear powder is film-like between the sliding surfaces. By being maintained in this state, it works as a protective film and wear is greatly suppressed.
The film-like material may not be completely integrated, but most of the resin wear powder should not remain as the resin wear powder.
Formation of a film-like object is confirmed by performing a sliding test by combining two sliding parts having different colors.

凹部は、具体的には溝(切欠きも含む)及び/又は有底穴等である。
溝は、直線状、折線状、曲線状、U字状、V字状、半円状等、これらの組み合わせであってもよい。
溝の断面形状は、特に制限がないが、凹字型、U字型、V字型、半円型、これらの組み合わせなどが挙げられる。なお、凹部壁面は摺動方向に対して一部分が角度を持つようにしたものであってもよい。凹部の開口部の頂部の少なくとも一部が、図4(b)に示すように平面状もしくは曲面状に面取り処理されていることが好ましい。
また、摺動が常に一定方向にのみ行われる場合には、摩耗粉が収容されればよく、前側頂部を相手摺動部品を傷つけにくい構造すなわち溝の前側頂部と摺動面が90度より小さい庇形状にしたり、後ろ側頂部を摩耗粉が供給しやすい構造すなわち溝の後ろ側頂部と摺動面が90度より大きい鈍角形状にしたりしてもよい。従って、溝の頂部は面取りがしてあってもよい。
溝は、長手方向の片側端部又は両端部に端壁を、あるいは両端からの適当な中間位置に隔壁を設けてもよいが、これらは無くてもよい。
JIS K7218/A法に記載の中空円筒試験片等では、溝はその円筒の摺動面上に、円筒の中心から放射線状(即ち、溝の長手方向が摺動方向に対し90度の場合)に伸びるように設けられる状態から、端壁を有する擬同心円状あるいは連続した同心蛇行円状に設けられる状態に至るまで、樹脂摩耗粉の少なくとも一部が摺動面間に供給されて膜状に維持される形状であれば制限はない。
溝の開口部の少なくとも一部の、摺動方向に対する角度は、好ましくは90±80度以内、さらに好ましくは90±60度以内である。この角度範囲内とすることにより、摩耗分の収容、供給が良くなり、樹脂摩耗粉が摺動面間に膜状に維持されやすくなる。
円筒以外の形状においても、摺動面が樹脂摩耗粉の少なくとも一部が摺動面間に膜状に維持される形状であれば制限はない。
溝の開口幅は、成形品の寸法や使用条件にもよるが、少なくとも後ろ側頂部において、0.02mm以上、好ましくは100mm以下、さらに好ましくは0.1〜20mmである。開口幅が小さすぎると摩耗粉の収容が困難となり、大きすぎると部品としての機械的強度が低下する。
溝の深さは、成形品の寸法や使用条件にもよるが、少なくとも後ろ側頂部において、0.01〜20mm、好ましくは0.05〜5mmである。上記範囲より、深さが浅すぎると摩耗粉の収容が困難となり、深すぎると部品としての機械的強度が低下する。
溝の数は、成形品の寸法や凹部の寸法や使用条件にもよるが、1以上であればよく、好ましくは2以上、さらに好ましくは4以上、特に好ましくは8以上である。数が多すぎると部品としての機械的強度が低下したり、摩耗重量は減っても寸法減少が速くなる。
有底穴では、穴は円形でも長円形でもよく、長円形がさらに細長くなれば上記両端部に端壁を有する溝に実質的に相当する。穴の寸法は上記溝の寸法に準じて設けられる。
Specifically, the recess is a groove (including a notch) and / or a bottomed hole.
The groove may be a combination of these, such as a straight line, a broken line, a curved line, a U-shape, a V-shape, and a semicircular shape.
The cross-sectional shape of the groove is not particularly limited, and examples thereof include a concave shape, a U shape, a V shape, a semicircular shape, and combinations thereof. The concave wall surface may have an angle with respect to the sliding direction. It is preferable that at least a part of the top of the opening of the recess is chamfered into a flat shape or a curved shape as shown in FIG.
In addition, when sliding is always performed only in a certain direction, it is only necessary to accommodate the wear powder, and the front top portion is less likely to damage the mating sliding part, that is, the front top portion of the groove and the sliding surface are smaller than 90 degrees. You may make it a bowl shape, or may make the back side top part into the structure which is easy to supply abrasion powder, ie, the obtuse angle shape where the back side top part of a groove | channel and a sliding surface are larger than 90 degree | times. Therefore, the top of the groove may be chamfered.
The groove may be provided with an end wall at one end or both ends in the longitudinal direction, or a partition at an appropriate intermediate position from both ends, but these may not be provided.
In the hollow cylindrical test piece described in JIS K7218 / A method, the groove is radial from the center of the cylinder on the sliding surface of the cylinder (that is, when the longitudinal direction of the groove is 90 degrees with respect to the sliding direction). From the state of being provided to extend to the state of being provided in a quasi-concentric shape having end walls or a continuous concentric meandering shape, at least a part of the resin wear powder is supplied between the sliding surfaces to form a film. There is no limitation as long as the shape is maintained.
The angle of at least a part of the opening of the groove with respect to the sliding direction is preferably within 90 ± 80 degrees, and more preferably within 90 ± 60 degrees. By making it within this angle range, the accommodation and supply of the wear are improved, and the resin wear powder is easily maintained in the form of a film between the sliding surfaces.
Even in shapes other than the cylinder, there is no limitation as long as the sliding surface is a shape in which at least a part of the resin wear powder is maintained in a film shape between the sliding surfaces.
The opening width of the groove is 0.02 mm or more, preferably 100 mm or less, more preferably 0.1 to 20 mm, at least at the rear side top, although it depends on the dimensions of the molded product and the use conditions. If the opening width is too small, it is difficult to accommodate the wear powder, and if it is too large, the mechanical strength of the component is lowered.
The depth of the groove is 0.01 to 20 mm, preferably 0.05 to 5 mm, at least at the rear top, although it depends on the dimensions of the molded product and the use conditions. From the above range, if the depth is too shallow, it becomes difficult to accommodate the wear powder, and if it is too deep, the mechanical strength as a component is lowered.
The number of grooves depends on the size of the molded product, the size of the recess, and the use conditions, but may be 1 or more, preferably 2 or more, more preferably 4 or more, and particularly preferably 8 or more. When the number is too large, the mechanical strength as a part is lowered, and the reduction in size is accelerated even if the wear weight is reduced.
In the bottomed hole, the hole may be circular or oval, and if the oval is further elongated, it substantially corresponds to the groove having the end walls at the both ends. The dimension of the hole is provided according to the dimension of the groove.

また、摺動面に摩耗粉が付着することから、凹部を設けるのは摩耗が多く発生する部品側に設ける方がその効果が大きいことを見出した。
設ける凹部の数、形状、大きさに制限はなく、摩耗粉を一旦凹部に溜め、再び摺動面に供給できればよい。きわめて小さな凹部を1個設けるだけで、凹部を設けた部品の摩耗は大きく抑制される。
但し、摺動面に摩耗粉が付着することから、摺動部品としての性能に影響を与えない範囲内で、凹部の数を多く又は容積を大きく設けることができる。
Further, since wear powder adheres to the sliding surface, it has been found that providing the concave portion is more effective when it is provided on the component side where much wear occurs.
The number, shape, and size of the recessed portions to be provided are not limited, and it is sufficient that the wear powder is once accumulated in the recessed portions and can be supplied again to the sliding surface. By providing only one extremely small recess, the wear of the component provided with the recess is greatly suppressed.
However, since wear powder adheres to the sliding surface, the number of concave portions can be increased or the volume can be increased within a range that does not affect the performance as a sliding component.

この技術を適用するには、凹部を設けていない部品を用い、予め組み合わせる対の部品の各々の耐摩耗性を把握することが必須である。例えば、樹脂Aと樹脂Bを組み合わせる場合、樹脂A同士を組み合わせた時の摩耗量、樹脂B同士を組み合わせた時の摩耗量を測定しておく。このデータを比較し、摩耗量の大きい部品の摺動面に凹部の数を多く又は容積を大きくを設けると本発明で見出された効果を顕著に得ることが出来る。   In order to apply this technique, it is essential to use a component that is not provided with a recess and grasp the wear resistance of each paired component that is combined in advance. For example, when combining resin A and resin B, the amount of wear when combining resins A and the amount of wear when combining resins B are measured. By comparing this data and providing a large number of recesses or a large volume on the sliding surface of a part with a large amount of wear, the effects found in the present invention can be remarkably obtained.

摩耗粉を一旦凹部に溜め、再び摺動部に供給するという機構から、本発明の手法はあらゆる摺動形態に好適に用いられる。歯車、軸受、カム、クラッチ、ワッシヤー、コロなど応用範囲はきわめて広い。   The mechanism of the present invention is suitably used for all sliding forms because of the mechanism in which the wear powder is once accumulated in the recess and supplied again to the sliding portion. The range of applications such as gears, bearings, cams, clutches, washers and rollers is very wide.

本発明において、摺動部品の材質は、樹脂であり、樹脂は熱可塑性樹脂でも非熱可塑性樹脂(ここで非熱可塑性樹脂とは熱硬化性樹脂またはポリテトラフロオロエチレンのような圧熱成形性樹脂である。)でもよく、ポリアセタール、ポリブチレンテレフタレート、ポリアミド、ポリフェニレンサルファイド、ABS樹脂、ポリエチレン、ポリプロピレン、ポリフェニレンオキサイド、液晶ポリマー、生分解性樹脂等の熱可塑性樹脂;ポリテトラフルオロエチレン等の圧熱成形性樹脂、フェノール樹脂、エポキシ樹脂、ユリア(−メラミン)樹脂、ポリウレタン樹脂等の熱硬化性樹脂などが挙げられるが、少なくとも摺動部品Aは熱可塑性樹脂である。更には、摺動部品対の両方が熱可塑性樹脂の場合が最も効果的である。   In the present invention, the material of the sliding part is a resin, and the resin may be a thermoplastic resin or a non-thermoplastic resin (where the non-thermoplastic resin is a thermosetting resin or a pressure thermoforming such as polytetrafluoroethylene. Or polyacetal, polybutylene terephthalate, polyamide, polyphenylene sulfide, ABS resin, polyethylene, polypropylene, polyphenylene oxide, liquid crystal polymer, biodegradable resin, etc .; pressure of polytetrafluoroethylene, etc. Thermosetting resins such as thermoformable resins, phenol resins, epoxy resins, urea (-melamine) resins, polyurethane resins and the like can be mentioned. At least the sliding component A is a thermoplastic resin. Furthermore, it is most effective when both of the sliding component pairs are thermoplastic resins.

本発明では、摺動部品(A)と、摺動部品(A)よりも摺動による摩耗量が多くない摺動部品(B)に対して、次の組み合わせを取りうる。
(i)摺動部品(A)と摺動部品(B)は、両者が熱可塑性樹脂製であり、摺動部品(A)のみに溝が設けられる。
(ii)摺動部品(A)が熱可塑性樹脂製であり、摺動部品(B)は非熱可塑性樹脂製であり、摺動部品(A)のみに溝が設けられる。
いずれの組み合わせも効果は見られるが、(i)の組み合わせが最も有効である。
In the present invention, the following combinations can be taken for the sliding component (A) and the sliding component (B) in which the amount of wear due to sliding is less than that of the sliding component (A).
(I) The sliding component (A) and the sliding component (B) are both made of thermoplastic resin, and a groove is provided only in the sliding component (A).
(Ii) The sliding component (A) is made of a thermoplastic resin, the sliding component (B) is made of a non-thermoplastic resin, and a groove is provided only in the sliding component (A).
Although any combination is effective, the combination (i) is the most effective.

摺動部品(A)と摺動部品(B)は、いずれを可動側部品としても固定側部品に用いても、両者を可動側部品としてもよい。
摺動部品の摺動面の形状、摺動のさせ方及び摺動方向には、特に制限はない。摺動面は平面、曲面及びそれらの組み合わせであってもよく、摺動面は円盤状、角状、円環状、円筒状、球面状などが挙げられる。
摺動のさせ方は、直線的、曲線的、回転的及びそれらの組み合わせであってもよく、摺動方向は一方向でも逆方向でもそれらの組み合わせであってもよい。
Either the sliding component (A) or the sliding component (B) may be used as the movable component or the fixed component, or both may be used as the movable component.
There are no particular restrictions on the shape of the sliding surface of the sliding component, the way of sliding, and the sliding direction. The sliding surface may be a flat surface, a curved surface, or a combination thereof. Examples of the sliding surface include a disk shape, a square shape, an annular shape, a cylindrical shape, and a spherical shape.
The sliding method may be linear, curvilinear, rotational, and combinations thereof, and the sliding direction may be one direction, the opposite direction, or a combination thereof.

また、樹脂の摩耗量を設計の段階で予測計算を行うため、比摩耗量を指標として計算を行うことがあるが、本発明のように摺動面に凹部を設けた場合、摩耗量が減少することから、実際の摩耗量より予測計算結果の値が非常に多くなる。揺動面に凹部を設けた場合の比摩耗量をあらかじめ測定しておき、設計時の摩耗予測計算を行うことにより、より正確な予測も可能である。   In addition, because the amount of wear of the resin is predicted and calculated at the design stage, the amount of wear may be calculated using the specific amount of wear as an index. Therefore, the value of the predicted calculation result is much larger than the actual wear amount. More accurate prediction is possible by measuring in advance the specific wear amount when the concave portion is provided on the rocking surface, and performing wear prediction calculation at the time of design.

以上が本発明の詳細な説明であるが、本発明に基づいて製造された摺動部品を用いることにより、高価な材料を用いず、低摩耗部品の製造が低コストで実現可能となり産業に与える影響は絶大である。   The above is the detailed description of the present invention. By using the sliding parts manufactured according to the present invention, it is possible to produce low-wear parts at low cost without using expensive materials and to give to the industry. The impact is enormous.

(実施例)
以下、実施例を説明するが、本発明はこれに限定されるものではない。
(Example)
Hereinafter, although an Example is described, this invention is not limited to this.

(比較例I−1)
図1に示すような外径25.6mm、内径20.0mm、長さ15mmのJIS K7218/A法指定の中空円筒試験片(試験片A)を、ポリアセタールを射出成形によって作製した。ポリアセタールはポリプラスチックス株式会社製、ポリアセタールコポリマー、ジュラコンM90である。
試験片の摺動面の表面粗さ(JIS B0601による。以下同じ。)は下記の通りである。
Ra=0.031μm、Ry=0.543μm、Rz=0.356μm
このようにして得られた摺動面に溝のない試験片同士を、回転側部品及び固定側部品として、図3に示すようにして、室温で、以下の摺動条件で摺動試験を行った。線速度15cm/秒、荷重19.6N、摺動時間24時間、グリス無。
結果を表1に示す。
(Comparative Example I-1)
A hollow cylindrical test piece (test piece A) designated by JIS K7218 / A method having an outer diameter of 25.6 mm, an inner diameter of 20.0 mm, and a length of 15 mm as shown in FIG. 1 was produced by injection molding of polyacetal. The polyacetal is a polyacetal copolymer, Duracon M90, manufactured by Polyplastics Co., Ltd.
The surface roughness of the sliding surface of the test piece (according to JIS B0601; the same shall apply hereinafter) is as follows.
Ra = 0.031 μm, Ry = 0.543 μm, Rz = 0.356 μm
As shown in FIG. 3, the sliding test without grooves on the sliding surfaces thus obtained was carried out at room temperature and under the following sliding conditions as shown in FIG. It was. Linear velocity 15 cm / sec, load 19.6 N, sliding time 24 hours, no grease.
The results are shown in Table 1.

(比較例I−2)
比較例I−1で得られた両試験片を、下記の摺動条件とした以外は、比較例I−1と同様にして摺動試験を行った。結果を表1に示す。
線速度30cm/秒、荷重11.77N、摺動時間24時間、グリス無。
(Comparative Example I-2)
A sliding test was conducted in the same manner as in Comparative Example I-1, except that both the test pieces obtained in Comparative Example I-1 were subjected to the following sliding conditions. The results are shown in Table 1.
Linear velocity 30 cm / sec, load 11.77 N, sliding time 24 hours, no grease.

(比較例I−3)
比較例I−1で得られた両試験片を、下記の摺動条件とした以外は、比較例I−1と同様にして摺動試験を行った。結果を表1に示す。
比較例I−3:線速度5.5cm/秒、荷重344N、摺動時間3時間、グリス有。
(Comparative Example I-3)
A sliding test was conducted in the same manner as in Comparative Example I-1, except that both the test pieces obtained in Comparative Example I-1 were subjected to the following sliding conditions. The results are shown in Table 1.
Comparative Example I-3: Linear velocity 5.5 cm / sec, load 344 N, sliding time 3 hours, with grease.

(比較例I−4)
両試験片の材質をポリプラスチックス株式会社製、ポリアセタールコポリマー、ジュラコンSW−01として、下記の表面粗さにした以外は、比較例I−2と同様にして摺動試験を行った。結果を表1に示す。
Ra=0.111μm、Ry=1.720μm、Rz=1.090μm
(Comparative Example I-4)
A sliding test was conducted in the same manner as in Comparative Example I-2 except that the material of both test pieces was made of Polyplastics Co., Ltd., polyacetal copolymer, Duracon SW-01 and the following surface roughness was used. The results are shown in Table 1.
Ra = 0.111 μm, Ry = 1.720 μm, Rz = 1.090 μm

(比較例I−5)
両試験片の材質をポリプラスチックス株式会社製、ポリブチレンテレフタレート、ジュラネックスB5330Cとして、下記の表面粗さにした以外は、比較例I−3と同様にして摺動試験を行った。結果を表1に示す。
Ra=0.271μm、Ry=2.250μm、Rz=1.524μm
(Comparative Example I-5)
A sliding test was conducted in the same manner as in Comparative Example I-3 except that the materials of both test pieces were made of Polyplastics Co., Ltd., polybutylene terephthalate, and DURANEX B5330C, and the following surface roughness was used. The results are shown in Table 1.
Ra = 0.271 μm, Ry = 2.250 μm, Rz = 1.524 μm

(実施例1)
比較例I−1で得られた凹部のない片方の試験片の摺動面に、切削加工によって、等間隔に16本のスリット溝(溝幅0.5mm、深さ2mm)を、摺動方向との交差角度90度で設けた。溝の開口端部を面取りした形状(C面仕上げを意味し、表でCと示す。)にした。
凹部のない試験片を回転側部品に、溝を有する試験片を固定側部品として、比較例I−1と同様にして摺動試験を行った。結果を表2に示す。
なお、固定側部品又は回転側部品の一方のみを黒色に着色したものを使用すると、白色の回転側部品又は固定側部品の摺動面にも黒色の膜状物が付着していた。
これに対して、両者凹部のない試験片を用いた場合に、固定側部品又は回転側部品の一方のみを黒色に着色したものを使用すると、白色の回転側部品又は固定側部品の摺動面には、黒色の膜状物は殆ど見られなかった。
このように、摺動面間に膜状物が形成され、維持されることにより、保護膜として働き、摩耗が大きく抑制されると考えられる。
Example 1
16 slit grooves (groove width of 0.5 mm, depth of 2 mm) are formed at equal intervals on the sliding surface of one test piece without a recess obtained in Comparative Example I-1 by sliding. And an intersection angle of 90 degrees. The opening end of the groove was chamfered (meaning C surface finishing, indicated as C in the table).
A sliding test was conducted in the same manner as in Comparative Example I-1 using a test piece without a recess as a rotating side part and a test piece having a groove as a fixed side part. The results are shown in Table 2.
In addition, when only one of the fixed side component and the rotary side component colored in black was used, a black film-like material was also attached to the sliding surface of the white rotary side component or fixed side component.
On the other hand, when using a test piece that does not have both recesses, if one of the fixed side component or the rotating side component is colored black, the sliding surface of the white rotating side component or fixed side component is used. Almost no black film was observed.
Thus, it is thought that by forming and maintaining a film-like material between the sliding surfaces, it acts as a protective film and wear is greatly suppressed.

(比較例1)
固定側部品材料にジュラコンSW−01を使用し、切削加工によって、8本のスリット溝(溝幅0.5mm、深さ2mm)を、摺動方向との交差角度90度で設け、回転側部品材料にジュラコンM90を使用して凹部を設けなかった以外は比較例I−7と同様に行った。ジュラコンM90より摩耗の少ないジュラコンSW−01側にのみ溝を設けると、摩耗量が両者に溝を設けない場合より増加した。結果を表3に示す。
(Comparative Example 1)
Duracon SW-01 is used as the material for the stationary side, and eight slit grooves (groove width 0.5 mm, depth 2 mm) are provided by cutting at an intersecting angle of 90 degrees with the sliding direction. The same procedure as in Comparative Example I-7 was performed except that Duracon M90 was used as the material and no recess was provided. When a groove was provided only on the Duracon SW-01 side with less wear than Duracon M90, the amount of wear increased compared to the case where no groove was provided on both sides. The results are shown in Table 3.

(実施例2)
回転側部品材料にジュラコンM90を使用し、切削加工によって、等間隔に8本のスリット溝(溝幅0.5mm、深さ2mm)を、摺動方向との交差角度90度で設け、固定部品側材料にジュラコンSW−01を使用して凹部を設けなかった以外は比較例I−7と同様に行った。結果を表3に示す。
(Example 2)
Duracon M90 is used as the rotation side component material, and eight slit grooves (groove width 0.5 mm, depth 2 mm) are provided at equal intervals by cutting, with a crossing angle of 90 degrees with the sliding direction. The same procedure as in Comparative Example I-7 was performed except that Duracon SW-01 was used as the side material and no recess was provided. The results are shown in Table 3.

(実施例3)
固定側部品材料にジュラコンM90を使用し、切削加工によって、等間隔に8本のスリット溝(溝幅0.5mm、深さ2mm)を、摺動方向との交差角度90度で設け、回転側部品材料にジュラネックスB5330PCを使用して凹部を設けなかった以外は比較例I−7と同様に行った。結果を表3に示す。
(Example 3)
Duracon M90 is used as the material for the fixed side, and eight slit grooves (groove width 0.5 mm, depth 2 mm) are provided at equal intervals by cutting, at an intersecting angle of 90 degrees with the sliding direction. The same procedure as in Comparative Example I-7 was conducted except that a concave portion was not provided by using Duranex B5330PC as a component material. The results are shown in Table 3.

図1(a)JIS K7218/A法指定中空円筒試験片(試験片A)の一例の斜視図である。図1(b)上記試験片Aの側面図である。図1(c)上記試験片Aの上面図である。FIG. 1A is a perspective view of an example of a JIS K7218 / A method designated hollow cylindrical test piece (test piece A). FIG. 1B is a side view of the test piece A. FIG. 1C is a top view of the test piece A. FIG. 摺動面に凹部を設けた摺動部品の一例である。摺動面に凹部を設けた摺動部品の一例である。図2(a)は、スリット溝を、摺動方向と交差角度90度で、設けた例である。図2(b)は、スリット溝を、摺動方向と交差角度30度で、設けた例である。図2(c)は、同心円状環状溝を4分割して、設けた例である。It is an example of the sliding component which provided the recessed part in the sliding surface. It is an example of the sliding component which provided the recessed part in the sliding surface. FIG. 2A shows an example in which slit grooves are provided at an intersecting angle of 90 degrees with the sliding direction. FIG. 2B shows an example in which slit grooves are provided at an intersecting angle of 30 degrees with respect to the sliding direction. FIG. 2C shows an example in which a concentric circular groove is divided into four parts. 摺動試験の概念図である。It is a conceptual diagram of a sliding test. 図4(a)は、図2(a)のスリット溝の例の斜視図である。図4(b)は、図4(a)の溝の開口部に面取り処理をした例である。Fig.4 (a) is a perspective view of the example of the slit groove | channel of Fig.2 (a). FIG. 4B is an example in which the chamfering process is performed on the opening of the groove in FIG.

符号の説明Explanation of symbols

1 摺動部品
1’固定側摺動部品
1”回転側摺動部品
2 摺動面
3 凹部
4a 前側頂部
4b 後ろ側頂部
5 C面
DESCRIPTION OF SYMBOLS 1 Sliding parts 1 'Fixed side sliding parts 1 "Rotating side sliding parts 2 Sliding surfaces 3 Recessed parts 4a Front top part 4b Rear top part 5 C surface

Claims (9)

熱可塑性樹脂製摺動部品(A)、及び、摺動部品(A)よりも摺動による摩耗量が多くない熱可塑性樹脂製摺動部品(B)からなる摺動部品対であって、摺動部品(A)の摺動面に、
摺動により生じる摩耗粉を収容し且つ収容された摩耗粉を摺動面間に供給する作用を行う凹部
を有する摺動部品対。
A sliding part pair made up of a sliding part made of thermoplastic resin (A) and a sliding part made of thermoplastic resin (B) that does not wear much more than the sliding part (A). On the sliding surface of the moving part (A),
A pair of sliding parts having a recess for accommodating wear powder generated by sliding and supplying the contained wear powder between sliding surfaces.
凹部が溝及び/又は有底穴である請求項1に記載の摺動部品対。   The sliding component pair according to claim 1, wherein the recess is a groove and / or a bottomed hole. 凹部の開口部の少なくとも一部が、摺動方向に対し角度を有する請求項1又は2に記載の摺動部品対。   The sliding component pair according to claim 1, wherein at least a part of the opening of the recess has an angle with respect to the sliding direction. 凹部が設けられた摺動部品から見て、摺動方向に後ろ側の凹部の頂部の少なくとも一部が、摺動方向に対し角度を有する請求項1〜3のいずれかに記載の摺動部品対。   The sliding component according to any one of claims 1 to 3, wherein at least a part of the top of the concave portion on the rear side in the sliding direction has an angle with respect to the sliding direction when viewed from the sliding component provided with the recess. versus. 摺動方向に対する角度が、90±80度以内である請求項3又は4に記載の摺動成形品対。   The sliding molded product pair according to claim 3 or 4, wherein an angle with respect to the sliding direction is within 90 ± 80 degrees. 凹部の開口部の頂部の少なくとも一部が、平面状もしくは曲面状に面取り処理されている請求項1〜5のいずれかに記載の摺動部品対。   The sliding component pair according to claim 1, wherein at least a part of the top of the opening of the recess is chamfered into a flat shape or a curved shape. 凹部が幅0.02mm以上及び深さ0.01〜20mmである請求項1〜6のいずれかに記載の摺動部品対。   The pair of sliding parts according to claim 1, wherein the recess has a width of 0.02 mm or more and a depth of 0.01 to 20 mm. 請求項1〜7のいずれかに記載の摺動部品対に使用される摺動部品(A)。   The sliding component (A) used for the sliding component pair in any one of Claims 1-7. 熱可塑性樹脂製摺動部品(A)、及び、摺動部品(A)よりも摺動による摩耗量が多くない熱可塑性樹脂製の摺動部品(B)からなる摺動部品対を使用して、摺動部品(A)の摺動面に凹部を設け、摺動時に生じる摩耗粉を凹部に収容し、摺動に伴って自動的に凹部内の該摩耗粉が摺動面間に供給されることを特徴とする摺動部品の摩耗量の低減方法。   Using a sliding part (A) made of a thermoplastic resin and a sliding part pair made of a sliding part (B) made of a thermoplastic resin that does not wear much more by sliding than the sliding part (A) The sliding surface of the sliding part (A) is provided with a recess, and the wear powder generated during sliding is accommodated in the recess, and the wear powder in the recess is automatically supplied between the sliding surfaces as the sliding occurs. A method for reducing the amount of wear of sliding parts.
JP2004329657A 2004-11-12 2004-11-12 Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof Pending JP2006138773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329657A JP2006138773A (en) 2004-11-12 2004-11-12 Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329657A JP2006138773A (en) 2004-11-12 2004-11-12 Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof

Publications (1)

Publication Number Publication Date
JP2006138773A true JP2006138773A (en) 2006-06-01

Family

ID=36619693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329657A Pending JP2006138773A (en) 2004-11-12 2004-11-12 Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof

Country Status (1)

Country Link
JP (1) JP2006138773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026376A1 (en) * 2021-08-24 2023-03-02 株式会社ハーモニック・ドライブ・システムズ Method for powder lubricating wave motion gear device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026324U (en) * 1983-07-29 1985-02-22 オイレス工業株式会社 Synthetic resin thrust bearing
JPS60104191A (en) * 1983-11-11 1985-06-08 N D C Kk Non-lubricant sliding member for high-speed and heavy- load use
JPH02140022U (en) * 1989-04-26 1990-11-22
JPH04258559A (en) * 1991-02-08 1992-09-14 Honda Motor Co Ltd Pulley for belt type continuously variable transmission
JPH04370419A (en) * 1991-06-14 1992-12-22 Sumitomo Heavy Ind Ltd Oil-less lubrication bearing device of frp shaft
JPH06313430A (en) * 1993-03-05 1994-11-08 Nippon Seiko Kk Wear and abrasion resistance sliding member
JPH10267033A (en) * 1997-03-25 1998-10-06 Koyo Seiko Co Ltd Slide structure
JP2002188709A (en) * 2000-12-20 2002-07-05 Koyo Seiko Co Ltd Pulley unit
JP2002266849A (en) * 2001-03-06 2002-09-18 Ricoh Co Ltd Rotational shaft supporting structure
JP2004028282A (en) * 2002-06-27 2004-01-29 Oiles Ind Co Ltd Sliding bearing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026324U (en) * 1983-07-29 1985-02-22 オイレス工業株式会社 Synthetic resin thrust bearing
JPS60104191A (en) * 1983-11-11 1985-06-08 N D C Kk Non-lubricant sliding member for high-speed and heavy- load use
JPH02140022U (en) * 1989-04-26 1990-11-22
JPH04258559A (en) * 1991-02-08 1992-09-14 Honda Motor Co Ltd Pulley for belt type continuously variable transmission
JPH04370419A (en) * 1991-06-14 1992-12-22 Sumitomo Heavy Ind Ltd Oil-less lubrication bearing device of frp shaft
JPH06313430A (en) * 1993-03-05 1994-11-08 Nippon Seiko Kk Wear and abrasion resistance sliding member
JPH10267033A (en) * 1997-03-25 1998-10-06 Koyo Seiko Co Ltd Slide structure
JP2002188709A (en) * 2000-12-20 2002-07-05 Koyo Seiko Co Ltd Pulley unit
JP2002266849A (en) * 2001-03-06 2002-09-18 Ricoh Co Ltd Rotational shaft supporting structure
JP2004028282A (en) * 2002-06-27 2004-01-29 Oiles Ind Co Ltd Sliding bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026376A1 (en) * 2021-08-24 2023-03-02 株式会社ハーモニック・ドライブ・システムズ Method for powder lubricating wave motion gear device
JPWO2023026376A1 (en) * 2021-08-24 2023-03-02
JP7362945B2 (en) 2021-08-24 2023-10-17 株式会社ハーモニック・ドライブ・システムズ Powder lubrication method for wave gearing
US12092199B2 (en) 2021-08-24 2024-09-17 Harmonic Drive Systems Inc. Powder lubrication method of strain wave gearing

Similar Documents

Publication Publication Date Title
JP4515824B2 (en) High precision plain bearing
KR101081808B1 (en) A manufacturing method of sliding bearing
JPH11170397A (en) Thrust washer for high speed and high surface pressure slide
JP2003239976A (en) High precision sliding bearing
JPH0996363A (en) Seal ring
JP2007051705A (en) High-precision plain bearing
CN104011432A (en) Sliding Element For Use In An Engine Or Chain Transmission Apparatus
JP5692720B2 (en) Spherical plain bearing device
WO2019225554A1 (en) Slide nut and sliding screw device
JPH10281262A (en) Motive power transmission member
JP2003269455A (en) Slide bearing
JP2006138773A (en) Method for reducing amount of wear in sliding component, low-friction sliding component pair, and component thereof
JPH09151954A (en) Constant velocity universal joint
JP2006138427A (en) Method for reducing abrasion quantity of sliding part, low abrasive sliding part pair and its part
JP2010270842A (en) Spherical slide bearing
JP5623852B2 (en) Plain bearing
JP6545781B2 (en) Sliding bearing
JP2011021743A (en) Sliding bearing
JP5560649B2 (en) Resin composition for sliding member and resin sliding member
JP6317057B2 (en) Plain bearing
JP2010043698A (en) Resin nut and sliding screw device
KR20030078998A (en) Glass fiber reinforced polyamide resin composition with excellent wear resistance
JP2018059085A (en) Sliding member and method of producing the same
JP3496671B2 (en) Plane guide plain bearing
JP6878209B2 (en) Seal ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525