JP2006138718A - High level radioactive waste geological disposal equipment and geological disposal method - Google Patents

High level radioactive waste geological disposal equipment and geological disposal method Download PDF

Info

Publication number
JP2006138718A
JP2006138718A JP2004327888A JP2004327888A JP2006138718A JP 2006138718 A JP2006138718 A JP 2006138718A JP 2004327888 A JP2004327888 A JP 2004327888A JP 2004327888 A JP2004327888 A JP 2004327888A JP 2006138718 A JP2006138718 A JP 2006138718A
Authority
JP
Japan
Prior art keywords
container
geological disposal
radioactive waste
level radioactive
geological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004327888A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Tochigi
善克 栃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004327888A priority Critical patent/JP2006138718A/en
Publication of JP2006138718A publication Critical patent/JP2006138718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide geological disposal equipment having a further enhanced confinement performance by housing and sealing high level radioactive waste such as glass-solidified matter and inhibiting corrosion of a geological disposal container subjected to geological disposal, and also to provide a geological disposal method. <P>SOLUTION: The geological disposal equipment 1 for high level radioactive waste comprises: the geological disposal container 10 primarily composed of a metal-made container body 11 for housing and sealing the high level radioactive waste; a buffer material container 20 covering the whole surface of the geological disposal container; and corrosion-inhibiting means 13a and 13b for electrochemically inhibiting corrosion on the surface of the container body by applying a potential difference between the container body and the buffer material container. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高レベル放射性廃棄物を密閉収納する地層処分容器の腐食を防止して長期健全性を向上させる地層処分装置及び地層処分方法に関する。   The present invention relates to a geological disposal apparatus and a geological disposal method for preventing corrosion of a geological disposal container for hermetically storing high-level radioactive waste and improving long-term soundness.

原子炉において燃焼させた使用済燃料の再処理にともなって発生する高レベル放射性廃液を固化したガラス固化体には核分裂生成物等が含まれる。核分裂生成物等は、時間の経過とともに減衰しつつも非常な長期にわたりを放射線や熱を放出しつづけるので、核分裂生成物等を含むガラス固化体は、長期間にわたり人間の生活圏から完全に隔離される必要がある。   The vitrified product obtained by solidifying the high-level radioactive liquid waste generated by reprocessing spent fuel burned in the nuclear reactor contains fission products and the like. Fission products, etc. decay over time, but continue to emit radiation and heat over a very long period of time, so vitrified products containing fission products, etc. are completely isolated from the human sphere for a long time. Need to be done.

このため、現在の計画においては、ガラス固化体を、特にその発熱の著しい製造後数十年間は冷却しながら貯蔵し、発熱量が十分に低下した後に、オーバーパックと呼ばれる炭素鋼製の厚肉円筒形の地層処分容器に密封収納して、深度数百m以上の深地下に穿たれた処分孔にオーバーパックごと埋設処分(地層処分)することとされている(例えば特許文献1を参照)。   For this reason, in the current plan, the vitrified body is stored with cooling, especially for several decades after the production of its exothermic heat, and after the calorific value has been sufficiently reduced, the thick carbon It is supposed to be hermetically stored in a cylindrical geological disposal container and buried as an overpack (geological disposal) in a disposal hole drilled in a deep underground several hundred meters deep (see, for example, Patent Document 1). .

深地下の岩盤中に埋設処分されたガラス固化体に含まれる核分裂生成物等を人間の生活圏から隔離するためには、深地下中を流れる地下水のガラス固化体への接触をなるべく防止することが重要である。すなわち、地下水がガラス固化体と接触すると、該地下水がごく僅かずつではあるがガラス固化体を該ガラス固化体に含まれる核分裂生成物等とともに溶かしだし、該地下水が核分裂生成物等を含んだままに地下を移動し、人間の生活圏にまで達する可能性が否定できないからである。   In order to isolate fission products, etc. contained in vitrified materials buried in deep underground rocks from human living areas, prevent contact with vitrified groundwater flowing in the deep underground as much as possible. is important. That is, when the groundwater comes into contact with the vitrified body, the groundwater begins to melt together with the fission products contained in the vitrified body although the groundwater is little by little, and the groundwater remains containing the fission products and the like. This is because there is no denying the possibility of moving underground and reaching the human sphere.

このため、ガラス固化体の地層処分に際しては、地層処分の行われる深地下の環境条件下においては相当の耐食性を有する炭素鋼製の厚肉容器(オーバーパック)にガラス固化体を収納密封し、その全面を緩衝材と呼ばれる材料(現在の計画における緩衝材材料の候補は、ベントナイトと呼ばれる一種の粘土である)で厚く覆うことが計画されている。なお、このオーバーパックと緩衝材の組み合わせを「人工バリア」とよぶ。
特開2002−122695号公報
For this reason, during the geological disposal of the vitrified body, the vitrified body is stored and sealed in a carbon steel thick container (overpack) having considerable corrosion resistance under the deep underground environmental conditions where the geological disposal is performed, It is planned to cover the entire surface with a material called cushioning material (a candidate for cushioning material in the current plan is a kind of clay called bentonite). This combination of overpack and cushioning material is called an “artificial barrier”.
JP 2002-122695 A

しかしながら、前述したようにガラス固化体を人工バリア内に収納して閉じ込めていても、ガラス固化体は、発熱しているので、処分孔近傍の温度の上昇に起因して、炭素鋼製のオーバーパックの腐食が促進され、貫通孔があくことが懸念される。するとこの貫通孔からオーバーパック内に地下水が浸入する虞があるので、前述した地下水の問題を完全に解消したとはいえない。   However, as described above, even if the vitrified body is housed and confined in the artificial barrier, the vitrified body still generates heat. There is a concern that the corrosion of the pack is promoted and a through hole is formed. Then, since there is a possibility that groundwater may enter into the overpack from this through hole, it cannot be said that the above-mentioned problem of groundwater has been completely solved.

また、オーバーパックによる核分裂生成物等の閉じ込めをさらに長期間にわたり担保できれば、より望ましいことはいうまでもない。すなわち、地層処分の処分孔近傍において温度が上昇した場合にあっても、また現在の計画上想定している閉じ込め期間以上の長期にわたり人工バリアによる閉じ込め機能が維持されていることが望ましい。
上記事情を考慮し、本発明は、ガラス固化体等高レベル放射性廃棄物を密閉収納して地層処分された地層処分容器の腐食を防止して閉じ込め性能を更に向上させる地層処分装置及び地層処分方法を提供することを目的とする。
Needless to say, it is more desirable if the confinement of fission products and the like by overpacking can be secured for a longer period of time. That is, even when the temperature rises near the disposal hole for geological disposal, it is desirable that the confinement function by the artificial barrier is maintained for a longer period than the confinement period assumed in the current plan.
In view of the above circumstances, the present invention provides a geological disposal apparatus and a geological disposal method that further enhances confinement performance by preventing corrosion of a geological disposal container that has been disposed and sealed by storing high-level radioactive waste such as vitrified glass The purpose is to provide.

上記目的を達成するため、請求項1の発明によっては、高レベル放射性廃棄物を密閉収納する金属製の容器本体を主体とする地層処分容器と、前記地層処分容器全面を覆って配設される緩衝材容器と、前記容器本体と前記緩衝材容器との間に電位差を印加して、該容器本体表面における腐食を電気化学的に防止する防食手段とを備えることを特徴とする高レベル放射性廃棄物の地層処分装置が提供される。   To achieve the above object, according to the first aspect of the present invention, a geological disposal container mainly comprising a metal container main body for hermetically storing high-level radioactive waste, and covering the entire surface of the geological disposal container. A high-level radioactive waste comprising: a buffer material container; and anticorrosion means for electrochemically preventing corrosion on the surface of the container body by applying a potential difference between the container body and the buffer material container A geological disposal device is provided.

前記容器本体は、炭素鋼製のオーバーパックであってもよく(請求項2)、また、前記緩衝材容器の材料はベントナイトであってもよい(請求項3)。
また、前記防食手段は、地層処分環境において前記容器本体の材料が電気化学的に安定な金属状態領域となる電位を前記容器本体に与えるものとしてもよい(請求項4)。
さらに、前記地層処分容器は、高レベル放射性廃棄物を収納する容器本体と、この容器本体の外側を覆って設けられて、前記放射性廃棄物から発生した熱の前記容器本体の外表面からの放散を遮断する被覆断熱部と、前記被覆断熱部の表裏を貫いて配設され、前記容器本体側に位置付けられた一端と、外部に露出させた他端との温度差により発電する熱電素子とを備え、前記高レベル放射性廃棄物から発生する熱を前記被覆断熱部の断熱効果により内部に閉じ込めて前記容器本体外表面と前記被覆断熱部外表面との温度差を大とすることにより前記熱電素子により効率良く発電される電気を前記防食手段に供給することとしてもよい(請求項5)。
The container body may be an overpack made of carbon steel (Claim 2), and the material of the buffer material container may be bentonite (Claim 3).
Moreover, the said anticorrosion means is good also as what gives the electric potential from which the material of the said container main body becomes an electrochemically stable metal state area | region in a geological disposal environment to the said container main body (Claim 4).
Furthermore, the geological disposal container is provided so as to cover a container main body for storing the high-level radioactive waste and an outer side of the container main body, and heat generated from the radioactive waste is dissipated from the outer surface of the container main body. And a thermoelectric element that generates electricity by a temperature difference between one end positioned on the container body side and the other end exposed to the outside. Providing the thermoelectric element by confining the heat generated from the high-level radioactive waste inside by the heat insulating effect of the covering heat insulating portion to increase the temperature difference between the outer surface of the container body and the outer surface of the covering heat insulating portion. It is good also as supplying the electricity generated efficiently by the said anticorrosion means (Claim 5).

請求項6の発明によっては、高レベル放射性廃棄物を密閉収納した金属製の容器本体を主体とする地層処分容器を、その全面を覆って設けられた緩衝材容器とともに深地下の岩盤中に穿たれた処分孔に収納設置するに際し、前記容器本体と前記緩衝材容器との間に所定の電位差を印加し、前記容器表面本体表面における腐食の進行を電気化学的反応により防止することを特徴とする高レベル放射性廃棄物の地層処分方法が提供される。   According to the invention of claim 6, a geological disposal container mainly composed of a metal container main body containing high-level radioactive waste is sealed in a deep underground bedrock together with a buffer container provided so as to cover the entire surface. A feature of applying a predetermined potential difference between the container main body and the buffer material container when storing and installing in the disposed disposal hole, and preventing progress of corrosion on the surface of the container surface main body by an electrochemical reaction, A method for geological disposal of high-level radioactive waste is provided.

請求項1の発明は、ガラス固化体等の高レベル放射性廃棄物を密閉収納する金属製の容器本体を主体とする地層処分容器とその全面を覆う緩衝材容器とを備え、容器本体と緩衝材容器の間に電位差(電圧)を印加して電気化学的に防食を行う防食手段を備えることとした。このため、容器本体と緩衝材容器との間に電位差が発生し、電気化学反応により、容器本体表面の状態を、腐食が進行しない状態に移行させることができる。このため、係る電位差が付加されている限り、非常な長期間にわたり腐食の進行を防止することができる。   The invention of claim 1 comprises a geological disposal container mainly composed of a metal container main body for hermetically storing a high-level radioactive waste such as vitrified glass and a buffer material container covering the entire surface thereof, the container main body and the buffer material An anticorrosion means for applying an electric potential difference (voltage) between the containers to electrochemically prevent corrosion was provided. For this reason, a potential difference is generated between the container main body and the buffer material container, and the state of the surface of the container main body can be shifted to a state in which corrosion does not proceed by an electrochemical reaction. For this reason, as long as such a potential difference is added, the progress of corrosion can be prevented for a very long period of time.

容器本体としては、炭素鋼製のオーバーパックとすることによりコスト低減を図ることができる(請求項2)。
さらに緩衝材容器の材料として、ベントナイトを使用することにより、コストが安くかつ地下水の浸入を防止するに優れた効果を上げることができる(請求項3)。
また、上記「腐食が進行しない状態」は、防食手段が、容器本体に対し、容器本体材料が地層処分環境において電気化学的に安定な金属状態領域にある電位を印可することにより達成できる(請求項4)。
Cost reduction can be achieved by using an overpack made of carbon steel as the container body (Claim 2).
Furthermore, by using bentonite as the material of the buffer material container, the cost is low and an excellent effect for preventing intrusion of groundwater can be achieved (claim 3).
Further, the “state in which corrosion does not proceed” can be achieved by the anticorrosion means applying to the container body a potential in which the container body material is in an electrochemically stable metal state region in the geological disposal environment (claims). Item 4).

防食手段に電気を供給する手段としては、外部から電気の供給をうけることも考えられるが、ガラス固化体などの高レベル放射性廃棄物が発生する熱を電気エネルギに変換してその場において供給することも考えられる。すなわち、請求項5の発明によっては、地層処分容器の容器本体全体を被覆断熱部で覆い、高レベル放射性廃棄物から発生する熱を内部に閉じ込めて蓄積させ、容器本体外表面と被覆断熱部外側の緩衝材との間の温度差を大とさせるとともに、被覆断熱部の表裏を貫いて熱電素子を装入し、熱電素子の一端が高温の容器本体外表面に接触し、他端が被覆断熱部外側に露出し、低温の緩衝材容器に接触するか、僅かの隙間を隔てて配置される構造とした。このため、熱電素子両端間に大きな温度差が生じ、容器本体外表面から放散される熱を電気エネルギに変換することができるので、該電気を容器本体と緩衝材容器とにそれぞれ付加することができる。これにより処分対象である高レベル廃棄物から発生する熱エネルギをそのまま容器の電気防食に利用できるので、外部から電気供給をうけることなく必要がない。従ってそのための電線等の設備が不要になる。また、高レベル放射性廃棄物の発熱は非常な長期間にわたり継続するのでかかる長期間にわたり電気防食による閉じ込め機能の維持ができる。   As means for supplying electricity to the anticorrosion means, it may be possible to receive electricity from the outside. However, heat generated by high-level radioactive waste such as vitrified glass is converted into electric energy and supplied on the spot. It is also possible. That is, according to the invention of claim 5, the entire container main body of the geological disposal container is covered with the covering heat insulating part, and heat generated from the high-level radioactive waste is confined and accumulated inside, and the outer surface of the container main body and the outer side of the covering heat insulating part are stored. The thermoelectric element is inserted through the front and back of the insulation cover, and one end of the thermoelectric element comes into contact with the outer surface of the hot container body, and the other end is covered with insulation. It was exposed to the outside of the unit, and contacted with a low-temperature buffer material container or arranged with a slight gap. For this reason, a large temperature difference occurs between both ends of the thermoelectric element, and the heat dissipated from the outer surface of the container body can be converted into electric energy, so that the electricity can be added to the container body and the buffer material container, respectively. it can. As a result, the heat energy generated from the high-level waste to be disposed of can be used as it is for the cathodic protection of the container, so that it is not necessary without receiving an electric supply from the outside. Therefore, facilities such as electric wires for that purpose are unnecessary. Moreover, since the heat generation of the high-level radioactive waste continues for a very long period of time, it is possible to maintain the confinement function by means of cathodic protection over such a long period.

また、請求項6の発明においては、ガラス固化体を収納した地層処分容器を深地下に埋設した状態で地層処分容器の容器本体と緩衝材容器との間に電気化学的防食のために所定の電位差を印加することとした。このため、係る電位差が付加されている限り、非常な長期間にわたり腐食の進行を防止することができる。   Moreover, in invention of Claim 6, it is predetermined | prescribed for electrochemical corrosion protection between the container main body and buffer material container of the geological disposal container in the state which buried the geological disposal container which accommodated the vitrified body in the deep underground. It was decided to apply a potential difference. For this reason, as long as such a potential difference is added, the progress of corrosion can be prevented for a very long period of time.

本発明の実施形態を図面を参照しながら説明する。
なお、本実施例の地層処分装置1は、地層処分容器10に収納されたガラス固化体Gの発生する熱エネルギを電気エネルギに変換し、該電気を地層処分容器10の電気化学防食に適用するものである。
図1に示す本発明の第1の実施例である地層処分装置1は、ガラス固化体(高レベル放射性廃棄物)Gを収納して深度数百m以上の深地下に穿たれた処分孔Hに埋設処分される地層処分容器10と、処分時に地層処分容器10の全面を覆って配設される緩衝材容器20等を備える。
Embodiments of the present invention will be described with reference to the drawings.
In addition, the geological disposal apparatus 1 of a present Example converts the thermal energy which the glass solid G contained in the geological disposal container 10 generate | occur | produces into an electrical energy, and applies this electricity to the electrochemical protection of the geological disposal container 10 Is.
The geological disposal apparatus 1 according to the first embodiment of the present invention shown in FIG. 1 is a disposal hole H that accommodates a vitrified body (high-level radioactive waste) G and is drilled in a deep underground having a depth of several hundred meters or more. A geological disposal container 10 to be buried and disposed, and a buffer material container 20 disposed so as to cover the entire surface of the geological disposal container 10 at the time of disposal.

地層処分容器10は、ガラス固化体Gを収納する炭素鋼製のオーバーパック(容器本体)11と、その周囲を覆いガラス固化体から発生する熱を遮断して外部への放散を防止する断熱部(被覆断熱部)12と、断熱部12に穿たれた孔部12eにはめ込まれ、熱エネルギを電気エネルギに変換する熱電素子13等を備える。
オーバーパック11は、有底の厚肉円筒形状物であるオーバーパック本体11aとオーバーパック本体11a上部の開放端11dを塞ぐ厚肉円盤状の蓋部11bとを備える。オーバーパック本体11a内部の空間部11cの形状寸法は、円筒形状のガラス固化体G一体のみを収納できる程度の大きさとする。なお、ガラス固化体の大きさは、直径約45cm、高さ約1.5m程度である。
The geological disposal container 10 includes an overpack (container body) 11 made of carbon steel that houses the vitrified body G, and a heat insulating portion that covers the periphery of the overpack 11 and blocks heat generated from the vitrified body to prevent the dispersion to the outside. (Coating heat insulating part) 12 and a thermoelectric element 13 or the like that is fitted into a hole 12e formed in the heat insulating part 12 and converts heat energy into electric energy.
The overpack 11 includes an overpack body 11a that is a bottomed thick cylindrical body and a thick disk-shaped lid portion 11b that closes an open end 11d at the top of the overpack body 11a. The shape and size of the space portion 11c inside the overpack body 11a is set to such a size that only the cylindrical vitrified body G can be accommodated. The size of the vitrified body is about 45 cm in diameter and about 1.5 m in height.

オーバーパック11の材料としては、特に限定はしないが、地層処分環境において比較的耐食性に優れ、均一腐食を生じ孔食を生じない炭素鋼が好適に使用できる。また、オーバーパック11の厚みは、特に限定されるものではないが、材料が炭素鋼の場合、地層処分上要求される厚さ、具体的には、周囲の岩盤からの圧力に耐える耐圧性、及び周囲の地下水の放射線分解を防止するためのガンマ線遮蔽性能等により設定される厚さとして、蓋、側面、底部のいずれも約20cmとすれば良いと考えられる。   The material of the overpack 11 is not particularly limited, but carbon steel that is relatively excellent in corrosion resistance in a geological disposal environment and that generates uniform corrosion and does not cause pitting corrosion can be suitably used. Further, the thickness of the overpack 11 is not particularly limited, but when the material is carbon steel, the thickness required for geological disposal, specifically, the pressure resistance that can withstand the pressure from the surrounding rock mass, As the thickness set by the gamma ray shielding performance for preventing radiolysis of the surrounding groundwater and the like, it is considered that all of the lid, side surface, and bottom portion should be about 20 cm.

断熱部12は、有底円筒形状の断熱部本体12aと、断熱部本体12a上部の開放端12dを塞ぐ厚肉円盤状の蓋部12bとを備え、断熱部本体12a内部には、オーバーパック11を1基のみ収納できる程度の大きさの空間部12cを備える。なお、図1中においては、空間部12cはオーバーパック11と重なって記載されている。
断熱部12は、オーバーパック11外表面から外部に放散する熱を遮断し、内部に閉じ込める機能を有する。断熱部12には、例えばその表から裏まで貫通する孔部12eが複数穿たれており、該孔部12eには、後述する熱電素子13がその一端面(高温面)13aがオーバーパック11外表面に接触し、他端面が外部に露出して放熱面13bを形成するように嵌入されている。また、断熱部12の上面には、前述のようにオーバーパック11を収納した後に断熱部12上部の開放端12dを塞ぐ蓋部12bが設置され、断熱部本体12aと蓋部12bとの間に隙間を生じることなく嵌め合いにより固定できる構造となっている。
The heat insulating portion 12 includes a bottomed cylindrical heat insulating portion main body 12a and a thick disc-shaped lid portion 12b that closes the open end 12d at the upper portion of the heat insulating portion main body 12a. The space part 12c of the magnitude | size which can accommodate only one is provided. In FIG. 1, the space portion 12 c is described so as to overlap the overpack 11.
The heat insulating portion 12 has a function of blocking heat dissipated from the outer surface of the overpack 11 and confining it inside. For example, a plurality of holes 12e penetrating from the front side to the back side are formed in the heat insulating part 12, and a thermoelectric element 13 described later has one end surface (high temperature surface) 13a outside the overpack 11 in the hole part 12e. It is fitted so that it contacts the surface and the other end surface is exposed to the outside to form a heat radiating surface 13b. In addition, on the upper surface of the heat insulating portion 12, a lid portion 12b that closes the open end 12d of the upper portion of the heat insulating portion 12 after the overpack 11 is stored is installed between the heat insulating portion main body 12a and the lid portion 12b. It has a structure that can be fixed by fitting without generating a gap.

断熱部12の材料としては、断熱性、耐熱性、強度、長期安定性及び耐水性に優れた材料であれば特に限定されるものではないが、例えば有機材料としてウレタン、無機材料としては、正方晶と単斜晶からなるジルコニアセラミックスが好適に使用できる。またその厚みについては、ガラス固化体からの発熱量と断熱部12の外表面温度(後述する緩衝材容器20の保護の観点から100℃以下に制限される)と断熱部12の熱伝導度等を考慮するとともに、断熱部12が厚くなりすぎて地層処分容器10全体の口径や高さが大きくなりすぎ、結果として処分孔の掘削量の増大化を招くことのないよう、両者のバランスを考慮してして設定する。   The material of the heat insulating part 12 is not particularly limited as long as it is a material excellent in heat insulation, heat resistance, strength, long-term stability and water resistance. For example, urethane is used as an organic material, and square is used as an inorganic material. Zirconia ceramics composed of crystals and monoclinic crystals can be suitably used. Moreover, about the thickness, the emitted-heat amount from a vitrified body, the outer surface temperature of the heat insulation part 12 (it restrict | limits to 100 degrees C or less from a viewpoint of protection of the buffer container 20 mentioned later), the heat conductivity of the heat insulation part 12, etc. And considering the balance between the two so that the heat insulation portion 12 becomes too thick and the diameter and height of the entire geological disposal container 10 become too large, resulting in an increase in the drilling amount of the disposal hole. And set.

熱電素子13は公知のものであるので詳細な説明は省略するが、熱電素子13の一端(高温面)13aが高温側熱源に接触するとともに他端が放熱面13bを形成する構造を有し、該高温面13aと放熱面13b間の温度差による熱起電力を利用して熱エネルギと電気エネルギの直接変換を行うものである。これにより可動部のない単純な発電、すなわち、小型で長寿命の発電ができる。なお、このとき、放熱面13bを断熱部12外表面とが同一面を形成するようにし、地層処分容器10を、後述する処分孔Hに緩衝材容器20とともに設置した状態で、放熱面13bと緩衝材容器20内面とが接触するようにする。   Since the thermoelectric element 13 is a known one, a detailed description thereof will be omitted, but one end (high temperature surface) 13a of the thermoelectric element 13 is in contact with the high temperature side heat source and the other end forms a heat radiation surface 13b. The thermal energy and the electrical energy are directly converted using the thermoelectromotive force due to the temperature difference between the high temperature surface 13a and the heat radiating surface 13b. As a result, simple power generation without moving parts, that is, power generation with a small size and a long life can be achieved. At this time, the heat dissipating surface 13b is formed on the same surface as the outer surface of the heat insulating portion 12, and the geological disposal container 10 is installed in the disposal hole H to be described later together with the buffer material container 20 with the heat dissipating surface 13b. The buffer material container 20 is brought into contact with the inner surface.

熱電素子13の設置数及び配置については、ガラス固化体からの発熱による地層処分容器10内部の温度分布を考慮し、地層処分容器10全体としてガラス固化体の発熱量を電気エネルギに可能な限り高い効率で変換でき、かつ熱電素子の数を可能な限り少なくすることができること、及びオーバーパック11の電気化学防食上適切な電位差が熱電素子13により発生するように設定する。   Regarding the number and arrangement of the thermoelectric elements 13, considering the temperature distribution inside the geological disposal container 10 due to heat generation from the vitrified body, the calorific value of the vitrified body as the entire geological disposal container 10 is as high as possible to electrical energy. The thermoelectric element 13 is set so that it can be converted with efficiency and the number of thermoelectric elements can be reduced as much as possible, and an appropriate potential difference for electrochemical protection of the overpack 11 is generated by the thermoelectric element 13.

熱電素子13の高温面13aと放熱面13bとは、それぞれプラス(+)、マイナス(−)の電気出力端子、すなわち電極板13c、13dを兼ねており、前述のように、高温面13aがオーバーパック11外表面と、放熱面13bが緩衝材容器20内面とが接触した状態で、高温面13aとオーバーパック11外表面との間、放熱面13bと緩衝材容器20内面との間において熱の授受と同時に電位差の印加が行われ、オーバーパック11と緩衝材容器20との間に電位差が生じる構造となっている。すなわち、本実施例においては、この電極板を兼ねる高温面13aと放熱面13b等が防食手段を構成する。   The high temperature surface 13a and the heat radiating surface 13b of the thermoelectric element 13 also serve as plus (+) and minus (−) electrical output terminals, that is, electrode plates 13c and 13d, respectively. With the outer surface of the pack 11 and the heat radiating surface 13b in contact with the inner surface of the buffer material container 20, heat is transferred between the high temperature surface 13a and the outer surface of the overpack 11 and between the heat radiating surface 13b and the inner surface of the buffer material container 20. A potential difference is applied simultaneously with the transfer, so that a potential difference is generated between the overpack 11 and the buffer material container 20. That is, in this embodiment, the high temperature surface 13a and the heat radiating surface 13b, which also serve as the electrode plate, constitute anticorrosion means.

緩衝材容器20は、有底の円筒形状物の本体部20aと本体部20a上部の開放端20dを塞ぐ厚肉円盤形状の蓋部20b等を備える。本体部20a内部には、地層処分容器10を1基収納できる大きさの空間部20cを備える。なお、図1及び図2中においては空間部20cは地層処分容器10と重なって記載されている。
緩衝材容器20は、ある程度の期間、地下水が浸入してオーバーパック11が腐食されることを防止するとともに、地下水の進入によりオーバーパック11が腐食して内部のガラス固化体が僅かずつ該地下水に溶け出した場合にあっても該地下水に含まれる放射性物質などを吸着、又はろ過等により緩衝材容器20中に閉じ込める機能を有する。
The buffer material container 20 includes a bottomed cylindrical body 20a and a thick disk-shaped lid 20b that closes an open end 20d on the top of the body 20a. Inside the main body 20a, a space 20c of a size that can accommodate one geological disposal container 10 is provided. In addition, in FIG.1 and FIG.2, the space part 20c overlaps with the geological disposal container 10, and is described.
The buffer material container 20 prevents the groundwater from entering and corroding the overpack 11 for a certain period of time, and the overpack 11 is corroded by the entrance of the groundwater, so that the internal vitrified material is gradually added to the groundwater. Even when it melts, it has a function of trapping radioactive substances contained in the groundwater in the buffer material container 20 by adsorption or filtration.

緩衝材容器20の材料は、水が浸透しにくく、地下水に溶け込んで又は混合している核分裂生成物等を吸着又はろ過して緩衝材容器20内に保持できる性質を有し、加工性やハンドリング性にも優れていることが望ましく、例えば、粘土の一種であるベントナイトをケイ砂と所定の割合で混合したものが好適に使用できる。
次に本地層処分装置1の使用方法を説明する。
The material of the buffer material container 20 is difficult to permeate water, and has the property of adsorbing or filtering a fission product or the like dissolved or mixed in the ground water and holding it in the buffer material container 20, and is easy to process and handle. For example, a mixture of bentonite, a kind of clay, with silica sand at a predetermined ratio can be suitably used.
Next, the usage method of this geological disposal apparatus 1 is demonstrated.

地層処分装置1の使用方法としては、地層処分場から離れた遠隔セル等において、ガラス固化体を地層処分容器10内に収納する工程と、地下の地層処分場まで地層処分容器10を移送し、地層処分場内の処分孔Hにおいて埋設(地層)処分する工程とからなる。まず、地層処分容器10等を処分孔まで移送する前の工程を図1を参照して説明する。
すなわち、遮蔽機能を有するセル(図示せず)において、遠隔操作により、ガラス固化体Gをオーバーパック本体11a内の空間部11cに収納する。その後に、オーバーパック本体11の開放端11dに蓋部11bを設置し、該蓋部11bをオーバーパック本体11aに遠隔溶接して空間部11cを密閉する。次に、遠隔操作によりオーバーパック11を断熱部本体12aの空間部12cに収納し、蓋部12bを断熱部本体12aの開放端12dにはめ合いにより固定する。この状態で地層処分容器10が完成した状態となるので、該地層処分容器10及び処分時にその全面を覆う緩衝材容器20を処分孔Hまで移送する。
As a method of using the geological disposal apparatus 1, in a remote cell or the like away from the geological disposal site, the step of storing the glass solidified body in the geological disposal container 10 and the geological disposal container 10 are transferred to the underground geological disposal site, And a process of burying (geological formation) disposal in the disposal hole H in the geological disposal site. First, the process before transferring the geological disposal container 10 etc. to a disposal hole is demonstrated with reference to FIG.
That is, in a cell (not shown) having a shielding function, the vitrified body G is stored in the space portion 11c in the overpack body 11a by remote control. Thereafter, a lid portion 11b is installed at the open end 11d of the overpack body 11, and the lid portion 11b is remotely welded to the overpack body 11a to seal the space portion 11c. Next, the overpack 11 is housed in the space portion 12c of the heat insulating portion main body 12a by remote control, and the lid portion 12b is fixed to the open end 12d of the heat insulating portion main body 12a by fitting. Since the geological disposal container 10 is completed in this state, the geological disposal container 10 and the buffer material container 20 covering the entire surface at the time of disposal are transferred to the disposal hole H.

次に地層処分容器10を処分孔Hに埋設処分する方法を図2を参照して説明する。図2はガラス固化体Gを収納した処分容器10が地下の処分孔Hに埋設された状態を示す。地下数百m以上の深さの岩盤中に有底円筒形状の処分孔Hが穿たれ、該処分孔Hに本体部20aが嵌入される。本体部20aの空間部20cに地層処分容器10を収納した後、本体部20aの開放端20dを蓋部20bで塞ぐ。さらに該処分孔Hに至る坑道(図示せず)もベントナイト又は岩盤と同じ材質の岩、土、砂等により埋め戻され、処分が完了する。なお、処分孔Hの中に地層処分容器10を内蔵する緩衝材容器20が略密着して収納された状態になるため、図2中では緩衝材容器20と処分孔Hとが重なって記載されている。   Next, a method for embedding the geological disposal container 10 in the disposal hole H will be described with reference to FIG. FIG. 2 shows a state in which the disposal container 10 containing the glass solid G is buried in the underground disposal hole H. A bottomed cylindrical disposal hole H is drilled in a bedrock having a depth of several hundred meters or more underground, and the main body portion 20a is inserted into the disposal hole H. After the geological disposal container 10 is stored in the space 20c of the main body 20a, the open end 20d of the main body 20a is closed with the lid 20b. Further, the tunnel (not shown) leading to the disposal hole H is backfilled with rock, soil, sand, etc. of the same material as the bentonite or the bedrock, and the disposal is completed. In addition, since the buffer material container 20 containing the geological disposal container 10 is accommodated in the disposal hole H substantially in close contact, the buffer material container 20 and the disposal hole H are overlapped in FIG. ing.

次に、本地層処分装置1の作用を説明する。なお、本地層処分装置1は、前述のように、ガラス固化体Gから発生する熱を電気エネルギに変換する作用と、変換された該電気エネルギにより地層処分容器10の炭素鋼製のオーバーパック11の電気防食を行う作用との2つの作用を有する。そこでまず、熱エネルギが電気エネルギに変換される作用を説明し、その後に該電気による電気防食作用を説明する。   Next, the operation of the main geological disposal apparatus 1 will be described. In addition, as described above, the geological disposal apparatus 1 converts the heat generated from the vitrified body G into electric energy, and the carbon steel overpack 11 of the geological disposal container 10 by the converted electric energy. It has two actions, that is, the action of performing anti-corrosion. Therefore, first, the action of converting heat energy into electric energy will be described, and then the anticorrosion action by the electricity will be described.

図1に示すように本地層処分装置1の地層処分容器10はその外側が断熱部12に覆われているため、ガラス固化体Gから発生する熱は、断熱部12の断熱効果により地層処分容器10から外部の緩衝材容器20に放散されず、ガラス固化体G及びオーバーパック11内に蓄積される。このためオーバーパック11内部の温度が上昇し、オーバーパック11外表面と、ガラス固化体Gの熱が伝わらない外部の緩衝材容器20との温度差が大となる。また、地層処分容器10から放散する殆ど全ての熱量が、熱電素子13の高温面13aに集中するので、単位面積あたりの熱量、すなわち、熱エネルギ密度が大となる。このため、熱電素子13の高温面13aと放熱面13bとの間の温度差が大となり、かつ、熱電素子13に集中する熱エネルギ密度も大となるので熱電素子13の起電力が大きくなり熱電素子13の1個あたりの発電量と変換効率が向上でき、後述するオーバーパック11の電気化学的防食を行うのに十分な電気エネルギが得られる。ガラス固化体Gから発生する熱エネルギの殆どが電気ネルギに変換される別の効果として、ガラス固化体Gから発生する熱が緩衝材容器20へ伝わることがないので、地層処分容器10外側の緩衝材容器20や更にその外側の岩盤の温度が上昇することなくして、ガラス固化体が適切に除熱されることがあげられる。緩衝材容器20等の温度が上昇しないので、高温によりオーバーパック11外表面の腐食反応が促進されることもない。   As shown in FIG. 1, since the geological disposal container 10 of the main geological disposal apparatus 1 is covered with the heat insulating portion 12, the heat generated from the vitrified body G is generated by the heat insulating effect of the heat insulating portion 12. 10 is not diffused into the external buffer material container 20, but is accumulated in the vitrified body G and the overpack 11. For this reason, the temperature inside the overpack 11 rises, and the temperature difference between the outer surface of the overpack 11 and the external buffer material container 20 where the heat of the vitrified body G is not transmitted becomes large. Moreover, since almost all of the heat dissipated from the geological disposal container 10 is concentrated on the high temperature surface 13a of the thermoelectric element 13, the amount of heat per unit area, that is, the thermal energy density is increased. For this reason, the temperature difference between the high temperature surface 13a and the heat radiating surface 13b of the thermoelectric element 13 is large, and the thermal energy density concentrated on the thermoelectric element 13 is also large. The amount of power generation per element 13 and the conversion efficiency can be improved, and sufficient electric energy can be obtained for performing electrochemical corrosion protection of the overpack 11 described later. As another effect that most of the heat energy generated from the vitrified body G is converted into electric energy, the heat generated from the vitrified body G is not transmitted to the buffer material container 20, so that the buffer outside the geological disposal container 10 is buffered. It is possible to appropriately remove heat from the vitrified body without increasing the temperature of the material container 20 or the rock mass outside the material container 20. Since the temperature of the buffer material container 20 or the like does not increase, the corrosion reaction on the outer surface of the overpack 11 is not accelerated by the high temperature.

次に、熱エネルギから変換させて生成した電気エネルギによる電気化学的防食作用について図3を参照して説明する。
前述のように熱電素子13の電極板(電気出力端子の一端)13cをオーバーパック11に接触させ、他の電極板13dを緩衝材容器20に接触させてオーバーパック11と緩衝材容器20との間に電位差が印加されている。なお、電極板13c、13dは、熱電素子13の高温面13aと放熱面13bとにそれぞれ一致させ、該両端がオーバーパック11、及び緩衝材容器20と接触することにより熱の授受だけでなく電気エネルギの授受も行うようにしてある。
Next, the electrochemical anticorrosive action by the electric energy generated by converting from the heat energy will be described with reference to FIG.
As described above, the electrode plate (one end of the electrical output terminal) 13c of the thermoelectric element 13 is brought into contact with the overpack 11, and the other electrode plate 13d is brought into contact with the buffer material container 20 so that the overpack 11 and the buffer material container 20 are brought into contact with each other. A potential difference is applied between them. The electrode plates 13c and 13d are respectively aligned with the high temperature surface 13a and the heat radiating surface 13b of the thermoelectric element 13, and the both ends thereof are in contact with the overpack 11 and the buffer material container 20 so that not only heat is transferred but also electricity. Energy is also exchanged.

熱電素子の数や配置を調節して温度差により生じる起電力を調節し、かかる電位差が適切な範囲にあるように調整する。すると、オーバーパック11外表面が安定な金属状態、すなわち、腐食が進行しない状態を形成することができる。
以下により詳しく説明する。地層処分条件における地下の環境は、pH値が7〜8、オーバーパック11側電位は、緩衝材容器20に対して、−0.5V程度になるとされている。図4(「材料環境学入門」(腐食防食協会編)、19頁)に示すように、地層処分環境である上記条件(図中P付近)では、一般的に炭素鋼の状態は腐食領域にあり、遅い速度ながら腐食が進行することになる。このオーバーパック11側電位を、例えば、0.15V〜0.2V程度下げて、該電位が−0.65V〜−0.7Vとなるように状態を移行させる。すると、図4中Qで示す金属領域(金属状態領域)に状態が移行するが、炭素鋼はその状態では金属状態で安定に存在するので腐食が進行しない。但し、この領域は水が分解して水素が発生する領域でもあり、あまり電位を下げると、かかる水素発生が激しくなるので、上記以上に電位を下げることは好ましくない。すなわち、図4中、2本の点線L1、L2が示されているが、この2本の点線に挟まれた領域が水の安定領域であり、それ以外の領域では水の分解反応が生じ、図4中点線L1より上側(高電位側)では酸素が、点線L2より下側(低電位側)では水素が発生し、その発生量は点線L1、L2から離れるほど大になるのである。
The electromotive force generated by the temperature difference is adjusted by adjusting the number and arrangement of the thermoelectric elements, and the potential difference is adjusted to be in an appropriate range. As a result, the outer surface of the overpack 11 can form a stable metal state, that is, a state in which corrosion does not proceed.
This will be described in more detail below. In the underground environment under the geological disposal conditions, the pH value is 7 to 8, and the overpack 11 side potential is about −0.5 V with respect to the buffer material container 20. As shown in Fig. 4 ("Introduction to Material Environmental Studies" (edition of corrosion and corrosion prevention), page 19), under the above conditions (around P in the figure), which is a geological disposal environment, the state of carbon steel is generally in the corrosion region. Yes, corrosion proceeds at a slow rate. The overpack 11 side potential is lowered by, for example, about 0.15 V to 0.2 V, and the state is shifted so that the potential becomes −0.65 V to −0.7 V. Then, although the state shifts to a metal region (metal state region) indicated by Q in FIG. 4, corrosion does not proceed because carbon steel exists stably in the metal state in that state. However, this region is also a region where water is decomposed and hydrogen is generated, and if the potential is lowered too much, the generation of hydrogen becomes intense, so it is not preferable to lower the potential more than the above. That is, in FIG. 4, two dotted lines L1 and L2 are shown, but the region sandwiched between the two dotted lines is a stable region of water, and in other regions, a water decomposition reaction occurs. In FIG. 4, oxygen is generated above the dotted line L1 (high potential side), and hydrogen is generated below the dotted line L2 (low potential side), and the generation amount increases as the distance from the dotted lines L1 and L2 increases.

以上を勘案して、図4中Qで示される状態のように、オーバーパック11外表面が金属状態のまま、腐食が進行しない状態であって、水の分解による水素の発生が少ない範囲に電位差を設定することにより電気化学的な防食を達成することができるのである。
前述したように、オーバーパック11に腐食により貫通孔が発生すると、地下水がオーバーパック内部にまで浸入してガラス固化体と接触し、ガラス固化体に含有される放射性物質を徐々に溶かしだして外部に漏洩させる危険がある。従ってオーバーパック11の腐食を防止することが重要であるが、通常は、腐食速度と耐用期間とを考慮して腐食しろを設定することにより対応している。しかし、上述のような電気化学的手段によりオーバーパック11の腐食の進行を防止できれば、「ガラス固化体の発熱が継続する限り腐食が全く発生しない」のであるから、腐食しろのように「ある一定期間内の腐食量を予測してその腐食を許容できる設計とする」より好ましいことはいうまでもない。
Considering the above, as shown by Q in FIG. 4, the overpack 11 has an outer surface in a metal state, in which corrosion does not proceed, and the potential difference is within a range where hydrogen generation due to water decomposition is small. Therefore, electrochemical corrosion protection can be achieved.
As described above, when a through-hole is generated in the overpack 11 due to corrosion, the groundwater penetrates into the overpack and comes into contact with the vitrified body, gradually dissolving the radioactive material contained in the vitrified body and externally. Risk of leakage. Therefore, it is important to prevent the overpack 11 from being corroded. Usually, however, the corrosion is set by considering the corrosion rate and the service life. However, if the progress of corrosion of the overpack 11 can be prevented by the electrochemical means as described above, since “corrosion does not occur at all as long as the heat generation of the vitrified body continues”, it is “certainly constant”. Needless to say, it is more preferable to predict the amount of corrosion within a period and make the design tolerate the corrosion.

以上で、地層処分装置1の説明を終了するが、本実施例には様々の別態様があることはいうまでもない。以下にかかる別態様の例を示す。
本実施例においては、オーバーパック11を炭素鋼製としたが、地層処分環境下において、電気化学的に安定な金属状態に移行させることのできる金属材料であればこれに限定されない。
This is the end of the description of the geological disposal apparatus 1, but it goes without saying that there are various other modes in this embodiment. The example of another aspect concerning this is shown below.
In the present embodiment, the overpack 11 is made of carbon steel, but is not limited to this as long as it is a metal material that can be transferred to an electrochemically stable metal state in a geological disposal environment.

本実施例においては、熱電素子を複数としたが、ガラス固化体から発生する熱エネルギを適切に電気エネルギに変換でき、かつ電気防食に適切な電位差を印加できる場合には1個でもよい。
本実施例においては、オーバーパック11外表面に接触する高温面13aと緩衝材容器20に接触する放熱面13bとが電位差をオーバーパックと緩衝材との間に印加する電極板を兼ねることとし、これら高温面13a及び放熱面13b等が防食手段を構成することとした。しかし、熱電素子の電気出力端子に接続する電極板及び電線を別途備え、これら電極板を、例えば、オーバーパック外表面や緩衝材容器内表面に穿たれた小さな孔部に差し込んで固定することにより電位差を印加することとしてもよい。
In the present embodiment, a plurality of thermoelectric elements are used. However, the number may be one when the thermal energy generated from the vitrified body can be appropriately converted into electric energy and an appropriate potential difference can be applied to the anticorrosion.
In this embodiment, the high temperature surface 13a that contacts the outer surface of the overpack 11 and the heat radiation surface 13b that contacts the buffer material container 20 also serve as an electrode plate that applies a potential difference between the overpack and the buffer material, These high temperature surface 13a, heat radiating surface 13b, and the like constitute anticorrosion means. However, by separately providing an electrode plate and an electric wire to be connected to the electric output terminal of the thermoelectric element, these electrode plates are fixed by being inserted into, for example, small holes formed in the outer surface of the overpack or the inner surface of the buffer material container. A potential difference may be applied.

本実施例においては、防食手段への電気供給をガラス固化体から発生する熱から変換された電気によるものとしたが、外部から電線等により供給することとしてもよい。
本実施例においては、ガラス固化体を本地層処分装置により、地層処分することとしたが、例えば、使用済燃料を本地層処分装置により直接処分することもできる。
なお、ここで説明した実施形態は一つの例であって、本発明はこれのみに限定されるものではなく、本発明の要旨の範囲において変更を加えうることはいうまでもない。
In the present embodiment, the electricity supply to the anticorrosion means is made by electricity converted from the heat generated from the vitrified body, but it may be supplied from the outside by an electric wire or the like.
In this embodiment, the vitrified body is disposed of by the geological disposal device, but for example, the spent fuel can be disposed directly by the geological disposal device.
In addition, embodiment described here is an example, Comprising: This invention is not limited only to this, It cannot be overemphasized that a change can be added in the range of the summary of this invention.

本発明の実施例である地層処分装置の構造を示す略断面図である。It is a schematic sectional drawing which shows the structure of the geological disposal apparatus which is an Example of this invention. 図1の地層処分容器を地層処分した状態を示す説明図である。It is explanatory drawing which shows the state which carried out the geological disposal of the geological disposal container of FIG. 図1の地層処分容器によるオーバーパックの電気防食作用の説明図である。It is explanatory drawing of the anti-corrosion action of the overpack by the geological disposal container of FIG. 電気化学防食に関する鉄のpH−Eh線図である。It is the pH-Eh diagram of iron regarding electrochemical corrosion protection.

符号の説明Explanation of symbols

1 地層処分装置
10 地層処分容器
11 オーバーパック
12 断熱部(被覆断熱部)
13 熱電素子
13a 高温面
13b 放熱面
13c,13d 電極板(電気出力端子)
20 緩衝材容器
G ガラス固化体
H 処分孔
DESCRIPTION OF SYMBOLS 1 Geological disposal apparatus 10 Geological disposal container 11 Overpack 12 Heat insulation part (covering heat insulation part)
13 Thermoelectric element 13a High temperature surface 13b Heat dissipation surface 13c, 13d Electrode plate (electrical output terminal)
20 Buffer material container G Vitrified body H Disposal hole

Claims (6)

高レベル放射性廃棄物を密閉収納する金属製の容器本体を主体とする地層処分容器と、
前記地層処分容器全面を覆って配設される緩衝材容器と、
前記容器本体と前記緩衝材容器との間に電位差を印加して、該容器本体表面における腐食を電気化学的に防止する防食手段と
を備えることを特徴とする高レベル放射性廃棄物の地層処分装置。
A geological disposal container mainly composed of a metallic container body for hermetically storing high-level radioactive waste;
A buffer material container disposed to cover the entire surface of the geological disposal container;
A high-level radioactive waste geological disposal apparatus, comprising: anticorrosion means for electrochemically preventing corrosion on the surface of the container body by applying a potential difference between the container body and the buffer material container .
前記容器本体は、炭素鋼製のオーバーパックである、請求項1に記載の高レベル放射性廃棄物の地層処分装置。   The geological disposal apparatus for high-level radioactive waste according to claim 1, wherein the container body is an overpack made of carbon steel. 前記緩衝材容器の材料はベントナイトである、請求項1に記載の高レベル放射性廃棄物の地層処分装置。   The geological disposal apparatus for high-level radioactive waste according to claim 1, wherein the material of the buffer material container is bentonite. 前記防食手段は、地層処分環境において前記容器本体の材料が電気化学的に安定な金属状態領域となる電位を前記容器本体に与えるものである、請求項1に記載の高レベル放射性廃棄物の地層処分装置。   2. The high-level radioactive waste formation according to claim 1, wherein the anticorrosion means gives the container main body a potential at which the material of the container main body becomes an electrochemically stable metal state region in a geological disposal environment. Disposal equipment. 前記地層処分容器は、高レベル放射性廃棄物を収納する金属製の容器本体と、 この容器本体の外側を覆って設けられて、前記放射性廃棄物から発生した熱の前記容器本体の外表面からの放散を遮断する被覆断熱部と、
前記被覆断熱部の表裏を貫いて配設され、前記容器本体側に位置付けられた一端と、外部に露出させた他端との温度差により発電する熱電素子とを備え、
前記高レベル放射性廃棄物から発生する熱を前記被覆断熱部の断熱効果により内部に閉じ込めて前記容器本体外表面と前記被覆断熱部外表面との温度差を大とすることにより前記熱電素子により効率良く発電される電気を前記防食手段に供給することを特徴とする、請求項1に記載の高レベル放射性廃棄物の地層処分装置。
The geological disposal container is provided with a metal container main body for storing high-level radioactive waste, and an outer surface of the container main body, and heat generated from the radioactive waste from the outer surface of the container main body. A sheathed insulation that blocks radiation;
A thermoelectric element that is disposed through the front and back of the covering heat insulating part, and that generates electricity by a temperature difference between one end positioned on the container body side and the other end exposed to the outside;
Efficiency is improved by the thermoelectric element by confining the heat generated from the high-level radioactive waste inside by the heat insulating effect of the covering heat insulating part and increasing the temperature difference between the outer surface of the container body and the outer surface of the covering heat insulating part. The geological disposal apparatus for high-level radioactive waste according to claim 1, wherein electricity generated well is supplied to the anticorrosion means.
高レベル放射性廃棄物を密閉収納した金属製の容器本体を主体とする地層処分容器を、その全面を覆って設けられた緩衝材容器とともに深地下の岩盤中に穿たれた処分孔に収納設置するに際し、
前記容器本体と前記緩衝材容器との間に所定の電位差を印加し、前記容器表面本体表面における腐食の進行を電気化学的反応により防止することを特徴とする高レベル放射性廃棄物の地層処分方法。
A geological disposal container consisting mainly of a metal container that contains high-level radioactive waste in a sealed manner, together with a buffer material container that covers the entire surface, is stored and installed in a disposal hole drilled in a deep underground rock. On the occasion
A method for geological disposal of high-level radioactive waste, wherein a predetermined potential difference is applied between the container body and the buffer material container, and the progress of corrosion on the surface of the container surface body is prevented by an electrochemical reaction. .
JP2004327888A 2004-11-11 2004-11-11 High level radioactive waste geological disposal equipment and geological disposal method Pending JP2006138718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327888A JP2006138718A (en) 2004-11-11 2004-11-11 High level radioactive waste geological disposal equipment and geological disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327888A JP2006138718A (en) 2004-11-11 2004-11-11 High level radioactive waste geological disposal equipment and geological disposal method

Publications (1)

Publication Number Publication Date
JP2006138718A true JP2006138718A (en) 2006-06-01

Family

ID=36619641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327888A Pending JP2006138718A (en) 2004-11-11 2004-11-11 High level radioactive waste geological disposal equipment and geological disposal method

Country Status (1)

Country Link
JP (1) JP2006138718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554853B1 (en) * 2013-02-01 2014-07-23 健二 篠原 Solidified storage container with lighting mechanism for contaminated waste
JP2015175669A (en) * 2014-03-13 2015-10-05 株式会社大林組 Artificial barrier structure and recovery method of overpack
JP2020176890A (en) * 2019-04-17 2020-10-29 一般財団法人電力中央研究所 Method and device for preventing canister corrosion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554853B1 (en) * 2013-02-01 2014-07-23 健二 篠原 Solidified storage container with lighting mechanism for contaminated waste
JP2014147922A (en) * 2013-02-01 2014-08-21 Kenji Shinohara Solidified body storage vessel with lighting mechanism of polluted waste
JP2015175669A (en) * 2014-03-13 2015-10-05 株式会社大林組 Artificial barrier structure and recovery method of overpack
JP2020176890A (en) * 2019-04-17 2020-10-29 一般財団法人電力中央研究所 Method and device for preventing canister corrosion

Similar Documents

Publication Publication Date Title
Gibb A new scheme for the very deep geological disposal of high-level radioactive waste
JPH0243847B2 (en)
Gibb et al. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel
JP2006138718A (en) High level radioactive waste geological disposal equipment and geological disposal method
JP2006138717A (en) Radioactive waste container
US4472347A (en) Container for the long time storage of radioactive materials
Shoesmith Chemistry/electrochemistry of spent nuclear fuel as a wasteform
JP2009092466A (en) Radioactive waste disposal container and its manufacturing method, manufacturing apparatus of radioactive waste disposal container
Keto et al. Waste Management of Small Modular Nuclear Reactors in Finland
Banwart et al. Peer reviewed: a testbed for underground nuclear repository design
Kim et al. A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer
KR20100057238A (en) Module system of the hlw canister and buffer material
JP4566858B2 (en) Diffusion prevention structure
Bogatov et al. Analysis of Various Concepts for RW Class 1 Disposal in Crystalline Rocks
Roedder Formation, handling, storage, and disposal of nuclear wastes
Ju et al. Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)
von Schenck Thermal evolution of the repository–the effect of heat generating waste
Sobolev et al. Disposal of Spent Sealed Radiation Sources in Borehole Repositories
EP4038644B1 (en) Container for deep underground deposition of spent nuclear fuel and method of deep underground deposition of spent nuclear fuel
CN106435562A (en) Graphene coating layer capable of enhancing corrosion resistance and heat-conducting property and resisting large-dose gamma radiation
Sharland et al. The evolution of Eh in the pore water of a model nuclear waste repository
Huumarkangas Posiva's deep geological repository for spent nuclear fuel
RU304U1 (en) Cathodic protection station
JPH09304597A (en) Cushioning material for disposal of radioactive waste
Delegard et al. Characterization and anion exchange removal of uranium from Hanford ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070927

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090909

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100127