JP2006138615A - Exhaust heat suppression device of air-cooled cooling apparatus and air-cooled cooling system using the same - Google Patents
Exhaust heat suppression device of air-cooled cooling apparatus and air-cooled cooling system using the same Download PDFInfo
- Publication number
- JP2006138615A JP2006138615A JP2004353098A JP2004353098A JP2006138615A JP 2006138615 A JP2006138615 A JP 2006138615A JP 2004353098 A JP2004353098 A JP 2004353098A JP 2004353098 A JP2004353098 A JP 2004353098A JP 2006138615 A JP2006138615 A JP 2006138615A
- Authority
- JP
- Japan
- Prior art keywords
- water
- air
- evaporation
- exhaust heat
- cooled cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
Landscapes
- Building Environments (AREA)
- Other Air-Conditioning Systems (AREA)
- Air Humidification (AREA)
Abstract
Description
本発明は、室内の空気を冷却する室内機と熱風を排出する室外機とを備えた空冷式冷房装置の排熱を、水の気化潜熱を利用して抑制する技術に係り、空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システムに関する。 The present invention relates to a technique for suppressing exhaust heat of an air-cooled cooling device including an indoor unit that cools indoor air and an outdoor unit that discharges hot air, by using latent heat of vaporization of water, and the air-cooled cooling device The present invention relates to an exhaust heat suppression apparatus and an air cooling type cooling system using the same.
現代の都市域は、表面がコンクリートやアスファルトなどで覆われている等のため、夏季には厳しい熱環境にさらされ、快適さを確保する目的で冷房装置が使用されるが、その排熱などにより所謂ヒートアイランド問題が生じている。 Modern urban areas are covered with concrete, asphalt, etc., so they are exposed to harsh thermal environments in summer, and cooling devices are used to ensure comfort. This causes a so-called heat island problem.
即ち、一般家庭や事務所等に設置されるパッケージエアコン又はルームエアコンと呼ばれている空冷式冷房装置は、通常、室内に設置され、冷媒液を蒸発させその気化潜熱により周囲すなわち室内の空気を冷却する室内機と、室外に設置され、冷媒ガスを圧縮する圧縮機及び圧縮された冷媒ガスを外気で冷却して凝縮させる凝縮器を有する室外機を備え、その凝縮器を冷却した外気は、熱風として排出され、大気温度を上昇させる主要な要因の1つになっている。なお、冷媒ガスを冷却する外気は、通常、室外機に含まれる室外ファンによって凝縮器に向けて送風される。 That is, an air-cooled cooling device called a packaged air conditioner or a room air conditioner installed in a general home or office is usually installed indoors, evaporates the refrigerant liquid, and uses the latent heat of vaporization to circulate ambient air, that is, indoor air. An indoor unit that cools, and an outdoor unit that is installed outside and has a compressor that compresses the refrigerant gas and a condenser that cools and compresses the compressed refrigerant gas with outside air, and the outside air that has cooled the condenser, It is discharged as hot air and is one of the main factors that raise the atmospheric temperature. Note that the outside air that cools the refrigerant gas is usually blown toward the condenser by an outdoor fan included in the outdoor unit.
かかる空冷式冷房装置の運転に基づく大気への熱負荷を軽減するためのアプローチは、一般的に、2つの方向から行うことができ、その1つは空冷式冷房装置の効率向上であり、他の1つは排出された熱風からの熱除去であって、本発明の意図するところの、水の気化潜熱を利用して大気への熱負荷を軽減する技術に係っても、その2つの方向からの技術開発がなされている。 An approach for reducing the heat load on the atmosphere based on the operation of such an air-cooled cooling device can generally be performed from two directions, one of which is improving the efficiency of the air-cooled cooling device, One of these is removal of heat from the exhausted hot air, and the two techniques are intended for reducing the heat load on the atmosphere by utilizing the latent heat of vaporization of water as intended by the present invention. Technological development from the direction is made.
即ち、先ず、水の気化潜熱を利用して行う空冷式冷房装置の効率向上策としては、凝縮器(通常、フィン付伝熱管を用い構成されている)の伝熱管表面に水を散布・噴霧してその表面で水を蒸発させ、凝縮器(文献によって「熱交換器」などと表記)での冷却能力を改善し空冷式冷房装置の効率向上を図り、結果として、その運転に伴う大気への熱負荷を軽減する技術が、例えば、特許文献1(空冷式冷房機等の冷却機能向上装置)、特許文献2(空気熱源式冷房装置およびこれを用いた冷房方法)、特許文献3(省エネドレン散布機)、特許文献4(空冷式冷房装置)などに開示されている。 That is, first, as a measure for improving the efficiency of an air-cooled cooling device that uses the latent heat of vaporization of water, water is sprayed and sprayed on the surface of the heat transfer tube of a condenser (usually configured with a finned heat transfer tube). Then, water is evaporated on the surface, the cooling capacity of the condenser (referred to as “heat exchanger” etc. in the literature) is improved, the efficiency of the air-cooled cooling device is improved, and as a result, the air is discharged into the atmosphere For example, Patent Document 1 (Cooling Function Improvement Device such as an Air-cooled Cooler), Patent Document 2 (Air Heat Source Cooling Device and Cooling Method Using the Same), Patent Document 3 (Energy Saving) Drain spreader), Patent Document 4 (air-cooled cooling device), and the like.
なお、特許文献1、特許文献3、特許文献4には、伝熱管表面に散布・噴霧する水として、室内機から排出される排水(文献によって「ドレン水」、「除湿水」)を用いる技術が開示されている。又、特許文献2には、伝熱管表面に水を噴霧する手段(ホロコーンタイプの噴霧ノズルなど水噴霧器)と、外気温度及び外気湿度の実測値と予め入力された各温度、湿度における水噴霧量の最適値のデータに基づいて、或いは、伝熱管下部に設置した水滴センサの水が垂れているかどうかの検知データに基づいて、水の蒸発量を推定する手段と、給水バルブの開度調整などにより噴霧水量を制御する手段(制御器)と、を設け、その推定した蒸発量に合わせ噴霧水量を制御する技術が開示されている。 In Patent Document 1, Patent Document 3, and Patent Document 4, a technique that uses drainage discharged from an indoor unit ("drain water" or "dehumidified water" depending on literature) as water to be sprayed or sprayed on the surface of the heat transfer tube. Is disclosed. Further, Patent Document 2 discloses means for spraying water on the surface of the heat transfer tube (water sprayer such as a holo-cone type spray nozzle), measured values of outside air temperature and outside air humidity, and water spray at each temperature and humidity input in advance. Based on the data of the optimum amount of water, or based on the detection data of whether or not the water of the water droplet sensor installed at the lower part of the heat transfer tube is dripping, the means for estimating the amount of water evaporation and the adjustment of the opening of the water supply valve And a means for controlling the amount of spray water according to the estimated amount of evaporation is disclosed.
特許文献3には、室外機の流入風で風車のように回るファンにドレン水を滴下し、細かい水滴にして拡散・散布する技術が開示されている。又、特許文献4には、室内機からの排水を散布に利用するに際し、貯水槽(文献中、「貯留槽」)を設けることにより、これをバッファーとして、日中の一番気温が高く冷房負荷が最も大きくなる時間帯に集中的に散布し、それ以外の時間帯には貯水槽の貯水量を増やすような稼動形態を採用することができ、これにより、室内機からの排水を常時散布する場合と比較し、省エネルギー効果を向上できることが示されている。 Patent Document 3 discloses a technique in which drain water is dropped onto a fan that rotates like a windmill with inflow air from an outdoor unit, and is dispersed and dispersed as fine water droplets. Further, in Patent Document 4, when drainage from an indoor unit is used for spraying, a water storage tank (in the literature, “storage tank”) is provided, and this is used as a buffer to cool the air at the highest temperature during the day. It is possible to adopt a mode of operation that increases the amount of water stored in the water storage tank during other time periods, so that wastewater from indoor units is always sprayed. It has been shown that the energy saving effect can be improved compared to the case of doing so.
これら、凝縮器の伝熱管表面に水を散布・噴霧してその表面で水を蒸発させることにより、凝縮器の冷却能力を改善し、空冷式冷房装置の運転に伴う熱負荷を軽減しようとする技術は、一般的に、伝熱管表面にスケールが析出し熱交換能力が低下する可能性があり、それを防止するためには散布水中の不純物を取り除く不純物除去器を必要とするという問題がある。又、通常、フィンを有する伝熱管表面に概ね均等に水を散布するのは難しく、期待した冷却能力の改善効果が得られ難いという問題がある。 By spraying and spraying water on the heat transfer tube surface of these condensers and evaporating the water on the surface, the cooling capacity of the condenser is improved, and the heat load associated with the operation of the air-cooled cooling system is reduced. The technology generally has the problem that scales may be deposited on the surface of the heat transfer tube and the heat exchange capacity may be reduced, and an impurity remover that removes impurities in the spray water is required to prevent this. . In addition, it is usually difficult to spray water evenly on the surface of the heat transfer tube having fins, and there is a problem that it is difficult to obtain the expected effect of improving the cooling capacity.
更に又、多くの場合、室外機を設置する場所の下部は水に対する対策がなされておらず、水を垂れ流すことができない状況にあるが、水が垂れ落ちないように散布水量を制御することは極めて困難であるという問題がある。特許文献2には、上述の如く、蒸発量を推定しそれに合わせ噴霧水量を制御する技術が開示されているが、通常、伝熱管は金属製であり、フィンを有するその伝熱管表面での水の挙動は極めて複雑であって、蒸発量を推定するのは難しく、散布水量を制御するのは困難である。 In addition, in many cases, the lower part of the place where the outdoor unit is installed has no measures against water, and it is in a situation where water cannot flow down, but the amount of sprayed water should be controlled so that water does not fall down. Has the problem of being extremely difficult. Patent Document 2 discloses a technique for estimating the amount of evaporation and controlling the amount of sprayed water in accordance with the amount of evaporation as described above. Usually, the heat transfer tube is made of metal, and water on the surface of the heat transfer tube having fins is disclosed. The behavior of is very complicated, it is difficult to estimate the amount of evaporation, and it is difficult to control the amount of sprayed water.
更に又、散水パイプや貯水槽、不純物除去器などを既設の室外機にオプションとして付設するためには、大幅な改良が必要となり、コスト面からみても、実用性に乏しいと言わざるを得ない。即ち、かかる従来技術は、上述の如く種々の問題を有し、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる技術とは言い難い。 Furthermore, in order to attach a sprinkling pipe, a water storage tank, an impurity remover, etc. as an option to an existing outdoor unit, it is necessary to make significant improvements, and from a cost standpoint, it must be said that the practicality is poor. . That is, such a conventional technique has various problems as described above, and cannot be said to be a technique that can effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device.
次に、水の気化潜熱を利用して空冷式冷房装置の効率向上を図ろうとするもう1つの技術として、特許文献5(クーラー室外機冷却装置)には、室内機からの排水を利用して室外機の放熱効果を上げ冷房効果を助ける装置の提供を目的として、枠と枠で布を挟み固定し、枠と枠の上部にひっかける形の取り付け部を設けた室外機冷却装置が開示されている。具体的には、室内機からの排水ホースをその取り付け部に差し込み、それを室外機の背部に設置して構成し、排水が布に伝わり、室外機の吸風がその濡れた布を通る際に気化潜熱により冷却され、その冷却された外気で凝縮器が冷却されるように構成することにより、室外機の放熱効果を上げようとする技術が開示されている。 Next, as another technique for improving the efficiency of an air-cooling type cooling device by using the latent heat of vaporization of water, Patent Document 5 (cooler outdoor unit cooling device) uses waste water from an indoor unit. For the purpose of providing a device that increases the heat dissipation effect of the outdoor unit and helps the cooling effect, an outdoor unit cooling device is disclosed in which a cloth is sandwiched and fixed between the frame and the frame and a hook is attached to the upper part of the frame. Yes. Specifically, the drainage hose from the indoor unit is inserted into the installation part, and it is installed on the back of the outdoor unit. The drainage is transmitted to the cloth, and the outdoor unit's wind absorption passes through the wet cloth. Further, there is disclosed a technique for increasing the heat radiation effect of the outdoor unit by cooling the apparatus with latent heat of vaporization and cooling the condenser with the cooled outside air.
この従来技術は、濡れた布と外気を接触させて、その布の表面で水の蒸発が生じるように構成し、その気化潜熱によって外気を冷却するところに大きな特徴がある。即ち、この従来技術は、凝縮器に水を直接的に散布・噴霧するのではなく、吸水性・保水性を有し均一な濡れ面を作り易い布と外気を接触させて、その布の表面で生じた水の蒸発による気化潜熱によって外気を冷却し、その冷却された外気を用いることによって、室外機の放熱効果を上げようとするところに大きな特徴がある。 This prior art has a great feature in that the wet air is brought into contact with the outside air to evaporate water on the surface of the cloth and the outside air is cooled by the latent heat of vaporization. In other words, this conventional technique does not directly spray and spray water on the condenser, but makes the surface of the cloth come into contact with the outside air and a cloth that has water absorption and water retention properties and is easy to form a uniform wet surface. There is a great feature in that the outside air is cooled by the latent heat of vaporization caused by the evaporation of the water generated in the above and the heat radiation effect of the outdoor unit is increased by using the cooled outside air.
かかる構成により、上述した如く、伝熱管表面へのスケール析出の問題や、伝熱管表面への散布不均一性に基づく効率向上の阻害の問題、水の垂れ落ち防止対策の問題、更には、既設の室外機にオプションとして付設する際のコスト面の問題などを、回避、若しくは軽減することができる。 With such a configuration, as described above, the problem of scale deposition on the surface of the heat transfer tube, the problem of inhibition of efficiency improvement based on the non-uniformity of dispersion on the surface of the heat transfer tube, the problem of measures for preventing dripping of water, and the existing Cost problems and the like when attached to the outdoor unit as an option can be avoided or reduced.
然しながら、この従来技術は、その布を吸風側に設置しておりこの場合、その布は吸風の流動抵抗となり、既設の室外ファンでは所定の外気量を凝縮器に送風できなくなるという問題がある。周知の如く、かかる凝縮器の冷却においては、外気温度と共に流量が重要であって、外気の温度を下げても、その結果、取り込まれる外気の流量が減少したのでは、目的とする放熱効果の向上が得られず、場合によれば、逆に効率が低下することもある。更に、吸風の気流は乱れが弱いため水分蒸発量が大きくならず、このことも効率を上げることができないことの重要な要因となる。 However, this conventional technique has the cloth installed on the air suction side, and in this case, the cloth becomes a flow resistance of the air suction, and the existing outdoor fan cannot blow a predetermined amount of outside air to the condenser. is there. As is well known, in the cooling of such a condenser, the flow rate is important together with the outside air temperature, and even if the outside air temperature is lowered, if the outside air flow rate is reduced as a result, the desired heat dissipation effect can be obtained. There is no improvement, and in some cases, the efficiency may decrease. Further, since the airflow of the wind absorption is weakly disturbed, the amount of water evaporation does not increase, which is also an important factor that the efficiency cannot be increased.
もとより、室外ファン等を大型化すれば、所定の外気量の確保は可能ではあるが、その改造には多大なコストを要し、又、室外ファンの消費動力が増大し、実用性に乏しいと言わざるを得ない。即ち、この従来技術は、安価に且つ容易に実用し得る、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる技術とは言い難い。 Of course, it is possible to secure a predetermined amount of outdoor air by increasing the size of the outdoor fan, etc., but the remodeling requires a great deal of cost, and the power consumption of the outdoor fan increases, resulting in poor practicality. I must say. In other words, this conventional technique cannot be said to be a technique that can effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device, which can be practically used at low cost.
次に、空冷式冷房装置の運転に基づく大気への熱負荷を軽減するためのもう一方のアプローチ、即ち、水の気化潜熱を利用して、排出された熱風から熱を直接的に除去する技術に関しては、これは古来行われてきた打ち水や植物の蒸散作用による冷却を利用する方法と原理的には同じ技術であるが、直接的に空冷式冷房装置の効率向上を図るものではなく、個々には電気代の低減などとして実感し難いためか、その開示技術は極めて少なく、例えば、特許文献6(排出風の処理装置)などに開示されているのみである。 Next, another approach for reducing the heat load on the atmosphere based on the operation of the air-cooled air conditioner, that is, a technique for directly removing heat from the discharged hot air using the latent heat of vaporization of water. In principle, this is the same technique as that used in ancient times, which uses cooling by water transpiration or transpiration of plants, but it does not directly improve the efficiency of air-cooled air conditioners. Since it is difficult to realize the reduction of the electricity bill, there are very few disclosed techniques, for example, only disclosed in Patent Document 6 (exhaust air processing device).
特許文献6は、室外機の温度を上昇させることなく、排出される熱風を水の気化潜熱で冷却する装置の提供を目的とし、略円盤形の通風抵抗のない繊維体と、その繊維体を濡らすための水供給部を有する排出風の処理装置を開示している。又、その背面に更に繊維体を有する処理装置を開示し、通風抵抗のない繊維体として、中央部に通風孔を設けた繊維体や、更に孔を多数有するなど加工した繊維体を用いる処理装置を開示している。なお、この装置は、その繊維体がエアコンの吹き出し口に対面するようにして設置され、エアコンから排出される熱風を受け、その繊維体の表面で生じる水の蒸発による気化潜熱により排出空気を冷却しようとするものである。 Patent Document 6 aims to provide a device that cools discharged hot air with the latent heat of vaporization of water without increasing the temperature of the outdoor unit. Disclosed is an exhaust air treatment device having a water supply for wetting. Moreover, the processing apparatus which has a fiber body further in the back surface is disclosed, and the processing apparatus using the fiber body which provided the ventilation hole in the center part as a fiber body without ventilation resistance, and processed the fiber body which has many holes, etc. Is disclosed. This device is installed so that the fiber body faces the air outlet of the air conditioner, receives the hot air discharged from the air conditioner, and cools the exhaust air by the latent heat of vaporization caused by the evaporation of water generated on the surface of the fiber body. It is something to try.
この従来技術は、特許文献5でいう「布」を、吸い込み側ではなく、吹き出し側に設置した技術であり、この場合、繊維体で生じる流動抵抗が凝縮器の放熱効果に及ぼす影響は大幅に低減される。即ち、吹き出し側に設置した場合には、吹き出し口と繊維体との間を密封しない限り、その間で外側への流路が開放されているため、繊維体で生じた流動抵抗が凝縮器にまで遡って影響することは殆どない。従って、この従来技術によれば、空冷式冷房装置の性能に実質上の影響を与えることなく、空冷式冷房装置の運転に基づく大気への熱負荷を軽減することが容易になる。 This prior art is a technique in which the “cloth” referred to in Patent Document 5 is installed not on the suction side but on the blowing side, and in this case, the influence of the flow resistance generated in the fiber body on the heat dissipation effect of the condenser is greatly increased. Reduced. In other words, when installed on the blowout side, unless the space between the blowout port and the fiber body is sealed, the flow path to the outside is opened between them, so that the flow resistance generated in the fiber body reaches the condenser. There is almost no influence retroactively. Therefore, according to this prior art, it becomes easy to reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device without substantially affecting the performance of the air-cooled cooling device.
又、この従来技術は、特許文献5と比較し、凝縮器を冷却した後のより高温の空気を水と接触させるため、より効果的に水を蒸発させることができる。更に又、この装置は、極めて簡単な構成を有し、その製作や設置、運転も比較的簡単であり、既設の空冷式冷房装置にこの排出風の処理装置を付設するに際しても既設の変更は殆ど必要なく、安価に且つ容易に実用し得るものである。 Also, this prior art makes it possible to evaporate water more effectively than in Patent Document 5, because the higher temperature air after cooling the condenser is brought into contact with water. Furthermore, this apparatus has a very simple configuration, and its manufacture, installation, and operation are relatively simple. Even when this exhaust air treatment apparatus is attached to an existing air-cooling type cooling apparatus, the existing modification is not changed. It is almost unnecessary and can be practically used at low cost.
然しながら、この特許文献6で開示された従来技術は、水を保持しそれを蒸発させるための繊維体の構成において満足し得るものではなく、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる技術として満足し得るものではない。即ち、この特許文献6では、繊維体の概形がパラボラアンテナ状の装置が図示され、問題を解決するための手段において、「濡れた繊維体は水の膜で抵抗が生じるので繊維体に適宜に孔を多数設け…排出風の熱風空気の一部は繊維体の孔を抜け背面に出…、残りの熱風は繊維体曲面に沿って中央の通風孔から抜ける」と説明しているが、かかる構成において、抵抗が生じないように孔のサイズや全面積を大きくした場合には、熱風が繊維体と有効に接触することなく通過して水の蒸発が生じ難くなり、一方、孔のサイズや全面積を小さくした場合には、吹き出し口と繊維体との間で外側に流出する熱風、即ち繊維体を迂回する熱風が増大し、この場合も又、繊維体と接触する熱風が減少し水の蒸発が生じ難くなる。 However, the prior art disclosed in Patent Document 6 is not satisfactory in the configuration of the fibrous body for retaining water and evaporating it, and the heat load on the atmosphere based on the operation of the air-cooled cooling device is not satisfied. It is not satisfactory as a technology that can be effectively mitigated. That is, in this Patent Document 6, an apparatus having a parabolic antenna-like shape of a fibrous body is illustrated, and in a means for solving the problem, “wet fibrous body generates resistance with a film of water. There are a number of holes in the air ... Some of the hot air from the exhausted air passes through the holes in the fiber body and exits to the back.The remaining hot air passes through the curved surface of the fiber body and exits from the central ventilation hole. In such a configuration, when the hole size and the total area are increased so as not to cause resistance, the hot air passes without effectively contacting the fiber body, and it is difficult for water to evaporate. If the total area is reduced, the hot air that flows out between the blower outlet and the fiber body, that is, the hot air that bypasses the fiber body increases, and in this case, the hot air that contacts the fiber body also decreases. Water evaporation is less likely to occur.
上記、孔のサイズの影響について言及したが、その効果を少し説明する。一般に、かかる繊維体に開口部を設けるに際し、大きな孔を少数設けるケースと小さな孔を多数設けるケースを比較した場合、開口部の全面積が同一であっても、大きな孔を少数設けるケースの方が、空気などの流体を通し易いが、気体と繊維体との接触は少なくなるという事情がある。 The effect of the hole size is mentioned above, but the effect will be explained a little. In general, when providing openings in such a fibrous body, when comparing a case with a small number of large holes and a case with a large number of small holes, the case where a small number of large holes are provided even if the entire area of the opening is the same. However, it is easy to pass a fluid such as air, but there is a circumstance that the contact between the gas and the fiber body is reduced.
なお、吹き出し口と繊維体との間を、熱風が外側に流出しないように密封し、殆どの熱風が繊維体曲面に沿って流れ、その中央の通風孔から抜けるように構成することもできるが、この場合、繊維体で生じる流動抵抗が著しく大きくなり、凝縮器の放熱効果に大きな影響を及ぼすことになる。又、流路の密閉には既設の改造を含め多大なコストを要することもあり、実用性に乏しいと言わざるを得ない。 In addition, it can be configured that the hot air is sealed between the blowout port and the fiber body so that the hot air does not flow outward, and most of the hot air flows along the curved surface of the fiber body and exits from the central ventilation hole. In this case, the flow resistance generated in the fiber body is remarkably increased, which greatly affects the heat dissipation effect of the condenser. In addition, the sealing of the flow path may require a great deal of cost, including existing modifications, and it must be said that the practicality is poor.
この従来技術は又、水供給部について具体的な説明をしていないが、例示された図によれば、水道管からの接合部とそれに接続された散水パイプとからなり、そのパイプは、概形パラボラアンテナ状の繊維体の外縁に取り付けられているのみである。かかる構成では、吸水性・保水性の繊維体を用いるとしても、繊維体内の水の移動は毛管現象によるため、その水分移動の能力あるいは量は繊維体内の水の移動距離が長くなると低下し、特に大型の冷房システムを対象とした場合には、繊維体全面にわたり適度な湿り気を維持するように水を供給するのは困難であり、結果、繊維体の全面を効果的に利用することができず、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる技術として満足し得るものではない。 This prior art also does not give a specific description of the water supply part, but according to the illustrated figure, it consists of a joint from a water pipe and a sprinkling pipe connected to it. It is only attached to the outer edge of the fiber body in the shape of a parabolic antenna. In such a configuration, even if a water-absorbing / water-retaining fiber body is used, water movement in the fiber body is due to capillarity, so the capacity or amount of water movement decreases as the water movement distance in the fiber body increases, In particular, when targeting a large cooling system, it is difficult to supply water so as to maintain appropriate moisture over the entire surface of the fiber body, and as a result, the entire surface of the fiber body can be used effectively. However, it is not satisfactory as a technology that can effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device.
なお、空冷式冷房装置の排熱を抑制しようとするものではないが、多孔性物質を利用して蒸発面積を増大させ、冷熱を効率よく発生させようとする技術が特許文献7(吸着式冷蔵庫及び吸着式冷凍装置と、その霜取方法)に開示されている。即ち、この文献には、蒸発器の内周面に多孔性物質(フェルト、金網、焼結金属など)を材料とするウィックを設けることにより、冷媒液をウィックの毛管現象によって蒸発器上部に上昇させ、蒸発面積を増加させると共に冷蔵室上部においても冷熱を発生させることができることが示されている。この従来技術は、一般的に、蒸発面を構成するに毛細管的特性を有する多孔性物質が好適であることを示す実例である。 Although it is not intended to suppress the exhaust heat of the air-cooled cooling device, Patent Document 7 (adsorption refrigerator) is a technique that uses a porous material to increase the evaporation area and efficiently generate cold heat. And an adsorption refrigeration apparatus and its defrosting method). That is, in this document, by providing a wick made of a porous material (felt, wire mesh, sintered metal, etc.) on the inner peripheral surface of the evaporator, the refrigerant liquid rises to the upper part of the evaporator due to the capillary phenomenon of the wick. It is shown that the evaporation area can be increased and cold heat can be generated also in the upper part of the refrigerator compartment. This prior art is an example that generally indicates that a porous material having capillary properties is suitable for constituting the evaporation surface.
又、本発明者らは、直接的に空冷式冷房装置の排熱を抑制しようとするものではないが、所謂ヒートアイランド問題への対策に係り、多孔質の保水性建材の気化冷却を利用する技術を永らく研究してきた(例えば、非特許文献1)。この多孔質の保水性建材は、本発明の空冷式冷房装置の排熱抑制装置においても、利用し得るものである。 In addition, the present inventors do not intend to directly suppress the exhaust heat of the air-cooling type cooling device, but are concerned with measures against the so-called heat island problem, and a technique that uses evaporative cooling of a porous water-retaining building material. Has been studied for a long time (for example, Non-Patent Document 1). This porous water-holding building material can also be used in the exhaust heat suppression device of the air-cooled cooling device of the present invention.
本発明者らが研究に用いた保水性建材は、具体的には、庭石に用いる大谷石の廃材を主原料とするセラミックタイルであり、その内部に10ミクロン程度の空隙を多数有し、透水性と毛細管的特性を兼備している。このため、一旦水を含むと長時間にわたって保水し続け、保水状態で加熱されると水分を蒸発し、気化潜熱により建材の温度上昇を抑えると共に、周囲の空気から熱を奪い冷気を発生させる。水分蒸発によって水分が抜けた表面近くの部分には、毛管現象により建材内部の水が再配分される。 The water-retaining building materials used in the study by the present inventors are specifically ceramic tiles mainly made of waste materials of Oya stone used for garden stones, and have a large number of voids of about 10 microns in their interiors. Combines sex and capillary characteristics. For this reason, once water is contained, the water is kept for a long time, and when heated in the water-retained state, the water evaporates, and the temperature rise of the building material is suppressed by the latent heat of vaporization, and heat is taken away from the surrounding air to generate cold air. The water inside the building material is redistributed to the portion near the surface from which moisture has been removed by moisture evaporation due to capillary action.
本発明は、室内の空気を冷却する室内機と熱風を排出する室外機とを備えた空冷式冷房装置の排熱に係る上述した状況に鑑みなされたもので、安価に且つ容易に実用し得る、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる、空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システムを提供することを目的とする。 The present invention has been made in view of the above-described situation relating to the exhaust heat of an air-cooled cooling apparatus including an indoor unit that cools indoor air and an outdoor unit that discharges hot air, and can be practically used at low cost. An object of the present invention is to provide an exhaust heat suppression device for an air-cooled cooling device and an air-cooled cooling system using the same, which can effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device.
本発明は、上記の目的を達成するための手段として、次のような構成の、空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システムを採用する。即ち、請求項1の発明は、室内の空気を冷却する室内機と、熱風を排出する室外機と、該室内機と室外機の間に冷媒を循環する冷媒系統とを備えた空冷式冷房装置の排熱を抑制する装置であって、該室外機から排出される熱風を受け表面から水を蒸発させる水蒸発部と、該水蒸発部に水を供給する水供給部とを有し、該水蒸発部は、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体を主要部材として構成され、該水供給部は該通路部に流通可能に接続され、該通路部から該保水部に水が供給されその保水部の表面で水の蒸発が生じるように構成されていることを特徴とする。 The present invention employs, as means for achieving the above object, an exhaust heat suppression device for an air-cooled cooling device and an air-cooled cooling system using the same, having the following configuration. That is, the invention of claim 1 is an air-cooling type cooling apparatus including an indoor unit that cools indoor air, an outdoor unit that discharges hot air, and a refrigerant system that circulates refrigerant between the indoor unit and the outdoor unit. An apparatus that suppresses exhaust heat of the water, and includes a water evaporation unit that receives hot air discharged from the outdoor unit and evaporates water from the surface, and a water supply unit that supplies water to the water evaporation unit, The water evaporating part is configured with a substantially tubular evaporator composed of a water passage part and a porous water retaining part covering the periphery thereof as a main member, and the water supply part is connected to the passage part so as to be able to circulate, Water is supplied from the passage portion to the water retaining portion, and water is evaporated on the surface of the water retaining portion.
請求項2と請求項3の発明は、その蒸発管の好ましい構成の形態に係り、請求項2の発明は、前記蒸発管の水の通路部は、導管で構成され、該導管は、その周囲を被覆する前記保水部に水を供給するための供給穴を管壁に複数有することを特徴とし、請求項3の発明は、前記蒸発管は、概ね中心部を空洞として水の通路部を形成した多孔質の保水部からなる概ね管状の蒸発体であることを特徴とする空冷式冷房装置の排熱抑制装置である。 The inventions of claim 2 and claim 3 relate to a preferred configuration of the evaporator tube. According to the invention of claim 2, the water passage portion of the evaporator tube is constituted by a conduit, and the conduit is formed around the periphery thereof. A plurality of supply holes for supplying water to the water retention part covering the pipe are provided in the pipe wall, and the invention according to claim 3 is characterized in that the evaporation pipe forms a water passage part generally having a central part as a cavity. An exhaust heat suppression device for an air-cooling type cooling device, which is a substantially tubular evaporator composed of a porous water retaining portion.
請求項4の発明は、その保水部の好ましい材料の形態に係り、前記保水部は、フェルト、金網、焼結金属、セラミックスの少なくともいずれかを材料として形成されていることを特徴とする。 The invention of claim 4 relates to a preferred material form of the water retaining portion, wherein the water retaining portion is formed of at least one of felt, wire mesh, sintered metal, and ceramics.
請求項5の発明は、その保水部の好ましい形状の形態に係り、前記保水部は、水の蒸発面を増大させるためフィン状の突起面を有することを特徴とする。 According to a fifth aspect of the present invention, there is provided a preferred shape of the water retaining portion, wherein the water retaining portion has a fin-like projecting surface for increasing a water evaporation surface.
請求項6と請求項7の発明は、その水蒸発部における蒸発管の好ましい構成の形態に係り、請求項6の発明は、前記水蒸発部は、前記室外機の熱風を排出する排気面と概ね平行に、前記蒸発管を所定の間隔で複数本配置して構成していることを特徴とし、請求項7の発明は、前記水蒸発部は、前記室外機の熱風を排出する排気面と概ね対面して、前記蒸発管を螺旋状又は渦巻状に配置して構成していることを特徴とする。 The inventions of claims 6 and 7 relate to a preferred configuration of the evaporation pipe in the water evaporation section, and the invention of claim 6 is characterized in that the water evaporation section includes an exhaust surface for discharging hot air of the outdoor unit. A plurality of the evaporation pipes are arranged at a predetermined interval substantially in parallel, and the invention according to claim 7 is characterized in that the water evaporation section includes an exhaust surface for discharging hot air of the outdoor unit. The evaporation tubes are arranged so as to face each other in a spiral or spiral shape.
請求項8の発明は、その水蒸発部の好ましい外形の形態に係り、前記水蒸発部は、前記室外機の熱風を排出する排気面と概ね対面して配置され、該排気面側からみたその外形が、該排気面の外形に合わせ、概ね円形又は方形であることを特徴とする。
The invention according to
請求項9の発明は、その水供給部の構成の形態に係り、前記水供給部は貯水槽を有し、該貯水槽は、該貯水槽内の水が前記蒸発管の通路部に自然流下可能に、該通路部に接続されていることを特徴とする空冷式冷房装置の排熱抑制装置である。 The invention according to claim 9 relates to a configuration of the water supply unit, wherein the water supply unit has a water storage tank, and the water in the water storage tank naturally flows into the passage portion of the evaporation pipe. It is possible to provide an exhaust heat suppression device for an air-cooled air conditioner that is connected to the passage portion.
請求項10の発明は、本発明の空冷式冷房システムであり、室内の空気を冷却する室内機と、熱風を排出する室外機と、該室内機と室外機の間に冷媒を循環する冷媒系統とを備えた空冷式冷房装置を含む空冷式冷房システムであって、水蒸発部と水供給部とを有する本発明の空冷式冷房装置の排熱抑制装置を、該水蒸発部が該室外機の熱風を排出する排気面と概ね対面する如く配置して、該室外機から排出される熱風を受け該水蒸発部から水が蒸発するように構成し、該空冷式冷房装置の排熱を抑制したことを特徴とする。 The invention of claim 10 is the air-cooled cooling system of the present invention, an indoor unit that cools indoor air, an outdoor unit that discharges hot air, and a refrigerant system that circulates refrigerant between the indoor unit and the outdoor unit An air cooling type cooling system including an air cooling type cooling device comprising a water evaporation unit and a water supply unit, wherein the water evaporation unit is the outdoor unit. It is arranged so as to face the exhaust surface that discharges the hot air of the air, so that the hot air discharged from the outdoor unit is received and water is evaporated from the water evaporating unit, and the exhaust heat of the air-cooled cooling device is suppressed. It is characterized by that.
本発明は、以下詳細に説明するように、安価に且つ容易に実用し得る、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる、空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システムを提供することができる効果がある。従って、本発明は、都市域で生じているヒートアイランド問題の解決に貢献できるものであって、その産業上の利用価値は極めて大きい。 As described in detail below, the present invention provides an exhaust heat suppression device for an air-cooled cooling device that can effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device that can be practically used at low cost. And an air cooling system using the same can be provided. Therefore, the present invention can contribute to solving the heat island problem occurring in urban areas, and its industrial utility value is extremely high.
以下、本発明の好ましい実施の形態について説明する。なお、以下では、空冷式冷房装置として、代表的に、冷媒の凝縮とその蒸発を利用した装置、即ち、冷房の対象とする室内に設置され、冷媒液を蒸発させその気化潜熱により周囲すなわち室内の空気を冷却する室内機と、室外に設置され、冷媒ガスを圧縮する圧縮機とその圧縮された冷媒ガスを外気で冷却して凝縮させる凝縮器とその凝縮器に外気を送風する室外ファンを有する室外機を備えた空冷式冷房装置について説明するが、本発明の排熱抑制装置は、これに限らず、熱風を排出する空冷式冷房装置であれば何ら制限なく適用することができる。 Hereinafter, preferred embodiments of the present invention will be described. In the following, as an air-cooled cooling device, typically, a device that uses the condensation and evaporation of a refrigerant, that is, a room to be cooled, evaporates the refrigerant liquid, and the surrounding or indoor An indoor unit that cools the air, a compressor that compresses the refrigerant gas, a condenser that cools and compresses the compressed refrigerant gas with outside air, and an outdoor fan that blows outside air to the condenser Although the air-cooled cooling device provided with the outdoor unit will be described, the exhaust heat suppression device of the present invention is not limited to this, and any air-cooled cooling device that discharges hot air can be applied without any limitation.
例えば、本発明は、冷媒の凝縮・蒸発を介さない装置、即ち、高圧・常温の冷媒ガスを断熱膨張させその低圧・低温の冷媒ガスにより周囲すなわち室内の空気を冷却する室内機と、冷媒ガスを圧縮する圧縮機とその圧縮された高圧・高温の冷媒ガスを外気で冷却し高圧・常温の冷媒ガスとする熱交換器とその熱交換器に外気を送風する室外ファンを有する室外機を備えた空冷式冷房装置に適用することもできる。 For example, the present invention relates to an apparatus that does not involve refrigerant condensation / evaporation, that is, an indoor unit that adiabatically expands high-pressure / normal-temperature refrigerant gas and cools the surrounding air, that is, indoor air, using the low-pressure / low-temperature refrigerant gas, and refrigerant gas A heat exchanger that compresses the compressed high-pressure / high-temperature refrigerant gas with the outside air to form a high-pressure / normal temperature refrigerant gas, and an outdoor unit that has an outdoor fan that blows outside air to the heat exchanger It can also be applied to other air-cooled cooling devices.
或いは又、本発明は、吸着式熱サイクルを利用した空冷式冷房装置に適用することもできる。吸着式熱サイクルは、周知の如く、固体と気体との熱の移動を伴う吸着・脱着現象を熱サイクルに利用したものであり、吸着材(例えば、シリカゲル、ゼオライトなど)を外部熱源で加熱し冷媒(例えば、アルコール、水など)を脱着させる脱着工程と、その吸着材を低温(通常、常温近辺)の状態まで冷却する冷却工程と、その低温状態で冷媒蒸気を吸着剤に吸着させる吸着工程から熱サイクルが構成され、この吸着式熱サイクルを利用した空冷式冷房装置では、冷却工程において熱風が排出される。かかる熱風を排出する空冷式冷房装置であれば、本発明を何ら制限なく適用することができる。 Alternatively, the present invention can also be applied to an air-cooled cooling device using an adsorption thermal cycle. As is well known, the adsorption heat cycle uses adsorption / desorption phenomena involving heat transfer between solid and gas in the heat cycle, and heats the adsorbent (eg, silica gel, zeolite, etc.) with an external heat source. A desorption process for desorbing a refrigerant (for example, alcohol, water, etc.), a cooling process for cooling the adsorbent to a low temperature (usually near normal temperature), and an adsorption process for adsorbing refrigerant vapor to the adsorbent at the low temperature. In the air-cooled cooling apparatus using this adsorption-type thermal cycle, hot air is discharged in the cooling process. The present invention can be applied without any limitation as long as it is an air-cooled cooling device that discharges such hot air.
以下、本発明の好ましい実施の形態について具体的に説明する。本発明は先ず、安価に且つ容易に実用し得る、空冷式冷房装置の排熱抑制装置を実現するために、上述した特許文献6と同様に、凝縮器の伝熱管表面を水の蒸発が生ずる蒸発面とするのではなく、その凝縮器を冷却した結果、高温となって室外機から排出される熱風を受け、表面から水を蒸発させる蒸発面を別に構成したものであって、且つ、その蒸発面を「繊維体」など多孔質の保水性材料で構成する。 Hereinafter, preferred embodiments of the present invention will be specifically described. In the present invention, in order to realize an exhaust heat suppression device for an air-cooling type cooling device that can be practically used at low cost, water evaporation occurs on the surface of the heat transfer tube of the condenser as in the above-mentioned Patent Document 6. Instead of the evaporation surface, the condenser is cooled, and as a result, the evaporation surface that receives the hot air exhausted from the outdoor unit at a high temperature and evaporates water from the surface is configured separately. The evaporation surface is made of a porous water retaining material such as a “fiber”.
なお、本発明でいう「多孔質の保水性材料」とは、多数の空隙を有し、その空隙の毛細管的特性により、水を外から吸引し、それを内部に保持し内部で再配分することができる材料の総称であって、特許文献5でいう「布」や特許文献6でいう「繊維体」などを含み意味する。又、水を蒸発させる「表面」とは、水の蒸発が生じる面であって、多孔質の保水性材料の物理的な表面を限定し意味するものではない。即ち、水が好適に供給されている際には、その保水性材料の物理的な表面で蒸発が生じ、これは本発明の実施において好ましい形態であるが、水の供給が少ない場合には、保水性材料の物理的な表面と共にその内側近傍でも蒸発が生じるものであって、本発明は、かかる形態を排除するものではない。 The “porous water-retaining material” as used in the present invention has a large number of voids, and due to the capillary characteristics of the voids, water is sucked from the outside, held inside, and redistributed inside. It is a generic term for materials that can be used, and includes and includes “fabric” in Patent Document 5 and “fiber body” in Patent Document 6. The “surface” for evaporating water is a surface where water evaporates, and does not mean a physical surface of the porous water retention material. That is, when water is suitably supplied, evaporation occurs on the physical surface of the water retaining material, which is a preferred form in the practice of the invention, but when the water supply is low, Evaporation occurs in the vicinity of the inside as well as the physical surface of the water-holding material, and the present invention does not exclude such a form.
かかる構成により、上述した如く、伝熱管表面へのスケール析出などの問題を回避することができ、又、既設の空冷式冷房装置に本発明の排熱抑制装置を付設するに際しても既設の変更は殆ど必要なく、更に又、この排熱抑制装置は、極めて簡単な構成を有し、その製作や設置、運転も比較的簡単であり、安価に且つ容易に実用し得るものである。 With this configuration, as described above, problems such as scale deposition on the surface of the heat transfer tube can be avoided, and when the exhaust heat suppression device of the present invention is attached to the existing air-cooled cooling device, the existing change is not This exhaust heat suppression device is almost unnecessary, has a very simple configuration, is relatively easy to manufacture, install, and operates, and can be practically used at low cost.
本発明は更に、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる排熱抑制装置を実現するために、その水の蒸発面を含む水蒸発部を、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体を主要部材として構成する。 The present invention further provides a water evaporating unit including an evaporating surface of the water in order to realize an exhaust heat suppression device capable of effectively reducing the heat load on the atmosphere based on the operation of the air cooling type cooling device. And a substantially tubular evaporation body composed of a porous water retaining portion covering the periphery thereof as a main member.
水蒸発部をかかる構成とすることにより、熱風に対する流動抵抗を極めて小さくするという制約条件の中で、水の蒸発面を大きくすることができ、又、蒸発面と熱風との熱伝達性能を改善することができる。即ち、流れの圧力損失を小さくするという制約条件の中で、比較的に高い熱伝達性能を得ようとする場合、平行に置かれた円管群の軸に対して直角にその流れを当てる多管式熱交換器が有効であることは周知の事実である。又、その円管群の配置としては、千鳥配列や碁盤目配列が有効であることが知られている。 By adopting such a water evaporation section, the water evaporation surface can be enlarged under the constraint that the flow resistance against hot air is extremely small, and the heat transfer performance between the evaporation surface and hot air is improved. can do. In other words, when a relatively high heat transfer performance is to be obtained under the constraint of reducing the flow pressure loss, the flow is applied perpendicularly to the axis of the group of circular tubes placed in parallel. It is a well-known fact that a tubular heat exchanger is effective. Further, it is known that a staggered arrangement and a grid arrangement are effective as the arrangement of the circular tube group.
これは主に、外形を柱状とすることにより流れの遮蔽を抑えることができ、しかも非流線形の円筒形状のため、その表面の伝熱面では境界層の剥離が生じる等によって熱伝達性能が大きくなること、上流側の円管で流れが剥離してできた乱れた状態の流れが、その下流の円管に当たることにより下流の円管での熱交換が促進されること、及び伝熱面積をある程度大きくし得ることの効果である。即ち、本発明では、円管状の熱交換器の形状および配置に関する従来の知見を、本発明の蒸発体の形状および配置に応用している。 This is mainly due to the columnar shape of the outer shape, which can suppress the shielding of the flow, and because of the non-streamline cylindrical shape, the heat transfer performance is improved due to the separation of the boundary layer on the heat transfer surface. The heat flow in the downstream circular pipe is promoted by increasing the flow, the turbulent flow formed by the flow separation in the upstream circular pipe hits the downstream circular pipe, and the heat transfer area This is an effect that can be increased to some extent. That is, in the present invention, the conventional knowledge about the shape and arrangement of the tubular heat exchanger is applied to the shape and arrangement of the evaporator according to the present invention.
なお、本発明で蒸発体の形状としていう「概ね管状」とは、その外形が円形のものに限定されるものではなく、楕円形や、四角形のコーナー部を曲線としたものなど、その外形が非流線形状のため熱風をその軸に直角に当てた時にその伝熱面で境界層が剥離し易く、且つ流れをあまり遮蔽しないため流動抵抗を抑えられるような形状を総称し意味する。 In the present invention, the term “substantially tubular” as the shape of the evaporator is not limited to a circular outer shape, but an outer shape such as an ellipse or a rectangular corner is curved. A non-streamline shape is a generic name that means that the boundary layer easily peels off at the heat transfer surface when hot air is applied at right angles to its axis, and the flow resistance is suppressed because the flow is not shielded so much.
又、主要部材として水蒸発部を構成するかかる蒸発管は、従来技術でいう「散水パイプ」の周囲を多孔質の保水部で被覆し概ね管状の部材としたようなものであって、その散水パイプ(本発明でいう「通路部」)と水の蒸発面(蒸発管の外表面)との距離を適度に、具体的には、保水部の毛管現象により適度の水が散水パイプから水の蒸発面に供給されるようにして決定し、それを主要部材として水蒸発部を構成することにより、特に大型の冷房システムを対象とした場合においても、蒸発面の全面にわたり適度な湿り気を維持するように水を供給することができ、蒸発面の全面を効果的に利用することができる。 Further, the evaporation pipe constituting the water evaporation part as a main member is like a generally tubular member in which the periphery of the “watering pipe” referred to in the prior art is covered with a porous water retaining part. The distance between the pipe (the “passage section” in the present invention) and the water evaporation surface (the outer surface of the evaporation pipe) is set appropriately. By deciding to be supplied to the evaporation surface and configuring the water evaporation part using it as a main member, even when targeting a large cooling system in particular, moderate moisture is maintained over the entire evaporation surface. Thus, water can be supplied and the entire surface of the evaporation surface can be used effectively.
以上説明したように、本発明の排熱抑制装置は、水の蒸発面を含む水蒸発部をかかる構成とすることにより、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減することができる。 As described above, the exhaust heat suppression device of the present invention effectively reduces the heat load on the atmosphere based on the operation of the air-cooled cooling device by adopting such a configuration as the water evaporation unit including the water evaporation surface. can do.
即ち、本発明の排熱抑制装置は、室内の空気を冷却する室内機と、熱風を排出する室外機と、室内機と室外機の間に冷媒を循環する冷媒系統とを備えた空冷式冷房装置の排熱を抑制する装置であって、室外機から排出される熱風を受け表面から水を蒸発させる水蒸発部と、水蒸発部に水を供給する水供給部とを有し、水蒸発部は、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体を主要部材として構成され、水供給部は通路部に流通可能に接続され、通路部から保水部に水が供給されその保水部の表面で水の蒸発が生じるように構成されているのが基本的な実施の形態である。 That is, the exhaust heat suppression device of the present invention includes an indoor unit that cools indoor air, an outdoor unit that discharges hot air, and an air-cooled cooling system that includes a refrigerant system that circulates refrigerant between the indoor unit and the outdoor unit. A device that suppresses exhaust heat of the device, and includes a water evaporation unit that receives hot air discharged from an outdoor unit and evaporates water from the surface, and a water supply unit that supplies water to the water evaporation unit. The main part is composed of a substantially tubular evaporator composed of a water passage part and a porous water retention part covering the periphery thereof, and the water supply part is connected to the passage part so as to be able to circulate. In the basic embodiment, water is supplied to the part and water is evaporated on the surface of the water holding part.
次に、水蒸発部を構成する主要部材である蒸発管について説明する。その蒸発管の具体的な構成としては、特に本発明を限定するものではないが、例えば、蒸発管の水の通路部を、周囲を被覆する保水部に水を供給するための供給穴を管壁に複数有する導管として構成することができる。これは、上述した如く、従来技術でいう「散水パイプ」の周囲を多孔質の保水部で被覆し概ね管状の部材とした形態と概ね同様な実施の形態であり、保水部の材料として「繊維体」などを用いる際に好適な形態である。 Next, the evaporation pipe which is a main member constituting the water evaporation unit will be described. Although the present invention is not particularly limited as a specific configuration of the evaporation pipe, for example, a water passage part of the evaporation pipe is provided with a supply hole for supplying water to a water retaining part covering the periphery. It can be configured as a plurality of conduits on the wall. As described above, this is an embodiment that is substantially the same as the form in which the periphery of the “water sprinkling pipe” in the prior art is covered with a porous water retaining portion to form a generally tubular member. This is a preferred form when using a “body” or the like.
なお、その導管としては、例えば、構造は、導管を掃除出来るように終端をネジ栓等で、取り外し可能に塞いだものとし、材質は、銅合金、硬質ビニル管など水の腐食作用に耐え、曲げ易いものとし、供給穴を含めてその寸法や形状は、空冷式冷房装置の能力や水蒸発部の具体的な構成などに合わせて適宜に選定して実施する。 In addition, as the conduit, for example, the structure shall be detachably closed with a screw cap so that the conduit can be cleaned, and the material is resistant to the corrosive action of water such as copper alloy, hard vinyl tube, It is assumed that it is easy to bend, and the dimensions and shape including the supply hole are appropriately selected according to the capacity of the air cooling type cooling device and the specific configuration of the water evaporation section.
蒸発管の別の構成としては又、別部材である導管を用いず、保水部材のみを用いて水の通路部も形成する形態として実施することもできる。即ち、概ね中心部を空洞として水の通路部を形成した多孔質の保水部からなる概ね管状の蒸発体として実施することもできる。これは、その管壁に水供給用の穴をもつ導管を省略して水供給量の制限を緩めること、及び製造工程の簡略化により、大型冷房システム用の蒸発管を大量生産する際などに好適な形態である。 Another configuration of the evaporation pipe can also be implemented as a form in which a water passage portion is formed using only a water retaining member without using a conduit which is a separate member. That is, the present invention can be implemented as a substantially tubular evaporator composed of a porous water-retaining part in which a water passage part is formed with the central part as a cavity. This can be done when, for example, mass production of evaporation pipes for large-scale cooling systems by omitting the pipes with holes for water supply on the pipe wall to loosen the water supply limit and simplifying the manufacturing process. This is a preferred form.
次に、その蒸発管を構成する保水部について説明する。本発明でいう「多孔質の保水性材料」とは、上述の如く、多数の空隙を有し、その空隙の毛細管的特性により、水を外から吸引し、それを内部に保持し内部で再配分することができる材料の総称であって、本発明の保水部はその多孔質の保水性材料を用いたものであり、その好ましい材料としては、例えば、フェルト、金網、焼結金属、セラミックスなどが挙げられる。なお、この「フェルト」とは、所謂「繊維」状のものを用いた材料の総称であって、特許文献5でいう「布」や特許文献6でいう「繊維体」などを含み意味する。 Next, the water retention part which comprises the evaporation pipe is demonstrated. As described above, the “porous water-retaining material” in the present invention has a large number of voids, and, due to the capillary characteristics of the voids, sucks water from the outside, holds it inside, and recycles it inside. It is a general term for materials that can be distributed, and the water retention part of the present invention uses the porous water retention material, and preferred materials include, for example, felt, wire mesh, sintered metal, ceramics, etc. Is mentioned. The “felt” is a general term for materials using a so-called “fiber” -like material, and includes “cloth” in Patent Document 5, “fiber” in Patent Document 6, and the like.
保水部は、単独の保水性材料を用いて形成することもできるが、複数の保水性材料を組み合わせ用いて形成することもできる。例えば、先ず、セラミックスで水の通路部を有する内側保水部を形成し、次いで、それにフェルトを被覆することにより外側保水部を形成して、二重構造を有する保水部とする形態などとして実施することもできる。 The water retention part can be formed using a single water retention material, but can also be formed using a combination of a plurality of water retention materials. For example, first, an inner water retaining portion having a water passage portion is formed of ceramics, and then an outer water retaining portion is formed by covering the felt to form a water retaining portion having a double structure. You can also.
保水部の形状としては、概ね管状のみとする形態の他、周知のフィン付伝熱管と類似の考えにより、水の蒸発面を増大させるため、その概ね管状の保水部に所定の間隔でフィン状の突起面を有する形態として実施することもできる。フィン状突起面は、例えば、円周方向、軸方向、或いは、螺旋方向などに設けることができるが、流動抵抗や可撓性により、特には円周方向に設けるのが好ましい。なお、その管状部とフィン部は、通常、同じ材料とし、特には1体に製作するのが好ましいが、異なる材料とすることもできる。 As the shape of the water retaining portion, in addition to a generally tubular shape, in order to increase the evaporation surface of water based on a similar idea to a well-known finned heat transfer tube, the generally tubular water retaining portion has a fin shape at a predetermined interval. It can also be implemented as a form having a protruding surface. The fin-like projection surface can be provided, for example, in the circumferential direction, the axial direction, or the spiral direction, but is preferably provided in the circumferential direction due to flow resistance and flexibility. The tubular portion and the fin portion are usually made of the same material, particularly preferably manufactured as a single body, but may be made of different materials.
次に、水蒸発部の主要部材である蒸発管の配置構成の具体的な形態について説明する。この蒸発管の配置構成は、例えば、室外機の熱風を排出する排気面と概ね平行に、蒸発管を所定の間隔で複数本配置して構成することができる。即ち、例えば、室外機の熱風を排出する排気面と概ね平行に、底部に配置した軸管から適度な間隔で鉛直に、柱状の蒸発管を複数本立てて配置して構成することができ、その複数本の蒸発管の配列は、本発明を限定するものではないが、直線状の配列や、上述した多管式熱交換器の如く、千鳥配列、碁盤目配列などの形態として実施することができる。 Next, a specific form of the arrangement configuration of the evaporation pipe which is a main member of the water evaporation unit will be described. The arrangement configuration of the evaporation pipes can be configured, for example, by arranging a plurality of evaporation pipes at a predetermined interval substantially in parallel with the exhaust surface for discharging the hot air of the outdoor unit. That is, for example, a plurality of columnar evaporating tubes can be arranged upright at an appropriate interval vertically from an axial tube arranged at the bottom, substantially parallel to the exhaust surface for discharging hot air from the outdoor unit, The arrangement of the plurality of evaporator tubes is not intended to limit the present invention, but may be implemented in the form of a linear array, a zigzag array, a grid array, or the like, such as the multi-tube heat exchanger described above. it can.
その際、複数蒸発管の設置長さ、設置幅、設置高さは、対象とする室外機の排気面の形状や、その排気面と排熱抑制装置の設置距離などに合わせ、その排気面から排出される熱風を効率よく受けられるように、適宜、設定するのが好ましい。なお、蒸発管は、鉛直に立てる形態の他、水平、或いは、傾斜させて配置して構成することもできる。 At that time, the installation length, installation width, and installation height of the multiple evaporation pipes are determined from the exhaust surface according to the shape of the exhaust surface of the target outdoor unit and the installation distance of the exhaust surface and the exhaust heat suppression device. It is preferable to set appropriately so that the discharged hot air can be received efficiently. In addition, the evaporation pipe can be configured to be arranged in a horizontal or inclined manner, in addition to a vertical configuration.
水蒸発部における蒸発管の配置構成は又、室外機の熱風を排出する排気面と概ね対面して、蒸発管を螺旋状又は渦巻状に配置して構成することもできる。又、かかる螺旋状又は渦巻状の蒸発管を、熱風の流れ方向に所定の間隔で複数重ねて配置することもできる。この蒸発管を螺旋状又は渦巻状に配置した構成は、特には、対象とする室外機の排気面の形状が円形の場合に好適な実施の形態である。なお、蒸発管は、適宜、設置した支持体により支持する。 The arrangement of the evaporation pipes in the water evaporation section can also be constituted by arranging the evaporation pipes in a spiral shape or a spiral shape so as to substantially face the exhaust surface for discharging the hot air of the outdoor unit. It is also possible to arrange a plurality of such spiral or spiral evaporator tubes at predetermined intervals in the hot air flow direction. The configuration in which the evaporator tubes are arranged in a spiral shape or a spiral shape is a preferred embodiment particularly when the shape of the exhaust surface of the target outdoor unit is circular. Note that the evaporation tube is supported by an installed support as appropriate.
次に、水蒸発部の好ましい外形の形態について説明する。この水蒸発部の外形は、本発明を何ら限定するものではないが、室外機の排気面から排出される熱風を効率よく受けられるようにするため、特には、その排気面側からみたその外形を、排気面の外形に合わせ、概ね円形又は方形として実施するのが好ましい。なお、螺旋状又は渦巻状の蒸発管を用いるに際し、室外機の排気面の外形が方形の場合には、直線部と曲線部とで構成される変形された螺旋状又は渦巻状の蒸発管の形態として実施するのが効果的である。 Next, a preferable external form of the water evaporation unit will be described. The outer shape of the water evaporation section is not intended to limit the present invention, but in order to efficiently receive hot air discharged from the exhaust surface of the outdoor unit, in particular, the outer shape viewed from the exhaust surface side. Is preferably implemented as a generally circular or square shape in accordance with the outer shape of the exhaust surface. In addition, when using the spiral or spiral evaporator tube, if the outer surface of the outdoor unit has a rectangular shape, the deformed spiral or spiral evaporator tube composed of a straight portion and a curved portion is used. It is effective to implement as a form.
次に、水供給部の構成について説明する。この水供給部は、排熱抑制装置に含まれ、蒸発管の通路部に流通可能に接続され、それに蒸発させるための水を供給するものであって、その具体的な構成は、本発明を何ら限定するものではない。即ち、その水としては、水道水、室内機から排出される排水、雨水などを単独に、或いは、組み合わせて用いることができ、水供給部は、具体的には、その用いる水の形態に合わせて適宜に構成される。 Next, the configuration of the water supply unit will be described. This water supply unit is included in the exhaust heat suppression device, is connected to the passage portion of the evaporation pipe so as to be circulated, and supplies water for evaporation thereto. It is not limited at all. That is, as the water, tap water, waste water discharged from indoor units, rain water, etc. can be used alone or in combination, and the water supply unit specifically matches the form of the water used. It is configured appropriately.
なお、特には、コスト上、その水は、室内機から排出される排水や雨水を用いるのが好ましく、更には、水ポンプ等を要さずに水を供給できる構成が好ましく、かかる好ましい水供給部として、例えば、その排水や雨水を受けそれを貯水する貯水槽を設け、貯水槽内の水が蒸発管の通路部に自然流下可能に、貯水槽を配置し、通路部に接続した構成として実施することができる。 In particular, from the viewpoint of cost, it is preferable to use drainage or rainwater discharged from the indoor unit, and it is preferable that the water can be supplied without a water pump or the like. As a part, for example, a storage tank that receives the drainage and rainwater and stores it is provided, and the water tank is arranged so that the water in the storage tank can naturally flow into the passage part of the evaporation pipe, and connected to the passage part. Can be implemented.
又、本発明の排熱抑制装置は、水供給部を大気圧以上の圧力を有する水系統と接続し、水供給部に給水量を制御するための給水バルブを設け、特許文献2などと類似にして、外気温度と外気湿度を含む気象データと予め入力されたその温度等と水の蒸発量との関係を示す関係データに基づいて、或いは、水蒸発部の所定位置に設置した水滴センサ等の検知データに基づいて、給水バルブの開度調整などにより給水量を制御する制御器を設け、その実測データに基づき給水量を適正に制御する形態として実施することもできる。 Further, the exhaust heat suppression device of the present invention connects the water supply unit to a water system having a pressure equal to or higher than the atmospheric pressure, and is provided with a water supply valve for controlling the amount of water supply in the water supply unit. Based on the meteorological data including the outside air temperature and outside air humidity and the relational data indicating the relationship between the temperature etc. inputted in advance and the amount of water evaporation, or a water drop sensor installed at a predetermined position of the water evaporating unit, etc. Based on the detected data, a controller for controlling the water supply amount by adjusting the opening of the water supply valve or the like may be provided, and the water supply amount may be appropriately controlled based on the actual measurement data.
次に、本発明の空冷式冷房システムの実施の形態について説明する。即ち、本発明の空冷式冷房システムは、室内の空気を冷却する室内機と、熱風を排出する室外機と、室内機と室外機の間に冷媒を循環する冷媒系統とを備えた空冷式冷房装置を含むシステムであって、上記詳細に説明した如く、水蒸発部と水供給部とを有する本発明の空冷式冷房装置の排熱抑制装置を、水蒸発部が室外機の熱風を排出する排気面と概ね対面する如く配置して、室外機から排出される熱風を受け水蒸発部から水が蒸発するように構成するのが、その実施の形態であり、これにより空冷式冷房装置の排熱を抑制することができる。 Next, an embodiment of the air cooling type cooling system of the present invention will be described. That is, an air-cooled cooling system of the present invention includes an indoor unit that cools indoor air, an outdoor unit that discharges hot air, and a refrigerant system that circulates refrigerant between the indoor unit and the outdoor unit. A system including a device, as described in detail above, the exhaust heat suppression device for an air-cooled cooling device according to the present invention having a water evaporation unit and a water supply unit. The embodiment is arranged so as to face the exhaust surface substantially so that water is evaporated from the water evaporation section by receiving the hot air discharged from the outdoor unit. Heat can be suppressed.
かかる空冷式冷房装置としては、上述の如く、代表的には、冷媒液を蒸発させその気化潜熱により周囲すなわち室内の空気を冷却する室内機と、冷媒ガスを圧縮する圧縮機及び圧縮された冷媒ガスを外気で冷却して凝縮させる凝縮器を有する室外機を備えた空冷式冷房装置が挙げられるが、これに限らず、高圧・常温の冷媒ガスを断熱膨張させその低圧・低温の冷媒ガスにより周囲すなわち室内の空気を冷却する室内機と、冷媒ガスを圧縮する圧縮機及び圧縮された冷媒ガスを外気で冷却し高圧・常温の冷媒ガスとする熱交換器を有する室外機を備えた空冷式冷房装置や、吸着式熱サイクルを利用した空冷式冷房装置など、熱風を排出する空冷式冷房装置であれば、本発明を何ら制限なく適用することができる。 As described above, the air-cooling type cooling device typically includes an indoor unit that evaporates the refrigerant liquid and cools the surrounding air, that is, indoor air, by its latent heat of vaporization, a compressor that compresses the refrigerant gas, and a compressed refrigerant. An air-cooled air conditioner equipped with an outdoor unit having a condenser that cools and condenses the gas with outside air is included, but not limited to this, the high-pressure / normal temperature refrigerant gas is adiabatically expanded and the low-pressure / low-temperature refrigerant gas An air-cooled type equipped with an indoor unit that cools ambient air, that is, indoor air, a compressor that compresses the refrigerant gas, and an outdoor unit that has a heat exchanger that cools the compressed refrigerant gas with the outside air to form a high-pressure / normal temperature refrigerant gas The present invention can be applied without any limitation as long as it is an air-cooled cooling device that discharges hot air, such as a cooling device or an air-cooled cooling device using an adsorption heat cycle.
なお、本発明の空冷式冷房システムの実施に際し、室外機から排出され排熱抑制装置で冷却された空気の温度が周辺の空気の温度より低い場合、或いは、蒸発により生じた水蒸気で周辺の空気が冷却された場合には、その冷却された空気は比重の違いにより周囲の低所に漂うため、これを積極的に室外機の凝縮器の冷却のために利用することにより、空冷式冷房装置の消費電力を低減することができる。 In implementing the air-cooled cooling system of the present invention, the temperature of the air discharged from the outdoor unit and cooled by the exhaust heat suppression device is lower than the temperature of the surrounding air, or the surrounding air is generated with water vapor generated by evaporation. When the air is cooled, the cooled air drifts to the surrounding low space due to the difference in specific gravity. Therefore, by using this actively for cooling the condenser of the outdoor unit, the air-cooled air conditioner Power consumption can be reduced.
具体的には、例えば、室外機と排熱抑制装置の周囲を衝立などで囲むことにより、冷却された低温の空気がその中の低所で漂い、それが室外ファンによって凝縮器に向けて送風されるようにして、空冷式冷房装置の消費電力を低減することができる。 Specifically, for example, by surrounding the outdoor unit and the exhaust heat suppression device with a partition or the like, the cooled low-temperature air drifts in a low place therein, and it is blown toward the condenser by the outdoor fan. In this way, the power consumption of the air-cooled cooling device can be reduced.
以上、詳細に説明した実施の形態の如く、本発明は、空冷式冷房装置の室外機から排出される熱風を受け表面から水を蒸発させる蒸発面を別に構成し、且つ、その蒸発面を多孔質の保水性材料で構成し、更に、その蒸発面を含む水蒸発部を、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体を主要部材として構成することによって、安価に且つ容易に実用し得る、空冷式冷房装置の運転に基づく大気への熱負荷を効果的に軽減できる、空冷式冷房装置の排熱抑制装置とそれを用いた空冷式冷房システムを提供することができる。 As described above in detail, the present invention separately forms an evaporation surface that evaporates water from the surface by receiving hot air discharged from the outdoor unit of the air-cooling type cooling device, and the evaporation surface is porous. Further, the water evaporation part including the evaporation surface is constituted by a substantially tubular evaporation body composed of a water passage part and a porous water holding part covering the periphery thereof as a main member. Therefore, it is possible to effectively reduce the heat load on the atmosphere based on the operation of the air-cooled cooling device that can be practically used at low cost, and the exhaust heat suppression device of the air-cooled cooling device and the air-cooled cooling system using the same Can be provided.
以下、実施例により本発明を更に具体的に説明する。本発明の実施例として、先ず、本発明の空冷式冷房装置の水蒸発部を構成する主要部材である蒸発管について、その具体的な構成例を説明する。 Hereinafter, the present invention will be described more specifically with reference to examples. As an embodiment of the present invention, first, a specific configuration example of an evaporation pipe which is a main member constituting a water evaporation section of an air-cooled cooling device of the present invention will be described.
図1は、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体の構成を示す第一の実施例であって、その水の通路部を、多孔質の保水部に水を供給するための供給穴を管壁に複数有する導管とした蒸発管の構成を示す概念図であり、(a)は断面を(b)は側面を示す2面図である。なお、断面図(a)は、側面図(b)のAA矢視図である。図1において、10は水の通路部を形成する導管であり、20は導管10の周囲を被覆する多孔質部材からなる多孔質保水部、101は導管10の管壁を貫通し複数設けられた水供給穴、102は導管10の外表面をいう導管外面、103は導管10の内表面をいう導管内面である。 FIG. 1 is a first embodiment showing a configuration of a substantially tubular evaporator composed of a water passage portion and a porous water retention portion covering the periphery of the water passage portion. It is a conceptual diagram which shows the structure of the evaporation pipe | tube made into the pipe | tube which has the supply hole for supplying water to a water retention part in the pipe wall, (a) is a cross section, (b) is a 2nd figure which shows a side surface. In addition, sectional drawing (a) is an AA arrow view of a side view (b). In FIG. 1, 10 is a conduit forming a water passage portion, 20 is a porous water retaining portion made of a porous member covering the periphery of the conduit 10, and 101 is provided in a plurality through the tube wall of the conduit 10. The water supply hole 102 is an outer surface of the conduit that refers to the outer surface of the conduit 10, and 103 is an inner surface of the conduit that refers to the inner surface of the conduit 10.
このような構成により、排気の熱風の流れに対する抵抗を抑え、熱伝達性能の向上を図り、しかも蒸発する水の補給を容易にして、効率的な排熱の抑制を実現することができる。これは、前述のように、柱状の外形により、流れの遮蔽による抵抗を抑えることができ、非流線形状の外形により、境界層が剥離し易く蒸発管表面近くで乱流が発生し易く熱伝達性能を大きくすることができ、しかも多孔質の保水材内での毛細管作用による水分移動の距離を短くすることにより、水分補給を容易にすることができる等の効果によるものである。 With such a configuration, resistance to the hot air flow of the exhaust can be suppressed, heat transfer performance can be improved, and water to be evaporated can be easily replenished, so that efficient exhaust heat suppression can be realized. This is because, as described above, the columnar outer shape can suppress the resistance due to the flow shielding, and the non-streamlined outer shape makes it easy for the boundary layer to peel off and to easily generate turbulence near the evaporation tube surface. This is because the transmission performance can be increased and the moisture replenishment can be facilitated by shortening the distance of moisture movement by the capillary action in the porous water retaining material.
この実施例による蒸発管の構成は、上述した如く、導管10を銅合金などとし、多孔質保水部20をフェルトなどとした形態に好適ものである。なお、水供給穴101を含めてその寸法や形状は、空冷式冷房装置の能力や水蒸発部の具体的な構成などに合わせて適宜に選定して実施する。 As described above, the structure of the evaporation pipe according to this embodiment is suitable for a form in which the conduit 10 is made of a copper alloy or the like and the porous water retaining part 20 is made of felt or the like. In addition, the dimension and shape including the water supply hole 101 are appropriately selected and implemented in accordance with the capability of the air-cooling type cooling device and the specific configuration of the water evaporation unit.
図2は、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体の構成を示す第二の実施例であって、別部材である導管を用いず、概ね中心部を空洞として水の通路部を形成した多孔質の保水部からなる蒸発管の構成を示す概念図であり、(a)は断面を(b)は側面を示す2面図である。なお、断面図(a)は、側面図(b)のBB矢視図である。図2において、21は、概ね中心部を空洞として水の通路部を形成した多孔質部材からなる多孔質保水部である。 FIG. 2 is a second embodiment showing a configuration of a substantially tubular evaporator composed of a water passage portion and a porous water retaining portion covering the periphery of the water passage portion. It is a conceptual diagram which shows the structure of the evaporation pipe which consists of a porous water retention part which formed the channel | path part of water by making a center part a cavity, (a) is a cross-section, (b) is a 2nd figure which shows a side surface. In addition, sectional drawing (a) is a BB arrow line view of a side view (b). In FIG. 2, reference numeral 21 denotes a porous water retaining portion made of a porous member having a water passage portion having a substantially central portion as a cavity.
この実施例による蒸発管の構成は、上述した如く、大型冷房システム用の蒸発管を大量生産する際などに好適な形態である。 As described above, the configuration of the evaporator tube according to this embodiment is a suitable form when mass-producing evaporator tubes for large cooling systems.
図3は、水の通路部とその周囲を被覆する多孔質の保水部とからなる概ね管状の蒸発体の構成を示す第三の実施例であって、フィン付伝熱管と類似の考えにより、水の蒸発面を増大させるため、その概ね管状の保水部に所定の間隔でフィン状の突起面を有する蒸発管の構成を示す概念図であり、(a)は断面を(b)は側面を示す2面図である。なお、断面図(a)は、側面図(b)のCC矢視図である。図3において、図1と同様のものは同一の符号とし、10は水の通路部を形成する導管、22は導管10の周囲を被覆する多孔質部材からなる多孔質保水部、101は導管10の管壁を貫通し複数設けられた水供給穴、102は導管10の外表面をいう導管外面、103は導管10の内表面をいう導管内面、201は、多孔質保水部22に所定の間隔で設けられたフィン状の突起面であって、多孔質保水部22と同じ材料で1体に製作されたフィンである。 FIG. 3 is a third embodiment showing a configuration of a substantially tubular evaporator composed of a water passage portion and a porous water retaining portion covering the periphery of the water passage portion, and is based on a similar idea to a finned heat transfer tube, It is a conceptual diagram which shows the structure of the evaporation pipe which has a fin-shaped projection surface in the predetermined space | interval in the substantially tubular water retention part in order to increase the evaporation surface of water, (a) is a cross section, (b) is a side surface. FIG. In addition, sectional drawing (a) is CC arrow line view of a side view (b). In FIG. 3, the same reference numerals as those in FIG. 1 denote the same reference numerals, 10 is a conduit that forms a water passage, 22 is a porous water retaining portion made of a porous member that covers the periphery of the conduit 10, and 101 is a conduit 10. A plurality of water supply holes penetrating through the pipe wall, 102 is an outer surface of the conduit that is the outer surface of the conduit 10, 103 is an inner surface of the conduit that is the inner surface of the conduit 10, and 201 is a predetermined distance from the porous water retaining portion 22. The fin-like projecting surface provided in step 1 is a fin made of the same material as the porous water retaining portion 22.
この実施例のフィン状突起面は、円周方向に設けられているが、これに限らず、排気の熱風の流れに抵抗とならないように、軸方向、或いは、螺旋方向などに設けて実施することもできる。又、この実施例の管状部とフィン部は、同じ材料で1体に製作されているが、異なる材料とすることもでき、例えば、フィン部をフェルトとし、それが風を受けて翻り、水の蒸発を促進させる形態として実施することもできる。 The fin-like projection surface of this embodiment is provided in the circumferential direction, but is not limited to this, and is provided in the axial direction or the spiral direction so as not to resist the flow of hot air in the exhaust. You can also. Moreover, although the tubular part and the fin part of this embodiment are manufactured as one body with the same material, they can be made of different materials, for example, the fin part is felt, and it receives the wind and turns. It can also be implemented as a form that promotes evaporation of water.
次に、本発明の空冷式冷房装置の水蒸発部を構成する蒸発管について、その具体的な配置の構成例を説明する。 Next, a specific configuration example of the arrangement of the evaporation pipes constituting the water evaporation section of the air-cooled cooling device of the present invention will be described.
図4は、水蒸発部を構成する蒸発管の配置構成を示す、本発明の第四の実施例であって、室外機の熱風を排出する排気面と概ね平行、碁盤目配列に外形が柱状の蒸発管を複数本立てて配置して構成した、蒸発管の配置構成を示す概念図であり、(a)は立面を(b)は平面を示す2面図である。図4において、30は外形が柱状の蒸発管である多孔質蒸発体、40は空冷式冷房装置の室外機であって、その熱風を排出する排気面を右側に有している。 FIG. 4 is a fourth embodiment of the present invention showing the arrangement configuration of the evaporation pipes constituting the water evaporation section, and is substantially parallel to the exhaust surface for discharging the hot air of the outdoor unit, and the outer shape is a columnar array. It is a conceptual diagram which shows the arrangement configuration of an evaporation pipe comprised by arranging a plurality of the evaporation pipes in an upright manner, (a) is a two-view diagram showing an elevation surface and (b) a plane. In FIG. 4, 30 is a porous evaporator whose outer shape is a columnar evaporation tube, and 40 is an outdoor unit of an air-cooling type cooling device having an exhaust surface on the right side for discharging the hot air.
このような構成により、前方の多孔質蒸発体30で排気の流れが乱れを起こし、この乱れた流れが後方の多孔質蒸発体30に当たると、後方の多孔質蒸発体30の表面での乱れの作用により水分蒸発を促進するという副次的な効果をもたらす。 With such a configuration, the flow of exhaust gas is disturbed in the front porous evaporator 30, and when this disturbed flow hits the rear porous evaporator 30, the disturbance on the surface of the rear porous evaporator 30 is disturbed. This action has a secondary effect of promoting moisture evaporation.
この外形が柱状の蒸発管を用いる蒸発管の配置構成は、上述した如く、実施例4による碁盤目配列の他、千鳥配列や直線状の配列などが可能であり、又、蒸発管は、この実施例による鉛直に立てる形態の他、水平、或いは、傾斜させて配置して構成することもできる。 As described above, the arrangement configuration of the evaporation tubes using the columnar evaporation tubes can be a staggered arrangement or a linear arrangement in addition to the grid arrangement according to the fourth embodiment. In addition to the vertical configuration according to the embodiment, it may be arranged horizontally or inclined.
図5は、水蒸発部を構成する蒸発管の配置構成を示す、本発明の第五の実施例であって、室外機の熱風を排出する排気面と概ね対面し、蒸発管を渦巻状に配置して構成した、蒸発管の配置構成を示す概念図であり、(a)は正面を(b)は側面を示す2面図である。図5において、図4と同様のものは同一の符号とし、31は外形が渦巻状の蒸発管である多孔質蒸発体、40は空冷式冷房装置の室外機、401は室外機40の円形排気面の排気部外縁である。 FIG. 5 is a fifth embodiment of the present invention showing the arrangement configuration of the evaporation pipes constituting the water evaporation section, generally facing the exhaust surface for discharging the hot air of the outdoor unit, and making the evaporation tubes spiral. It is a conceptual diagram which shows the arrangement configuration of the evaporation pipe | tube arrange | positioned and comprised, (a) is a front view, (b) is a 2nd figure which shows a side surface. In FIG. 5, the same reference numerals as in FIG. 4 denote the same reference numerals, 31 is a porous evaporator whose outer shape is a spiral evaporation tube, 40 is an outdoor unit of an air-cooled cooling device, 401 is a circular exhaust of the outdoor unit 40 It is the outer edge of the exhaust part of the surface.
これは、排気面がたとえば円形である場合などに好適に対応するものである。排気面の形状に応じて配置すればよく、現場の状況に応じて一本の蒸発管で構成することが望ましい場合に好適に用いることができる。 This corresponds suitably when the exhaust surface is circular, for example. What is necessary is just to arrange | position according to the shape of an exhaust surface, and when it is desirable to comprise with one evaporation pipe according to the condition of the field, it can use suitably.
この曲線状蒸発管を用いる蒸発管の配置構成は、上述した如く、実施例5による渦巻状配置の他、螺旋状配置などが可能であり、又、螺旋状又は渦巻状の蒸発管を、熱風の流れ方向に所定の間隔で複数重ねて配置構成することもできる。 As described above, the arrangement configuration of the evaporation tubes using the curved evaporation tubes may be a spiral arrangement or the like in addition to the spiral arrangement according to the fifth embodiment. It is also possible to arrange and configure a plurality of layers at predetermined intervals in the flow direction.
次に、排熱抑制装置に含まれ、蒸発管の通路部に流通可能に接続され、それに蒸発させるための水を供給する本発明の空冷式冷房装置の水供給部の構成について、その具体的な構成例を説明する。 Next, the configuration of the water supply unit of the air-cooled cooling device of the present invention, which is included in the exhaust heat suppression device and is connected to the passage portion of the evaporation pipe so as to be circulated and supplies water for evaporation, is specifically described. A simple configuration example will be described.
図6は、水供給部の構成を示す、本発明の第六の実施例であって、実施例5の水蒸発部への給水を例とし、給水すべき多孔質蒸発体より高い位置に自由水面を持つように貯水槽を配置し、これから給水パイプで水蒸発部に水を導くように構成した、水供給部の構成を示す正面から見た概念図である。 FIG. 6 is a sixth embodiment of the present invention showing the configuration of the water supply unit. In this example, the water supply to the water evaporation unit of Example 5 is taken as an example, and is freely placed at a position higher than the porous evaporator to be supplied. It is the conceptual diagram seen from the front which shows the structure of the water supply part which comprised the water storage tank so that it might have a water surface, and was comprised so that water might be guide | induced to a water evaporation part from now on by a water supply pipe.
図6において、図5と同様のものは同一の符号とし、31は外形が渦巻状の蒸発管である多孔質蒸発体、40は空冷式冷房装置の室外機、50は給水すべき多孔質蒸発体31より高い位置に自由水面を持つように配置し構成した貯水槽、60は貯水槽50内の水が自然流下し多孔質蒸発体31に供給されるように配置し構成した給水パイプ、70はその自然流下による給水量を調整するための給水バルブ、401は室外機40の円形排気面の排気部外縁である。なお、貯水槽50の水は、図示を省略しているが、コスト上、室内機から排出される排水と雨水を組み合わせて用いるように構成している。
In FIG. 6, the same reference numerals as in FIG. 5 denote the same reference numerals, 31 denotes a porous evaporator whose outer shape is a spiral evaporation tube, 40 denotes an outdoor unit of an air-cooled cooling device, and 50 denotes a porous evaporation to be supplied with water. A
この実施例6の構成によれば、水ポンプ等を要さず、即ち電力消費等を要さずに給水できる効率的なシステムを構成することができる。 According to the configuration of the sixth embodiment, it is possible to configure an efficient system that can supply water without requiring a water pump or the like, that is, without requiring power consumption or the like.
水供給部の構成としては、実施例6の他、水供給部を大気圧以上の圧力を有する水系統、例えば水道水と接続し、水供給部に給水量を制御するための給水バルブを設け、外気温度と外気湿度を含む気象データと予め入力されたその温度等と水の蒸発量との関係を示す関係データに基づいて、或いは、水蒸発部の所定位置に設置した水滴センサ等の検知データに基づいて、給水バルブの開度調整などにより給水量を制御する制御器を設け、その実測データに基づき給水量を適正に制御する形態として実施することもできる。 As a configuration of the water supply unit, in addition to Example 6, the water supply unit is connected to a water system having a pressure equal to or higher than atmospheric pressure, for example, tap water, and a water supply valve for controlling the amount of water supply is provided in the water supply unit. Detection based on meteorological data including the outside air temperature and outside air humidity and relationship data indicating the relationship between the temperature and the like input in advance and the amount of water evaporation, or detection by a water drop sensor or the like installed at a predetermined position of the water evaporation unit A controller for controlling the water supply amount by adjusting the opening of the water supply valve based on the data may be provided, and the water supply amount may be appropriately controlled based on the actual measurement data.
以上、本発明の実施例を説明したが、特許請求の範囲で規定された本発明の精神と範囲から逸脱することなく、その形態や細部に種々の変更がなされても良いことは明らかである。 As mentioned above, although the Example of this invention was described, it is clear that various changes may be made to the form and detail, without deviating from the spirit and scope of this invention prescribed | regulated by the claim. .
例えば、実施例では、蒸発管への給水を下から行うようにしているが、横から給水するようにしても、或いは、蒸発管の上部にヘッダーを設けてそれからそれぞれの蒸発管に自然流下するように構成してもよく、蒸発管への給水方法は何ら本発明を限定するものではない。 For example, in the embodiment, water is supplied to the evaporation pipes from below, but water may be supplied from the side, or a header is provided on the upper part of the evaporation pipes, and then naturally flows down to the respective evaporation pipes. The method of supplying water to the evaporation pipe does not limit the present invention.
10 導管
20、21、22 多孔質保水部
30、31 多孔質蒸発体
40 室外機
50 貯水槽
60 給水パイプ
70 給水バルブ
101 水供給穴
102 導管外面
103 導管内面
201 フィン
401 排気部外縁
10 Conduit
20, 21, 22 Porous water retaining part 30, 31 Porous evaporator 40
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004353098A JP4899036B2 (en) | 2004-10-15 | 2004-12-06 | Exhaust heat suppression device for air-cooled cooling system and air-cooled cooling system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004300982 | 2004-10-15 | ||
JP2004300982 | 2004-10-15 | ||
JP2004353098A JP4899036B2 (en) | 2004-10-15 | 2004-12-06 | Exhaust heat suppression device for air-cooled cooling system and air-cooled cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006138615A true JP2006138615A (en) | 2006-06-01 |
JP4899036B2 JP4899036B2 (en) | 2012-03-21 |
Family
ID=36619547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004353098A Active JP4899036B2 (en) | 2004-10-15 | 2004-12-06 | Exhaust heat suppression device for air-cooled cooling system and air-cooled cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4899036B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007333310A (en) * | 2006-06-15 | 2007-12-27 | Takahiro Yamashita | Humidity regulation system |
JP2008045787A (en) * | 2006-08-11 | 2008-02-28 | Tlv Co Ltd | Evaporative cooling device |
JP2010065853A (en) * | 2008-09-08 | 2010-03-25 | Ohbayashi Corp | Cooling device |
JP2011144498A (en) * | 2010-01-12 | 2011-07-28 | Tokyo Institute Of Technology | Water supply system |
JP2011144499A (en) * | 2010-01-12 | 2011-07-28 | Tokyo Institute Of Technology | Evaporative cooling wall body |
JP2011163091A (en) * | 2010-02-15 | 2011-08-25 | Toyota Home Kk | Building cooling facility |
JP2012225539A (en) * | 2011-04-15 | 2012-11-15 | Asahi Kasei Homes Co | Transpiration device and method of manufacturing the same |
KR102218691B1 (en) * | 2020-06-25 | 2021-02-22 | (주)세기에어시스템 | Air cooler with evaporative type having injector and dehumidifier |
JP2023023222A (en) * | 2021-08-04 | 2023-02-16 | 株式会社フナボリ | Outdoor unit exhaust cooler |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04143526A (en) * | 1990-10-05 | 1992-05-18 | I N R Kenkyusho:Kk | Heat radiating or absorbing radiator and panel |
JPH06129783A (en) * | 1992-10-13 | 1994-05-13 | Fujikura Ltd | Heat dissipating wall member |
JPH08219504A (en) * | 1995-02-10 | 1996-08-30 | Japan Gore Tex Inc | Humidifying element and humidifying device |
JPH08226685A (en) * | 1995-12-15 | 1996-09-03 | Japan Gore Tex Inc | Air bleeding method for humidifying water channel of humidifier |
JPH1183230A (en) * | 1997-09-12 | 1999-03-26 | Yasushi Ueda | Structure of house, structure of body of transport vehicle and article for automobile for cooling which utilize heat of vaporization of water |
JP2002539404A (en) * | 1999-03-10 | 2002-11-19 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Air humidifier |
JP2004150782A (en) * | 2002-10-31 | 2004-05-27 | Sakuo Uchida | Exhaust air treatment device |
-
2004
- 2004-12-06 JP JP2004353098A patent/JP4899036B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04143526A (en) * | 1990-10-05 | 1992-05-18 | I N R Kenkyusho:Kk | Heat radiating or absorbing radiator and panel |
JPH06129783A (en) * | 1992-10-13 | 1994-05-13 | Fujikura Ltd | Heat dissipating wall member |
JPH08219504A (en) * | 1995-02-10 | 1996-08-30 | Japan Gore Tex Inc | Humidifying element and humidifying device |
JPH08226685A (en) * | 1995-12-15 | 1996-09-03 | Japan Gore Tex Inc | Air bleeding method for humidifying water channel of humidifier |
JPH1183230A (en) * | 1997-09-12 | 1999-03-26 | Yasushi Ueda | Structure of house, structure of body of transport vehicle and article for automobile for cooling which utilize heat of vaporization of water |
JP2002539404A (en) * | 1999-03-10 | 2002-11-19 | フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Air humidifier |
JP2004150782A (en) * | 2002-10-31 | 2004-05-27 | Sakuo Uchida | Exhaust air treatment device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007333310A (en) * | 2006-06-15 | 2007-12-27 | Takahiro Yamashita | Humidity regulation system |
JP2008045787A (en) * | 2006-08-11 | 2008-02-28 | Tlv Co Ltd | Evaporative cooling device |
JP2010065853A (en) * | 2008-09-08 | 2010-03-25 | Ohbayashi Corp | Cooling device |
JP2011144498A (en) * | 2010-01-12 | 2011-07-28 | Tokyo Institute Of Technology | Water supply system |
JP2011144499A (en) * | 2010-01-12 | 2011-07-28 | Tokyo Institute Of Technology | Evaporative cooling wall body |
JP2011163091A (en) * | 2010-02-15 | 2011-08-25 | Toyota Home Kk | Building cooling facility |
JP2012225539A (en) * | 2011-04-15 | 2012-11-15 | Asahi Kasei Homes Co | Transpiration device and method of manufacturing the same |
KR102218691B1 (en) * | 2020-06-25 | 2021-02-22 | (주)세기에어시스템 | Air cooler with evaporative type having injector and dehumidifier |
JP2023023222A (en) * | 2021-08-04 | 2023-02-16 | 株式会社フナボリ | Outdoor unit exhaust cooler |
Also Published As
Publication number | Publication date |
---|---|
JP4899036B2 (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6091861B2 (en) | Spot air conditioner | |
EP0961092A1 (en) | Complex condenser | |
JP2006342979A (en) | Outdoor unit of air-cooled type cooling device | |
JP5133601B2 (en) | Cooling tower system | |
JP4899036B2 (en) | Exhaust heat suppression device for air-cooled cooling system and air-cooled cooling system | |
CN107906991B (en) | Unpowered heat pipe cooling system and indoor temperature adjusting system | |
KR101222655B1 (en) | Water evaporative air cooler | |
WO2014129027A1 (en) | Vaporization air conditioner | |
JP2008209070A (en) | Heat exchanger and sealed cooling tower | |
JP2004116996A (en) | Auxiliary cooling device for exterior unit of air conditioner | |
JP2006118797A (en) | Air conditioning system | |
US20100212346A1 (en) | Wicking condensate evaporator for an air conditioning system | |
JP2007127374A (en) | Integrated air conditioner | |
KR101309625B1 (en) | Water evaporation type cooling apparatus | |
JP3209642U (en) | Plant factory system using vaporized cold energy | |
CN105698358B (en) | A kind of condensate processor and its air conditioner for air conditioner | |
JP2015034675A (en) | Vaporization type cooling device | |
KR101102009B1 (en) | Heat Exchanger for Air conditioner | |
JP2010197027A (en) | Ventilation-integrated air conditioner | |
JP2022172631A (en) | Air conditioning system and frame | |
CN206459388U (en) | A/C evaporator apparatus for evaporation condensation | |
JP2002039567A (en) | Air conditioner and its operation method | |
JP2010266180A (en) | Fully heat-utilization cooling tower | |
CN101782255A (en) | Temperature-adjustable air cooler | |
CN105115137A (en) | Air conditioner condensed water treatment and utilization method and device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050526 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070823 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |