JP2006137986A - Method for operating hot blast stove - Google Patents

Method for operating hot blast stove Download PDF

Info

Publication number
JP2006137986A
JP2006137986A JP2004327852A JP2004327852A JP2006137986A JP 2006137986 A JP2006137986 A JP 2006137986A JP 2004327852 A JP2004327852 A JP 2004327852A JP 2004327852 A JP2004327852 A JP 2004327852A JP 2006137986 A JP2006137986 A JP 2006137986A
Authority
JP
Japan
Prior art keywords
blasting
hot
air
period
hot blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004327852A
Other languages
Japanese (ja)
Inventor
Kazuo Yomoto
一夫 四本
Akimitsu Kawano
彰光 川野
Takushi Kawamura
拓史 川村
Toshiaki Ueno
俊昭 上之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004327852A priority Critical patent/JP2006137986A/en
Publication of JP2006137986A publication Critical patent/JP2006137986A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a hot blast stove, in which when the change-over of blasting between the prior hot blast stove and the following hot blast stove is performed, the variation of the blasting quantities and the blasting temperatures are relaxed and also, the thermal efficiency can be improved, in the case of blasting while duplicating the prior hot blast stove having low blasting temperature and the following hotblast stove having high blasting temperature. <P>SOLUTION: In the method for operating the hot blast stoves, in which hot-blasting is continuously injected into a blast furnace while partially duplicating the latter stage parallel blasting period of the prior hot blast stove and the early stage parallel blasting period of the following hot blast stove by setting the plurality of hot blast stoves so as to be three sectional blasting periods of the prior stage parallel blasting-one set blasting-the following stage parallel blasting, when the change-over of the blasting between the prior hot blast stove and the following hot blast stove is performed, the variation of the blasting quantity and the blasting temperature are reduced by continuously changing the blasting quantity distributing ratio with a fixed gradient. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉に熱風を供給する熱風炉の操業方法に関するものである。   The present invention relates to a method for operating a hot stove to supply hot air to a blast furnace.

高炉に熱風を供給する熱風炉は周知のように、概念的には燃焼室で燃料ガスと空気により燃焼ガスを生成し、この燃焼ガスを蓄熱室に送って煉瓦(チェッカー煉瓦)を加熱することにより蓄熱して、燃焼排ガスを系外に排出する期間(蓄熱期間)を一定時間行った後、蓄熱室の煉瓦層に冷風を通過させて得られた熱風を、ドームおよび混冷室で温度調整して高炉炉下部に供給する期間(送風期間)を一定時間行うことを繰り返すものである。
この熱風炉は、高炉1基に対して3〜4基配置し、その送風パターンとして、例えば3基配置の場合の3基シングル送風、4基配置の場合の4基パラレル送風などを選択し、各熱風炉の送風期間を連続させ、高炉に熱風を連続供給できるように切替え使用される。
As is well known, a hot blast furnace that supplies hot blast to a blast furnace conceptually generates combustion gas from fuel gas and air in a combustion chamber, and sends the combustion gas to a heat storage chamber to heat bricks (checker bricks). The temperature of the hot air obtained by passing cool air through the brick layer in the heat storage chamber after adjusting the temperature for a certain period of time during which the combustion exhaust gas is discharged outside the system (heat storage period) is adjusted in the dome and the mixed cooling chamber. Thus, the period of supplying the lower part of the blast furnace (the blowing period) is repeated for a certain period of time.
This hot stove is arranged in 3 to 4 units with respect to one blast furnace, and as its blowing pattern, for example, 3 single blows in the case of 3 placements, 4 parallel blows in the case of 4 placements, etc. are selected, The hot air blowing period of each hot blast furnace is made continuous so that hot air can be continuously supplied to the blast furnace.

前者のシングル送風の場合には、基本的には1サイクル中に各熱風炉の送風期間が重複しないように順次切替え送風するものである。
また、後者のパラレル送風の場合には、基本的には1サイクル中に前後の熱風炉の送風期間を一部重複させるように切替えるものである。
前者、後者のいずれの場合にも、高炉に連続送風できるように熱風炉を切り換える必要があるが、特に炉毎の燃焼条件、蓄熱特性、配管長(高炉までの距離)などの各炉の個性の違いにより、切り替える熱風炉間において送風量変動や送風温度変動が発生することは避けられない。
In the case of the former single air blowing, basically, the air is switched in order so that the air blowing periods of the hot stoves do not overlap during one cycle.
In the case of the latter parallel air blowing, basically, the air blowing periods of the front and rear hot stove are switched so as to partially overlap during one cycle.
In either case of the former or the latter, it is necessary to switch the hot blast furnace so that it can continuously blow into the blast furnace. In particular, the individuality of each furnace such as the combustion conditions, heat storage characteristics, and pipe length (distance to the blast furnace) for each furnace. Due to the difference, it is inevitable that fluctuations in the air flow rate and air temperature will occur between the hot stoves to be switched.

このような問題を改善できる熱風炉の操業方法として、送風温度変動低減および投入熱量低減を狙った方法が種々提案されている。
例えば特許文献1には、送風温度の温度の低い先行熱風炉と送風温度の高い後行熱風炉の送風期間を重複させ、パラレル送風のサイクルを適正化することで、送風温度変動を低減することが開示されている。
As methods for operating a hot stove capable of improving such problems, various methods have been proposed that aim to reduce fluctuations in the blowing temperature and reduce the amount of input heat.
For example, in Patent Document 1, air temperature fluctuations are reduced by duplicating the air blowing periods of a preceding hot air furnace having a low air temperature and a subsequent hot air furnace having a high air temperature and optimizing a parallel air blowing cycle. Is disclosed.

これらの方法の場合では、例えば図3の高炉送風温度欄で示すように、送風サイクル中の前期パラレル送風−1基送風−後期パラレル送風期間での送風の最高温度Tbと最低温度Taの差△tが大きくなり、高炉の安定操業実現が難しくなるという問題がある。
この△tが大きくなる主な原因としては、先行炉の送風温度が温度Taに低下した段階で後行炉との2基送風を開始するが、このとき後行炉は高温状態にあり、これに急激に多量の通風を行うために、高炉に供給する熱風の温度が温度Tbまで急激に上昇することが挙げられる。また、先行炉の送風量を急激に減少させるために、最低温度Taから最高温度Tbまで急激に上昇することが副次的な原因として挙げられる。
特開昭59−110710号公報
In the case of these methods, for example, as shown in the blast furnace air temperature column of FIG. 3, the difference Δ between the maximum temperature Tb and the minimum temperature Ta of the air flow in the first period parallel air flow, the first air flow, and the second time parallel air flow period in the air blowing cycle. There is a problem that t becomes large and it is difficult to realize stable operation of the blast furnace.
The main cause of the increase in Δt is that the two air blowers with the succeeding furnace are started when the air temperature of the preceding furnace is lowered to the temperature Ta. At this time, the succeeding furnace is in a high temperature state. In order to perform a large amount of ventilation, the temperature of the hot air supplied to the blast furnace rises rapidly to the temperature Tb. Further, in order to rapidly reduce the amount of air blown from the preceding furnace, a sudden increase from the lowest temperature Ta to the highest temperature Tb is cited as a secondary cause.
JP 59-110710 A

本発明では、送風温度の低い先行熱風炉と送風温度の高い後行熱風炉により送風を重複させたパラレル送風を行う場合において、先行熱風炉と後行熱風炉間で送風切替えを行う際に、送風量の変動および送風温度の変動を緩和して高炉の安定操業を実現可能にするともに、熱効率も改善可能な熱風炉の操業方法を提供する。   In the present invention, in the case of performing parallel air blowing with the preceding hot air furnace having a low air temperature and the subsequent hot air furnace having a high air temperature, when performing air blowing switching between the preceding hot air furnace and the succeeding hot air furnace, Provided is a hot stove operating method capable of realizing stable operation of a blast furnace by reducing fluctuations in the air flow rate and air temperature, and capable of improving thermal efficiency.

本発明は、上記課題を有利に解決するために、以下の(1)〜(2)を要旨とする。
(1)送風期間を、前期パラレル送風−1基送風−後期パラレル送風の3区分の送風期間とする熱風炉を複数配置して、先行熱風炉の後期パラレル送風期間と後行熱風炉の前期パラレル送風期間を一部重複させて高炉に熱風を連続送風する熱風炉の操業方法において、先行熱風炉と後行熱風炉の間の送風切替え時に、送風量分配率を一定勾配で連続的に変更することで、送風量変動および送風温度変変動を低減することを特徴とする熱風炉の操業方法。
(2)先行熱風炉の1基送風終点から後期パラレル送風終点までの送風量減少勾配と、後行熱風炉の前期パラレル送風開始点から1基送風の開始点までの送風量増加勾配を同じにし、かつ該減少勾配と該増加勾配を、その中間点領域で交叉させるように送風期間を重複させることを特徴とする前記(1)に記載の熱風炉の操業方法。
In order to solve the above-mentioned problems advantageously, the present invention has the following (1) to (2).
(1) A plurality of hot blast furnaces having a blast period of three periods of the first period parallel blast, one group blast, and the latter period parallel blast are arranged, and the second stage parallel blast period of the preceding hot blast furnace and the first stage parallel of the succeeding blast furnace. In the operation method of a hot stove that continuously blows hot air to the blast furnace with a part of the air blowing period, when the air is switched between the preceding hot stove and the succeeding hot stove, the air volume distribution rate is continuously changed with a constant gradient. Therefore, the operating method of a hot stove characterized by reducing a ventilation volume variation and a ventilation temperature variation variation.
(2) The air flow rate decrease gradient from the first air blow end point of the preceding hot stove to the late parallel air blow end point is the same as the air flow rate increase gradient from the previous air blow start point of the succeeding hot stove to the start point of the single air blow. And the operating method of the hot stove as described in said (1) characterized by overlapping a ventilation period so that this decrease gradient and this increase gradient may cross in the intermediate point area | region.

本発明によれば、送風温度の低い先行熱風炉と送風温度の高い後行熱風炉を重複させて送風切替えする期間に、送風量分配率を一定勾配で連続的に変更することで、送風温度変動を低減することができる。
また、送風温度変動の低減により、送風温度の平均値を低減し熱原単位を節減することができる。更に、送風温度を増加させて熱効率を向上させることもできる。
また、溶銑温度を適正範囲で安定的に低減でき、溶銑中[Si]濃度を低減する低[Si]操業を安定実施して、品質良好な溶銑の出銑が可能になる。
According to the present invention, the air flow temperature distribution rate is continuously changed with a constant gradient during the period of switching the air flow by overlapping the preceding hot air furnace having a low air blowing temperature and the succeeding hot air furnace having a high air blowing temperature. Variations can be reduced.
Further, by reducing the variation in the blowing temperature, it is possible to reduce the average value of the blowing temperature and to reduce the heat intensity. Furthermore, the air temperature can be increased to improve the thermal efficiency.
Moreover, the hot metal temperature can be stably reduced within an appropriate range, and the low [Si] operation for reducing the [Si] concentration in the hot metal can be stably performed, so that hot metal with good quality can be produced.

本発明では、各熱風炉の1送風サイクル中の送風期間を、前期パラレル送風−1基送風−後期パラレル送風の3期間に区分した送風パターンを採用して、先行熱風炉と後行熱風炉間で送風期間を切替える際に、送風期間を一部重複させる場合に適用するものであり、基本的には、先行熱風炉と後行熱風炉の間の送風切替え時に、先行熱風炉での1基送風終点からの送風量の減少勾配と、後行熱風炉での送風開始点から1基送風開始点までの送風量の増加勾配を一定勾配(送風量分配率を一定勾配)にして交叉させて連続的に変更することで、送風量変動および送風温度変動を低減して、高炉の安定操業の実現を容易にするものである。   In the present invention, a blowing pattern in which the blowing period in one blowing cycle of each hot stove is divided into three periods of the first period parallel blowing, the first group blowing, and the latter parallel blowing is adopted, and the space between the preceding hot wind furnace and the subsequent hot wind furnace is adopted. This is applied to the case where a part of the blowing period is overlapped when switching the blowing period. Basically, one unit in the preceding hot stove is used when switching the blowing between the preceding hot stove and the succeeding hot stove. The decreasing gradient of the blowing amount from the blowing end point and the increasing gradient of the blowing amount from the blowing start point to the one blowing start point in the subsequent hot stove are crossed with a constant gradient (the blowing amount distribution rate is a constant gradient). By continuously changing the air flow rate variation and the air temperature variation, the stable operation of the blast furnace is facilitated.

図1は、本発明によるNo.1熱風炉での1送風サイクル(約200分)中の前期パラレル送風−1基送風−後期パラレル送風の3期間に区分した送風パターンを、便宜的に、No.1熱風炉とその前後のNo.4熱風炉、No.2熱風炉の送風パターンを重ねて示したものである(燃焼期間は図示省略)。   FIG. For convenience, the air blowing patterns divided into three periods of the first period parallel blowing, the first group blowing, and the latter period parallel blowing in one blowing cycle (about 200 minutes) in one hot stove are referred to as “No. 1 No. 1 hot stove and its front and rear No. 4 hot stove, no. 2 shows the air blowing patterns of the two hot air furnaces superimposed (the combustion period is not shown).

さらに、これはNo.1熱風炉を基準として示したものであり、前期パラレル送風の開始点(送風量0%)Aから送風量の最大領域である1基送風(送風量100%)の開始点Bまでの増加勾配tu、および1基送風(送風量100%)の終点B′から後期パラレル送風の終点(送風量0%)Cまでの減少勾配tdの一定勾配で連続的に変更する。
このNo.1熱風炉の前期パラレル送風の期間と、ここでは先行熱風炉になるNo.4熱風炉の後期パラレル送風の期間を重複させて2基送風(混合送風)を行い、1基送風の後の後期パラレル送風の期間中と、ここでは後行熱風炉になるNo.2熱風炉の前期パラレル送風の期間を重複させて2基送風(混合送風)を行うように切替え送風を行うものである。
Furthermore, this is no. It is shown on the basis of one hot stove, and is an increasing gradient from the start point of parallel air blow in the previous period (air flow rate 0%) A to the start point B of single air blow (air flow rate 100%) which is the maximum area of air flow rate It is continuously changed at a constant gradient of tu and a decreasing gradient td from the end point B ′ of the single air blowing (air flow rate 100%) to the end point of the late parallel air flow (air flow rate 0%) C.
This No. No. 1 which becomes the preceding hot stove in this period No. 4 which becomes two-stage ventilation (mixed ventilation) by overlapping the period of the latter parallel blowing of the four hot air furnaces, and becomes the latter hot air furnace in this case, during the latter period of the latter parallel blowing. The switching air blowing is performed so that two air blowing (mixed air blowing) is performed by overlapping the period of the parallel air blowing of the two hot stove.

この送風切替え時の送風量分配率を一定勾配(増加勾配tu、減少勾配td)で連続的に変更することは、流量調節弁を使用し、その開度Cv値の変化パターンを設定することにより容易にできる。
この場合、各熱風炉から高炉までの配管長が異なるので、このことを考慮し、各熱風炉の送風切替えによる2基送風(混合送風)が精度よくかつ円滑にできるように、各切替えのタイミングを合わせ、各切替え弁の開閉および開度変更(一定勾配)を行うものである。
Continuously changing the air flow rate distribution rate at the time of this air flow change with a constant gradient (increase gradient tu, decrease gradient td) is to use a flow rate control valve and set the change pattern of the opening degree Cv value. Easy to do.
In this case, since the pipe length from each hot stove to the blast furnace is different, considering this, the timing of each switching so that two air blows (mixed blow) by the air blow switching of each hot stove can be performed accurately and smoothly. The switching valves are opened and closed and the opening is changed (constant gradient).

図2は、図1に示した本発明による送風パターンを採用する熱風炉を4基配置し、No.1熱風炉−No.2熱風炉−No.3熱風炉−No.4熱風炉−No.1熱風炉の順に送風を切り換える熱風炉操業例の概念フローを部分的に示したものである。
図3は、図2のような熱風炉操業(シミュレーション)を行った場合の実施例を、従来の送風パターンを採用の熱風炉操業例(従来例)の場合と比較して数値および図で示したものである。
2 shows four hot stoves that employ the air blowing pattern according to the present invention shown in FIG. 1 hot stove-No. 2 Hot stove-No. 3 hot stove-No. No. 4 hot stove-No. The conceptual flow of the hot stove operation example which switches ventilation in order of 1 hot stove is shown partially.
FIG. 3 shows numerical values and diagrams in the case of performing the hot stove operation (simulation) as shown in FIG. 2 in comparison with the case of the hot stove operation example (conventional example) employing the conventional air blowing pattern. It is a thing.

従来例は図示のように、熱風炉(1熱風炉分)の1送風サイクルにおける送風期間は、実施例と同様、前期パラレル送風−1基送風−後期パラレル送風の3区分にしており、送風流量は1基送風量を100%として一定、前期送風量を60%程度で一定、後期送風量を40%程度で一定にしており、前期パラレル送風−1基送風−後期パラレル送風の期間移行に際しては、送風量に大きな段差を生じる弁の開度で切替えるようにしたものである。
なお、ここでは便宜的に、No.1熱風炉とその前後のNo.4熱風炉、No.2熱風炉の送風パターンを重ねて示した。
[実施操業例]
In the conventional example, as shown in the figure, the blowing period in one blowing cycle of the hot stove (one hot stove) is divided into three sections of the first period parallel blowing, the first group blowing, and the latter parallel blowing as in the embodiment. Is constant at 1 unit air flow rate of 100%, the previous air flow rate is constant at about 60%, and the late air flow rate is constant at about 40%. The valve is switched by the opening degree of the valve that causes a large step in the air flow rate.
Here, for the sake of convenience, no. 1 No. 1 hot stove and its front and rear No. 4 hot stove, no. The blast pattern of the two hot stove is shown in an overlapping manner.
[Example of operation]

この実施例では、各熱風炉の送風の1サイクルを200分とし、前期パラレル送風時間90分、1基送風10分、後期パラレル送風90分に区分し、前期パラレル送風の増加勾配(α)を90/100%/分、後期パラレル送風の減少勾配(β)を−90/100%/分に設定した。   In this embodiment, one cycle of blowing in each hot stove is set to 200 minutes, divided into 90 minutes in the previous period parallel blowing time, 10 minutes in the first group blowing, and 90 minutes in the latter period parallel blowing. 90/100% / min, the decrease gradient (β) of late parallel ventilation was set to −90 / 100% / min.

この実施例操業によれば、比較例操業と比較して以下の改善が可能である。
(1)高炉への送風温度を1185〜1163度と、最高温度(Tb′)と最低温度(Ta′)との差(△t′)を小さくし、送風温度平均を1173℃程度に低減でき、送風コストを切り下げることができる。
(2)燃焼ガス流量を1.2%低減し、燃焼ガス顕熱を1%程度削減でき、熱原単位を節減できる。
(3)溶銑温度を6.4%程度下げることができ、溶銑[Si]濃度を0.034%程度下げ低[Si]操業を実施できる。
であることが確認できた。
According to this example operation, the following improvements are possible compared to the comparative example operation.
(1) The blowing temperature to the blast furnace is 1185 to 1163 degrees, the difference (Δt ') between the highest temperature (Tb') and the lowest temperature (Ta ') is reduced, and the blowing temperature average can be reduced to about 1173 ° C. The blowing cost can be cut down.
(2) The combustion gas flow rate can be reduced by 1.2%, the combustion gas sensible heat can be reduced by about 1%, and the heat intensity can be saved.
(3) The hot metal temperature can be lowered by about 6.4%, and the hot metal [Si] concentration can be lowered by about 0.034% to perform a low [Si] operation.
It was confirmed that.

本発明は、上記の実施例の内容に限定されるものではない。熱風炉の形式、構造、配置、送風パターン、操業フローなどは、高炉の炉容積、出銑量、基本操業条件、操業スケジュール、装入原料、熱風、微粉炭(重油)の吹き込み条件などに応じて請求項の範囲を満足する範囲内で変更のあるものである。
なお、送風量分配率を一定勾配(増加勾配、減少勾配)で連続的に変更する場合に、一定勾配を直線で示したが、曲線にしてもよいし、直線と曲線の組み合わせた、準一定勾配にすることも考慮できる。
The present invention is not limited to the contents of the above embodiments. The type, structure, layout, blow pattern, operation flow, etc. of the hot blast furnace depend on the furnace volume of the blast furnace, the amount of tapping, basic operation conditions, operation schedule, charging materials, hot air, pulverized coal (heavy oil) blowing conditions, etc. Therefore, there is a change within a range that satisfies the scope of the claims.
In addition, when changing the air flow rate distribution rate continuously with a constant gradient (increase gradient, decrease gradient), the constant gradient is shown as a straight line, but it may be a curve or a semi-constant combination of a straight line and a curve. A gradient can be considered.

本発明による熱風炉の送風パターン例を概念的に示した説明図。Explanatory drawing which showed notionally the ventilation pattern example of the hot stove by this invention. 本発明による送風パターンを採用した熱風炉操業フロー例を概念的に示した説明図。Explanatory drawing which showed notionally the example of the hot stove operation flow which employ | adopted the ventilation pattern by this invention. 本発明の実施例と従来例による熱風炉の操業結果の一部を示す説明図。Explanatory drawing which shows a part of operation result of the hot stove by the Example of this invention and a prior art example.

Claims (2)

送風期間を、前期パラレル送風−1基送風−後期パラレル送風の3区分の送風期間とする熱風炉を複数配置して、先行熱風炉の後期パラレル送風期間と後行熱風炉の前期パラレル送風期間を一部重複させて高炉に熱風を連続送風する熱風炉の操業方法において、先行熱風炉と後行熱風炉の間の送風切替え時に、送風量分配率を一定勾配で連続的に変更することで、送風量変動および送風温度変変動を低減することを特徴とする熱風炉の操業方法。   A plurality of hot blast furnaces having a blast period of three periods of the first period parallel blast, one group blast, and the second period parallel blast are arranged, and the second parallel blast period of the preceding hot blast furnace and the first parallel blast period of the succeeding hot blast furnace are set. In the operation method of the hot stove that continuously blows hot air to the blast furnace with some overlap, at the time of air blow switching between the preceding hot stove and the succeeding hot stove, by continuously changing the air volume distribution rate with a constant gradient, A method for operating a hot stove characterized by reducing fluctuations in air flow and air temperature. 先行熱風炉の1基送風終点から後期パラレル送風終点までの送風量減少勾配と、後行熱風炉の前期パラレル送風開始点から1基送風の開始点までの送風量増加勾配を同じにし、かつ該減少勾配と該増加勾配を、その中間点領域で交叉させるように送風期間を重複させることを特徴とする請求項1に記載の熱風炉の操業方法。
The same is the same as the airflow decrease gradient from the end of the first hot air furnace to the end of the second parallel airflow, and the airflow increase gradient from the start of the first parallel airflow to the start of the first air blower The method of operating a hot stove according to claim 1, wherein the blowing period is overlapped so that the decreasing gradient and the increasing gradient are crossed in the middle point region.
JP2004327852A 2004-11-11 2004-11-11 Method for operating hot blast stove Withdrawn JP2006137986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327852A JP2006137986A (en) 2004-11-11 2004-11-11 Method for operating hot blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327852A JP2006137986A (en) 2004-11-11 2004-11-11 Method for operating hot blast stove

Publications (1)

Publication Number Publication Date
JP2006137986A true JP2006137986A (en) 2006-06-01

Family

ID=36618993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327852A Withdrawn JP2006137986A (en) 2004-11-11 2004-11-11 Method for operating hot blast stove

Country Status (1)

Country Link
JP (1) JP2006137986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240055A (en) * 2007-03-27 2008-10-09 Nippon Steel Corp Method for controlling blasting in hot stove and operating system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240055A (en) * 2007-03-27 2008-10-09 Nippon Steel Corp Method for controlling blasting in hot stove and operating system thereof

Similar Documents

Publication Publication Date Title
CN101196369A (en) Heat accumulation-exchange type heating stove and heating method thereof
CN101949649A (en) Annealing furnace combustion air preheating device
JP2005325446A (en) Method for controlling hot blast stove, control unit, control system, computer program, and computer readable recording medium
JP2009139086A (en) Burner device
JP2012184891A (en) Coal burning boiler device
CN101517100A (en) Method of reheating in a furnace using a fuel of low calorific power, and furnace using this method
JP2006137986A (en) Method for operating hot blast stove
JPS6137313B2 (en)
JP2005146347A (en) Hot-blast temperature control method for hot-blast stove
JP4495011B2 (en) Control method of hot stove
KR100417156B1 (en) Combustion apparatus and melting furnace for nonferrous metals
JP4742948B2 (en) Gas supply system in steelworks
JPH07120171A (en) Method of operating heating oven including heat storage alternate combustion burner system
CN201149427Y (en) Heat-accumulation heat-exchange type heating furnace
JPH09287013A (en) Device for utilizing heat in hot stove
CN110512068A (en) A kind of each furnace section burner control method of soaking pit and device
CN114667412A (en) Synchronous oxygen fuel combustion-supporting system and method for heat accumulating type glass melting furnace
JP5573095B2 (en) Operation method of hot stove facility
JP2015074800A (en) Control method of heat treatment furnace
JP2013096002A (en) Method and apparatus for controlling combustion in hot blast stove
JPS63226524A (en) Combustion control in hot blast furnace
JP2003129119A (en) Method for feeding fuel gas into hot-blast stove
JP2011195939A (en) Method for operating hot stove facility
JPS61207504A (en) Method for controlling combustion in hot stove
JPH0593218A (en) Method for controlling combustion of hot stove

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205