JP2006137057A - Resin characteristic measuring instrument and resin characteristic measuring method - Google Patents

Resin characteristic measuring instrument and resin characteristic measuring method Download PDF

Info

Publication number
JP2006137057A
JP2006137057A JP2004327603A JP2004327603A JP2006137057A JP 2006137057 A JP2006137057 A JP 2006137057A JP 2004327603 A JP2004327603 A JP 2004327603A JP 2004327603 A JP2004327603 A JP 2004327603A JP 2006137057 A JP2006137057 A JP 2006137057A
Authority
JP
Japan
Prior art keywords
resin
passage
resin passage
measured
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004327603A
Other languages
Japanese (ja)
Other versions
JP4200218B2 (en
Inventor
Hiroshi Ito
浩志 伊藤
Yoshitoshi Yamagiwa
佳年 山極
Kazuki Hayashi
和樹 林
Hiroo Okubo
浩男 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Nissei Plastic Industrial Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd, Tokyo Institute of Technology NUC filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2004327603A priority Critical patent/JP4200218B2/en
Publication of JP2006137057A publication Critical patent/JP2006137057A/en
Application granted granted Critical
Publication of JP4200218B2 publication Critical patent/JP4200218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain fine resin characteristics of high precision on the basis of sufficient data even in a case that the amount of a resin is little and to evaluate a novel material or the like on the basis of wide data with high reliability. <P>SOLUTION: The resin characteristic measuring instrument is equipped with a mold part 2 provided with a resin circuit 3, which has a cavity 4 capable of molding a molded product, a first resin passage 5 capable of supplying a molten resin R to be measured supplied from the outside to the cavity 4, the second resin passage 6 branched from the midway position of the first resin passage 5, the plunger unit 7 connected to the leading end of the second resin passage 6 and a changeover device 8 for changing over the connection state of the branch part of the first resin passage 5, and a measuring part 9 having one, two or more physical quantity detectors 9at, 9ap, etc. for detecting the physical quantity at the time of supply of the molten resin R to be measured to the resin circuit 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂特性等を測定する際に用いて好適な樹脂特性測定装置及び樹脂特性測定方法に関する。   The present invention relates to a resin characteristic measuring apparatus and a resin characteristic measuring method suitable for use in measuring resin characteristics and the like.

一般に、射出成形機における成形条件の設定は、オペレータのノウハウや経験等に大きく依存する側面があるとともに、各種物理量が相互に影響し合うため、多くの試打ちや設定作業時間が必要となる。このため、射出成形CAE(射出成形コンピュータ支援技術)により仮想成形(シミュレーション)を行い、この仮想成形に基づいて成形条件等を設定することも行われている。   In general, the setting of molding conditions in an injection molding machine has a side that greatly depends on the know-how and experience of the operator, and various physical quantities affect each other, so that a lot of trial driving and setting work time are required. For this reason, virtual molding (simulation) is performed by injection molding CAE (injection molding computer support technology), and molding conditions and the like are set based on this virtual molding.

ところで、射出成形CAEにおいては、金型に射出充填する溶融樹脂の流動状況(樹脂特性)を正確に把握することが良好な仮想成形を実現する鍵となる。通常、射出成形CAEでは、溶融樹脂の樹脂特性として、樹脂圧P,比容積V及び樹脂温度Tを含むPVT特性や粘度特性等を用いるとともに、金型における溶融樹脂の流動状況を予測する際には、射出ノズルから金型に流入する溶融樹脂の流量を用いている。   By the way, in the injection molding CAE, accurately grasping the flow state (resin characteristics) of the molten resin injected and filled into the mold is the key to realizing good virtual molding. In general, in injection molding CAE, PVT characteristics and viscosity characteristics including resin pressure P, specific volume V and resin temperature T are used as the resin characteristics of the molten resin, and the flow state of the molten resin in the mold is predicted. Uses the flow rate of the molten resin flowing into the mold from the injection nozzle.

従来、このようなPVT特性や粘度特性等の樹脂特性を測定する手段としては、特開平7−63663号公報で開示されるキャピラリレオメータ等の専用測定機が知られている。しかし、射出成形機の場合、熱履歴や強い剪断応力に起因する分子量の分布変化等が発生するため、専用測定機で測定した樹脂特性は、実際の射出成形機における樹脂特性とは一致しない場合が多い。結局、専用測定機を用いても射出成形機にとっての望ましい樹脂特性を得ることができず、的確で正確な射出成形CAEは実現できない。   Conventionally, as a means for measuring such resin characteristics such as PVT characteristics and viscosity characteristics, a dedicated measuring machine such as a capillary rheometer disclosed in Japanese Patent Application Laid-Open No. 7-63663 is known. However, in the case of an injection molding machine, molecular weight distribution changes due to thermal history or strong shear stress occur, so the resin characteristics measured with a dedicated measuring machine do not match the resin characteristics of an actual injection molding machine. There are many. Eventually, even if a dedicated measuring machine is used, it is not possible to obtain resin characteristics desirable for an injection molding machine, and accurate and accurate injection molding CAE cannot be realized.

このため、樹脂特性を射出成形機により検出するようにした射出成形機の樹脂特性検出方法も知られている。例えば、特許第2507148号公報には、射出成形機のシリンダ内部から成形用金型のキャビティ部に至るまでの間に、シリンダ内部とキャビティ部間の溶融樹脂の流通を阻止する流路開閉機構を設け、この流路開閉機構を閉じた状態にし、スクリュに基準の押圧値の押圧力を付与してそのスクリュを平衡移動させ、このスクリュが平衡移動を停止した基準の停止位置におけるスクリュの位置値を得る第一工程、及びスクリュに基準の押圧値とは異なる押圧値の押圧力を付与してそのスクリュを平衡移動させ、このスクリュが平衡移動を停止した停止位置におけるスクリュの位置値を得、基準の停止位置からのスクリュ移動距離を得る第二工程を、溶融樹脂の所定溶融状態のもとで順次行い、押出値および移動距離の関係を所定関数式によって近似することにより溶融樹脂圧力値及び溶融樹脂容積値の関係式を得る樹脂特性検出方法が開示されている。また、特開平6−166068号公報には、樹脂温度センサー及び樹脂圧力センサーを埋設した湯道と、成形機ノズルと圧接すべく湯道の一端に設けたノズルタッチ面と、このノズルタッチ面と反対側の湯道の他端に連通して設けたキャピラリーと、成形機のプラテン又は成形機に取付けた金型に湯道を取付ける取付部とを有する成形機シリンダの特性評価装置が開示されている。
特開平7−63663号 特許第2507148号 特開平6−166068号
For this reason, a resin characteristic detection method for an injection molding machine in which the resin characteristic is detected by an injection molding machine is also known. For example, Japanese Patent No. 2507148 discloses a flow path opening / closing mechanism that prevents the flow of molten resin between the inside of the cylinder and the cavity between the inside of the cylinder of the injection molding machine and the cavity of the molding die. The position value of the screw at the reference stop position where the screw is moved in equilibrium by applying a pressing force of the reference pressing value to the screw and moving the screw in an equilibrium state. To obtain a screw position value at a stop position where the screw stops the balanced movement by applying a pressing force with a pressing value different from the reference pressing value to the screw and moving the screw in equilibrium. The second step of obtaining the screw movement distance from the reference stop position is sequentially performed under a predetermined molten state of the molten resin, and the relationship between the extrusion value and the movement distance is determined by a predetermined function equation. Resin characteristic detecting method of obtaining a relational expression of the molten resin pressure value and the molten resin volume value by approximating Te have been disclosed. Japanese Patent Application Laid-Open No. 6-166068 discloses a runner in which a resin temperature sensor and a resin pressure sensor are embedded, a nozzle touch surface provided at one end of the runner to be in pressure contact with the molding machine nozzle, and the nozzle touch surface. An apparatus for evaluating characteristics of a molding machine cylinder having a capillary provided in communication with the other end of the runner on the opposite side and a mounting portion for attaching the runner to a platen of the molding machine or a mold attached to the molding machine is disclosed. Yes.
JP-A-7-63663 Patent No. 2507148 JP-A-6-166068

しかし、上述した従来の樹脂特性測定装置(樹脂特性測定方法)は、次のような問題点があった。   However, the conventional resin characteristic measuring apparatus (resin characteristic measuring method) described above has the following problems.

第一に、新規素材の場合、確保できる樹脂量は、生産段階に移行していない実験室レベルの量となるため、測定に相当量の樹脂が必要となる従来の測定装置では、緻密で精度の高い樹脂特性を得ることができない。   First, in the case of new materials, the amount of resin that can be secured is a laboratory-level amount that has not shifted to the production stage, so conventional measuring equipment that requires a considerable amount of resin for measurement is dense and accurate. High resin characteristics cannot be obtained.

第二に、得られる樹脂特性に係わるデータは、樹脂自身の物理的特性に限られるため、得られた樹脂特性に基づいて実際に成形処理を行った際に、どのような成形特性を得られるかなどの最終的な成形品の評価を含めた幅広いデータを得ることができず、新規素材に対する信頼性の高い評価を行うことができない。   Secondly, since the data related to the obtained resin characteristics is limited to the physical characteristics of the resin itself, what molding characteristics can be obtained when the molding process is actually performed based on the obtained resin characteristics. It is impossible to obtain a wide range of data including evaluation of final molded products such as these, and it is impossible to perform highly reliable evaluation for new materials.

第三に、各種樹脂特性を測定する場合、樹脂特性にそれぞれ対応する測定機能を付加する必要があるが、従来の測定装置はそれぞれ限定した樹脂特性に対する専用測定機として構成されるため、必要なデータを総合的に測定する場合、設備面においてコストアップや大型化を招く。   Third, when measuring various resin characteristics, it is necessary to add measurement functions corresponding to the resin characteristics. However, since conventional measurement devices are configured as dedicated measuring machines for limited resin characteristics, they are necessary. When measuring data comprehensively, the cost increases and the size increases in terms of equipment.

本発明は、このような背景技術に存在する課題を解決した樹脂特性測定装置及び樹脂特性測定方法の提供を目的とするものである。   An object of the present invention is to provide a resin characteristic measuring apparatus and a resin characteristic measuring method that solve the problems existing in the background art.

本発明に係る樹脂特性測定装置1は、上述した課題を解決するため、少なくとも樹脂材料に係わる樹脂特性を測定するための測定装置であって、成形品を成形可能なキャビティ4と、外部から供給された被測定溶融樹脂Rをキャビティ4に供給可能な第一樹脂通路5と、この第一樹脂通路5の中途位置から分岐した第二樹脂通路6と、この第二樹脂通路6の先端に接続したプランジャユニット7と、第一樹脂通路5における分岐部の接続状態を切換える切換器8とを有する樹脂回路3を設けた金型部2を備えるとともに、樹脂回路3に被測定溶融樹脂Rを供給した際の物理量を検出する一又は二以上の物理量検出器9at,9ap,9bt…を有する測定部9を備えてなることを特徴とする。   A resin characteristic measuring apparatus 1 according to the present invention is a measuring apparatus for measuring at least a resin characteristic related to a resin material in order to solve the above-described problems, and is supplied from a cavity 4 capable of molding a molded product and from the outside. Connected to the first resin passage 5 capable of supplying the measured molten resin R to the cavity 4, the second resin passage 6 branched from the middle position of the first resin passage 5, and the tip of the second resin passage 6 The mold unit 2 provided with the resin circuit 3 having the plunger unit 7 and the switch 8 for switching the connection state of the branch portion in the first resin passage 5 is provided, and the measured molten resin R is supplied to the resin circuit 3. The measurement unit 9 includes one or more physical quantity detectors 9at, 9ap, 9bt,.

この場合、発明の好適な態様により、切換器8は、分岐部の前方に位置する第一樹脂通路5における前側第一樹脂通路5f,分岐部の後方に位置する第一樹脂通路5における後側第一樹脂通路5r及び第二樹脂通路6を選択的に接続又は遮断する三方切換弁8vを用いることができる。なお、物理量には、少なくとも樹脂温度Ta…,樹脂圧Pa…及びプランジャ位置X1…を含ませることができる。また、樹脂特性測定装置1には、金型部2に射出ノズルMinをノズルタッチすることにより第一樹脂通路5に被測定溶融樹脂Rを供給する射出成形機Mを備えることができ、射出成形機Mとしては、プリプラ式射出成形機Mpを用いることができる。そして、射出成形機Mにも、内部に収容された被測定溶融樹脂Rの物理量を検出する一又は二以上の物理量検出器10nt,10np,10it…を有する成形機測定部10を設けることができるとともに、この物理量には、少なくとも樹脂温度Tn…,樹脂圧Pn…及びプランジャ位置Xo…を含ませることができる。   In this case, according to a preferred aspect of the invention, the switch 8 is configured such that the front first resin passage 5f in the first resin passage 5 located in front of the branch portion and the rear side in the first resin passage 5 located behind the branch portion. A three-way switching valve 8v that selectively connects or blocks the first resin passage 5r and the second resin passage 6 can be used. The physical quantity can include at least the resin temperature Ta ..., the resin pressure Pa ..., and the plunger position X1. Further, the resin characteristic measuring apparatus 1 can be provided with an injection molding machine M that supplies the measured molten resin R to the first resin passage 5 by nozzle-touching the injection nozzle Min to the mold part 2. As the machine M, a pre-plastic injection molding machine Mp can be used. Further, the injection molding machine M can also be provided with a molding machine measuring section 10 having one or more physical quantity detectors 10nt, 10np, 10it... For detecting the physical quantity of the measured molten resin R accommodated therein. In addition, at least the resin temperature Tn, the resin pressure Pn, and the plunger position Xo can be included in the physical quantity.

一方、本発明に係る樹脂特性測定方法は、上述した課題を解決するため、少なくとも樹脂材料に係わる樹脂特性を測定するに際し、成形品を成形可能なキャビティ4と、外部から供給された被測定溶融樹脂Rをキャビティ4に供給可能な第一樹脂通路5と、この第一樹脂通路5の中途位置から分岐した第二樹脂通路6と、この第二樹脂通路6の先端に接続したプランジャユニット7と、第一樹脂通路5における分岐部の接続状態を切換える切換器8とを有する樹脂回路3を設けた金型部2を使用し、切換器8を所定の切換位置C1,C2,C3に切換えることにより、樹脂回路3に被測定溶融樹脂Rを供給し、供給した被測定溶融樹脂Rに係わる一又は二以上の物理量を検出することにより、少なくとも樹脂材料に係わる樹脂特性を測定するようにしたことを特徴とする。   On the other hand, the resin characteristic measuring method according to the present invention solves the above-described problems, and at least when measuring the resin characteristics related to the resin material, the cavity 4 capable of molding a molded product and the measured melt supplied from the outside. A first resin passage 5 capable of supplying the resin R to the cavity 4, a second resin passage 6 branched from a midway position of the first resin passage 5, and a plunger unit 7 connected to the tip of the second resin passage 6. Using the mold part 2 provided with the resin circuit 3 having the switch 8 for switching the connection state of the branch part in the first resin passage 5, the switch 8 is switched to the predetermined switching positions C1, C2, C3. By supplying the measured molten resin R to the resin circuit 3 and detecting one or more physical quantities related to the supplied measured molten resin R, at least the resin characteristics related to the resin material are measured. And it said that there was Unishi.

この場合、発明の好適な態様により、金型部2に、射出成形機Mの射出ノズルMinをノズルタッチし、この射出成形機Mから樹脂回路3に対して被測定溶融樹脂Rを供給できるとともに、切換器8として三方切換弁8vを使用し、分岐部の前方に位置する第一樹脂通路5の前側第一樹脂通路5f,分岐部の後方に位置する第一樹脂通路5の後側第一樹脂通路5r及び第二樹脂通路6を選択的に接続又は遮断することができる。   In this case, according to a preferred aspect of the invention, the injection nozzle Min of the injection molding machine M can be touched on the mold part 2 and the measured molten resin R can be supplied from the injection molding machine M to the resin circuit 3. The three-way switching valve 8v is used as the switch 8 and the first first resin passage 5f of the first resin passage 5 located in front of the branch portion and the first rear side of the first resin passage 5 located behind the branch portion. The resin passage 5r and the second resin passage 6 can be selectively connected or disconnected.

これにより、三方切換弁8vを、前側第一樹脂通路5f及び第二樹脂通路6に対して後側第一樹脂通路5rを遮断する第一切換位置C1へ切換えるとともに、被測定溶融樹脂Rを、後側第一樹脂通路5rに供給することにより、被測定溶融樹脂RのPVT(樹脂圧−比容積−樹脂温度)特性を測定できる。   As a result, the three-way switching valve 8v is switched to the first switching position C1 that blocks the rear first resin passage 5r with respect to the front first resin passage 5f and the second resin passage 6, and the measured molten resin R is By supplying the rear first resin passage 5r, the PVT (resin pressure-specific volume-resin temperature) characteristic of the measured molten resin R can be measured.

また、三方切換弁8vを、第二樹脂通路6と後側第一樹脂通路5rを接続し、かつ前側第一樹脂通路5fを第二樹脂通路6及び後側第一樹脂通路5rに対して遮断する第二切換位置C2へ切換えるとともに、被測定溶融樹脂Rを、後側第一樹脂通路5r及び第二樹脂通路6を通してプランジャユニット7に供給することにより、被測定溶融樹脂Rの粘度特性を測定できる。この際、プランジャユニット7に供給した被測定溶融樹脂Rを、第二樹脂通路6及び後側第一樹脂通路5rを通して供給側に逆送することにより、被測定溶融樹脂Rの粘度特性を測定できるとともに、加えて、被測定溶融樹脂Rを、後側第一樹脂通路5r及び第二樹脂通路6を通してプランジャユニット7に供給し、当該被測定溶融樹脂Rの粘度特性を測定する処理と、プランジャユニット7に供給した被測定溶融樹脂Rを、第二樹脂通路6及び後側第一樹脂通路5rを通して供給側に逆送することにより、被測定溶融樹脂Rの粘度特性を測定する処理とを繰返して行うことができる。なお、この粘度特性は、gを重力加速度,rを樹脂通路半径,Lをa地点からb地点までの樹脂通路長,Qを流量,Paを樹脂通路6の後側位置(a地点)における樹脂圧,Pbを樹脂通路6の前側位置(b地点)における樹脂圧としたときに、樹脂粘度ηを、η={πgr4/8LQ}(Pa−Pb),樹脂剪断速度νを、ν=4Q/πr3により得、この樹脂粘度η及び樹脂剪断速度νから求めることができる。 Further, the three-way switching valve 8v connects the second resin passage 6 and the rear first resin passage 5r, and shuts off the front first resin passage 5f from the second resin passage 6 and the rear first resin passage 5r. The viscosity characteristics of the measured molten resin R are measured by switching to the second switching position C2 and supplying the measured molten resin R to the plunger unit 7 through the rear first resin passage 5r and the second resin passage 6. it can. At this time, the viscosity characteristic of the measured molten resin R can be measured by feeding back the measured molten resin R supplied to the plunger unit 7 to the supply side through the second resin passage 6 and the rear first resin passage 5r. In addition, a process for supplying the measured molten resin R to the plunger unit 7 through the rear first resin passage 5r and the second resin passage 6 and measuring the viscosity characteristics of the measured molten resin R, and the plunger unit The measurement molten resin R supplied to 7 is reversely fed to the supply side through the second resin passage 6 and the rear first resin passage 5r, thereby repeatedly measuring the viscosity characteristics of the measurement molten resin R. It can be carried out. In this viscosity characteristic, g is the acceleration of gravity, r is the resin passage radius, L is the length of the resin passage from point a to point b, Q is the flow rate, Pa is the resin at the rear position (point a) of resin passage 6. Pressure, Pb is the resin pressure at the front position (point b) of the resin passage 6, the resin viscosity η is η = {πgr 4 / 8LQ} (Pa−Pb), the resin shear rate ν is ν = 4Q / Πr 3 , which can be determined from the resin viscosity η and the resin shear rate ν.

さらに、三方切換弁8vを、前側第一樹脂通路5fと後側第一樹脂通路5rを接続し、かつ第二樹脂通路6を前側第一樹脂通路5f及び後側第一樹脂通路5rに対して遮断する第三切換位置C3へ切換えるとともに、被測定溶融樹脂Rを、第一樹脂通路5を通してキャビティに供給することにより、被測定溶融樹脂Rの成形特性を得ることができる。   Further, the three-way switching valve 8v is connected to the front first resin passage 5f and the rear first resin passage 5r, and the second resin passage 6 is connected to the front first resin passage 5f and the rear first resin passage 5r. By switching to the third switching position C3 to be shut off and supplying the measured molten resin R to the cavity through the first resin passage 5, molding characteristics of the measured molten resin R can be obtained.

このような本発明に係る樹脂特性測定装置1及び樹脂特性測定方法によれば、次のような顕著な効果を奏する。   According to the resin characteristic measuring apparatus 1 and the resin characteristic measuring method according to the present invention as described above, the following remarkable effects can be obtained.

(1) プランジャユニット7を駆動して被測定溶融樹脂Rを供給側に戻す(逆送する)ことが可能になるため、新規素材のように、確保できる樹脂量が少ない場合、即ち、生産段階に移行していない実験室レベルの量であっても、被測定溶融樹脂Rを繰返し利用することにより十分なデータを得ることができ、緻密で精度の高い樹脂特性を得ることができる。   (1) Since the plunger unit 7 can be driven to return the measured molten resin R to the supply side (reverse feed), the amount of resin that can be secured is small, such as a new material, that is, the production stage. Even if the amount is not in the laboratory level, sufficient data can be obtained by repeatedly using the measured molten resin R, and a dense and highly accurate resin characteristic can be obtained.

(2) 被測定溶融樹脂R自身の物理的特性のみならず、得られる樹脂特性に基づいて実際に成形処理を行った際における成形特性を同時に収集できるなど、最終的な成形品の評価を含めた幅広いデータを得れるため、新規素材等に対する信頼性の高い評価を行うことができる。   (2) Including the evaluation of the final molded product, including not only the physical characteristics of the measured molten resin R itself but also the molding characteristics when the molding process is actually performed based on the resin characteristics obtained. In addition, since a wide range of data can be obtained, highly reliable evaluation of new materials can be performed.

(3) 各種樹脂特性及び成形特性を一台の測定装置により測定できるため、必要なデータを総合的に測定する場合であっても、設備面におけるコストダウン及び小型化に寄与することができる。   (3) Since various resin characteristics and molding characteristics can be measured with a single measuring device, even when necessary data are comprehensively measured, it is possible to contribute to cost reduction and downsizing in terms of equipment.

(4) 好適な態様により、切換器8として、分岐部の前方に位置する第一樹脂通路5における前側第一樹脂通路5f,分岐部の後方に位置する第一樹脂通路5における後側第一樹脂通路5r及び第二樹脂通路6を選択的に接続又は遮断する三方切換弁8vを用いれば、所定の切換位置C1,C2,C3へ容易かつ円滑に切換えることができる。   (4) According to a preferred embodiment, as the switch 8, the front first resin passage 5f in the first resin passage 5 located in front of the branch portion, the rear first in the first resin passage 5 located in the rear of the branch portion. If the three-way switching valve 8v that selectively connects or blocks the resin passage 5r and the second resin passage 6 is used, it is possible to easily and smoothly switch to the predetermined switching positions C1, C2, and C3.

(5) 好適な態様により、物理量として、少なくとも樹脂温度Ta…,樹脂圧Pa…及びプランジャ位置X1…を含ませれば、射出成形において重要となる少なくともPVT特性及び粘度特性の双方を同時に測定することが可能となる。   (5) According to a preferred embodiment, if at least resin temperature Ta ..., resin pressure Pa ... and plunger position X1 ... are included as physical quantities, at least both PVT characteristics and viscosity characteristics that are important in injection molding are measured simultaneously. Is possible.

(6) 好適な態様により、金型部2に射出ノズルMinをノズルタッチすることにより第一樹脂通路5に被測定溶融樹脂Rを供給する射出成形機Mを備えれば、一般的な射出成形機Mを直接利用できるとともに、射出成形機Mとして、プリプラ式射出成形機Mpを用いれば、特に、被測定溶融樹脂Rを計量する際の安定化を図ることができる。   (6) If an injection molding machine M for supplying the molten resin R to be measured to the first resin passage 5 is provided by touching the injection nozzle Min to the mold part 2 according to a preferred embodiment, general injection molding is possible. The machine M can be used directly, and if the pre-plastic injection molding machine Mp is used as the injection molding machine M, stabilization when measuring the measured molten resin R can be achieved.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る樹脂特性測定装置1の構成について、図1〜図6を参照して説明する。   First, the structure of the resin characteristic measuring apparatus 1 according to the present embodiment will be described with reference to FIGS.

樹脂特性測定装置1は、成形品を成形可能なキャビティ4と、外部から供給された被測定溶融樹脂Rをキャビティ4に供給可能な第一樹脂通路5と、この第一樹脂通路5の中途位置から分岐した第二樹脂通路6と、この第二樹脂通路6の先端に接続したプランジャユニット7と、第一樹脂通路5における分岐部の接続状態を切換える切換器8とを有する樹脂回路3を有する金型部2を備える。   The resin characteristic measuring device 1 includes a cavity 4 in which a molded product can be molded, a first resin passage 5 that can supply the measured molten resin R supplied from the outside to the cavity 4, and an intermediate position of the first resin passage 5. A resin circuit 3 having a second resin passage 6 branched from the first resin passage 6, a plunger unit 7 connected to the tip of the second resin passage 6, and a switch 8 for switching the connection state of the branch portion in the first resin passage 5. A mold part 2 is provided.

この場合、金型部2の基本的な形態は、射出成形に用いる一般的な金型の形態と同じであり、可動型2mと固定型2cを備え、不図示の型締装置に取付けることができる。したがって、型締装置により型開き,型閉じ及び型締めを行うことができる。また、金型部2には、不図示の加熱ヒータが付設され、後述する射出シリンダ44側の加熱温度と同一温度に加熱制御可能である。   In this case, the basic form of the mold part 2 is the same as that of a general mold used for injection molding, and includes a movable mold 2m and a fixed mold 2c, which can be attached to a mold clamping device (not shown). it can. Therefore, mold opening, mold closing and mold clamping can be performed by the mold clamping device. In addition, a heater (not shown) is attached to the mold part 2 and can be controlled to be heated to the same temperature as that of an injection cylinder 44 described later.

一方、金型部2の具体的な形態は、次のようになる。まず、可動型2mと固定型2cのパーティング面にキャビティ4を形成する。なお、キャビティ4の容積は必要最小限の大きさを確保し、不必要に大きくならないように考慮する。また、固定型2cの端面には、後述する射出成形機Mの射出ノズルMinの先端がノズルタッチするノズルタッチ面21を設ける。そして、ノズルタッチ面21とキャビティ4間に第一樹脂通路5を形成する。第一樹脂通路5の形成方向は、射出ノズルMinの射出方向に一致させる。さらに、第二樹脂通路6を、この第一樹脂通路5の中途位置から直角方向に分岐させ、固定型2cの上面(側面)22に臨ませる。この場合、第一樹脂通路5及び第二樹脂通路6の内径は、剪断の発生を抑制するため、射出ノズルMinの内径に一致させる。   On the other hand, the specific form of the mold part 2 is as follows. First, the cavity 4 is formed on the parting surfaces of the movable mold 2m and the fixed mold 2c. The volume of the cavity 4 is taken into consideration so as to ensure a necessary minimum size and not to increase unnecessarily. Further, a nozzle touch surface 21 on which the tip of an injection nozzle Min of an injection molding machine M described later is nozzle-touched is provided on the end surface of the fixed mold 2c. Then, the first resin passage 5 is formed between the nozzle touch surface 21 and the cavity 4. The formation direction of the first resin passage 5 is made to coincide with the injection direction of the injection nozzle Min. Further, the second resin passage 6 is branched from the midway position of the first resin passage 5 in the direction perpendicular to the upper surface (side surface) 22 of the fixed mold 2c. In this case, the inner diameters of the first resin passage 5 and the second resin passage 6 are made to coincide with the inner diameter of the injection nozzle Min in order to suppress the occurrence of shearing.

また、固定型2cの上面22には、プランジャユニット7を取付け、第二樹脂通路6の先端に接続する。プランジャユニット7は、上面22に先端を固定し、かつ内部が第二樹脂通路6の先端に連通するバレル部23と、このバレル部23に収容した逆送プランジャ部24と、この逆送プランジャ部24を進退駆動するプランジャ駆動部25を備える。プランジャ駆動部25は、油圧駆動系を用いてもよいし電気駆動系を用いてもよい。さらに、切換器8には、第一樹脂通路5の中途位置、即ち、第一樹脂通路5から第二樹脂通路6が分岐する分岐部に配設した三方切換弁8vを用いる。これにより、三方切換弁8vから前方の第一樹脂通路5は、前側第一樹脂通路5fとなり、三方切換弁8vから後方の第一樹脂通路5は、後側第一樹脂通路5rとなる。   The plunger unit 7 is attached to the upper surface 22 of the fixed mold 2 c and connected to the tip of the second resin passage 6. The plunger unit 7 includes a barrel portion 23 whose tip is fixed to the upper surface 22 and whose inside communicates with the tip of the second resin passage 6, a reverse plunger portion 24 accommodated in the barrel portion 23, and the reverse plunger portion A plunger drive unit 25 is provided to drive 24 forward and backward. The plunger drive unit 25 may use a hydraulic drive system or an electric drive system. Further, the switching device 8 uses a three-way switching valve 8v disposed in the middle position of the first resin passage 5, that is, at a branch portion where the second resin passage 6 branches from the first resin passage 5. As a result, the first resin passage 5 forward from the three-way switching valve 8v becomes the front first resin passage 5f, and the first resin passage 5 rearward from the three-way switching valve 8v becomes the rear first resin passage 5r.

よって、この三方切換弁8vにより、前側第一樹脂通路5f,後側第一樹脂通路5r及び第二樹脂通路6を選択的に接続又は遮断、具体的には、図4に示す第一切換位置C1,図5に示す第二切換位置C2,図6に示す第三切換位置C3にそれぞれ切換えることができる。この場合、第一切換位置C1では、前側第一樹脂通路5f及び第二樹脂通路6に対して後側第一樹脂通路5rが遮断される。第二切換位置C2では、第二樹脂通路6と後側第一樹脂通路5rが接続され、かつ前側第一樹脂通路5fが第二樹脂通路6及び後側第一樹脂通路5rに対して遮断される。第三切換位置C3では、前側第一樹脂通路5fと後側第一樹脂通路5rが接続され、かつ第二樹脂通路6が前側第一樹脂通路5f及び後側第一樹脂通路5rに対して遮断される。なお、各樹脂通路5f,5r,6にそれぞれ開閉弁を配設することにより同様の切換を行うことができるが、三方切換弁8vを用いることにより、各切換位置C1,C2,C3へ容易かつ円滑に切換えることができる。以上のキャビティ4,第一樹脂通路5,第二樹脂通路6,プランジャユニット7及び三方切換弁8vは、樹脂回路3を構成する。   Therefore, the three-way switching valve 8v selectively connects or blocks the front first resin passage 5f, the rear first resin passage 5r, and the second resin passage 6, specifically, the first switching position shown in FIG. It is possible to switch to C1, a second switching position C2 shown in FIG. 5, and a third switching position C3 shown in FIG. In this case, the rear first resin passage 5r is blocked from the front first resin passage 5f and the second resin passage 6 at the first switching position C1. In the second switching position C2, the second resin passage 6 and the rear first resin passage 5r are connected, and the front first resin passage 5f is blocked from the second resin passage 6 and the rear first resin passage 5r. The At the third switching position C3, the front first resin passage 5f and the rear first resin passage 5r are connected, and the second resin passage 6 is blocked from the front first resin passage 5f and the rear first resin passage 5r. Is done. In addition, although the same switching can be performed by disposing each on-off valve in each of the resin passages 5f, 5r, 6, it is easy to move to each switching position C1, C2, C3 by using the three-way switching valve 8v. It can be switched smoothly. The cavity 4, the first resin passage 5, the second resin passage 6, the plunger unit 7 and the three-way switching valve 8v constitute the resin circuit 3.

さらに、樹脂特性測定装置1には、樹脂回路3に被測定溶融樹脂Rを供給した際の物理量を検出する一又は二以上の物理量検出器9at,9ap…を有する測定部9を備える。この場合、図1及び図3に示すように、a地点となる第二樹脂通路6の下側(三方切換弁8v側)位置には、被測定溶融樹脂Rの温度(樹脂温度)Taを検出する温度検出器9at及び被測定溶融樹脂Rの圧力(樹脂圧)Paを検出する圧力検出器9apを配設する。また、b地点となる第二樹脂通路6の上側(プランジャユニット7側)位置には、被測定溶融樹脂Rの温度(樹脂温度)Tbを検出する温度検出器9bt及び被測定溶融樹脂Rの圧力(樹脂圧)Pbを検出する圧力検出器9bpを配設する。また、プランジャユニット7における逆送プランジャ部24の位置(逆送プランジャ位置)X1,X2を検出する位置検出器9cを配設する。そして、各検出器9at,9ap,9bt,9bp,9cは、計測処理部31に接続するとともに、この計測処理部31は、各種処理を実行する処理コンピュータ32に接続する。   Further, the resin characteristic measuring apparatus 1 includes a measuring unit 9 having one or more physical quantity detectors 9at, 9ap... For detecting a physical quantity when the measured molten resin R is supplied to the resin circuit 3. In this case, as shown in FIGS. 1 and 3, the temperature (resin temperature) Ta of the molten resin R to be measured is detected at the lower side (three-way switching valve 8v side) position of the second resin passage 6 at the point a. And a pressure detector 9ap for detecting the pressure (resin pressure) Pa of the molten resin R to be measured. Further, a temperature detector 9bt for detecting the temperature (resin temperature) Tb of the measured molten resin R and the pressure of the measured molten resin R are positioned above the second resin passage 6 (plunger unit 7 side) as the point b. (Resin pressure) A pressure detector 9bp for detecting Pb is provided. Further, a position detector 9c for detecting the positions (reverse feed plunger positions) X1, X2 of the reverse feed plunger portion 24 in the plunger unit 7 is provided. The detectors 9at, 9ap, 9bt, 9bp, and 9c are connected to the measurement processing unit 31, and the measurement processing unit 31 is connected to a processing computer 32 that executes various processes.

他方、Mpはプリプラ式射出成形機(射出成形機M)であり、金型部2のノズルタッチ面21に、射出ノズルMinをノズルタッチして第一樹脂通路5に被測定溶融樹脂Rを供給することができる。なお、第一樹脂通路5に被測定溶融樹脂Rを供給する手段としては、専用の供給装置を用いることも可能であるが、本実施形態では、一般的な射出成形機Mを直接利用できる。特に、プリプラ式射出成形機Mpを用いたため、被測定溶融樹脂Rを計量する際の安定化を図ることができる。   On the other hand, Mp is a pre-plastic injection molding machine (injection molding machine M), and the measured molten resin R is supplied to the first resin passage 5 by nozzle-touching the injection nozzle Min on the nozzle touch surface 21 of the mold part 2. can do. As a means for supplying the measured molten resin R to the first resin passage 5, a dedicated supply device can be used, but in this embodiment, a general injection molding machine M can be directly used. In particular, since the pre-plastic injection molding machine Mp is used, stabilization when the measured molten resin R is measured can be achieved.

プリプラ式射出成形機Mpは、樹脂材料を可塑化溶融する可塑化装置Mmと、計量した溶融樹脂(被測定溶融樹脂)Rを金型部2に供給(射出)する射出装置Miを備える。可塑化装置Mmは、可塑化シリンダ41を備え、この可塑化シリンダ41には、スクリュ42を内蔵するとともに、後部には樹脂材料を可塑化シリンダ41に供給するホッパー43を備える。なお、可塑化シリンダ41の後端には、スクリュ42を回転させる図に現れないスクリュ駆動部を備える。また、射出装置Miは、射出シリンダ44を備え、この射出シリンダ44には、射出プランジャ45を内蔵するとともに、前端には、射出ノズルMinを備え、さらに、後方には、射出プランジャ45を進退移動させるプランジャ駆動部46を備える。射出装置Miは、不図示の移動装置により支持され、射出ノズルMinが金型部2のノズルタッチ面21にタッチする図2に示すノズルタッチ位置又は射出ノズルMinがノズルタッチ面21から離間する図1に示すノズルタッチ解除位置に移動することができる。射出ノズルMinは、樹脂路47を介して射出シリンダ44の先端に連通するとともに、可塑化シリンダ41の先端は樹脂路48を介して樹脂路47に連通する。樹脂路48には、溶融樹脂の順流により開き、かつ逆流により閉じる逆流防止弁49を配設する。なお、プリプラ式射出成形機Mpとしては、できるだけ小型機を使用することが望ましい。例示のプリプラ式射出成形機Mpは、最大射出容量が1.4〔cc〕である。   The pre-plastic injection molding machine Mp includes a plasticizing device Mm that plasticizes and melts a resin material, and an injection device Mi that supplies (injects) a measured molten resin (measured molten resin) R to the mold part 2. The plasticizing apparatus Mm includes a plasticizing cylinder 41. The plasticizing cylinder 41 includes a screw 42 and a hopper 43 that supplies a resin material to the plasticizing cylinder 41 at the rear. In addition, the screw drive part which does not appear in the figure which rotates the screw 42 is provided in the rear end of the plasticizing cylinder 41. FIG. The injection device Mi includes an injection cylinder 44. The injection cylinder 44 incorporates an injection plunger 45, and includes an injection nozzle Min at the front end and further moves the injection plunger 45 forward and backward. A plunger driving unit 46 is provided. The injection device Mi is supported by a moving device (not shown), and the injection nozzle Min touches the nozzle touch surface 21 of the mold unit 2. The nozzle touch position shown in FIG. 2 or the injection nozzle Min is separated from the nozzle touch surface 21. 1 can be moved to the nozzle touch release position. The injection nozzle Min communicates with the tip of the injection cylinder 44 through the resin passage 47, and the tip of the plasticizing cylinder 41 communicates with the resin passage 47 through the resin passage 48. The resin path 48 is provided with a backflow prevention valve 49 that opens by the forward flow of the molten resin and closes by the backflow. As the pre-plastic injection molding machine Mp, it is desirable to use a small machine as much as possible. The example pre-plastic injection molding machine Mp has a maximum injection capacity of 1.4 [cc].

一方、プリプラ式射出成形機Mpにも、内部に収容された被測定溶融樹脂Rの物理量を検出する一又は二以上の物理量検出器10nt,10np…を有する成形機測定部10を備える。この場合、図1に示すように、射出ノズルMinに、この射出ノズルMin内における被測定溶融樹脂Rの温度(樹脂温度)Tnを検出する温度検出器10nt及び被測定溶融樹脂Rの圧力(樹脂圧)Pnを検出する圧力検出器10npを配設するとともに、射出シリンダ44に、この射出シリンダ44内における被測定溶融樹脂Rの温度(樹脂温度)Tiを検出する温度検出器10it及び被測定溶融樹脂Rの圧力(樹脂圧)Piを検出する圧力検出器10ipを配設する。また、射出プランジャ45の位置(射出プランジャ位置)Xo,Xmを検出する位置検出器10cを配設する。そして、各検出器10nt,10np,10it,10ip,10cは、計測処理部31に接続する。   On the other hand, the pre-plastic injection molding machine Mp also includes a molding machine measuring unit 10 having one or more physical quantity detectors 10nt, 10np,... For detecting the physical quantity of the measured molten resin R accommodated therein. In this case, as shown in FIG. 1, a temperature detector 10nt for detecting the temperature (resin temperature) Tn of the measured molten resin R in the injection nozzle Min and the pressure (resin of the measured molten resin R) The pressure detector 10np for detecting the pressure (Pn) and the temperature detector 10it for detecting the temperature (resin temperature) Ti of the measured molten resin R in the injection cylinder 44 and the measured melt A pressure detector 10ip for detecting the pressure (resin pressure) Pi of the resin R is provided. Further, a position detector 10c for detecting the positions (injection plunger positions) Xo and Xm of the injection plunger 45 is provided. The detectors 10 nt, 10 np, 10 it, 10 ip, and 10 c are connected to the measurement processing unit 31.

次に、このような樹脂特性測定装置1を用いた本実施形態に係る樹脂特性測定方法について、図1〜図11を参照して説明する。   Next, a resin characteristic measuring method according to this embodiment using such a resin characteristic measuring apparatus 1 will be described with reference to FIGS.

本実施形態に係る樹脂特性測定装置1では、三方切換弁8vを、図4に示す第一切換位置C1へ切換えることにより、被測定溶融樹脂RのPVT(樹脂圧−比容積−樹脂温度)特性を測定できる。最初に、このPVT特性の測定方法について、各図を参照しつつ図7に示すフローチャートに従って説明する。   In the resin characteristic measuring apparatus 1 according to the present embodiment, the PVT (resin pressure-specific volume-resin temperature) characteristic of the measured molten resin R is obtained by switching the three-way switching valve 8v to the first switching position C1 shown in FIG. Can be measured. First, a method for measuring the PVT characteristic will be described according to the flowchart shown in FIG.

まず、測定準備として、射出ノズルMinをノズルタッチ面21にノズルタッチさせるとともに、樹脂材料をホッパー43に投入する。また、後側第一樹脂通路5rのエア抜きを行う(ステップS1)。エア抜きの方法としては複数の方法があるが、例えば、三方切換弁8vを図6に示す第三切換位置C3に切換え、プリプラ式射出成形機Mpを作動させることによりエア抜きを行うことができる。この場合、プリプラ式射出成形機Mpの作動により第一樹脂通路5に溶融樹脂Rが供給されるため、溶融樹脂Rが少なくとも三方切換弁8vを通過し、前側第一樹脂通路5fに進入するまで供給すれば、溶融樹脂Rが進入した分だけエア抜きを行うことができる。そして、溶融樹脂Rが前側第一樹脂通路5fまで進入したなら、三方切換弁8vを図4に示す第一切換位置C1に切換える(ステップS2)。これにより、前側第一樹脂通路5f及び第二樹脂通路6に対して後側第一樹脂通路5rが遮断され、三方切換弁8vから後側第一樹脂通路5r内には、被測定溶融樹脂Rが充填される。   First, as a measurement preparation, the injection nozzle Min is made to touch the nozzle touch surface 21 and a resin material is put into the hopper 43. Further, the rear first resin passage 5r is vented (step S1). There are a plurality of air venting methods. For example, the air can be vented by switching the three-way switching valve 8v to the third switching position C3 shown in FIG. 6 and operating the pre-plastic injection molding machine Mp. . In this case, since the molten resin R is supplied to the first resin passage 5 by the operation of the pre-plastic injection molding machine Mp, the molten resin R passes through at least the three-way switching valve 8v and enters the front first resin passage 5f. If supplied, air can be vented as much as the molten resin R enters. If the molten resin R has entered the front first resin passage 5f, the three-way switching valve 8v is switched to the first switching position C1 shown in FIG. 4 (step S2). As a result, the rear first resin passage 5r is blocked from the front first resin passage 5f and the second resin passage 6, and the measured molten resin R is introduced into the rear first resin passage 5r from the three-way switching valve 8v. Is filled.

この状態で測定に必要となる被測定溶融樹脂Rに対する所要量の計量を行う(ステップS3)。計量時には、ホッパー43から供給される樹脂材料がスクリュ42の回転により可塑化溶融され、樹脂路48を介して樹脂路47に進入する。この際、後側第一樹脂通路5r側は、三方切換弁8vにより遮断されているため、樹脂路47に進入した被測定溶融樹脂Rは、射出シリンダ44内に蓄積され、射出プランジャ45が後退して計量が行われる。計量が終了したならプランジャ駆動部46を制御して圧抜きを行い、被測定溶融樹脂Rに付加される圧力を大気圧に開放する(ステップS4)。   In this state, a required amount for the measured molten resin R required for measurement is measured (step S3). At the time of weighing, the resin material supplied from the hopper 43 is plasticized and melted by the rotation of the screw 42 and enters the resin path 47 through the resin path 48. At this time, since the rear first resin passage 5r side is blocked by the three-way switching valve 8v, the measured molten resin R that has entered the resin passage 47 is accumulated in the injection cylinder 44, and the injection plunger 45 moves backward. Then, weighing is performed. When the metering is completed, the plunger driving unit 46 is controlled to perform pressure relief, and the pressure applied to the measured molten resin R is released to the atmospheric pressure (step S4).

そして、位置検出器10cにより、このときの射出プランジャ位置Xoを検出する(ステップS5)。また、プランジャ駆動部46を駆動制御し、射出プランジャ45により被測定溶融樹脂Rを所定圧力により加圧するとともに、この状態において計測処理を行う(ステップS6,S7)。即ち、温度検出器10nt,10itの一方又は双方により樹脂温度Tn及び/又はTiを検出するとともに、圧力検出器10np,10ipの一方又は双方により樹脂圧Pn及び/又はPiを検出する。さらに、位置検出器10cにより射出プランジャ位置Xmを検出し、射出プランジャ45の移動量を求めることにより、公知の比容積算出方法を用いて比容積Vを算出する(ステップS8)。以上の計測処理が終了したなら、プランジャ駆動部46を制御して圧抜きを行い、被測定溶融樹脂Rに付加される圧力を大気圧に開放する(ステップS9,S10)。   Then, the injection plunger position Xo at this time is detected by the position detector 10c (step S5). Further, the plunger drive unit 46 is driven and controlled, and the measured molten resin R is pressurized with a predetermined pressure by the injection plunger 45, and measurement processing is performed in this state (steps S6 and S7). That is, the resin temperature Tn and / or Ti is detected by one or both of the temperature detectors 10nt and 10it, and the resin pressure Pn and / or Pi is detected by one or both of the pressure detectors 10np and 10ip. Further, the specific volume V is calculated using a known specific volume calculation method by detecting the injection plunger position Xm by the position detector 10c and obtaining the movement amount of the injection plunger 45 (step S8). When the above measurement processing is completed, the plunger driving unit 46 is controlled to perform pressure relief, and the pressure applied to the measured molten resin R is released to atmospheric pressure (steps S9 and S10).

次いで、樹脂温度と樹脂圧を順次変更し、ステップS5〜S10までの処理を同様に行う(ステップS11,S12,S5…S10)。一方、設定した測定回数に達したなら、測定に供した被測定溶融樹脂Rに対する測定を終了する(ステップS11)。この場合、測定回数の設定は、被測定溶融樹脂Rに対して行った繰返し測定による被測定溶融樹脂Rの劣化を考慮したものであり、被測定溶融樹脂Rの性質により予め設定することができる。そして、設定した測定回数に達したなら、三方切換弁8vを図6に示す第三切換位置C3に切換える(ステップS13)。   Next, the resin temperature and the resin pressure are sequentially changed, and the processes from Steps S5 to S10 are similarly performed (Steps S11, S12, S5... S10). On the other hand, when the set number of measurements is reached, the measurement for the measured molten resin R subjected to the measurement is terminated (step S11). In this case, the number of times of measurement is set in consideration of deterioration of the measured molten resin R due to repeated measurement performed on the measured molten resin R, and can be set in advance depending on the properties of the measured molten resin R. . When the set number of measurements is reached, the three-way switching valve 8v is switched to the third switching position C3 shown in FIG. 6 (step S13).

これにより、前側第一樹脂通路5fと後側第一樹脂通路5rが接続され、かつ第二樹脂通路6は前側第一樹脂通路5f及び後側第一樹脂通路5rに対して遮断される。即ち、射出装置Miは、第一樹脂通路5を介してキャビティ4に接続され、キャビティ4に対して被測定溶融樹脂Rを射出充填して成形品を成形する通常の射出成形処理を行うことができ、被測定溶融樹脂Rを用いた成形品を得ることができる(ステップS14)。よって、被測定溶融樹脂R自身の物理的特性のみならず、得られる樹脂特性(PVT特性)に基づいて実際に成形処理を行った際の成形特性を同時に収集できるなど、最終的な成形品の評価を含めた幅広いデータを得ることができ、新規素材等に対する信頼性の高い評価を行うことができる。この場合、得られる成形特性(評価項目)としては、射出負荷圧力,計量トルク,可塑化能力,成形温度範囲,寸法安定性,機械的強度,残留歪み,成形品構造(分子構造),吸水性,耐薬品性,耐天候性等がある。   Accordingly, the front first resin passage 5f and the rear first resin passage 5r are connected, and the second resin passage 6 is blocked from the front first resin passage 5f and the rear first resin passage 5r. In other words, the injection device Mi is connected to the cavity 4 through the first resin passage 5 and can perform a normal injection molding process for injecting and filling the measured molten resin R into the cavity 4 to form a molded product. A molded product using the measured molten resin R can be obtained (step S14). Therefore, it is possible to collect not only the physical characteristics of the measured molten resin R itself but also the molding characteristics when the molding process is actually performed based on the obtained resin characteristics (PVT characteristics). A wide range of data including evaluation can be obtained, and highly reliable evaluation for new materials can be performed. In this case, the obtained molding characteristics (evaluation items) include injection load pressure, metering torque, plasticizing ability, molding temperature range, dimensional stability, mechanical strength, residual strain, molded product structure (molecular structure), water absorption , Chemical resistance, weather resistance, etc.

一方、目標とする測定数が残っている場合には、三方切換弁8vを第一切換位置C1に切換え、新たに計量を行うことにより、新たな被測定溶融樹脂RによりステップS2〜S12と同様の処理を行い、データを収集する(ステップS16,S2〜S12)。そして、予め設定した測定回数に達したらステップS13〜S15と同様の射出成形処理を行い、成形特性を収集する(ステップS11〜S15)。以上の処理を、目標とする測定数まで行う(ステップS16)。このようにして収集したデータをプロットすることにより、図10に示すPVT特性、即ち、樹脂圧をパラメータとした樹脂温度に対する比容積特性を得ることができる。   On the other hand, if the target number of measurements remains, the three-way switching valve 8v is switched to the first switching position C1 and a new measurement is performed, so that a new measured molten resin R is used as in steps S2 to S12. The process is performed to collect data (steps S16, S2 to S12). When the preset number of measurements is reached, injection molding processing similar to steps S13 to S15 is performed to collect molding characteristics (steps S11 to S15). The above processing is performed up to the target number of measurements (step S16). By plotting the data collected in this way, the PVT characteristic shown in FIG. 10, that is, the specific volume characteristic with respect to the resin temperature using the resin pressure as a parameter can be obtained.

他方、本実施形態に係る樹脂特性測定装置1では、三方切換弁8vを、図5に示す第二切換位置C2へ切換えることにより、被測定溶融樹脂Rの粘度特性を測定することができる。以下、この粘度特性の測定方法について、各図を参照しつつ図8に示すフローチャートに従って説明する。   On the other hand, in the resin characteristic measuring apparatus 1 according to the present embodiment, the viscosity characteristic of the measured molten resin R can be measured by switching the three-way switching valve 8v to the second switching position C2 shown in FIG. Hereinafter, this viscosity characteristic measuring method will be described according to the flowchart shown in FIG.

まず、測定準備として、射出ノズルMinをノズルタッチ面21にノズルタッチさせるとともに、樹脂材料をホッパー43に投入する。また、プランジャユニット7の逆送プランジャ部24を最前進位置まで移動させる。そして、三方切換弁8vを第二切換位置C2へ切換える(ステップS21)。これにより、第二樹脂通路6と後側第一樹脂通路5rが接続され、かつ前側第一樹脂通路5fが第二樹脂通路6及び後側第一樹脂通路5rに対して遮断される。   First, as a measurement preparation, the injection nozzle Min is made to touch the nozzle touch surface 21 and a resin material is put into the hopper 43. Further, the reverse feed plunger portion 24 of the plunger unit 7 is moved to the most advanced position. Then, the three-way switching valve 8v is switched to the second switching position C2 (step S21). Thereby, the second resin passage 6 and the rear first resin passage 5r are connected, and the front first resin passage 5f is blocked from the second resin passage 6 and the rear first resin passage 5r.

次いで、この状態で測定に必要となる被測定溶融樹脂Rに対する所要量の計量を行う(ステップS22)。計量時には、ホッパー43から供給される樹脂材料がスクリュ42の回転により可塑化溶融され、樹脂路48を介して樹脂路47に進入する。この際、射出プランジャ45には所定の背圧を付与しておく。これにより、被測定溶融樹脂Rは、最初に、後側第一樹脂通路5r及び第二樹脂通路6に進入し、逆送プランジャ部24の前方まで被測定溶融樹脂Rが蓄積されるとともに、この後、樹脂路47に進入した被測定溶融樹脂Rが、射出シリンダ44内に蓄積され、射出プランジャ45が後退して計量が行われる。計量が終了したならプランジャ駆動部46を制御して圧抜きを行い、被測定溶融樹脂Rに付加される圧力を大気圧に開放する。この状態を図9(a)に示す。なお、図9(a)〜(c)において、符号Ra〜Rfは、繰返し測定した際における被測定溶融樹脂Rを状態別に示したものであり、Raは保圧分,Rbは前工程滞留分,Rcは滞留排除分,Rdは測定分,Reは測定排除分,Rfは保圧分をそれぞれ示している。   Next, a required amount for the measured molten resin R required for measurement is measured in this state (step S22). At the time of weighing, the resin material supplied from the hopper 43 is plasticized and melted by the rotation of the screw 42 and enters the resin path 47 through the resin path 48. At this time, a predetermined back pressure is applied to the injection plunger 45. Thereby, the measured molten resin R first enters the rear first resin passage 5r and the second resin passage 6, and the measured molten resin R is accumulated up to the front of the reverse feed plunger portion 24. Thereafter, the molten resin R to be measured that has entered the resin passage 47 is accumulated in the injection cylinder 44, and the injection plunger 45 moves backward to perform measurement. When the measurement is completed, the plunger driving unit 46 is controlled to perform pressure relief, and the pressure applied to the measured molten resin R is released to atmospheric pressure. This state is shown in FIG. 9 (a) to 9 (c), symbols Ra to Rf indicate the measured molten resin R according to the state when repeatedly measured, where Ra is a holding pressure and Rb is a pre-process residence. , Rc represents the residence exclusion, Rd represents the measurement, Re represents the measurement exclusion, and Rf represents the holding pressure.

次いで、射出装置Miによる順方向の射出を行う(ステップS23)。この場合、予め設定した射出速度により射出プランジャ45を前進させて射出動作を行うとともに、射出動作中における計測処理を行う(ステップS24)。即ち、a地点の温度検出器9atにより樹脂温度Taを検出するとともに、圧力検出器9apにより樹脂圧Paを検出し、また、b地点の温度検出器9btにより樹脂温度Tbを検出するとともに、圧力検出器9bpにより樹脂圧Pbを検出する。この場合、検出するタイミングは、図9(b)に示すように、被測定溶融樹脂Rにおける測定分Rdが第二樹脂通路6を通過する期間内に行う。さらに、この期間内における所定時間Δtmの前後における逆送プランジャ位置X1,X2を、それぞれ位置検出器9cにより検出する。この所定時間Δtmと逆送プランジャ位置X1,X2により被測定溶融樹脂Rの流量Qが得られる。   Next, forward injection is performed by the injection device Mi (step S23). In this case, the injection plunger 45 is moved forward at a preset injection speed to perform an injection operation, and measurement processing during the injection operation is performed (step S24). That is, the temperature detector 9at at the point a detects the resin temperature Ta, the pressure detector 9ap detects the resin pressure Pa, the temperature detector 9bt at the point b detects the resin temperature Tb, and the pressure detection The resin pressure Pb is detected by the device 9bp. In this case, as shown in FIG. 9B, the detection timing is performed within a period in which the measured amount Rd in the measured molten resin R passes through the second resin passage 6. Further, the reverse feed plunger positions X1 and X2 before and after the predetermined time Δtm within this period are detected by the position detector 9c. The flow rate Q of the measured molten resin R is obtained by the predetermined time Δtm and the reverse feed plunger positions X1, X2.

そして、得られた検出結果から、樹脂粘度η及び樹脂剪断速度νを、
η={πgr4/8LQ}(Pa−Pb) …(01)
ν=4Q/πr3 …(02)
ただし g :重力加速度
r :樹脂通路半径
L :a地点からb地点までの樹脂通路長
により算出する(ステップS25)。
And from the obtained detection results, the resin viscosity η and the resin shear rate ν are
η = {πgr 4 / 8LQ} (Pa−Pb) (01)
ν = 4Q / πr 3 (02)
Where g: acceleration of gravity
r: Resin passage radius
L: Calculated from the length of the resin passage from point a to point b (step S25).

以上の計測処理が終了したなら、プランジャユニット7による逆方向の射出を行う(ステップS26,S27)。図9(c)は、射出装置Miによる射出動作が終了した状態を示している。この場合、射出装置Mi側における被測定溶融樹脂Rの測定分Rdは、プランジャユニット7側に移った状態になるため、プランジャユニット7におけるプランジャ駆動部25を駆動制御し、予め設定した射出速度により逆送プランジャ部24を前進させて射出動作を行うとともに、射出動作中における計測処理を行う(ステップS28)。即ち、a地点の温度検出器9atにより樹脂温度Taを検出するとともに、圧力検出器9apにより樹脂圧Paを検出し、また、b地点の温度検出器9btにより樹脂温度Tbを検出するとともに、圧力検出器9bpにより樹脂圧Pbを検出する。この場合、検出するタイミングは、図9(b)に示すように、被測定溶融樹脂Rにおける測定分Rdが第二樹脂通路6を通過する期間内に行う。さらに、この期間内における所定時間Δtmの前後における逆送プランジャ位置X1,X2を、それぞれ位置検出器9cにより検出する。この所定時間Δtmと逆送プランジャ位置X1,X2により被測定溶融樹脂Rの流量Qが得られる。そして、得られた検出結果から、上述した(01)式及び(02)式により樹脂粘度η及び樹脂剪断速度νを算出する(ステップS29)。以上の計測処理が終了したなら、プランジャ駆動部46を制御して圧抜きを行い、被測定溶融樹脂Rに付加される圧力を大気圧に開放する。   When the above measurement process is completed, injection in the reverse direction is performed by the plunger unit 7 (steps S26 and S27). FIG. 9C shows a state where the injection operation by the injection device Mi has been completed. In this case, since the measured amount Rd of the measured molten resin R on the injection device Mi side is moved to the plunger unit 7 side, the plunger drive unit 25 in the plunger unit 7 is driven and controlled by a preset injection speed. The backward feeding plunger portion 24 is advanced to perform the injection operation, and the measurement process during the injection operation is performed (step S28). That is, the temperature detector 9at at the point a detects the resin temperature Ta, the pressure detector 9ap detects the resin pressure Pa, the temperature detector 9bt at the point b detects the resin temperature Tb, and the pressure detection The resin pressure Pb is detected by the device 9bp. In this case, as shown in FIG. 9B, the detection timing is performed within a period in which the measured amount Rd in the measured molten resin R passes through the second resin passage 6. Further, the reverse feed plunger positions X1 and X2 before and after the predetermined time Δtm within this period are detected by the position detector 9c. The flow rate Q of the measured molten resin R is obtained by the predetermined time Δtm and the reverse feed plunger positions X1, X2. Then, the resin viscosity η and the resin shear rate ν are calculated from the obtained detection results by the above-described equations (01) and (02) (step S29). When the above measurement processing is completed, the plunger driving unit 46 is controlled to perform depressurization, and the pressure applied to the measured molten resin R is released to atmospheric pressure.

次いで、樹脂温度と射出速度を順次変更し、ステップS23〜S30までの処理を同様に行う(ステップS31,S32,S23…S30)。一方、設定した測定回数に達したなら、測定に供した被測定溶融樹脂Rに対する測定を終了する(ステップS31)。この場合、測定回数の設定は、被測定溶融樹脂Rに対して行った繰返し測定による被測定溶融樹脂Rの劣化を考慮したものであり、被測定溶融樹脂Rの性質により予め設定することができる。そして、設定した測定回数に達したなら、三方切換弁8vを図6に示す第三切換位置C3に切換える(ステップS33)。   Next, the resin temperature and the injection speed are sequentially changed, and the processing from step S23 to S30 is performed similarly (steps S31, S32, S23... S30). On the other hand, when the set number of measurements is reached, the measurement for the measured molten resin R subjected to the measurement is terminated (step S31). In this case, the number of times of measurement is set in consideration of deterioration of the measured molten resin R due to repeated measurement performed on the measured molten resin R, and can be set in advance depending on the properties of the measured molten resin R. . When the set number of measurements is reached, the three-way switching valve 8v is switched to the third switching position C3 shown in FIG. 6 (step S33).

これにより、前側第一樹脂通路5fと後側第一樹脂通路5rが接続され、かつ第二樹脂通路6は前側第一樹脂通路5f及び後側第一樹脂通路5rに対して遮断される。即ち、射出装置Miは、第一樹脂通路5を介してキャビティ4に接続され、キャビティ4に対して被測定溶融樹脂Rを射出充填して成形品を成形する通常の射出成形処理を行うことができ、被測定溶融樹脂Rを用いた成形品を得ることができる(ステップS34)。よって、被測定溶融樹脂R自身の物理的特性のみならず、得られる樹脂特性(粘度特性)に基づいて実際に成形処理を行った際の成形特性を同時に収集できるなど、最終的な成形品の評価を含めた幅広いデータを得ることができるため、新規素材等に対する信頼性の高い評価を行うことができる。この場合、得られる成形特性(評価項目)としては、前述した射出負荷圧力,計量トルク,可塑化能力,成形温度範囲,寸法安定性,機械的強度,残留歪み,成形品構造(分子構造),吸水性,耐薬品性,耐天候性等がある。   Accordingly, the front first resin passage 5f and the rear first resin passage 5r are connected, and the second resin passage 6 is blocked from the front first resin passage 5f and the rear first resin passage 5r. In other words, the injection device Mi is connected to the cavity 4 through the first resin passage 5 and can perform a normal injection molding process for injecting and filling the measured molten resin R into the cavity 4 to form a molded product. A molded product using the measured molten resin R can be obtained (step S34). Therefore, it is possible to collect not only the physical characteristics of the measured molten resin R itself but also the molding characteristics when the molding process is actually performed based on the obtained resin characteristics (viscosity characteristics). Since a wide range of data including evaluation can be obtained, highly reliable evaluation for new materials and the like can be performed. In this case, the obtained molding characteristics (evaluation items) include the aforementioned injection load pressure, metering torque, plasticizing ability, molding temperature range, dimensional stability, mechanical strength, residual strain, molded product structure (molecular structure), Water absorption, chemical resistance, weather resistance, etc.

一方、目標とする測定数が残っている場合には、三方切換弁8vを第二切換位置C2に切換え、新たに計量を行うことにより、新たな被測定溶融樹脂RによりステップS21〜S32と同様の処理を行い、データを収集する(ステップS36,S21〜S32)。そして、予め設定した測定回数に達したら、ステップS33〜S35と同様の射出成形処理を行い、成形特性を収集する(ステップS31〜S35)。以上の処理を、目標とする測定数まで行う(ステップS36)。このようにして収集したデータをプロットすることにより、図11に示す粘度特性、即ち、樹脂温度をパラメータとした剪断速度に対する粘度特性を得ることができる。   On the other hand, if the target number of measurements remains, the three-way switching valve 8v is switched to the second switching position C2 and a new measurement is performed, so that a new measured molten resin R is used as in steps S21 to S32. The process is performed to collect data (steps S36, S21 to S32). When the preset number of measurements is reached, injection molding processing similar to steps S33 to S35 is performed to collect molding characteristics (steps S31 to S35). The above processing is performed up to the target number of measurements (step S36). By plotting the data collected in this manner, the viscosity characteristics shown in FIG. 11, that is, the viscosity characteristics with respect to the shear rate using the resin temperature as a parameter can be obtained.

このような本実施形態に係る樹脂特性測定装置1及び樹脂特性測定方法によれば、プランジャユニット7を駆動して被測定溶融樹脂Rを供給側に戻す(逆送する)ことが可能になるため、新規素材のように、確保できる樹脂量が少ない場合、即ち、生産段階に移行していない実験室レベルの量であっても、被測定溶融樹脂Rを繰返し利用することにより十分なデータを得ることができ、もって、緻密で精度の高い樹脂特性を得ることができる。また、各種樹脂特性及び成形特性を一台の測定装置により測定できるため、必要なデータを総合的に測定する場合であっても、設備面におけるコストダウン及び小型化に寄与することができる。さらに、検出する物理量として、樹脂温度Ta…,樹脂圧Pa…及びプランジャ位置X1…を含むため、射出成形において重要となる少なくともPVT特性及び粘度特性の双方を同時に測定することが可能となる。   According to the resin characteristic measuring apparatus 1 and the resin characteristic measuring method according to this embodiment, the plunger unit 7 can be driven to return the measured molten resin R to the supply side (reverse feed). When the amount of resin that can be secured is small, such as a new material, that is, even if it is a laboratory level amount that has not shifted to the production stage, sufficient data can be obtained by repeatedly using the measured molten resin R Therefore, dense and highly accurate resin characteristics can be obtained. In addition, since various resin characteristics and molding characteristics can be measured with a single measuring device, it is possible to contribute to cost reduction and downsizing in terms of equipment even when necessary data is comprehensively measured. Furthermore, since the physical quantities to be detected include the resin temperature Ta, the resin pressure Pa, and the plunger position X1, it is possible to simultaneously measure at least both the PVT characteristic and the viscosity characteristic that are important in injection molding.

以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,手法,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、検出する物理量として樹脂圧,樹脂温度,プランジャ位置を例示したが、他の任意の物理量を含ませることができる。また、樹脂特性として、PVT特性及び粘度特性を例示したが、被測定溶融樹脂Rの圧縮率特性,射出率特性等の他の各種樹脂特性の測定が可能である。さらに、例示の実施形態では、PVT特性を測定して成形特性を測定する場合,粘度特性を測定して成形特性を測定する場合を示したが、PVT特性を測定した後、粘度特性を測定し、この後、成形特性を測定してもよく、測定処理の組合わせや手順等は任意である。   As described above, the best embodiment has been described in detail, but the present invention is not limited to such an embodiment, and the detailed configuration, method, numerical value, and the like are within the scope not departing from the gist of the present invention. It can be changed, added, or deleted arbitrarily. For example, although the resin pressure, the resin temperature, and the plunger position are exemplified as the physical quantities to be detected, other arbitrary physical quantities can be included. Moreover, although the PVT characteristic and the viscosity characteristic were illustrated as a resin characteristic, other various resin characteristics, such as a compressibility characteristic and injection rate characteristic of the to-be-measured molten resin R, can be measured. Further, in the exemplary embodiment, when measuring the PVT characteristics to measure the molding characteristics, the viscosity characteristics are measured to measure the molding characteristics. However, after the PVT characteristics are measured, the viscosity characteristics are measured. Thereafter, the molding characteristics may be measured, and the combination and procedure of the measurement process are arbitrary.

本発明の最良の実施形態に係る樹脂特性測定装置の測定系の構成を含む原理的構成図、The principle block diagram including the structure of the measurement system of the resin characteristic measuring apparatus according to the best embodiment of the present invention, 同樹脂特性測定装置における機械系の構成図、Configuration diagram of the mechanical system in the resin characteristic measuring device, 同樹脂特性測定装置の図1中A−A線断面図、AA line sectional view in FIG. 1 of the resin characteristic measuring device, 同樹脂特性測定装置における三方切換弁を第一切換位置に切換えた際の作用説明図、Action explanatory diagram when the three-way switching valve in the resin characteristic measuring device is switched to the first switching position, 同樹脂特性測定装置における三方切換弁を第二切換位置に切換えた際の作用説明図、Action explanatory diagram when switching the three-way switching valve to the second switching position in the resin characteristic measuring device, 同樹脂特性測定装置における三方切換弁を第三切換位置に切換えた際の作用説明図、Action explanatory diagram when the three-way switching valve in the resin characteristic measuring device is switched to the third switching position, 同樹脂特性測定装置を用いてPVT特性及び成形特性を測定する際の処理手順を示すフローチャート、The flowchart which shows the process sequence at the time of measuring a PVT characteristic and a shaping | molding characteristic using the resin characteristic measuring apparatus, 同樹脂特性測定装置を用いて粘度特性及び成形特性を測定する際の処理手順を示すフローチャート、A flowchart showing a processing procedure when measuring viscosity characteristics and molding characteristics using the resin characteristic measuring apparatus, 同樹脂特性測定装置を用いて粘度特性を測定する際の作用説明図、Action explanatory diagram when measuring viscosity characteristics using the resin characteristic measuring device, 同樹脂特性測定装置により測定した一例を示すPVT特性図、PVT characteristic diagram showing an example measured by the resin characteristic measuring device, 同樹脂特性測定装置により測定した一例を示す粘度特性図、Viscosity characteristic diagram showing an example measured by the resin characteristic measuring device,

符号の説明Explanation of symbols

1 樹脂特性測定装置
2 金型部
3 樹脂回路
4 キャビティ
5 第一樹脂通路
5f 前側第一樹脂通路
5r 後側第一樹脂通路
6 第二樹脂通路
7 プランジャユニット
8 切換器
8v 三方切換弁
9 測定部
9at… 物理量検出器
10 成形機測定部
10nt… 物理量検出器
R 被測定溶融樹脂
M 射出成形機
Mp プリプラ式射出成形機
Min 射出ノズル
C1 切換位置(第一切換位置)
C2 切換位置(第二切換位置)
C3 切換位置(第三切換位置)
DESCRIPTION OF SYMBOLS 1 Resin characteristic measuring apparatus 2 Mold part 3 Resin circuit 4 Cavity 5 1st resin path 5f Front side 1st resin path 5r Rear side 1st resin path 6 Second resin path 7 Plunger unit 8 Switcher 8v Three-way switching valve 9 Measuring part 9 at ... physical quantity detector 10 molding machine measuring unit 10 nt ... physical quantity detector R molten resin to be measured M injection molding machine Mp pre-plastic injection molding machine Min injection nozzle C1 switching position (first switching position)
C2 switching position (second switching position)
C3 switching position (third switching position)

Claims (16)

少なくとも樹脂材料に係わる樹脂特性を測定するための樹脂特性測定装置において、成形品を成形可能なキャビティと、外部から供給された被測定溶融樹脂を前記キャビティに供給可能な第一樹脂通路と、この第一樹脂通路の中途位置から分岐した第二樹脂通路と、この第二樹脂通路の先端に接続したプランジャユニットと、前記第一樹脂通路における分岐部の接続状態を切換える切換器とを有する樹脂回路を設けた金型部を備えるとともに、前記樹脂回路に被測定溶融樹脂を供給した際の物理量を検出する一又は二以上の物理量検出器を有する測定部を備えてなることを特徴とする樹脂特性測定装置。   In a resin characteristic measuring apparatus for measuring at least resin characteristics related to a resin material, a cavity capable of molding a molded product, a first resin passage capable of supplying a measured molten resin supplied from the outside to the cavity, and A resin circuit having a second resin passage branched from an intermediate position of the first resin passage, a plunger unit connected to the tip of the second resin passage, and a switch for switching the connection state of the branch portion in the first resin passage. And a measuring unit having one or more physical quantity detectors for detecting a physical quantity when the molten resin to be measured is supplied to the resin circuit. measuring device. 前記切換器は、前記分岐部の前方に位置する前記第一樹脂通路における前側第一樹脂通路,前記分岐部の後方に位置する前記第一樹脂通路における後側第一樹脂通路及び前記第二樹脂通路を選択的に接続又は遮断する三方切換弁を用いることを特徴とする請求項1記載の樹脂特性測定装置。   The switch includes a front first resin passage in the first resin passage located in front of the branch portion, a rear first resin passage in the first resin passage located in the rear of the branch portion, and the second resin. 2. The resin characteristic measuring apparatus according to claim 1, wherein a three-way switching valve for selectively connecting or blocking the passage is used. 前記物理量には、少なくとも樹脂温度,樹脂圧及びプランジャ位置の一又は二以上を含むことを特徴とする請求項1記載の樹脂特性測定装置。   2. The resin characteristic measuring apparatus according to claim 1, wherein the physical quantity includes at least one or more of a resin temperature, a resin pressure, and a plunger position. 前記金型部に射出ノズルをノズルタッチすることにより前記第一樹脂通路に被測定溶融樹脂を供給する射出成形機を備えてなることを特徴とする請求項1記載の樹脂特性測定装置。   2. The resin characteristic measuring apparatus according to claim 1, further comprising an injection molding machine that supplies the measured molten resin to the first resin passage by touching the injection nozzle with the mold part. 前記射出成形機は、プリプラ式射出成形機を用いることを特徴とする請求項4記載の樹脂特性測定装置。   The resin characteristic measuring apparatus according to claim 4, wherein the injection molding machine is a pre-plastic injection molding machine. 前記射出成形機には、内部に収容された被測定溶融樹脂の物理量を検出する一又は二以上の物理量検出器を有する成形機測定部を備えることを特徴とする請求項4又は5記載の樹脂特性測定装置。   6. The resin according to claim 4, wherein the injection molding machine includes a molding machine measuring unit having one or more physical quantity detectors for detecting a physical quantity of a measured molten resin contained therein. Characteristic measuring device. 前記物理量には、少なくとも樹脂温度,樹脂圧及びプランジャ位置の一又は二以上を含むことを特徴とする請求項6記載の樹脂特性測定装置。   The resin characteristic measuring apparatus according to claim 6, wherein the physical quantity includes at least one or more of a resin temperature, a resin pressure, and a plunger position. 少なくとも樹脂材料に係わる樹脂特性を測定するための樹脂特性測定方法において、成形品を成形可能なキャビティと、外部から供給された被測定溶融樹脂を前記キャビティに供給可能な第一樹脂通路と、この第一樹脂通路の中途位置から分岐した第二樹脂通路と、この第二樹脂通路の先端に接続したプランジャユニットと、前記第一樹脂通路における分岐部の接続状態を切換える切換器とを有する樹脂回路を設けた金型部を使用し、前記切換器を所定の切換位置に切換えることにより、前記樹脂回路に被測定溶融樹脂を供給し、供給した被測定溶融樹脂に係わる一又は二以上の物理量を検出することにより、少なくとも樹脂材料に係わる樹脂特性を測定することを特徴とする樹脂特性測定方法。   In a resin characteristic measurement method for measuring at least resin characteristics related to a resin material, a cavity capable of molding a molded product, a first resin passage capable of supplying a measured molten resin supplied from the outside to the cavity, and A resin circuit having a second resin passage branched from an intermediate position of the first resin passage, a plunger unit connected to the tip of the second resin passage, and a switch for switching the connection state of the branch portion in the first resin passage. The measured molten resin is supplied to the resin circuit by switching the switch to a predetermined switching position, and one or more physical quantities related to the supplied measured molten resin are obtained. A method for measuring resin characteristics, comprising: measuring at least a resin characteristic related to a resin material by detection. 前記金型部に、射出成形機の射出ノズルをノズルタッチし、この射出成形機から前記樹脂回路に対して被測定溶融樹脂を供給することを特徴とする請求項8記載の樹脂特性測定方法。   9. The resin characteristic measuring method according to claim 8, wherein the mold part is touched with an injection nozzle of an injection molding machine, and the molten resin to be measured is supplied from the injection molding machine to the resin circuit. 前記切換器として三方切換弁を使用し、前記分岐部の前方に位置する前記第一樹脂通路における前側第一樹脂通路,前記分岐部の後方に位置する前記第一樹脂通路における後側第一樹脂通路及び前記第二樹脂通路を選択的に接続又は遮断することを特徴とする請求項8記載の樹脂特性測定方法。   A three-way switching valve is used as the switch, and a front first resin passage in the first resin passage located in front of the branch portion, and a rear first resin in the first resin passage located behind the branch portion. The resin characteristic measuring method according to claim 8, wherein the passage and the second resin passage are selectively connected or disconnected. 前記三方切換弁を、前記前側第一樹脂通路及び前記第二樹脂通路に対して前記後側第一樹脂通路を遮断する第一切換位置へ切換えるとともに、被測定溶融樹脂を、前記後側第一樹脂通路に供給することにより、被測定溶融樹脂のPVT(樹脂圧−比容積−樹脂温度)特性を測定することを特徴とする請求項9記載の樹脂特性測定方法。   The three-way switching valve is switched to a first switching position that blocks the rear first resin passage with respect to the front first resin passage and the second resin passage, and the measured molten resin is fed to the rear first resin passage. The resin characteristic measuring method according to claim 9, wherein the PVT (resin pressure-specific volume-resin temperature) characteristic of the molten resin to be measured is measured by supplying it to the resin passage. 前記三方切換弁を、前記第二樹脂通路と前記後側第一樹脂通路を接続し、かつ前記前側第一樹脂通路を前記第二樹脂通路及び前記後側第一樹脂通路に対して遮断する第二切換位置へ切換えるとともに、被測定溶融樹脂を、前記後側第一樹脂通路及び前記第二樹脂通路を通して前記プランジャユニットに供給することにより、被測定溶融樹脂の粘度特性を測定することを特徴とする請求項9記載の樹脂特性測定方法。   The three-way switching valve connects the second resin passage and the rear first resin passage, and blocks the front first resin passage from the second resin passage and the rear first resin passage. Switching to the two switching position and measuring the viscosity characteristic of the measured molten resin by supplying the measured molten resin to the plunger unit through the rear first resin passage and the second resin passage. The resin characteristic measuring method according to claim 9. 前記プランジャユニットに供給した被測定溶融樹脂を、前記第二樹脂通路及び前記後側第一樹脂通路を通して供給側に逆送することにより、被測定溶融樹脂の粘度特性を測定することを特徴とする請求項12記載の樹脂特性測定方法。   Viscosity characteristics of the measured molten resin are measured by sending the measured molten resin supplied to the plunger unit back to the supply side through the second resin passage and the rear first resin passage. The resin characteristic measuring method according to claim 12. 前記三方切換弁を、前記第二樹脂通路と前記後側第一樹脂通路を接続し、かつ前記前側第一樹脂通路を前記第二樹脂通路及び前記後側第一樹脂通路に対して遮断する第二切換位置へ切換えるとともに、被測定溶融樹脂を、前記後側第一樹脂通路及び前記第二樹脂通路を通して前記プランジャユニットに供給し、当該被測定溶融樹脂の粘度特性を測定する処理と、前記プランジャユニットに供給した被測定溶融樹脂を、前記第二樹脂通路及び前記後側第一樹脂通路を通して供給側に逆送することにより、被測定溶融樹脂の粘度特性を測定する処理とを繰返して行うことを特徴とする請求項9記載の樹脂特性測定方法。   The three-way switching valve connects the second resin passage and the rear first resin passage, and blocks the front first resin passage from the second resin passage and the rear first resin passage. Switching to the two switching positions, supplying the measured molten resin to the plunger unit through the rear first resin passage and the second resin passage, and measuring the viscosity characteristics of the measured molten resin; and the plunger The measurement molten resin supplied to the unit is repeatedly sent to the supply side through the second resin passage and the rear first resin passage, thereby repeatedly measuring the viscosity characteristics of the measurement molten resin. The resin characteristic measuring method according to claim 9. 前記粘度特性は、樹脂粘度η及び樹脂剪断速度νを、
η={πgr4/8LQ}(Pa−Pb)
ν=4Q/πr3
ただし g :重力加速度
r :樹脂通路半径
L :a地点からb地点までの樹脂通路長
Q :流量
Pa:樹脂通路の後側位置(a地点)における樹脂圧
Pb:樹脂通路の前側位置(b地点)における樹脂圧
により得、この樹脂粘度η及び樹脂剪断速度νから求めることを特徴とする請求項12,13又は14記載の樹脂特性測定方法。
The viscosity characteristics include resin viscosity η and resin shear rate ν,
η = {πgr 4 / 8LQ} (Pa−Pb)
ν = 4Q / πr 3
Where g: acceleration of gravity
r: Resin passage radius
L: Resin passage length from point a to point b
Q: Flow rate
Pa: Resin pressure at the rear position (point a) of the resin passage
The resin characteristic measuring method according to claim 12, 13 or 14, wherein Pb is obtained from a resin pressure at a front side position (point b) of the resin passage and is obtained from the resin viscosity η and the resin shear rate ν.
前記三方切換弁を、前記後側第一樹脂通路と前記前側第一樹脂通路を接続し、かつ前記第二樹脂通路を前記前側第一樹脂通路及び前記後側第一樹脂通路に対して遮断する第三切換位置へ切換えるとともに、被測定溶融樹脂を、前記第一樹脂通路を通して前記キャビティに供給することにより、被測定溶融樹脂の成形特性を得ることを特徴とする請求項9記載の樹脂特性測定方法。   The three-way switching valve connects the rear first resin passage and the front first resin passage, and blocks the second resin passage from the front first resin passage and the rear first resin passage. The resin characteristic measurement according to claim 9, wherein the molding characteristic of the measured molten resin is obtained by switching to the third switching position and supplying the measured molten resin to the cavity through the first resin passage. Method.
JP2004327603A 2004-11-11 2004-11-11 Resin characteristic measuring apparatus and resin characteristic measuring method Expired - Fee Related JP4200218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327603A JP4200218B2 (en) 2004-11-11 2004-11-11 Resin characteristic measuring apparatus and resin characteristic measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327603A JP4200218B2 (en) 2004-11-11 2004-11-11 Resin characteristic measuring apparatus and resin characteristic measuring method

Publications (2)

Publication Number Publication Date
JP2006137057A true JP2006137057A (en) 2006-06-01
JP4200218B2 JP4200218B2 (en) 2008-12-24

Family

ID=36618172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327603A Expired - Fee Related JP4200218B2 (en) 2004-11-11 2004-11-11 Resin characteristic measuring apparatus and resin characteristic measuring method

Country Status (1)

Country Link
JP (1) JP4200218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205471A1 (en) 2016-02-15 2017-08-16 Omron Corporation Molding machine, control apparatus, and molding apparatus
JP2019181921A (en) * 2018-04-10 2019-10-24 中原大學 Injection molding device and injection molding method
JP2021528286A (en) * 2018-06-21 2021-10-21 クレックナー デスマ エラストマーテヒニク ゲーエムベーハーKloeckner Desma Elastomertechnik GmbH Online detection method of rheology of thermoplastic and / or elastomeric materials for the manufacture of injection molded parts
JP7297215B2 (en) 2020-01-30 2023-06-26 広島県 Arithmetic Device, Arithmetic Processing Program, and Arithmetic Method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205471A1 (en) 2016-02-15 2017-08-16 Omron Corporation Molding machine, control apparatus, and molding apparatus
US10350804B2 (en) 2016-02-15 2019-07-16 Omron Corporation Molding machine, control apparatus, and molding apparatus
JP2019181921A (en) * 2018-04-10 2019-10-24 中原大學 Injection molding device and injection molding method
JP2021528286A (en) * 2018-06-21 2021-10-21 クレックナー デスマ エラストマーテヒニク ゲーエムベーハーKloeckner Desma Elastomertechnik GmbH Online detection method of rheology of thermoplastic and / or elastomeric materials for the manufacture of injection molded parts
JP7297215B2 (en) 2020-01-30 2023-06-26 広島県 Arithmetic Device, Arithmetic Processing Program, and Arithmetic Method

Also Published As

Publication number Publication date
JP4200218B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
EP2979837B1 (en) Injection molding method
US7245986B2 (en) Control device for use in injection molding machine
JP2770131B2 (en) Injection molding method and injection molding machine
US20150084221A1 (en) Injection molding machine with viscosity measuring function and method for measuring viscosity using injection molding machine
US10946573B2 (en) Cassette mold type injection molding machine
WO2005075174A1 (en) Injection molding machine
CN110091481A (en) Injection device
JP6305963B2 (en) Injection molding machine support system and injection molding machine support method
JP4200218B2 (en) Resin characteristic measuring apparatus and resin characteristic measuring method
KR101417600B1 (en) Injection molding machine
KR20180062175A (en) Extrusion and injection apparatus
CN103481479B (en) The pressure control device of injection moulding machine
JP6795716B1 (en) Injection device and injection control method
JPH04201225A (en) Method of controlling stroke of screw in injection molding machine
JP5661007B2 (en) Injection device and injection control method thereof
JP4385008B2 (en) Injection control method for injection molding machine
JP3542541B2 (en) Injection molding method
JP4585371B2 (en) Control device for injection molding machine
CN113001919B (en) Injection molding machine, control method thereof, and recording medium storing control program
JP2005125512A (en) Nozzle touch mechanism and injection molding machine
JPH0310823A (en) Monitoring device for injection molding machine
JP2004255588A (en) Method for controlling preplastication type injection molding machine
JP3532071B2 (en) Injection molding machine and its measuring method
CN113001918B (en) Injection molding machine, method for displaying molding conditions, and recording medium
JP7133387B2 (en) Injection molding machine and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees