JP2006135196A - Method for measuring output of multi-junction photoelectric conversion device test cell - Google Patents
Method for measuring output of multi-junction photoelectric conversion device test cell Download PDFInfo
- Publication number
- JP2006135196A JP2006135196A JP2004324437A JP2004324437A JP2006135196A JP 2006135196 A JP2006135196 A JP 2006135196A JP 2004324437 A JP2004324437 A JP 2004324437A JP 2004324437 A JP2004324437 A JP 2004324437A JP 2006135196 A JP2006135196 A JP 2006135196A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- output
- photoelectric conversion
- light source
- spectral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、複数の要素セルが積層されてなる光電変換素子の基準状態での出力を評価するための出力測定方法に関する。 The present invention relates to an output measurement method for evaluating an output in a reference state of a photoelectric conversion element in which a plurality of element cells are stacked.
近年では薄膜太陽電池を含む光電変換素子も多様化し、例えば従来の非晶質薄膜太陽電池に加えて結晶質薄膜太陽電池も開発されている。薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニットを積層して多接合型(またはタンデム型とも呼ぶ)にする方法がある。この方法においては、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって太陽電池全体としての変換効率の向上が図られる。このように、多接合光電変換素子とは、複数の半導体接合からなる光電変換ユニット(以下では要素セルと呼ぶ)が積層された構造を有するものである。積層した要素セルは、直列接続あるいは並列接続を形成されている。 In recent years, photoelectric conversion elements including thin film solar cells have also been diversified. For example, in addition to conventional amorphous thin film solar cells, crystalline thin film solar cells have been developed. As a method for improving the conversion efficiency of a thin film solar cell, there is a method in which two or more photoelectric conversion units are stacked to form a multi-junction type (or also called a tandem type). In this method, a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the unit. The photoelectric conversion is enabled over a wide wavelength range of the incident light, thereby improving the conversion efficiency of the entire solar cell. As described above, the multi-junction photoelectric conversion element has a structure in which photoelectric conversion units (hereinafter referred to as element cells) including a plurality of semiconductor junctions are stacked. The stacked element cells are formed in series connection or parallel connection.
多接合光電変換素子としては、太陽電池、フォトダイオード、センサー等が挙げられる。半導体接合の種類としては、pn接合、pin接合、MIS接合等が挙げられる。半導体材料としては、結晶質、多結晶質、微結晶質、非晶質のものが挙げられる。半導体物質としては、Si、SiGe、Ge、SiC、Cなどの4族あるいは化合物、GaAs、GaAlAs、InP、などの2−6族化合物、CdTe、CdS、Cu2S、Cu2O、ZnO、ZnSeなど、CuIn(S,Se)2、Cu(Ga,In)(S,Se)2、InGaNなどの化合物、有機半導体など、あるいは上記の化合物が挙げられる。 Examples of the multi-junction photoelectric conversion element include a solar cell, a photodiode, and a sensor. Examples of the semiconductor junction include a pn junction, a pin junction, and a MIS junction. Examples of semiconductor materials include crystalline, polycrystalline, microcrystalline, and amorphous materials. Semiconductor materials include Group 4 or compounds such as Si, SiGe, Ge, SiC, and C, Group 2-6 compounds such as GaAs, GaAlAs, and InP, CdTe, CdS, Cu2S, Cu2O, ZnO, ZnSe, and CuIn ( S, Se) 2, Cu (Ga, In) (S, Se) 2, compounds such as InGaN, organic semiconductors, or the above-mentioned compounds.
このような、多接合型の光電変換素子の出力を正確に測定することは以下の理由から非常に重要である。例えば、光電変換素子の出荷時の出力検査の際には、定格出力が性能上最も重要となるので、例えば、定格出力が規格値に満たない場合、規格外品とされることになる。しかし、出荷しようとする光電変換素子の最大出力自体が正確に測定できなければ、保証すべき規格値を満たしているのかどうかを明確にすることができない。また、出力の測定誤差が大きく、測定装置の状態によって測定結果が変化する状況においては、同等の性能の光電変換素子を製造しても、規格値を満足する光電変換素子の収率が変化し、安定製造がなされている場合であっても見掛けの歩留まりが安定していないような誤解を製造従事者に与える可能性がある。つまり、こうした状態においては、製造工程の変化に起因する収率変化と測定装置の状態に起因する収率変化との分離が不十分となりがちで、製品の出力の変化や歩留まりの変化が製造工程の指標として曖昧なものとなるため、製造工程の安定化が困難となる。 It is very important to accurately measure the output of such a multi-junction photoelectric conversion element for the following reason. For example, in the output inspection at the time of shipment of the photoelectric conversion element, the rated output is the most important in terms of performance. For example, when the rated output is less than the standard value, it is regarded as a non-standard product. However, if the maximum output of the photoelectric conversion element to be shipped cannot be measured accurately, it cannot be clarified whether the standard value to be guaranteed is satisfied. In addition, in a situation where the output measurement error is large and the measurement result changes depending on the state of the measuring device, the yield of the photoelectric conversion element that satisfies the standard value will change even if a photoelectric conversion element of equivalent performance is manufactured. Even if stable manufacturing is performed, there is a possibility of giving the manufacturing worker a misunderstanding that the apparent yield is not stable. In other words, in such a state, the yield change due to the change in the manufacturing process tends to be insufficiently separated from the yield change due to the state of the measuring device, and the change in the output of the product and the change in the yield are likely to occur. Since it becomes ambiguous as an index of manufacturing, it is difficult to stabilize the manufacturing process.
このような定格出力としては、通常、以下に述べる基準状態での光電変換素子の出力が用いられる。つまり、例えば、太陽電池の出力測定(JISC8934)は、基準状態として以下の条件で実施される。
(1)セル温度 25℃
(2)分光分布 AM1.5全天日射基準太陽光
(3)放射照度 100mW/cm2
スペクトル依存性を有する多接合太陽電池の評価において、特に重要となるのが分光分布の確認方法である。基準スペクトルは、エアマス及び可降水量、大気混濁度、オゾン含有量、アルベド等で定義されており、屋外太陽光から基準スペクトルを得る機会は非常に限定される。
As such a rated output, the output of the photoelectric conversion element in the reference state described below is usually used. That is, for example, output measurement (JISC 8934) of a solar cell is performed under the following conditions as a reference state.
(1) Cell temperature 25 ° C
(2) Spectral distribution AM1.5 global solar radiation standard sunlight (3) Irradiance 100mW / cm2
In the evaluation of a multijunction solar cell having spectral dependency, a method for confirming the spectral distribution is particularly important. The reference spectrum is defined by air mass and precipitable water, atmospheric turbidity, ozone content, albedo, etc., and the opportunity to obtain the reference spectrum from outdoor sunlight is very limited.
しかしながら、多接合型の光電変換素子の出力特性を正確に測定することには技術的な困難性が伴う。多接合太陽電池の出力電流及び最大出力電力は、出力電流が最も小さくなる光電変換ユニット(以下単に要素セルと記す)で制限される事が、最も大きな理由である。例えば、二つの要素セルを積層し直列に接続したタンデム型の太陽電池では、各要素セルの波長感度帯域が異なるため、光源の分光放射スペクトルの変化により、電流制限を受ける要素セルがいずれかに変化する。 However, it is technically difficult to accurately measure the output characteristics of a multi-junction photoelectric conversion element. The main reason is that the output current and the maximum output power of the multi-junction solar cell are limited by a photoelectric conversion unit (hereinafter simply referred to as an element cell) in which the output current is the smallest. For example, in a tandem solar cell in which two element cells are stacked and connected in series, the wavelength sensitivity band of each element cell is different. Change.
さらに、多接合太陽電池では要素セル間の電流制限の状態の程度により、短絡電流のみならず曲線因子、開放電圧も同時に影響を受けるので測定には困難が伴う。つまり、基準状態下での多接合太陽電池の正確な出力特性を取得するためには、各要素セルが基準スペクトル下で出力するはずであろう電流値並びに電流制限の状態を正確に再現させる必要がある。しかし、単接合型太陽電池で正確な短絡電流値を取得するために有効であった基準スペクトルに対する測定光源スペクトルのミスマッチ、及び基準セルに対する測定セルの分光感度スペクトルのミスマッチを含むスペクトルミスマッチ因子による補正を、多接合太陽電池の各要素セルの電流に対して同時に実施するは困難であるため、出来るだけ基準スペクトルに合致した分光放射スペクトルを有する試験光源下で出力特性を測定する必要がある。 Furthermore, in a multi-junction solar cell, measurement is difficult because not only the short-circuit current but also the fill factor and the open circuit voltage are affected at the same time depending on the degree of current limiting between the element cells. In other words, in order to obtain accurate output characteristics of multijunction solar cells under reference conditions, it is necessary to accurately reproduce the current values and current limit states that each element cell should output under the reference spectrum. There is. However, correction by spectral mismatch factor including mismatch of measurement light source spectrum with respect to reference spectrum, which was effective for obtaining accurate short-circuit current value in single junction solar cell, and mismatch of spectral sensitivity spectrum of measurement cell with respect to reference cell Therefore, it is difficult to carry out the measurement for the current of each element cell of the multijunction solar cell at the same time. Therefore, it is necessary to measure the output characteristics under a test light source having a spectral emission spectrum that matches the reference spectrum as much as possible.
ところが、試験光源として、屋外太陽光や近似太陽光光源を用いても基準スペクトルに合致する分光放射スペクトルを得ることは非常に困難である。基準スペクトルは、エアマス、大気混濁度、及び可降水量等が定められた大気条件の場合のスペクトルとして定義されており、屋外太陽光から基準スペクトルを得る機会は非常に限定されている。まして、近似太陽光光源のスペクトルは、入手可能なランプの分光放射スペクトルに光学フィルタによる修正を行って基準スペクトルに近似させているに過ぎないので、基準スペクトルそのものを得ることは不可能である。 However, it is very difficult to obtain a spectral radiation spectrum that matches the reference spectrum even when outdoor sunlight or approximate solar light source is used as a test light source. The reference spectrum is defined as a spectrum in the case of atmospheric conditions in which air mass, atmospheric turbidity, precipitable water, and the like are defined, and opportunities for obtaining the reference spectrum from outdoor sunlight are very limited. Furthermore, since the spectrum of the approximate solar light source is merely approximated to the reference spectrum by correcting the spectral radiation spectrum of an available lamp with an optical filter, it is impossible to obtain the reference spectrum itself.
さらに、多接合太陽電池の要素セルとして用いられる、アモルファス系太陽電池(a−Si太陽電池及びa−SiGe太陽電池等)及び微結晶シリコン(μc−Si太陽電池)は光源の放射照度に対する非線形性が大きな太陽電池として知られている。多接合太陽電池の擬似要素セルの分光感度は、多接合太陽電池のカラーバイアス下での各要素セルの分光感度スペクトルを元にして設計されるが、分光感度測定の際の単色光の放射照度は5〜100μW/nm/cm2の範囲で測定されることが多い。太陽電池の基準状態の放射用度は100mW/cm2の高い照度が必要とされるため、放射照度に対する非線形性が顕著な太陽電池では、低照度での分光感度スペクトルに基づいて作製した基準セルを用いて、基準状態下での太陽電池の出力特性を測定した場合、正確さを維持できない。単接合型太陽電池の分光感度測定では、単色光に実質的に100mW/cm2の放射照度の白色光を重積させるので、高照度での分光感度スペクトルを得る事が可能であるが、多接合太陽電池では、技術的に高照度での分光感度スペクトルを得る事は困難である。従って、各要素セルの擬似要素セルを用いた多接合太陽電池の出力評価法は、本質的に要素セルの非線形性に基づく不確からしさに影響される事になる。特に、標準スペクトルからずれた近似太陽光光源下での測定の場合、不確からしさは増大する事になる。 Furthermore, amorphous solar cells (such as a-Si solar cells and a-SiGe solar cells) and microcrystalline silicon (μc-Si solar cells) used as element cells of multi-junction solar cells are non-linear with respect to the irradiance of the light source. Is known as a large solar cell. The spectral sensitivity of the pseudo-element cell of a multi-junction solar cell is designed based on the spectral sensitivity spectrum of each element cell under the color bias of the multi-junction solar cell, but the irradiance of monochromatic light during spectral sensitivity measurement Is often measured in the range of 5 to 100 μW / nm / cm 2 . Since the solar cell requires a high illuminance of 100 mW / cm 2 in the standard state, the reference cell manufactured based on the spectral sensitivity spectrum at a low illuminance is used in a solar cell with a remarkable nonlinearity with respect to the irradiance. When the output characteristics of the solar cell under the reference condition are measured using, accuracy cannot be maintained. In the spectral sensitivity measurement of a single-junction solar cell, white light with an irradiance of 100 mW / cm 2 is superimposed on monochromatic light, so that a spectral sensitivity spectrum at high illuminance can be obtained. In a junction solar cell, it is difficult to obtain a spectral sensitivity spectrum at high illuminance technically. Therefore, the output evaluation method of the multi-junction solar cell using the pseudo element cell of each element cell is essentially affected by the uncertainty based on the nonlinearity of the element cell. In particular, in the case of measurement under an approximate solar light source deviated from the standard spectrum, the uncertainty is increased.
多接合太陽電池の出力特性を正確に測定する方法として、以下の技術が提案されている。 The following techniques have been proposed as a method for accurately measuring the output characteristics of a multi-junction solar cell.
まず、多接合太陽電池の各要素セルの分光感度を模擬した複数の擬似要素セルを作製し、単一光源で構成された擬似太陽光光源下で、電流が制限される要素セルに対応する擬似要素セルの基準状態下での短絡電流値(校正値)が得られるように光源の照度を調整した後に、多接合太陽電池の出力特性を測定する方法(非特許文献1)が提案されている。 First, a plurality of pseudo-element cells simulating the spectral sensitivity of each element cell of a multi-junction solar cell are manufactured, and the pseudo-cell corresponding to the element cell whose current is limited under a pseudo-sunlight source composed of a single light source. A method of measuring output characteristics of a multi-junction solar cell after adjusting the illuminance of the light source so as to obtain a short-circuit current value (calibration value) under the reference state of the element cell has been proposed (Non-Patent Document 1). .
また、分光放射スペクトルを調整可能な近似太陽光光源を用いて、多接合太陽電池を構成する各要素セルが、基準状態下で生じるであろう電流値を得るために、複数の擬似要素セルから同時に校正値が得られるように分光放射スペクトルを調整する事によって、多接合太陽電池の基準状態下での出力特性を正確に測定しようとする手法(非特許文献2)が提案されている。すなわち、多接合太陽電池を構成する要素セルと実質的に同等の相対分光感度を有する単接合型の擬似要素セルを用いて、近似太陽光光源の各波長帯域の放射照度を調整する事により、各要素セルが基準状態で発生する電流値を同時に得るためのスペクトル条件を得ようとするものである。 In addition, by using an approximate solar light source capable of adjusting the spectral emission spectrum, each element cell constituting the multi-junction solar cell is obtained from a plurality of pseudo-element cells in order to obtain a current value that will occur under a reference state. At the same time, a technique (Non-Patent Document 2) has been proposed that attempts to accurately measure the output characteristics of a multijunction solar cell under a reference state by adjusting the spectral radiation spectrum so that a calibration value can be obtained. That is, by adjusting the irradiance of each wavelength band of the approximate solar light source using a single-junction pseudo-element cell having a relative spectral sensitivity substantially equivalent to the element cell constituting the multi-junction solar cell, The spectral condition for simultaneously obtaining the current value generated in the reference state by each element cell is to be obtained.
上記の多接合太陽電池の測定技術において、前提となるのは分光放射照度を調整可能な近似太陽光光源を用いることである。非特許文献2においては各擬似要素セルから基準スペクトル下で得られる電流値を得るために、エアマスフィルターが付与されたキセノンランプの照射面に補助的なスペクトルを有するランプの照射光を重積し、各ランプの照度を変更することで、分光放射スペクトルを調整する。具体的には、また大面積多接合太陽電池の測定の場合には、複数のキセノンランプと複数のハロゲンランプを組み合わせて、各ランプの照度を変更することで、照射面での分光放射スペクトルと照度むらの調整を行う。
In the measurement technique of the multijunction solar cell described above, the premise is that an approximate solar light source capable of adjusting the spectral irradiance is used. In
つまり多接合太陽電池の出力特性の評価には近似太陽光光源を用いる事が実用的であるが、多くの近似太陽光光源はキセノンランプを用いており、特に800nm以上の波長帯域では輝線スペクトルの影響で合致度は大きく低下する。そしてタンデム型太陽電池のボトムセルの分光感度は600nm〜1100nmにおいて主たる感度を有するためキセノンランプの局所的な帯域の不一致の影響を受けやすい。そのため、多接合太陽電池を測定するための近似太陽光光源は800nm以上の波長領域をフィルタやミラーを用いて分割しハロゲンランプのスペクトルを重積させる事によりスペクトル合致度の向上を図っている。 In other words, it is practical to use an approximate solar light source for evaluating the output characteristics of a multi-junction solar cell, but many approximate solar light sources use a xenon lamp, and particularly in the wavelength band of 800 nm or more, the emission line spectrum The degree of match greatly decreases due to the influence. Since the spectral sensitivity of the bottom cell of the tandem solar cell has a main sensitivity in the range of 600 nm to 1100 nm, it is easily affected by a local band mismatch of the xenon lamp. Therefore, an approximate solar light source for measuring a multi-junction solar cell is designed to improve the degree of spectral coincidence by dividing the wavelength region of 800 nm or more using a filter or mirror and stacking the spectra of halogen lamps.
さらに、基準状態からのずれを補正する方法として、各要素セルの分光感度と相対的に一致した分光感度を有する擬似要素セルを用いて基準状態からのずれを定量化し、試験セルの出力特性を基準状態下で得られる値に補正する測定方法(特許文献1)が提案されている。しかしながら、補正値の正確さを向上させるためには複数のずれた放射照度スペクトル下での測定結果が必要となる。
本発明は、上述の状況を鑑みなされたものであり、多接合太陽電池の基準状態での出力を、その受光面積に関わらず、また、例えば比較的低コストの一灯式の近似太陽光光源を用いて正確に測定評価することを目的とする。 The present invention has been made in view of the above-described situation, and the output of the multi-junction solar cell in the reference state is the same regardless of the light receiving area. The purpose is to accurately measure and evaluate using the.
本発明の測定方法は、複数の要素セルを積層した多接合光電変換素子からなる試験セルの基準状態での出力を、任意の試験光源下で測定した多接合光電変換素子試験セルの出力として測定する測定方法であって、前記試験セルと実質的に同等なスペクトル依存性を有する基準セルの基準状態での出力を得る工程、前記基準セルの基準状態での出力が得られるように前記試験光源の照度を調節する工程、照度調節後の前記試験光源下で前記試験セルの出力を測定する工程を含むことを特徴とする多接合光電変換素子試験セルの出力測定方法なので、多接合太陽電池の基準状態での出力を、その受光面積に関わらず、また、低コストで正確に測定評価することができる。 The measurement method of the present invention measures the output in a reference state of a test cell composed of a multi-junction photoelectric conversion element in which a plurality of element cells are stacked as the output of the multi-junction photoelectric conversion element test cell measured under an arbitrary test light source. A measurement method for obtaining an output in a reference state of a reference cell having a spectral dependence substantially equivalent to that of the test cell, the test light source so as to obtain an output in the reference state of the reference cell The method of measuring the output of the test cell under the test light source after adjusting the illuminance. The output in the reference state can be measured and evaluated accurately at low cost regardless of the light receiving area.
前記基準セルは、前記多接合光電変換素子試験セルを構成する最もスペクトル変化に対して出力特性の変化が大きく現れる2組の要素セルについて、一つの要素セルの基準状態下で発生しうる出力電流から一定比率だけ増加させたときに、他方の要素セルの出力電流を同じ比率だけ減少するように、スペクトル条件を変更した光源の照射下で取得される出力特性である電流ミスマッチの比率を測定し、出力が最大になる該電流ミスマッチ比の値が、前記多接合光電変換素子試験セルと同等である事が好ましく、より正確に多接合光電変換素子試験セルの出力測定・評価可能である。 The reference cell is an output current that can be generated under the reference state of one element cell with respect to two sets of element cells in which the output characteristic changes most greatly with respect to the spectrum change constituting the multi-junction photoelectric conversion element test cell. Measure the ratio of the current mismatch, which is the output characteristic obtained under the irradiation of the light source with the changed spectral conditions, so that the output current of the other element cell decreases by the same ratio when it is increased by a certain ratio. The value of the current mismatch ratio that maximizes the output is preferably equal to that of the multi-junction photoelectric conversion element test cell, so that the output of the multi-junction photoelectric conversion element test cell can be measured and evaluated more accurately.
特に、前記基準セルは、実際の測定対象である複数の前記多接合光電変換素子からなる試験セルからそれらのスペクトル依存性を代表するものとして選別されたものとすることができる。 In particular, the reference cell may be selected from a test cell composed of a plurality of the multi-junction photoelectric conversion elements that are actual measurement objects as representative of their spectral dependence.
その際、前記選別は、基準状態下での前記電流ミスマッチ比と異なる電流ミスマッチ比の2組のスペクトル条件下で、前記複数の前記多接合光電変換素子からなる試験セルの出力特性を測定し、2組のスペクトル条件下で取得された出力の電流ミスマッチ比に対する勾配率がそれらの平均に最も近い多接合太陽電池を選ぶ方法により実施されることを特徴とすると誤差の少ない測定が可能となるので好ましい
言い換えれば、本発明は、前記の目的を達成する一手段として、以下の構成を備える。
At that time, the selection measures the output characteristics of the test cell composed of the plurality of multi-junction photoelectric conversion elements under two sets of spectral conditions of a current mismatch ratio different from the current mismatch ratio under a reference state, It is possible to perform measurement with less error if it is performed by a method of selecting a multi-junction solar cell whose gradient ratio with respect to the current mismatch ratio of the output obtained under two sets of spectral conditions is closest to the average of them. Preferred In other words, the present invention comprises the following configuration as one means for achieving the above object.
本発明にかかる測定方法は、複数の半導体接合を有する多接合光電変換素子の最大出力を評価する方法であって、異なるスペクトル条件の光源の照射下で、実質的に同等なスペクトル依存性を有する基準セルを用いて、前記光電変換素子の出力特性を測定し、基準状態下での前記基準セルの出力特性から、前記光電変換素子の基準状態における最大出力を取得するので、厳密に基準スペクトル条件が得られない単一ランプの低コストな光源下で測定を行っても、被測定光電変換素子が基準セルと同様のスペクトル依存性を有するので、基準セルの出力特性を用いて正確に被測定セルの最大出力を測定できることを特徴とする。 The measurement method according to the present invention is a method for evaluating the maximum output of a multi-junction photoelectric conversion element having a plurality of semiconductor junctions, and has substantially the same spectral dependence under irradiation of a light source having different spectral conditions. Using the reference cell, the output characteristic of the photoelectric conversion element is measured, and the maximum output in the reference state of the photoelectric conversion element is obtained from the output characteristic of the reference cell under the reference state. Even if the measurement is performed under a low-cost light source with a single lamp that cannot obtain the measured voltage, the measured photoelectric conversion element has the same spectral dependence as the reference cell, so the measured characteristics can be accurately measured using the output characteristics of the reference cell. The maximum output of the cell can be measured.
本発明にかかる基準セルは、各要素セルの基準状態下で発生しうる出力電流を変化させた時の前記要素セル間の電流ミスマッチの変化に対する出力特性の依存性が、被測定の前記光電変換素子のものと実質的に同等であり、製造された一群の光電変換素子のスペクトル依存性を代表するものとして選別されるので、製造された多数の光電変換素子に対して正確に出力特性を測定できることを特徴する。 In the reference cell according to the present invention, the dependence of the output characteristics on the change in current mismatch between the element cells when the output current that can be generated under the reference state of each element cell is changed is determined by the photoelectric conversion to be measured. Since it is substantially equivalent to that of the element and is selected as representative of the spectral dependence of a group of manufactured photoelectric conversion elements, output characteristics are accurately measured for a large number of manufactured photoelectric conversion elements. Characterized by being able to do it.
本発明にかかるスペクトル依存性は、複数の半導体接合を有する多接合光電変換素子の中で、最も出力特性の変化が大きく現れる2組の要素セルについて、基準状態下で発生しうる出力電流から微小量だけ一方を変化させたときに、他方を同じ電流量だけ逆符号で変化するように、スペクトル条件を変更した光源の照射下で取得される出力特性であり、基準状態下で取得される特性で規格化されたものであるので、想定されうるスペクトル条件下で基準セルが被測定セルと実質的に同じ依存性を有する事を検証可能であることを特徴とする。 The spectral dependence according to the present invention is very small from the output current that can be generated under the reference state for two sets of element cells in which the output characteristics change most greatly among the multi-junction photoelectric conversion elements having a plurality of semiconductor junctions. This is an output characteristic that is acquired under irradiation of a light source whose spectral conditions have been changed so that when one is changed by the amount, the other changes by the same amount of current with the opposite sign, and is acquired under the reference state. Therefore, it is possible to verify that the reference cell has substantially the same dependency as the measured cell under the spectrum conditions that can be assumed.
本発明にかかる基準セルの選別法は、前記スペクトル依存性の最大出力におけるピーク位置が得られる前記2組の要素セル間の電流ミスマッチ比が前記一群の光電変換素子の平均であるセルを選ぶ方法であり、また、基準状態下での前記電流ミスマッチ比と異なる電流ミスマッチを与える2組のスペクトル条件下で、前記一群の光電変換素子の出力特性を測定し、2組のスペクトル条件下で取得された最大出力の電流ミスマッチ比に対する勾配率が一群の平均に最も近い多接合太陽電池を選ぶ方法である。前記勾配率の平均に近い多接合太陽電池を選ぶ方法は、スペクトル可変型近似太陽光光源が無くても、一般的な近似太陽光光源の2つの異なる分光放射スペクトルによる出力特性を解析する事で、一群の多接合太陽電池のスペクトル依存性を代表する基準セルの選別を可能とすることを特徴としている。 The method of selecting a reference cell according to the present invention is a method of selecting a cell in which a current mismatch ratio between the two sets of element cells from which a peak position at the maximum spectrum-dependent output is obtained is an average of the group of photoelectric conversion elements. In addition, the output characteristics of the group of photoelectric conversion elements are measured under two sets of spectral conditions that give a current mismatch different from the current mismatch ratio under a reference state. This is a method of selecting a multi-junction solar cell whose gradient ratio with respect to the current mismatch ratio of the maximum output is closest to the average of a group. The method of selecting a multi-junction solar cell that is close to the average of the gradient ratios is to analyze the output characteristics of a general approximate solar light source by two different spectral emission spectra without a spectrum variable approximate solar light source. It is characterized by enabling selection of reference cells that represent the spectral dependence of a group of multi-junction solar cells.
付言すれば、また、本発明の測定方法は、高コストな大面積多灯式光源を用いて、擬似要素セルで基準スペクトルを確認しなくても、低コストの大面積単一光源と実質的にスペクトル依存性が同等である基準セルを用いて、正確に大面積多接合太陽電池モジュールの出力特性を測定する事が出来る。 In addition, the measurement method of the present invention is substantially the same as a low-cost large-area single light source using a large-cost multi-area light source, without checking the reference spectrum with a pseudo-element cell. The output characteristics of a large-area multi-junction solar cell module can be accurately measured using a reference cell having the same spectral dependence.
また、本発明の測定方法により、時々刻々と変換する屋外太陽光下で、実質的にスペクトル依存性が同等の基準セルを用いて、正確に多接合太陽電池の出力特性を測定する事が出来る。 In addition, by the measurement method of the present invention, it is possible to accurately measure the output characteristics of a multi-junction solar cell using a reference cell having substantially the same spectral dependence under outdoor sunlight that is converted every moment. .
また、本発明の基準セルは、出力特性のスペクトル依存性が被測定セルと実質的に同等であることが確認されるので、基準セルの基準状態下での出力特性を用いて補正する事で、種々のスペクトル条件下で正確に出力特性を測定する事が出来る。
また、本発明の基準セル選別法は、製造工程で生じる製品間のスペクトル依存性の差異に対して、従来技術では都度擬似要素セルを作製する必要があったが、実質的に平均的なスペクトル依存性を有する基準セルを選別する事が可能であり、選別された基準セルを用いる事で、スペクトル依存性がわずかに異なる一群の多接合太陽電池に対しても正確に出力特性を測定する事が出来る。
In addition, since it is confirmed that the spectrum dependence of the output characteristics of the reference cell of the present invention is substantially equal to that of the cell to be measured, it is possible to correct by using the output characteristics under the reference state of the reference cell. The output characteristics can be accurately measured under various spectral conditions.
In addition, in the reference cell selection method of the present invention, it is necessary to produce a pseudo element cell every time in the prior art, because of the difference in spectral dependence between products that occurs in the manufacturing process. It is possible to select a reference cell having dependency, and by using the selected reference cell, it is possible to accurately measure the output characteristics even for a group of multijunction solar cells having slightly different spectral dependencies. I can do it.
さらには、本発明においては、製造工程で大量に生産される一群の多接合太陽電池を代表するスペクトル依存性有する多接合太陽電池を基準セルとして用いる測定方法であって、各要素セルのシャント成分やダイオード因子、直列抵抗成分の分布を反映した基準セルを用いているため、近似太陽光光源の分光放射スペクトルが変化した場合においても、試験セルの基準状態下での最大出力を測定する条件を正確に再現するものである。また、基準セルの最大出力は、放射照度100mW/cm2の基準状態下で得られたものであるため、前述の擬似要素セルの様な要素セルの非線形に基づく不確からしさが測定結果に含まれない、正確な測定を可能とするものである。
Furthermore, in the present invention, there is provided a measuring method using a spectrum-dependent multijunction solar cell representative of a group of multijunction solar cells produced in large quantities in the manufacturing process as a reference cell, and a shunt component of each element cell. Because the reference cell that reflects the distribution of the diode factor and series resistance component is used, even if the spectral emission spectrum of the approximate solar light source changes, the conditions for measuring the maximum output under the reference state of the test cell It reproduces accurately. In addition, since the maximum output of the reference cell is obtained under a reference state with an irradiance of 100 mW /
言い換えれば、本発明の測定方法は、スペクトル調整が可能な多灯式光源を用いて、擬似要素セルで基準スペクトルを確認しなくても、スペクトル合致度が異なる単一光源と実質的にスペクトル依存性が同等である基準セルを用いて、正確に多接合太陽電池の出力特性を測定する事が出来る。 In other words, the measurement method of the present invention uses a multi-lamp type light source capable of spectral adjustment, and is substantially spectrum-dependent from a single light source having a different degree of spectrum matching without checking the reference spectrum in the pseudo-element cell. It is possible to accurately measure the output characteristics of a multi-junction solar cell using a reference cell having the same characteristics.
本発明者は、上述した従来技術を大面積の多接合光電変換素子の測定に適用した結果、以下に述べる問題があることを発見し、本発明を考案するに到った。つまり
(1)上記のような複数ランプを用いるスペクトル可変型の近似太陽光光源においては、その分光放射スペクトルを基準スペクトルと十分に合致させるために、ランプの種類としてキセノンランプやハロゲンランプ等を用いる必要がある。また、基準状態の放射照度である1000W/m2を照射面位置で得るには、高い定格出力のランプを組み合わせる必要があり、さらに、大面積の多接合太陽電池モジュールを測定する場合には、数多くのランプを照度むら無く配置する必要があり、例えば、それぞれのランプに個別の電源を設け精密に調整することが必要となる。そのため、こうした大面積のスペクトル可変型近似太陽光光源は、従来の単一光源の近時光源に比べて、構造が複雑になり、製造コストが大幅に増大する。さらに、ハロゲンランプの定格出力寿命は100時間程度であるため、基準スペクトルと所定の照度むらの状態を維持するためには、頻繁にランプ交換を行い、都度照度を調整するなど、高度な制御技術並びに熟練が必要となる。
As a result of applying the above-described conventional technique to the measurement of a multi-junction photoelectric conversion element having a large area, the present inventor has found that there is a problem described below, and has devised the present invention. That is, (1) In the spectrum variable type approximate solar light source using a plurality of lamps as described above, a xenon lamp, a halogen lamp, or the like is used as a lamp type in order to sufficiently match the spectral emission spectrum with the reference spectrum. There is a need. Moreover, in order to obtain 1000 W / m 2 that is the irradiance in the reference state at the irradiation surface position, it is necessary to combine a lamp with a high rated output, and when measuring a large-area multi-junction solar cell module, It is necessary to arrange a large number of lamps without uneven illuminance, and for example, it is necessary to provide individual power sources for the respective lamps and precisely adjust them. For this reason, such a large-area spectrum-variable approximate solar light source has a complicated structure and a large increase in manufacturing cost compared to a conventional single light source. Furthermore, because the rated output life of halogen lamps is about 100 hours, advanced control technology such as frequent lamp replacement and adjustment of illuminance each time is necessary to maintain the standard spectrum and predetermined illuminance unevenness. In addition, skill is required.
スペクトル可変型の近似太陽光光源は、多接合太陽電池の出力特性を正確に測定することが出来るが、上記の理由から、研究室で開発される小面積の多接合太陽電池に用いられることが主であり、大面積太陽電池モジュール用の光源としては、非常に高コストなものとなってしまう。 The spectrally variable approximate solar light source can accurately measure the output characteristics of multijunction solar cells, but for the above reasons, it can be used for small-area multijunction solar cells developed in laboratories. As a main light source for a large-area solar cell module, it becomes very expensive.
(2)また、屋外太陽光を用いて多接合太陽電池を測定するための基準スペクトルを得るために、上述の擬似要素セルを用いて、いずれの擬似要素セルからも同時に基準スペクトル下で得られる電流値を再現するスペクトル条件を待つと言う方法が考えられる。 (2) In addition, in order to obtain a reference spectrum for measuring a multi-junction solar cell using outdoor sunlight, the above-described pseudo-element cell is used and simultaneously obtained from any pseudo-element cell under the reference spectrum. A method of waiting for a spectral condition for reproducing the current value is conceivable.
しかしながら、太陽の放射照度スペクトルは、エアマス(大気圧と太陽高度、高度)及び大気混濁度、下降水量、オゾン、アルベド等の影響を受けて変化する。一日の太陽の放射照度スペクトル範囲においても、基準スペクトル条件が得られるのは2回程度であり、測定も数分以内に完了する必要がある。さらに、季節によっては一日中基準スペクトル条件が得られないことがある。したがって、太陽光スペクトルを用いて正確に基準状態の太陽電池の出力特性を得ることは、非常に困難である。 However, the solar irradiance spectrum changes under the influence of air mass (atmospheric pressure and solar altitude, altitude) and atmospheric turbidity, falling water amount, ozone, albedo and the like. Even in the solar irradiance spectrum range of the day, the reference spectral condition is obtained about twice, and the measurement needs to be completed within a few minutes. Furthermore, depending on the season, the reference spectral conditions may not be obtained throughout the day. Therefore, it is very difficult to accurately obtain the output characteristics of the solar cell in the reference state using the sunlight spectrum.
(3)さらに、多接合太陽電池の出力特性は、要素セルの短絡状態のみならず、各要素セルがバイアス状態下で影響されるシャント成分及び直列抵抗成分、ダイオード因子等を考慮しなければならず、また、特に、多接合太陽電池は、その製造時の製膜工程及び加工工程等の条件変動で、前述の多接合太陽電池の出力特性に与える因子が変化するため、スペクトル依存性に一定の分布が生じるはずである。従って、各要素セルの分光感度と相対的に一致した分光感度を有する擬似要素セルを用いて基準状態からのずれを定量化し、試験セルの出力特性を基準状態下で得られる値に補正する測定方法(特許文献1)では、製造工程で大量に生産される全ての多接合太陽電池に対して、ずれを都度測定する必要があり、煩雑であり、実用性に問題がある。つまり、特許文献1で開示された手法で基準様態下での出力特性を取得する方法は、製造ラインで大量に生産される多接合太陽電池の出力特性の評価には、低コストな一般的な単一擬似太陽光源が用いる事が出来ない事や、擬似光源のずれの大きさと多接合太陽電池のスペクトル依存性の分布の影響に基づく測定精度や、補正精度を向上させるために一つの太陽電池に対して多数の測定回数及び測定時間が必要となると言う問題がある
ここで本発明の測定方法の概略を簡単に説明すると。本発明の方法は順番に以下からなる
(1)疑似要素セルの基準状態での短絡電流(校正値)を得る。
(2)疑似要素セルの校正値で二灯式光源の照度を合わせ基準状態化し、基準セル候補の基準状態での出力を得る。また、その状態から、二灯式光源を用いスペクトル条件(電流ミスマッチ比)を代えて測定することにより複数の試験セルの中の基準セル候補から基準セルを選別する。
(3)例えば一灯式光源の試験光源の照度を、前記基準セルの基準状態での出力PMAX(二灯式光源で測定された)がでるように調節する。
(5)調節後の例えば一灯式光源の試験光源で試験セルの測定をすることで試験セルの基準状態での出力(PMAX、つまり最大出力)が得られる。
(3) Furthermore, the output characteristics of a multi-junction solar cell must consider not only the short-circuit state of the element cells, but also the shunt component and series resistance component, diode factor, etc. that are affected by each element cell under a bias condition. In particular, the multijunction solar cell has a constant spectral dependence because the factors that affect the output characteristics of the multijunction solar cell described above change due to fluctuations in conditions such as the film forming process and the processing process during manufacture. Should result in a distribution. Therefore, a measurement that quantifies the deviation from the reference state using a pseudo-element cell that has a spectral sensitivity that relatively matches the spectral sensitivity of each element cell, and corrects the output characteristics of the test cell to a value obtained under the reference state. In the method (Patent Document 1), it is necessary to measure the deviation every time for all the multi-junction solar cells produced in large quantities in the manufacturing process, which is complicated and problematic in practicality. In other words, the method for obtaining the output characteristics under the reference mode by the method disclosed in
(2) The illuminance of the two-lamp type light source is adjusted with the calibration value of the pseudo element cell to obtain a reference state, and an output of the reference cell candidate in the reference state is obtained. In addition, from this state, a reference cell is selected from reference cell candidates among a plurality of test cells by performing measurement using a two-lamp light source while changing the spectrum condition (current mismatch ratio).
(3) For example, the illuminance of the test light source of the one-lamp type light source is adjusted so that the output P MAX (measured by the two-lamp type light source) in the reference state of the reference cell is obtained.
(5) By measuring the test cell with a test light source of, for example, a one-lamp type light source after adjustment, an output (P MAX , that is, maximum output) in the reference state of the test cell can be obtained.
以下、太陽電池を例として、実施の最良の形態を示して本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to a solar cell as an example, showing the best mode of implementation.
まず、多接合太陽電池のスペクトル依存性について説明する。要素セルが直列に接続された場合、多接合太陽電池の出力特性は電流を制限する要素セルにより制限される。図1はトップ層としてアモルファスシリコン太陽電池とボトム層として微結晶シリコン太陽電池を直列に接続し、910mm×455mmサイズのガラス基板上に100段の集積構造を形成したタンデム型太陽電池モジュールのスペクトル依存性を示している。キセノンランプとハロゲンランプ及び光学フィルタからなる近似太陽光光源下で、タンデム型太陽電池の要素セルのトップ層とボトム層の分光感度と相対的に一致した分光感度を有する擬似要素セルを用いて、各ランプの放射照度を変化させている。トップ用の擬似要素セルは単接合型アモルファスシリコン太陽電池に、複数の色ガラスフィルターを付与し、タンデム型太陽電池のトップ層の相対分光感度と実質的に一致させている。さらに、ボトム用の擬似要素セル:シングルのセルは単接合型微結晶シリコン太陽電池に色ガラスフィルターを付与し、タンデム型太陽電池のボトム層の相対分光感度と実質的に一致させている。図1の横軸のIt及びIbはそれぞれ、近似太陽光光源下で各擬似要素セルが出力する短絡電流値を、基準状態下での短絡電流地(校正値)で除算したものである。Ib/Itは基準状態において各要素セルの光電流がバランスしているタンデム型太陽電池の電流ミスマッチ比に該当し、光源の基準状態からのズレを表し、1の時には基準状態である。基準状態において各要素セルの光電流がバランスしているタンデム型太陽電池に対しては、光源の基準状態からの差異により、1より小さいときにはトップ層電流過多、1より大きいときはボトム電流過多の状態を反映している状態である。 First, the spectral dependence of a multijunction solar cell will be described. When the element cells are connected in series, the output characteristics of the multi-junction solar cell are limited by the element cell that limits the current. Fig. 1 shows the spectral dependence of a tandem solar cell module in which an amorphous silicon solar cell as the top layer and a microcrystalline silicon solar cell as the bottom layer are connected in series, and a 100-stage integrated structure is formed on a glass substrate of 910 mm x 455 mm size. Showing sex. Under the approximate solar light source consisting of a xenon lamp, a halogen lamp, and an optical filter, using a pseudo element cell having a spectral sensitivity that relatively matches the spectral sensitivity of the top layer and the bottom layer of the element cell of the tandem solar cell, The irradiance of each lamp is changed. The pseudo element cell for the top provides a single-junction amorphous silicon solar cell with a plurality of colored glass filters, and substantially matches the relative spectral sensitivity of the top layer of the tandem solar cell. Furthermore, the pseudo element cell for the bottom: the single cell gives a color glass filter to the single-junction microcrystalline silicon solar cell, and substantially matches the relative spectral sensitivity of the bottom layer of the tandem solar cell. Each of It and Ib on the horizontal axis in FIG. 1 is obtained by dividing the short-circuit current value output by each pseudo-element cell under the approximate solar light source by the short-circuit current ground (calibration value) under the reference state. Ib / It corresponds to the current mismatch ratio of the tandem solar cell in which the photocurrents of the respective element cells are balanced in the reference state, and indicates a deviation from the reference state of the light source. For a tandem solar cell in which the photocurrent of each element cell is balanced in the reference state, due to the difference from the reference state of the light source, the top layer current is excessive when it is less than 1, and the bottom current is excessive when it is greater than 1. It is a state reflecting the state.
図1は試験セルのスペクトル依存性を表す。は、ItとIbは疑似要素セルの電流値を反映した量である。これで光源の状態が表される。について以下の(式1)が成り立つようにランプ照度を調整した後に、タンデム型太陽電池モジュールのIV測定を行い出力特性の変化を記したものである。 FIG. 1 represents the spectral dependence of the test cell. , It and Ib are quantities reflecting the current value of the pseudo element cell. This represents the state of the light source. After adjusting the lamp illuminance so that the following (Equation 1) is satisfied, IV measurement of the tandem solar cell module is performed, and the change in the output characteristics is described.
上式に基づくスペクトル依存性の評価方法は、多接合太陽電池の基準状態からの摂動として出力特性のスペクトル依存性を評価する手法であるため、高精度で再現良くスペクトル依存性を提供する手法である。 The spectral dependence evaluation method based on the above equation is a technique for evaluating the spectral dependence of output characteristics as a perturbation from the reference state of a multijunction solar cell. is there.
図1の試験セルは、タンデム型太陽電池であって、基準条件(Ib/It=1)で短絡電流(Isc)が最大となるものを選んで図示したものである。従って、基準条件でトップセルとボトムセルは所謂電流マッチングっしている。 The test cell of FIG. 1 is a tandem solar cell, and a cell having the maximum short-circuit current (Isc) under the reference condition (Ib / It = 1) is selected and illustrated. Therefore, the top cell and the bottom cell are so-called current matching under the reference condition.
また、3層以上の半導体接合を有する多接合太陽電池については、3つの疑似要素セルを用いても、最もスペクトル依存性が大きく現れる2つの擬似要素セルを用いて電流ミスマッチ比を定める事により、高い精度で再現良くスペクトル依存性の評価が可能となる。 In addition, for multi-junction solar cells having three or more layers of semiconductor junctions, even if three pseudo element cells are used, the current mismatch ratio is determined by using two pseudo element cells that have the largest spectral dependence. Spectral dependence can be evaluated with high accuracy and good reproducibility.
次に基準セルについて説明する。本発明における、基準セルは、試験セルと実質的に同等のスペクトル依存性を有するものである。対象となる多接合太陽電池の各要素セルの相対分光感度が実質的に一致しており、各要素セルのバイアス電圧化での電流電圧特性に影響する、シャント成分やダイオード因子、直列抵抗成分が実質的に一致し、放射照度に対する線形性も実質的に同等であることが望ましい。基準セルは、前記の各要素セルの特性を等価回路的に再現する一群の光電変換素子の組み合わせであっても良い。さらに好ましくは、対象となる一群の多接合太陽電池を代表するスペクトル依存性を有する試験セルそのものから、分割、分離されたものであっても良い。 Next, the reference cell will be described. In the present invention, the reference cell has substantially the same spectral dependence as the test cell. The relative spectral sensitivities of each element cell of the target multi-junction solar cell are substantially the same, and there are shunt components, diode factors, and series resistance components that affect the current-voltage characteristics when bias voltage is applied to each element cell. It is desirable that they are substantially the same and the linearity with respect to irradiance is substantially equivalent. The reference cell may be a combination of a group of photoelectric conversion elements that reproduce the characteristics of the element cells in an equivalent circuit. More preferably, it may be divided and separated from a test cell itself having a spectrum dependency representing a group of multi-junction solar cells as a target.
基準セルの基準状態下の出力特性は、前記の基準状態が確認された条件下で測定されて得られたものでなければならない。前期の擬似太陽光光源の放射照度は、基準セルの基準状態下でのPmax、Isc、FF、Vocの内の一つあるいはそれ以上が、再現されるように調整される必要がある。 The output characteristics of the reference cell under the reference state must be obtained by measurement under the condition in which the reference state is confirmed. The irradiance of the pseudo solar light source in the previous period needs to be adjusted so that one or more of Pmax, Isc, FF, and Voc under the reference state of the reference cell is reproduced.
さらに、基準セルの選別法について説明する。本発明における、基準セルの選別法は、製造された一群の多接合太陽電池のスペクトル依存性の分布に基づき、平均的なスペクトル依存性を有する多接合太陽電池を選別する方法である。 Further, a reference cell selection method will be described. The reference cell sorting method in the present invention is a method for sorting multijunction solar cells having an average spectral dependence based on the spectral dependence distribution of a group of manufactured multijunction solar cells.
つまり、本発明による基準セルの選別方法は、一群の多接合太陽電池からなる試験セルの後述する勾配率の平均値に最も近い多接合太陽電池を基準セルとして選ぶ事により、一群の多接合太陽電池のスペクトル依存性を代表する基準セルを選別する方法であり、前記要素セルの分光感度の差異や要素セルのバイアス電圧下での電流ミスマッチ比が、一群の太陽電池から代用的なものを正確かつ効果的に選ぶ具体的な手法を提供する。 In other words, the reference cell sorting method according to the present invention selects a group of multijunction solar cells by selecting, as a reference cell, a multijunction solar cell that is closest to the average value of the gradient rate described later of the test cells composed of the group of multijunction solar cells. This is a method of selecting a reference cell that represents the spectral dependence of the battery. The difference in spectral sensitivity between the element cells and the current mismatch ratio under the bias voltage of the element cells are accurate. Provide specific methods for effective and effective selection.
具体的には最大出力のスペクトル依存性について平均的なものを選別する場合は、図1の最大出力のスペクトル依存性においてピーク位置に相当する電流ミスマッチ比が、一群の太陽電池の平均値に相当する多接合太陽電池を基準セルに選ぶ。好ましくは、多接合太陽電池の母集団の統計を反映する一群の太陽電池を無作為に抽出し、一群の多接合太陽電池について、前期スペクトル依存性を評価し、最大出力のピークが得られる電流ミスマッチ比の平均値と一致する位置に最大出力のピークが得られている多接合太陽電池を基準セルとして選別する。 Specifically, when selecting an average for the spectral dependence of the maximum output, the current mismatch ratio corresponding to the peak position in the spectral dependence of the maximum output in FIG. 1 corresponds to the average value of a group of solar cells. Select a multi-junction solar cell as the reference cell. Preferably, a group of solar cells reflecting the population statistics of the multi-junction solar cells is randomly extracted, the previous spectrum dependence of the group of multi-junction solar cells is evaluated, and a peak current is obtained. A multi-junction solar cell having a maximum output peak at a position that matches the average mismatch ratio is selected as a reference cell.
本発明による選別法を用いる事で、安価な単一光源の疑似太陽光光源で、試験セルのスペクトル依存性を代表する基準セルを選別する事が可能である。電流ミスマッチ比が1より小さくなる放射照度分布を有する近似太陽光光源1と、電流ミスマッチ比が1より大きくなる放射照度分布を有する近似太陽光光源2とを用いてPmaxを測定し、以下の(式2)、(式3)、及び(式4)を用いて、基準スペクトル条件(Ib/It=1)近傍での勾配率Rを求める。
By using the sorting method according to the present invention, it is possible to sort a reference cell representing the spectrum dependence of a test cell with an inexpensive single-light-source pseudo-sunlight source. Pmax is measured using an approximate solar
従来の擬似要素セルを用いて基準状態(STC)を確認して得られた多接合太陽電池の変換効率と、STCでの変換効率が分かっている多接合太陽電池を基準セルとして異なる放射照度スペクトル下で取得された変換効率との誤差を検証する事により本測定法の有効性を確認した。 Different irradiance spectra using a multi-junction solar cell whose conversion efficiency in STC is known and the conversion efficiency of the multi-junction solar cell obtained by confirming the reference state (STC) using a conventional pseudo-element cell as a reference cell The effectiveness of this measurement method was confirmed by verifying the error from the conversion efficiency obtained below.
(実施例1)
実施例1の多接合太陽電池を基準セルとして用いる事により、多接合太陽電池の最大出力を測定する方法について、図3を用いて説明する。
Example 1
A method of measuring the maximum output of the multijunction solar cell by using the multijunction solar cell of Example 1 as a reference cell will be described with reference to FIG.
まず、疑似要素セルの作製した。つまり、ガラス基板上にトップ層(アモルファスシリコンセル)とボトム層(薄膜微結晶シリコンセル)の積層構造を有するタンデム型太陽電池を作製した。得られたタンデム型太陽電池について、カラーバイアス光を重責しながら単色光を照射することで、図4に示したトップ層とボトム層の相対分光感度特性を得た。 First, a pseudo element cell was produced. That is, a tandem solar cell having a laminated structure of a top layer (amorphous silicon cell) and a bottom layer (thin film microcrystalline silicon cell) on a glass substrate was produced. The obtained tandem solar cell was irradiated with monochromatic light while paying attention to the color bias light, thereby obtaining the relative spectral sensitivity characteristics of the top layer and the bottom layer shown in FIG.
トップ層の分光感度と相対的に一致する擬似要素セルを作製するために、ガラス基板上に単接合型アモルファスシリコン太陽電池を作製し、CAW500(HOYA製)のガラスフィルターをセル上面に取り付けた。相対分光感度の合致度を向上させるために、アモルファスシリコンi層の膜厚について3000Aを中心に変化させた。 In order to produce a pseudo-element cell that relatively matches the spectral sensitivity of the top layer, a single-junction amorphous silicon solar battery was produced on a glass substrate, and a glass filter of CAW500 (made by HOYA) was attached to the upper surface of the cell. In order to improve the degree of coincidence of the relative spectral sensitivities, the film thickness of the amorphous silicon i layer was changed around 3000A.
また、ボトム層の分光感度と相対的に一致する擬似要素セルを作製するために、ガラス基板上に単接合型薄膜微結晶シリコン太陽電池を作製し、A71(ATG製)とM30(HOYA製)のガラスフィルターをセル上面に取り付けた。相対分光感度の合致度を向上させるために、薄膜微結晶シリコンi層の膜厚について2μmを中心に変化させた。 In addition, in order to produce a pseudo element cell that relatively matches the spectral sensitivity of the bottom layer, a single-junction thin-film microcrystalline silicon solar cell is produced on a glass substrate, and A71 (manufactured by ATG) and M30 (manufactured by HOYA). A glass filter was attached to the upper surface of the cell. In order to improve the degree of coincidence of the relative spectral sensitivity, the film thickness of the thin film microcrystalline silicon i layer was changed around 2 μm.
トップ層とボトム層の擬似要素セルは、光照射により安定化させた後に(財)日本品質機構(JQA)にて、基準状態における校正値としての短絡電流の値付けを行った。 The pseudo-element cells of the top layer and the bottom layer were stabilized by light irradiation, and then the short-circuit current was calibrated as a calibration value in the reference state by the Japan Quality Organization (JQA).
キセノンランプとハロゲンランプとで構成され図5で示した分光放射分布を有する2灯式光源下で、トップ層用擬似要素セルとボトム層用擬似要素セルからJQAで値付けされた校正値が得られるように、キセノンランプとハロゲンランプの照度を調整した。 Under the two-lamp type light source composed of a xenon lamp and a halogen lamp and having the spectral radiation distribution shown in FIG. 5, a calibration value priced by JQA is obtained from the top layer pseudo element cell and the bottom layer pseudo element cell. The illuminance of the xenon lamp and the halogen lamp was adjusted as shown.
このようにして照度及びスペクトル合わせを行った二灯式光源を用いて、図4で示した分光感度が得られたタンデム型太陽電池をセル温度が25℃になるように水冷しながらIV特性を測定すると変換効率10.56%が得られた。 The tandem solar cell having the spectral sensitivity shown in FIG. 4 was obtained using the two-lamp type light source with the illuminance and the spectrum adjusted in this way while cooling the cell temperature to 25 ° C. with IV characteristics. When measured, a conversion efficiency of 10.56% was obtained.
基準セルのIV特性のスペクトル依存性を評価するために、2灯式光源のキセノンランプとハロゲンランプの照度を変化させタンデム型太陽電池の測定を実施した。具体的には、電流ミスマッチ比が0.818となる放射照度条件となるように、トップ層用擬似要素セルから校正値の1.1倍の短絡電流が、ボトム層用擬似要素セルから校正値の0.9倍の短絡電流が同時に得られるように調整し、タンデム型太陽電池のIV特性を測定した。 In order to evaluate the spectral dependence of the IV characteristics of the reference cell, the illuminance of the xenon lamp and the halogen lamp of the two-lamp light source was changed, and the tandem solar cell was measured. Specifically, a short-circuit current 1.1 times the calibration value from the top layer pseudo-element cell is set to a calibration value from the bottom layer pseudo-element cell so that the irradiance condition has a current mismatch ratio of 0.818. It adjusted so that 0.9 times of short circuit current might be obtained simultaneously, and measured the IV characteristic of the tandem type solar cell.
電流ミスマッチ比が0.8から1.2の範囲で2灯式光源のスペクトル条件を変化させる事により、図3の実線で示したスペクトル依存性がえられた。ここで、電流ミスマッチ比の範囲は、各要素セルの電流値の変化の範囲が約±10%である事を前提としている。電流ミスマッチ比が0.8より小さいか、または1.2より大きい範囲では要素セルの出力電流が基準状態で得られる電流値に対して10%以上変化するため、要素セルの放射照度に対する線形性が保証されなくなる事が理由である。各要素セルの最大出力のピークが得られる電流ミスマッチ比は1.0であった。 By changing the spectral conditions of the two-lamp type light source in the current mismatch ratio range of 0.8 to 1.2, the spectral dependence shown by the solid line in FIG. 3 was obtained. Here, the range of the current mismatch ratio is based on the premise that the range of change in the current value of each element cell is about ± 10%. In the range where the current mismatch ratio is less than 0.8 or greater than 1.2, the output current of the element cell changes by 10% or more with respect to the current value obtained in the reference state. The reason is that it is no longer guaranteed. The current mismatch ratio at which the maximum output peak of each element cell was obtained was 1.0.
前記のタンデム型太陽電池を基準セルとして、2種類のタンデム型太陽電池の最大出力を測定した。基準セルと同等の膜厚構成を有するタンデム型太陽電池の試験セル2と異なる膜厚構成を有する試験セル1について、高近似2灯式光源とそれぞれの要素セルの相対分光感度と実質的に一致する擬似要素セル並びに校正値を用いて、基準状態(STC)でIV測定を行うとそれぞれの変換効率は試験セル1が10.53%、試験セル2が10.56%であった。
Using the tandem solar cell as a reference cell, the maximum output of two types of tandem solar cells was measured. The
次に、2灯式光源の放射照度スペクトルを、疑似要素セルの値を用いて電流ミスマッチ比として0.8から1.2となるように意図的に変化させつつ、各放射照度スペクトル条件下で基準セルから10.56%の変換効率が得られるように光強度のみを調整した。
その後で、試験セル1試験セル2に対してIV測定を行い、変換効率を測定した結果を表1に示す。
Next, while intentionally changing the irradiance spectrum of the two-lamp type light source so that the current mismatch ratio becomes 0.8 to 1.2 using the value of the pseudo-element cell, Only the light intensity was adjusted so that a conversion efficiency of 10.56% was obtained from the reference cell.
Then, IV measurement was performed with respect to the
ところで、試験セル1と試験セル2のスペクトル依存性を評価すると図3でしめした黒丸と白丸の結果であった。試験セル1は、変換効率のピークが得られる電流ミスマッチ比が0.96と基準セルより0.04だけ低い値を示している。図3から電流ミスマッチ比が0.96より小さくなるスペクトル条件下では基準セルより試料1の変換効率が大きくなり、一方電流ミスマッチ比が1より大きくなるスペクトル条件下では、試料1の変換効率が小さくなることが判る。ただし、その差異は±2%未満であることが確認できる。一方、試験セル2は、基準セルと同一のスペクトル依存性を有するため全てのスペクトル条件下で同一の変換効率を示した。
By the way, when the spectral dependence of the
以上から、本発明による測定方法により、試料と実質的に同一のスペクトル依存性を有する基準セルを用いることにより、基準スペクトルに近いスペクトル条件下で正確な変換効率を測定する事が出来た。 From the above, by using the measurement method according to the present invention, it was possible to measure the exact conversion efficiency under the spectral conditions close to the reference spectrum by using the reference cell having substantially the same spectral dependence as the sample.
(比較例1)
非特許文献1に示される従来の照度調整法により、与えられた光源の分光放射照度下で電流が制限される要素セルに対応する擬似要素セルを用いて擬似太陽光光源の放射照度を調整した後に、多接合太陽電池の変換効率を測定した。
(Comparative Example 1)
By the conventional illuminance adjustment method shown in
表2は、電流ミスマッチ比が0.8、0.9、1.0、1.1、1.2となる擬似太陽光光源の放射照度下で試料2の変換効率を測定した結果を示している。
Table 2 shows the results of measuring the conversion efficiency of
また、電流ミスマッチ比として、1.0、1.1、1.2が得られる分光放射スペクトル条件下で、試料2はトップ層で電流制限されるため、トップ用擬似要素セルを基準セルとして用い、その校正値が得られるように放射照度を調整し、出力特性を測定すると、10.56%、10.73%、11.06%の変換効率となった。
In addition, the
電流ミスマッチ比として、1.0が得られる光源の分光放射スペクトル条件下では、実質的に基準スペクトル条件と一致するため、STCでの変換効率と一致するが、基準スペクトル条件からずれた分光放射スペクトル条件下では測定される変換効率には大きな誤差を生じている。これは、律速要素セル短絡電流マッチの方法では、タンデム太陽電池の各要素セルのFF値は光源スペクトル条件毎に異なるので、それが変換効率の測定結果の誤差を生じる原因となっていることを示している。特に、デバイス品質の優れた要素セルを含む多接合太陽電池では、FF値のスペクトル依存性が大きくなるので、変換効率の測定誤差はより大きくなる傾向があると考えられる。 Under the spectral emission spectral condition of the light source that obtains a current mismatch ratio of 1.0, it substantially matches the reference spectral condition, so it matches the conversion efficiency in STC, but deviates from the reference spectral condition. Under the conditions, there is a large error in the measured conversion efficiency. This is because, in the rate limiting element cell short-circuit current matching method, the FF value of each element cell of the tandem solar cell differs for each light source spectrum condition, which causes an error in the conversion efficiency measurement result. Show. In particular, in a multi-junction solar cell including element cells having excellent device quality, the spectral dependence of the FF value is increased, so that it is considered that the measurement error of conversion efficiency tends to increase.
(実施例2)
実施例2では、トップ層アモルファスシリコンセルとボトム層薄膜微結晶シリコンセルからなるタンデム型太陽電池モジュール製品から無作為に20個を基準セル候補として抽出し、それらの基準セル候補から代表的なスペクトル依存性を有する2個を基準セルとして用いて、その他の450個の類似のスペクトル依存性を有する製品の測定を実施した。
(Example 2)
In Example 2, 20 samples are randomly extracted as reference cell candidates from a tandem solar cell module product including a top layer amorphous silicon cell and a bottom layer thin film microcrystalline silicon cell, and representative spectra are obtained from these reference cell candidates. Two other products with similar spectral dependence were measured using two with dependence as reference cells.
図5に抽出した基準セル候補20個のスペクトル依存性の結果を示す。また、これらの基準セル候補の最大出力がピークとなる電流ミスマッチ比を表3に示した。20個の電流ミスマッチ比の平均として0.950が得られた。 FIG. 5 shows the results of the spectrum dependence of the 20 reference cell candidates extracted. Table 3 shows the current mismatch ratio at which the maximum output of these reference cell candidates has a peak. An average of 50 current mismatch ratios of 0.950 was obtained.
450個のタンデム型太陽電池製品の出力を、一灯式のスペクトルが変更できないキセノンパルス式光源を用いて測定した。ちなみに、キセノンパルス式光源の電流ミスマッチ比は0.90であった。 The output of 450 tandem solar cell products was measured using a xenon pulse light source that cannot change the spectrum of a single lamp. Incidentally, the current mismatch ratio of the xenon pulse type light source was 0.90.
具体的には、まず、このキセノンパルス式光源の照度を、基準セル3が出力41.2Wとなるように照度調整を行った。次に、その状態のキセノンパルス式光源下、450個のタンデム型太陽電池製品の出力測定を実施した。この測定結果を本発明の測定方法の結果とする。
Specifically, first, the illuminance of the xenon pulse type light source was adjusted so that the output of the
比較の為に、同一の450個のタンデム型太陽電池製品について、電流ミスマッチ比が1.00となる様にキセノンランプとハロゲンランプの照度を調整した大面積2灯式光源下で最大出力を測定した。この測定結果をほぼ基準状態で測定された結果と考える。 For comparison, the maximum output of the same 450 tandem solar cell products was measured under a large-area two-lamp light source in which the illuminance of the xenon lamp and halogen lamp was adjusted so that the current mismatch ratio was 1.00. did. This measurement result is considered as a result of measurement in a substantially standard state.
これら、本発明の測定方法の結果と、ほぼ基準状態で測定された結果とを比較すると1%以内の誤差で一致した。つまり、安価な一灯式光源を用いても、本発明の測定方法を用いることで、高価な2灯式光源と遜色なく正確に多接合光電変換素子の出力が測定可能であることが判った。 When the results of the measurement method of the present invention were compared with the results measured in the almost standard state, they matched with an error within 1%. In other words, it was found that the output of the multi-junction photoelectric conversion element can be measured accurately and inferior to an expensive two-lamp light source by using the measurement method of the present invention even if an inexpensive one-lamp light source is used. .
試みに図5中の5で示される平均的な電流ミスマッチ比から外れたタンデム型太陽電池を基準セルとして照度調整を行い450個のモジュールの最大出力の測定結果を得て、それらと前記ほぼ基準状態で測定された結果とを比較すると、5%以上の誤差があることが確認された。つまり、本発明による基準セルの選別法により選別された基準セルを用いいることで、スペクトル調整ができない安価な一灯式光源を用いてもその照度調整のみを行う事により、一群の多接合太陽電池の最大出力を正確に測定する事が出来た。 The illuminance adjustment was performed using a tandem solar cell deviating from the average current mismatch ratio indicated by 5 in FIG. 5 as a reference cell, and the maximum output measurement results of 450 modules were obtained. When compared with the results measured in the state, it was confirmed that there was an error of 5% or more. In other words, by using the reference cell selected by the reference cell selection method according to the present invention, even if an inexpensive one-lamp type light source that cannot perform spectrum adjustment is used, only the illuminance adjustment is performed. The maximum output of the battery could be measured accurately.
(実施例3)
実施例3では、基準セルの選別に際して無作為に抽出されたタンデム型太陽電池のスペクトル依存性並びに出力特性のピークが得られる電流ミスマッチ比が測定できない際に、一般的な擬似太陽光光源を用いて一群のタンデム型太陽電池のスペクトル依存性を代表する基準セルを選別する方法を例示する。
(Example 3)
In Example 3, a general pseudo-solar light source is used when the spectral dependence of a tandem solar cell randomly selected at the time of selecting a reference cell and the current mismatch ratio at which the peak of output characteristics can be obtained cannot be measured. A method for selecting a reference cell representative of the spectral dependence of a group of tandem solar cells is illustrated.
前記実施例2で無作為に抽出した20個のタンデム型太陽電池について、製造工程で用いられるキセノンパルス式光源を用いて最大出力を測定した。測定時の前記光源の電流ミスマッチ比は0.96であった。前記光源のエアマスフィルターを交換し、前期光源の分光放射スペクトルを変更し電流ミスマッチ比を測定すると1.07であった。エアマスフィルター交換後の前記光源を用いて前記20個のタンデム型太陽電池について最大出力の測定を行い、以下の(式2)で示される勾配率Rの評価を行った。 For the 20 tandem solar cells randomly extracted in Example 2, the maximum output was measured using the xenon pulse light source used in the manufacturing process. The current mismatch ratio of the light source at the time of measurement was 0.96. It was 1.07 when the air mass filter of the said light source was replaced | exchanged, the spectral radiation spectrum of the previous light source was changed, and the current mismatch ratio was measured. The maximum output of the 20 tandem solar cells was measured using the light source after air mass filter replacement, and the gradient rate R shown in the following (Equation 2) was evaluated.
1 基準セルと異なる膜厚構成を有するタンデム型太陽電池のスペクトル依存性
2 基準セルと同じ膜厚構成を有するタンデム型太陽電池のスペクトル依存性
3 一群のタンデム型太陽電池の最大出力電流ミスマッチ比の平均値に近いスペクトル依存性を有する太陽電池のスペクトル依存性(太い実線)
4 一群のタンデム型太陽電池の最大出力電流ミスマッチ比の平均値に近いスペクトル依存性を有する太陽電池のスペクトル依存性(太い破線)
5 一群のタンデム型太陽電池の最大出力電流ミスマッチ比の平均値から外れたスペクトル依存性を有する太陽電池のスペクトル依存性
1 Spectral dependence of a tandem solar cell having a film thickness configuration different from that of the
4 Spectral dependence of a solar cell having a spectral dependence close to the average value of the maximum output current mismatch ratio of a group of tandem solar cells (thick dashed line)
5 Spectral dependence of solar cells with spectral dependence deviating from the average value of the maximum output current mismatch ratio of a group of tandem solar cells
Claims (4)
前記試験セルと実質的に同等なスペクトル依存性を有する基準セルの基準状態での出力を得る工程、
前記基準セルの基準状態での出力が得られるように前記試験光源の照度を調節する工程、
照度調節後の前記試験光源下で前記試験セルの出力を測定する工程を含むことを特徴とする多接合光電変換素子試験セルの出力測定方法。 A measurement method for measuring an output in a reference state of a test cell composed of a multi-junction photoelectric conversion element in which a plurality of element cells are stacked as an output of a multi-junction photoelectric conversion element test cell measured under an arbitrary test light source,
Obtaining a reference cell output of a reference cell having substantially the same spectral dependence as the test cell;
Adjusting the illuminance of the test light source so as to obtain an output in a reference state of the reference cell;
A method for measuring an output of a multi-junction photoelectric conversion element test cell, comprising the step of measuring the output of the test cell under the test light source after adjusting the illuminance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004324437A JP4617137B2 (en) | 2004-11-08 | 2004-11-08 | Multijunction photoelectric conversion element test cell output measurement method and reference cell selection method used in the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004324437A JP4617137B2 (en) | 2004-11-08 | 2004-11-08 | Multijunction photoelectric conversion element test cell output measurement method and reference cell selection method used in the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006135196A true JP2006135196A (en) | 2006-05-25 |
JP4617137B2 JP4617137B2 (en) | 2011-01-19 |
Family
ID=36728453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004324437A Expired - Lifetime JP4617137B2 (en) | 2004-11-08 | 2004-11-08 | Multijunction photoelectric conversion element test cell output measurement method and reference cell selection method used in the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4617137B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012143886A1 (en) * | 2011-04-20 | 2012-10-26 | Pasan Sa | Methods and systems for measuring power of at least a photovoltaic device |
JP2016192827A (en) * | 2015-03-30 | 2016-11-10 | 株式会社カネカ | Selecting device for reference solar battery, selecting method for reference solar battery and method of manufacturing solar battery module |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002111030A (en) * | 2000-07-05 | 2002-04-12 | Canon Inc | Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency |
-
2004
- 2004-11-08 JP JP2004324437A patent/JP4617137B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002111030A (en) * | 2000-07-05 | 2002-04-12 | Canon Inc | Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012143886A1 (en) * | 2011-04-20 | 2012-10-26 | Pasan Sa | Methods and systems for measuring power of at least a photovoltaic device |
JP2016192827A (en) * | 2015-03-30 | 2016-11-10 | 株式会社カネカ | Selecting device for reference solar battery, selecting method for reference solar battery and method of manufacturing solar battery module |
Also Published As
Publication number | Publication date |
---|---|
JP4617137B2 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Louwen et al. | Comprehensive characterisation and analysis of PV module performance under real operating conditions | |
US6876187B2 (en) | Method and apparatus for measuring photoelectric conversion characteristics | |
Meusel et al. | Spectral mismatch correction and spectrometric characterization of monolithic III–V multi‐junction solar cells | |
Emery | Measurement and characterization of solar cells and modules | |
US6541754B2 (en) | Method and apparatus for measuring photoelectric conversion characteristics of photoelectric conversion device | |
Smestad et al. | Reporting solar cell efficiencies in solar energy materials and solar cells | |
US8073645B2 (en) | Apparatus and method to characterize multijunction photovoltaic solar cells | |
JP2004134748A (en) | Measuring method and apparatus for photoelectric conversion device, and manufacturing method and apparatus for the photoelectric conversion device | |
JP2006229063A (en) | Method for correcting and predicting measured result of current/voltage characteristic of photoelectric conversion element, method and device for measuring and for manufacturing photoelectric conversion element | |
Leary et al. | Comparison of xenon lamp-based and led-based solar simulators | |
JP4613053B2 (en) | Method for measuring characteristics of multi-junction photoelectric conversion element test cell and spectrum adjustment method for approximate solar light source | |
Looney et al. | Representative identification of spectra and environments (RISE) using k‐means | |
Wang et al. | High efficiency photovoltaics: on the way to becoming a major electricity source | |
Bliss et al. | Indoor measurement of photovoltaic device characteristics at varying irradiance, temperature and spectrum for energy rating | |
JP5013637B2 (en) | Method and apparatus for measuring photoelectric conversion characteristics | |
Osterwald et al. | Effects of spectral error in efficiency measurements of GaInAs-based concentrator solar cells | |
Liu et al. | Indoor and outdoor comparison of CPV III–V multijunction solar cells | |
Osterwald et al. | Concentrator cell efficiency measurement errors caused by unfiltered xenon flash solar simulators | |
JP4617137B2 (en) | Multijunction photoelectric conversion element test cell output measurement method and reference cell selection method used in the method | |
Osterwald et al. | CPV multijunction solar cell characterization | |
Dominguez et al. | Characterization of five CPV module technologies with the Helios 3198 solar simulator | |
JP4617141B2 (en) | Judgment method of characteristic limiting element cell of multi-junction photoelectric conversion element | |
Kenny et al. | Performance measurements of CIS modules: outdoor and pulsed simulator comparison for power and energy rating | |
JP2004273870A (en) | Method and device for measuring laminated photoelectric conversion element | |
Schweiger et al. | Electrical stability of PV modules in different climates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100422 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4617137 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |