JP2006135179A - Method of manufacturing film base member for wiring board and flexible printed board - Google Patents

Method of manufacturing film base member for wiring board and flexible printed board Download PDF

Info

Publication number
JP2006135179A
JP2006135179A JP2004324024A JP2004324024A JP2006135179A JP 2006135179 A JP2006135179 A JP 2006135179A JP 2004324024 A JP2004324024 A JP 2004324024A JP 2004324024 A JP2004324024 A JP 2004324024A JP 2006135179 A JP2006135179 A JP 2006135179A
Authority
JP
Japan
Prior art keywords
film
wiring board
liquid crystal
electroless plating
crystal polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004324024A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004324024A priority Critical patent/JP2006135179A/en
Publication of JP2006135179A publication Critical patent/JP2006135179A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a film base member for a wiring board, which is suitable for high definition and high frequency application and which employs liquid crystal polymer (LCP) for the base member. <P>SOLUTION: A CF silane coated film 111 is formed, in which the surface of a resin film 11 made of liquid crystal polymer (LCP) is activated using carbofunctional silane. Thereafter, a metal film 12 is formed on the resin film 11 with the aid of electroless plating processing, and then heating processing at temperature 200°C for about 30 min is performed to manufacture a film base member 10 for a wiring board improved in adhesion between the resin film 11 and the metal film 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配線基板用フィルム基材の作製方法等に関し、より詳しくは、液晶ポリマーを基板に有する高精密且つ高周波用途に適した配線基板用フィルム基材の作成方法等に関する。   The present invention relates to a method for producing a wiring board film base material, and more particularly to a method for producing a wiring board film base material having a liquid crystal polymer on a substrate and suitable for high-frequency applications.

各種電子機器の高速化、高密度化に伴い、配線基板の高機能化が要求されており、高周波対応並びに高密度化の検討が活発に行われている。特に、モバイル機器の進展に伴う携帯電話用途や液晶ディスプレイ用途においては配線基板のフレキシブル性が必須であり、これに対応した、いわゆるフレキシブルプリント基板(以下、「フレキ基板」と記すことがある。)の開発が活発に進められている。   With the increase in speed and density of various electronic devices, higher functionality of the wiring board is required, and studies on high frequency compatibility and higher density are being actively conducted. In particular, the flexibility of the wiring board is indispensable for mobile phone applications and liquid crystal display applications accompanying the development of mobile devices, and so-called flexible printed circuit boards (hereinafter sometimes referred to as “flexible boards”) corresponding thereto. Is actively being developed.

現在量産されているフレキ基板の配線ルールは、ライン/スペースとして50μm〜100μm程度であるが、最近では、薄銅箔を用いたファインエッチング、あるいはレジストパターン内にメッキ配線膜を成長させる、いわゆるセミアディティブ法を用いることにより高精細配線が形成されている。一般に、銅箔即ち配線厚さの極端な低下は実装性等に支障を来たすため、セミアディティブ法が主たる方策と考えられている。
さらに、高周波対応の面では、パターンの平坦性が重要であり、基板との界面の凹凸ができるだけ少ないことが望まれる。この意味でも、銅箔の貼り付けを必要としないセミアディティブ法が有利であり検討が進められている。また、フレキ基板の基材であるプラスチックフィルムとして、従来からポリイミドが使用されており、最近では、高周波用途において、低吸湿性且つ絶縁性に優れた液晶ポリマー(LCP)が研究されている(非特許文献1参照。)。
The wiring rule of the flexible substrate currently mass-produced is about 50 μm to 100 μm as a line / space. Recently, fine etching using a thin copper foil, or so-called semi-growing that grows a plated wiring film in a resist pattern. High-definition wiring is formed by using the additive method. In general, since a drastic decrease in the copper foil, that is, the wiring thickness causes problems in mounting properties, the semi-additive method is considered to be the main measure.
Furthermore, the flatness of the pattern is important in terms of high frequency compatibility, and it is desirable that the unevenness at the interface with the substrate be as small as possible. In this sense, a semi-additive method that does not require the attachment of copper foil is advantageous and is being studied. In addition, polyimide has been conventionally used as a plastic film as a base material for a flexible substrate. Recently, a liquid crystal polymer (LCP) having a low hygroscopic property and an excellent insulating property has been studied for high-frequency applications (non-contained). (See Patent Document 1).

小野寺稔、「マイクロファブリケーションを支える新材料技術−3.回路基板用液晶ポリマーフィルムの開発と応用」、マイクロファブリケーション研究会第14回公開研究会、社団法人エレクトロニクス実装学会、平成16年9月8日、p.16−22Atsushi Onodera, “New material technology to support microfabrication-3. Development and application of liquid crystal polymer film for circuit boards”, Microfabrication Study Group 14th Public Research Society, Japan Institute of Electronics Packaging, September 2004 8th, p. 16-22

ところで、セミアディティブ法には、実用的な観点から幾つかの課題があり、その1つとして、シード層の形成が挙げられる。即ち、配線用のパターンメッキを行う上で、フレキ基板用フィルム上に通電用のシード層を形成する必要がある。現状では、このシード層はスパッタ等の乾式成膜法により形成されるため、プロセス効率の低下及びコスト高の原因となっている。
また、ポリイミド等のフレキ基板用フィルム上にCu膜をスパッタする際、密着性を確保するために、通常、NiまたはCr等の薄膜を接着層として形成する必要がある。これらのNi、Cr等は、パターニングにおけるエッチング工程が追加されるという問題がある。また、Niは磁性金属であるため、高周波用途において支障を来たすおそれがある。
Incidentally, the semi-additive method has several problems from a practical viewpoint, and one of them is formation of a seed layer. That is, when performing pattern plating for wiring, it is necessary to form a seed layer for energization on the flexible substrate film. At present, this seed layer is formed by a dry film forming method such as sputtering, which causes a reduction in process efficiency and high cost.
Further, when sputtering a Cu film on a flexible substrate film such as polyimide, it is usually necessary to form a thin film such as Ni or Cr as an adhesive layer in order to ensure adhesion. These Ni, Cr and the like have a problem that an etching step in patterning is added. Moreover, since Ni is a magnetic metal, there is a risk of hindrance in high frequency applications.

乾式成膜法によるシード層の形成に関するこのような問題は、例えば、無電界メッキ等の湿式法を採用することによりある程度解消される。即ち、無電界メッキによれば、プロセス効率が高まるとともに、フレキ基板用フィルム上にCu膜等のシード層を直接形成することが可能になると考えられる。
しかし、従来行われているプラスチックフィルム上の無電界メッキは、前処理によりプラスチックフィルム表面に凹凸を形成し、いわゆるアンカー効果によってメッキ層を付着させるため、前述したような高周波用途には適さない。例えば、ポリイミドの場合は、一般に、コンディショナーとよばれる前処理剤によってフレキ基板用フィルムの表面粗化処理が行われている。
Such a problem related to the formation of the seed layer by the dry film forming method can be solved to some extent by adopting a wet method such as electroless plating. In other words, it is considered that the electroless plating increases the process efficiency and can directly form a seed layer such as a Cu film on the flexible substrate film.
However, the conventional electroless plating on a plastic film is not suitable for high-frequency applications as described above, because irregularities are formed on the surface of the plastic film by pretreatment and a plating layer is attached by a so-called anchor effect. For example, in the case of polyimide, the surface roughening treatment of the flexible substrate film is generally performed by a pretreatment agent called a conditioner.

特に、液晶ポリマー(LCP)の場合は、スパッタ等の乾式法及びメッキ等の湿式法のいずれの方法を採用しても、液晶ポリマー(LCP)に対する金属膜の付着性が低く、現状では、液晶ポリマー(LCP)のフィルム上にシード層を形成することが困難である。これは、液晶ポリマー(LCP)の分子が、主としてベンゼン環を骨格とした構造を有するため、高周波基板としての高い絶縁性及び低吸湿性を示すにも拘らず、液晶ポリマー(LCP)の表面安定性が高く、その結果、表面付着性が低下するものと考えられる。
このため、液晶ポリマー(LCP)を用いた配線基板は、銅箔貼り付けタイプに限られ、液晶ポリマー(LCP)は、素材自体の絶縁性質が優れているにも拘らず、高周波用途の高精細基板としての使用形態が制約されているという問題がある。
このように、液晶ポリマー(LCP)を基材に用いて、簡単且つ低コストの工程によりシード層を形成した配線基板用フィルム基材の作製方法及びフレキシブルプリント基板が望まれている。
In particular, in the case of a liquid crystal polymer (LCP), the adhesion of a metal film to the liquid crystal polymer (LCP) is low even if any of a dry method such as sputtering and a wet method such as plating is adopted. It is difficult to form a seed layer on a polymer (LCP) film. This is because the liquid crystal polymer (LCP) molecules have a structure mainly having a benzene ring as a skeleton, so that the surface stability of the liquid crystal polymer (LCP) is high despite high insulation and low hygroscopicity as a high-frequency substrate. As a result, the surface adhesion is considered to decrease.
For this reason, the wiring board using liquid crystal polymer (LCP) is limited to a copper foil pasting type, and the liquid crystal polymer (LCP) is high-definition for high-frequency applications even though the insulating property of the material itself is excellent. There is a problem that the form of use as a substrate is restricted.
Thus, there is a demand for a method for producing a film substrate for a wiring board and a flexible printed board in which a seed layer is formed by a simple and low-cost process using a liquid crystal polymer (LCP) as a base material.

本発明は、上述した技術的課題を解決するためになされたものである。
即ち、本発明の目的は、液晶ポリマー(LCP)を基材に用いた高精細且つ高周波用途に適した配線基板用フィルム基材の作製方法を提供することにある。
また、本発明の他の目的は、液晶ポリマー(LCP)を基材に用いた高精細且つ高周波用途に適したフレキシブルプリント基板を提供することにある。
The present invention has been made to solve the technical problems described above.
That is, an object of the present invention is to provide a method for producing a film substrate for a wiring board suitable for high-definition and high-frequency applications using a liquid crystal polymer (LCP) as a substrate.
Another object of the present invention is to provide a flexible printed board suitable for high-definition and high-frequency applications using a liquid crystal polymer (LCP) as a base material.

かかる目的のもと、本発明によれば、液晶ポリマーからなる樹脂フィルムの少なくとも片面にメッキ処理により金属膜を形成するメッキ処理ステップと、メッキ処理ステップにより形成された金属膜を有する樹脂フィルムを加熱する加熱処理ステップと、を有することを特徴とする配線基板用フィルム基材の作製方法が提供される。
本発明が適用される配線基板用フィルム基材の作製方法において、メッキ処理は無電解メッキが好ましく、具体的には、メッキ処理ステップは、樹脂フィルムと無電解メッキ液とを接触させることが好ましい。
ここで、無電解メッキ液は、Ni−B系無電解メッキ液、Ni−P系無電解メッキ液及びCu系無電解メッキ液から選ばれるいずれか一種類であることが好ましい。
For this purpose, according to the present invention, a plating process step of forming a metal film by plating on at least one surface of a resin film made of a liquid crystal polymer, and heating the resin film having the metal film formed by the plating process step There is provided a method for producing a film substrate for a wiring board, comprising: a heat treatment step.
In the method for producing a wiring board film substrate to which the present invention is applied, the plating treatment is preferably electroless plating. Specifically, the plating treatment step is preferably to contact a resin film with an electroless plating solution. .
Here, the electroless plating solution is preferably any one selected from Ni-B based electroless plating solution, Ni-P based electroless plating solution and Cu based electroless plating solution.

さらに、本発明が適用される配線基板用フィルム基材の作製方法において、メッキ処理ステップ前に、樹脂フィルムの表面をカーボンファンクショナルシランにより活性化する前処理工程をさらに有することにより、無電解メッキ処理により形成される金属膜の密着性を高めることができる。
ここで、メッキ処理ステップ前に、樹脂フィルムの表面を乾式処理により活性化することが好ましい。このような乾式処理としては、プラズマ照射処理が好ましく、なかでも、大気中における空気プラズマ照射処理であることが特に好ましい。
また、本発明が適用される配線基板用フィルム基材の作製方法における加熱処理ステップは、メッキ処理における温度より高温で、且つ、液晶ポリマーの耐熱温度より低温で、樹脂フィルムを加熱することが好ましい。このような条件で樹脂フィルムを加熱することにより、金属膜と液晶ポリマー(LCP)との付着性を高めることができる。
Furthermore, in the method for producing a film base material for a wiring board to which the present invention is applied, before the plating step, the method further includes a pretreatment step of activating the surface of the resin film with carbon functional silane, thereby electroless plating. The adhesion of the metal film formed by the treatment can be improved.
Here, it is preferable to activate the surface of the resin film by dry treatment before the plating step. As such a dry process, a plasma irradiation process is preferable, and an air plasma irradiation process in the atmosphere is particularly preferable.
Moreover, it is preferable that the heat treatment step in the method for producing a wiring board film substrate to which the present invention is applied heats the resin film at a temperature higher than the temperature in the plating process and lower than the heat resistant temperature of the liquid crystal polymer. . By heating the resin film under such conditions, the adhesion between the metal film and the liquid crystal polymer (LCP) can be increased.

一方、本発明によれば、配線基板用フィルム基材上に形成された配線パターンを有するフレキシブルプリント基板であって、配線基板用フィルム基材は、液晶ポリマーからなる樹脂フィルムの少なくとも片面に、無電解メッキ処理の後に加熱されて形成された金属膜、を備え、配線パターンは、金属膜をシード層として電気メッキ処理により形成されたものであるフレキシブルプリント基板が提供される。   On the other hand, according to the present invention, there is provided a flexible printed board having a wiring pattern formed on a film substrate for a wiring board, the film substrate for a wiring board being provided on at least one surface of a resin film made of a liquid crystal polymer. There is provided a flexible printed circuit board that includes a metal film formed by heating after the electrolytic plating process, and the wiring pattern is formed by electroplating process using the metal film as a seed layer.

本発明によれば、液晶ポリマー(LCP)を基材に用いた高精細且つ高周波用途に適した配線基板用フィルム基材の作製方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the preparation methods of the film base material for wiring boards suitable for the high-definition and high frequency use which used liquid crystal polymer (LCP) for the base material are provided.

以下、添付図面を参照して、本発明を実施するための最良の形態(実施の形態)について詳細に説明する。尚、本発明は本実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
図1は、本実施の形態が適用される配線基板用フィルム基材作製方法を説明するための図である。尚、図1は、配線基板用フィルム基材の実際の大きさを表わすものではない。
先ず、図1(a)に示すように、所定の厚さの液晶ポリマー(LPC)からなる樹脂フィルム11を調製する(樹脂フィルムの調製)。
樹脂フィルム11を構成する液晶ポリマー(LCP)としては、公知のサーモトロピック液晶等の従来公知の各種液晶ポリマー(LCP)を使用することができる。サーモトロピック液晶ポリマーとしては、例えば、液晶性ポリエステル、液晶性ポリエステルイミド等、具体的には(全)芳香族ポリエステル、ポリエステルアミド、ポリエステルカーボネート等が挙げられる。これらのなかでも、液晶性ポリエステルが好ましい。
The best mode (embodiment) for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited to this Embodiment, It can implement in various deformation | transformation within the range of the summary.
FIG. 1 is a diagram for explaining a method for producing a film substrate for a wiring board to which the present embodiment is applied. FIG. 1 does not represent the actual size of the wiring board film base material.
First, as shown in FIG. 1A, a resin film 11 made of a liquid crystal polymer (LPC) having a predetermined thickness is prepared (preparation of a resin film).
As the liquid crystal polymer (LCP) constituting the resin film 11, various conventionally known liquid crystal polymers (LCP) such as known thermotropic liquid crystals can be used. Examples of the thermotropic liquid crystal polymer include liquid crystalline polyesters, liquid crystalline polyester imides, and the like, specifically, (all) aromatic polyesters, polyester amides, polyester carbonates, and the like. Among these, liquid crystalline polyester is preferable.

サーモトロピック液晶ポリエステルを構成するモノマーの代表例としては、(イ)芳香族ジカルボン酸の少なくとも1種、(ロ)芳香族ヒドロキシカルボン酸系化合物の少なくとも1種、(ハ)芳香族ジオール系化合物の少なくとも1種、(ニ−1)芳香族ジチオール、(ニ−2)芳香族チオフェノール及び(ニ−3)芳香族チオールカルボン酸化合物の少なくとも1種、(ホ)芳香族ヒドロキシルアミン及び芳香族ジアミン系化合物の少なくとも1種、等が挙げられる。これらは通常、(イ)及び(ニ);(イ)及び(ニ);(イ)、(ロ)及び(ハ);(イ)、(ロ)及び(ホ);または(イ)、(ロ)、(ハ)及び(ホ)等のように組合せて構成される。   Representative examples of the monomer constituting the thermotropic liquid crystal polyester include (a) at least one aromatic dicarboxylic acid, (b) at least one aromatic hydroxycarboxylic acid compound, and (c) an aromatic diol compound. At least one, (d-1) aromatic dithiol, (d-2) aromatic thiophenol, and (d-3) aromatic thiol carboxylic acid compound, (e) aromatic hydroxylamine and aromatic diamine Examples include at least one type of compound. These are usually (A) and (D); (A) and (D); (A), (B) and (C); (A), (B) and (E); or (A), ( (B), (c), (e) and the like are combined.

(イ)芳香族ジカルボン酸系化合物としては、例えば、テレフタル酸、4,4’−ビフェニルジカルボン酸、4,4’−トリフェニルジカルボン酸、2,6−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルエーテル−4,4’−ジカルボン酸、ジフェノキシエタン−4,4’−ジカルボン酸、ジフェノキシブタン−4,4’−ジカルボン酸、ジフェニルエタン−4,4’−ジカルボン酸、イソフタル酸、ジフェニルエーテル−3,3’−ジカルボン酸、ジフェノキシエタン−3,3’−ジカルボン酸、ジフェニルエタン−3,3’−ジカルボン酸、1,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸;クロロテレフタル酸、ジクロロテレフタル酸、ブロモテレフタル酸、メチルテレフタル酸、ジメチルテレフタル酸、エチルテレフタル酸、メトキシテレフタル酸、エトキシテレフタル酸等の芳香族ジカルボン酸のアルキル、アルコキシまたはハロゲン置換体が挙げられる。   (A) As an aromatic dicarboxylic acid type compound, for example, terephthalic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-triphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid Acid, 2,7-naphthalenedicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, diphenoxyethane-4,4′-dicarboxylic acid, diphenoxybutane-4,4′-dicarboxylic acid, diphenylethane-4,4 '-Dicarboxylic acid, isophthalic acid, diphenyl ether-3,3'-dicarboxylic acid, diphenoxyethane-3,3'-dicarboxylic acid, diphenylethane-3,3'-dicarboxylic acid, 1,6-naphthalenedicarboxylic acid, etc. Aromatic dicarboxylic acids; chloroterephthalic acid, dichloroterephthalic acid, bromoterephthalic acid, Le terephthalic acid, dimethyl terephthalate, ethyl terephthalic acid, methoxy terephthalic acid, alkyl aromatic dicarboxylic acids such as ethoxy terephthalic acid, alkoxy- or halogen-substituted products thereof.

(ロ)芳香族ヒドロキシカルボン酸系化合物としては、例えば、4−ヒドロキシ安息香酸、3−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸、6−ヒドロキシ−1−ナフトエ酸等の芳香族ヒドロキシカルボン酸;3−メチル−4−ヒドロキシ安息香酸、3,5−ジメチル−4−ヒドロキシ安息香酸、2,6−ジメチル−4−ヒドロキシ安息香酸、3−メトキシ−4−ヒドロキシ安息香酸、3,5−ジメトキシ−4−ヒドロキシ安息香酸、6−ヒドロキシ−5−メチル−2−ナフトエ酸、6−ヒドロキシ−5−メトキシ−2−ナフトエ酸、2−クロロ−4−ヒドロキシ安息香酸、3−クロロ−4−ヒドロキシ安息香酸、2,3−ジクロロ−4−ヒドロキシ安息香酸、3,5−ジクロロ−4−ヒドロキシ安息香酸、2,5−ジクロロ−4−ヒドロキシ安息香酸、3−ブロモ−4−ヒドロキシ安息香酸、6−ヒドロキシ−5−クロロ−2−ナフトエ酸、6−ヒドロキシ−7−クロロ−2−ナフトエ酸、6−ヒドロキシ−5,7−ジクロロ−2−ナフトエ酸等の芳香族ヒドロキシカルボン酸のアルキル、アルコキシまたはハロゲン置換体が挙げられる。   (B) Examples of aromatic hydroxycarboxylic acid compounds include aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 6-hydroxy-1-naphthoic acid. Acid; 3-methyl-4-hydroxybenzoic acid, 3,5-dimethyl-4-hydroxybenzoic acid, 2,6-dimethyl-4-hydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, 3,5- Dimethoxy-4-hydroxybenzoic acid, 6-hydroxy-5-methyl-2-naphthoic acid, 6-hydroxy-5-methoxy-2-naphthoic acid, 2-chloro-4-hydroxybenzoic acid, 3-chloro-4- Hydroxybenzoic acid, 2,3-dichloro-4-hydroxybenzoic acid, 3,5-dichloro-4-hydroxybenzoic acid, 2,5-dichloro- -Hydroxybenzoic acid, 3-bromo-4-hydroxybenzoic acid, 6-hydroxy-5-chloro-2-naphthoic acid, 6-hydroxy-7-chloro-2-naphthoic acid, 6-hydroxy-5,7-dichloro Examples include alkyl, alkoxy or halogen substituted products of aromatic hydroxycarboxylic acids such as -2-naphthoic acid.

(ハ)芳香族ジオールとしては、例えば、4,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシビフェニル、4,4’−ジヒドロキシテルフェニル、ハイドロキノン、レゾルシン、2,6−ナフタレンジオール、4,4’−ジヒドロキシジフェニルエーテル、ビス(4−ヒドロキシフェノキシ)エタン、3,3’−ジヒドロキシジフェニルエーテル、1,6−ナフタレンジオール、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン等の芳香族ジオール;クロロハイドロキノン、メチルハイドロキノン、tert−ブチルハイドロキノン、フェニルハイドロキノン、メトキシハイドロキノン、フェノキシハイドロキノン、4−クロロレゾルシン、4−メチルレゾルシン等の芳香族ジオールのアルキル、アルコキシまたはハロゲン置換体が挙げられる。   (C) As aromatic diols, for example, 4,4′-dihydroxybiphenyl, 3,3′-dihydroxybiphenyl, 4,4′-dihydroxyterphenyl, hydroquinone, resorcin, 2,6-naphthalenediol, 4,4 '-Dihydroxydiphenyl ether, bis (4-hydroxyphenoxy) ethane, 3,3'-dihydroxydiphenyl ether, 1,6-naphthalenediol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) methane Aromatic diols such as chlorohydroquinone, methylhydroquinone, tert-butylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4-chlororesorcin, 4-methylresorcin Alkyl, alkoxy or halogen-substituted derivatives thereof.

(ニ−1)芳香族ジチオールとしては、例えば、ベンゼン−1,4−ジチオール、ベンゼン−1,3−ジチオール、2,6−ナフタレン−ジチオール、2,7−ナフタレン−ジチオール等が挙げられる。
(ニ−2)芳香族チオフェノールとしては、4−メルカプトフェノール、3−メルカプトフェノール、6−メルカプトフェノール等が挙げられる。
(ニ−3)芳香族チオールカルボン酸としては、4−メルカプト安息香酸、3−メルカプト安息香酸、6−メルカプト−2−ナフトエ酸、7−メルカプト−2−ナフトエ酸等が挙げられる。
(D-1) Examples of aromatic dithiols include benzene-1,4-dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, and the like.
(D-2) Examples of aromatic thiophenol include 4-mercaptophenol, 3-mercaptophenol, 6-mercaptophenol and the like.
(D-3) Examples of the aromatic thiol carboxylic acid include 4-mercaptobenzoic acid, 3-mercaptobenzoic acid, 6-mercapto-2-naphthoic acid, 7-mercapto-2-naphthoic acid and the like.

(ホ)芳香族ヒドロキシルアミンまたは芳香族ジアミン系化合物としては、例えば、4−アミノフェノール、N−メチル−4−アミノフェノール、1,4−フェニレンジアミン、N−メチル−1,4−フェニレンジアミン、N,N’−ジメチル−1,4−フェニレンジアミン、3−アミノフェノール、3−メチル−4−アミノフェノール、2−クロロ−4−アミノフェノール、4−アミノ−1−ナフトール、4−アミノ−4’−ヒドロキシビフェニル、4−アミノ−4’−ヒドロキシジフェニルエーテル、4−アミノ−4’−ヒドロキシジフェニルメタン、4−アミノ−4’−ヒドロキシジフェニルスルフィド、4,4’−ジアミノフェニルスルフィド(チオジアニリン)、4,4’−ジアミノジフェニルスルホン、2,5−ジアミノトルエン、4,4’−エチレンジアニリン、4,4’−ジアミノジフェノキシエタン、4,4’−ジアミノジフェニルメタン(メチレンジアニリン)、4,4’−ジアミノジフェニルエーテル(オキシジアニリン)等が挙げられる。   (E) As an aromatic hydroxylamine or aromatic diamine compound, for example, 4-aminophenol, N-methyl-4-aminophenol, 1,4-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4-phenylenediamine, 3-aminophenol, 3-methyl-4-aminophenol, 2-chloro-4-aminophenol, 4-amino-1-naphthol, 4-amino-4 '-Hydroxybiphenyl, 4-amino-4'-hydroxydiphenyl ether, 4-amino-4'-hydroxydiphenylmethane, 4-amino-4'-hydroxydiphenyl sulfide, 4,4'-diaminophenyl sulfide (thiodianiline), 4, 4'-diaminodiphenyl sulfone, 2,5-diaminotoluene , 4,4' ethylene dianiline, 4,4'-diaminodiphenyl diphenoxyethane, 4,4'-diaminodiphenylmethane (methylenedianiline), 4,4'-diaminodiphenyl ether (oxydianiline), and the like.

液晶ポリマー(LCP)は、これらの原料化合物の種々の組合せによる重合体として形成される。例えば、サーモトロピック液晶ポリエステルは、上述したモノマーから、溶融アシドリシス法やスラリー重合法等の各種のエステル形成法等により製造することができる。サーモトロピック液晶ポリエステルの分子量は、通常、2,000〜200,000、好ましくは10,000〜100,000である。尚、液晶ポリマー(LCP)は、樹脂フィルム11としての物性を損なわない範囲で、例えば、ポリアリレート、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリアミド等の熱可塑性樹脂が配合されていてもよい。   A liquid crystal polymer (LCP) is formed as a polymer by various combinations of these raw material compounds. For example, the thermotropic liquid crystal polyester can be produced from the above-described monomers by various ester forming methods such as a melt acidosis method and a slurry polymerization method. The molecular weight of the thermotropic liquid crystal polyester is usually 2,000 to 200,000, preferably 10,000 to 100,000. The liquid crystal polymer (LCP) may be blended with a thermoplastic resin such as polyarylate, polyphenylene sulfide, polyphenylene ether, polyether ether ketone, polyamide, etc., as long as the physical properties of the resin film 11 are not impaired. .

樹脂フィルム11の厚さは、特に限定されないが、通常、5μm〜300μm、好ましくは、10μm〜200μm、特に好ましくは、20μm〜150μmである。樹脂フィルム11の厚さが過度に小さいと、強度が保てず、小さい外力で破断する傾向がある。樹脂フィルム11の厚さが過度に大きいと、屈曲性が低下し、用途が制約される傾向がある。   The thickness of the resin film 11 is not particularly limited, but is usually 5 μm to 300 μm, preferably 10 μm to 200 μm, and particularly preferably 20 μm to 150 μm. If the thickness of the resin film 11 is excessively small, the strength cannot be maintained, and the resin film 11 tends to break with a small external force. When the thickness of the resin film 11 is excessively large, the flexibility is lowered and the use tends to be restricted.

次に、図1(b)に示すように、樹脂フィルム11表面をカーボファンクショナルシラン(以下、「CFシラン」と記すことがある。)を用いて活性化処理し、液晶ポリマー(LPC)表面に活性化したCFシラン被膜111を形成する(CFシラン処理)。樹脂フィルム11上にCFシラン被膜111を形成することにより、後述する無電解メッキ処理において、樹脂フィルム11上に触媒金属塩が容易に捕捉され、密着性が高いメッキ膜を形成することができる。
尚、樹脂フィルム11の表面にCFシラン被膜111を形成する前に、予め、乾式処理により樹脂フィルム11表面を活性化することが好ましい。乾式処理としては特に限定されないが、例えば、プラズマ等のイオンを利用するプラズマ照射処理、紫外線(UV)光等による光照射処理、EB照射処理等が挙げられる。これらのなかでもプラズマ照射処理が好ましく、特に、真空装置を用いずに大気圧下で行う空気プラズマ照射処理が好ましい。
Next, as shown in FIG. 1B, the surface of the resin film 11 is activated using carbofunctional silane (hereinafter sometimes referred to as “CF silane”), and the surface of the liquid crystal polymer (LPC). An activated CF silane film 111 is formed (CF silane treatment). By forming the CF silane coating 111 on the resin film 11, a catalytic metal salt can be easily captured on the resin film 11 in an electroless plating process described later, and a plating film having high adhesion can be formed.
In addition, before forming the CF silane film 111 on the surface of the resin film 11, it is preferable to activate the surface of the resin film 11 by dry processing in advance. Although it does not specifically limit as dry processing, For example, plasma irradiation processing using ions, such as plasma, light irradiation processing by ultraviolet (UV) light, etc., EB irradiation processing, etc. are mentioned. Among these, plasma irradiation treatment is preferable, and air plasma irradiation treatment performed under atmospheric pressure without using a vacuum apparatus is particularly preferable.

CFシランは、シランカップリング剤として知られる化合物であって、特に下記式(1)で示されるものが好ましい。
Y−(CH−SiR(OR)3−a (1)
(式(1)中、Yは、ビニル基、エポキシ基、アミノ基、メルカプト基、メタクリロキシ基、アクリロキシ基から選ばれるいずれか1種の官能基である。Rは、置換されることがある一価の炭化水素基である。nは0〜3の整数であり、aは0又は1である。)
ここで、ビニル基としては、(CH=CH−)等が挙げられる。エポキシ基としては、γ−グリシドキシ基、3,4−エポキシシクロヘキシル基等が挙げられる。アミノ基としては、(NH−)、(NHCHCHNH−)等が挙げられる。メルカプト基としては、メルカプト基が挙げられる。メタクリロキシ基、アクリロキシ基としてはメタクリロキシ基、アクリロキシ基等が挙げられる。
CF silane is a compound known as a silane coupling agent, and a compound represented by the following formula (1) is particularly preferable.
Y— (CH 2 ) n —SiR a (OR) 3-a (1)
(In Formula (1), Y is any one functional group selected from a vinyl group, an epoxy group, an amino group, a mercapto group, a methacryloxy group, and an acryloxy group. R may be substituted. And n is an integer of 0 to 3, and a is 0 or 1.)
Here, examples of the vinyl group include (CH 2 ═CH—). Examples of the epoxy group include γ-glycidoxy group and 3,4-epoxycyclohexyl group. Examples of the amino group include (NH 2 —), (NH 2 CH 2 CH 2 NH—), and the like. Examples of mercapto groups include mercapto groups. Examples of the methacryloxy group and acryloxy group include a methacryloxy group and an acryloxy group.

Rとしては、置換されることがある脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられる。脂肪族炭化水素基又は脂環式炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等の炭素数1〜12、好ましくは炭素数1〜8のアルキル基、シクロアルキル基等が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、フェニルエチル基等の、炭素数6〜14、好ましくは炭素数6〜10のアリール基、ベンジル基、アラルキル基等が挙げられる。また、置換された炭化水素基としては、上述した脂肪族炭化水素基、脂環式炭化水素基又は芳香族炭化水素基の水素原子の一部又は全部を、ハロゲン原子、アルコキシ基、アミノ基、アミノアルキル基等で置換したものが挙げられる。このような置換基としては、例えば、モノフルオロメチル基、トリフルオロメチル基、p−ジメチルアミノフェニル基、m−ジメチルアミノフェニル基等が挙げられる。これらの中でも、Rとしては、特に、炭素数1〜5のアルキル基が好ましい。   Examples of R include aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, and aromatic hydrocarbon groups that may be substituted. Examples of the aliphatic hydrocarbon group or alicyclic hydrocarbon group include 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group, preferably Examples thereof include an alkyl group having 1 to 8 carbon atoms and a cycloalkyl group. As the aromatic hydrocarbon group, for example, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a phenylethyl group, etc., an aryl group having 6 to 14 carbon atoms, preferably 6 to 10 carbon atoms, a benzyl group, an aralkyl group. Etc. Moreover, as the substituted hydrocarbon group, a part or all of the hydrogen atoms of the above-described aliphatic hydrocarbon group, alicyclic hydrocarbon group or aromatic hydrocarbon group, a halogen atom, an alkoxy group, an amino group, Examples thereof include those substituted with an aminoalkyl group or the like. Examples of such a substituent include a monofluoromethyl group, a trifluoromethyl group, a p-dimethylaminophenyl group, and an m-dimethylaminophenyl group. Among these, R is particularly preferably an alkyl group having 1 to 5 carbon atoms.

CFシラン化合物の具体例としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等を挙げることができる。これらの中でも、N−β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン等のアミノ基含有アルコキシシランが好ましい。   Specific examples of the CF silane compound include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, N-β-. (Aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane and the like can be mentioned. Among these, N-β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxy An amino group-containing alkoxysilane such as silane is preferred.

CFシランは、通常、適当な有機溶媒に溶解した溶液の形態で使用される。溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族系炭化水素溶媒;テトラヒドロフラン、ジブチルエーテル等のエーテル系溶媒;メタノール、エタノール等のアルコール系溶媒;エチルセルソルブ、メチルセルソルブ等のアルコキシエタノール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等のエステル系溶媒;エーテルエステル系溶媒が挙げられる。
CFシランを含有する溶液の塗布方法としては、スピンコート、ディッピング、ロール塗布、ブレードコート、アプリケータコート、バーコート、スクリーン印刷等が挙げられる。
CF silane is usually used in the form of a solution dissolved in a suitable organic solvent. Examples of the solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; ether solvents such as tetrahydrofuran and dibutyl ether; alcohol solvents such as methanol and ethanol; alkoxyethanol such as ethyl cellosolve and methyl cellosolve. Examples thereof include ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate, butyl acetate, methyl lactate, and ethyl lactate; ether ester solvents.
Examples of the method for applying a solution containing CF silane include spin coating, dipping, roll coating, blade coating, applicator coating, bar coating, and screen printing.

続いて、図1(c)に示すように、樹脂フィルム11上に無電解メッキ処理により金属膜12を形成する(無電解メッキ)。無電解メッキ処理は、通常、樹脂フィルム11を、パラジウム塩、銀塩等の触媒金属塩の溶液中に浸漬させた後、無電解メッキ液に浸漬することにより行われる。触媒金属塩としては、パラジウム塩が好ましい。
パラジウム塩としては、Pd2+を含み、通常、Pd−Zの形で表われる金属塩が挙げられる。ここで、Zは、CI、Br、I等のハロゲン;アセテート、トリフルオロアセテート、アセチルアセトネート、カーボネート、パークロレート、ナイトレート、スルフェート、オキサイド等が用いられる。パラジウム塩の具体例としては、例えば、PdCl、PdBr、PdI、Pd(OCOCH、PdSO、Pd(NO、PdO等が挙げられる。また、触媒金属塩溶液の安定性を増すために、塩酸や塩化ナトリウム等のハロゲン化物を添加してもよい。
Subsequently, as shown in FIG. 1C, a metal film 12 is formed on the resin film 11 by electroless plating (electroless plating). The electroless plating treatment is usually performed by immersing the resin film 11 in a solution of a catalytic metal salt such as a palladium salt or a silver salt and then immersing it in an electroless plating solution. As the catalyst metal salt, a palladium salt is preferable.
Examples of the palladium salt include a metal salt containing Pd 2+ and usually represented by Pd—Z 2 . Here, Z is a halogen such as CI, Br, or I; acetate, trifluoroacetate, acetylacetonate, carbonate, perchlorate, nitrate, sulfate, oxide, or the like is used. Specific examples of the palladium salt include PdCl 2 , PdBr 2 , PdI 2 , Pd (OCOCH 3 ) 2 , PdSO 4 , Pd (NO 3 ) 2 , PdO and the like. In order to increase the stability of the catalyst metal salt solution, a halide such as hydrochloric acid or sodium chloride may be added.

触媒金属塩を溶解する溶媒としては、例えば、水;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類;メタノール、エタノール等のアルコール類;ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒;ニトロメタン、アセトニトリル等が挙げられる。これらの中でも、水が好ましい。   Examples of the solvent for dissolving the catalyst metal salt include water; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; alcohols such as methanol and ethanol; dimethylformamide, dimethyl sulfoxide, hexamethylphosphoric triamide and the like. Aprotic polar solvents of nitromethane, acetonitrile and the like. Among these, water is preferable.

樹脂フィルム11を触媒金属塩の溶液に、1秒間〜10分間程度浸漬し、水洗後、乾燥することにより、樹脂フィルム11表面に還元された触媒金属粒子を付着させる。また、必要に応じて、40℃〜200℃の温度で熱処理することにより、樹脂フィルム11表面の触媒金属の還元が促進される。乾燥温度は、通常、10℃〜200℃、常圧又は減圧で行う。   The resin film 11 is immersed in a solution of the catalyst metal salt for about 1 second to 10 minutes, washed with water, and dried to adhere the reduced catalyst metal particles to the surface of the resin film 11. Moreover, the reduction | restoration of the catalyst metal on the surface of the resin film 11 is accelerated | stimulated by heat-processing at the temperature of 40 to 200 degreeC as needed. The drying temperature is usually 10 ° C to 200 ° C, normal pressure or reduced pressure.

次に、触媒金属がフィルム表面に付与された樹脂フィルム11を無電解メッキ液中に浸漬し、パラジウム等の金属を触媒として金属膜12を形成する。
無電解メッキ処理に使用する無電解メッキ液としては、例えば、銅、ニッケル、パラジウム、金、白金、ロジウム等の金属イオンを含んだものが好ましく用いられる。無電解メッキ液は、通常、上記金属イオンの水溶性金属塩に、次亜リン酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウム等の還元剤、酢酸ナトリウム、フェニレンジアミンや酒石酸ナトリウムカリウム等の錯化剤が配合されており、一般には無電解メッキ液として市販されており容易にかつ安価に入手することができる。これらの無電解メッキ液中でも、金属イオンとして、銅及び/またはニッケルを含有するものが好ましい。
Next, the resin film 11 provided with the catalyst metal on the film surface is immersed in an electroless plating solution, and the metal film 12 is formed using a metal such as palladium as a catalyst.
As the electroless plating solution used for the electroless plating treatment, for example, a liquid containing metal ions such as copper, nickel, palladium, gold, platinum, rhodium or the like is preferably used. The electroless plating solution usually contains a water-soluble metal salt of the above metal ions, a reducing agent such as sodium hypophosphite, hydrazine, or sodium borohydride, and a complexing agent such as sodium acetate, phenylenediamine, or sodium potassium tartrate. In general, it is commercially available as an electroless plating solution and can be obtained easily and inexpensively. Among these electroless plating solutions, those containing copper and / or nickel as metal ions are preferable.

このような無電解メッキ液としては、例えば、Ni−B系無電解メッキ液、Ni−P系無電解メッキ液、Ni−Cu−P系無電解メッキ液、Cu系無電解メッキ液等が挙げられる。Ni−B系無電解メッキ液は、硫酸ニッケル、錯化剤、ホウ素含有有機還元剤を含み、さらに、メッキ液の建浴用または補充用液として2,2’−チオジエタノール、チオジグリコール酸等が含まれる。Ni−P系無電解メッキ液は、硫酸ニッケル、塩化ニッケル、炭酸ニッケル等のニッケル塩;クエン酸、リンゴ酸、コハク酸等の錯化剤;次亜リン酸、次亜リン酸ナトリウム等の還元剤;鉄、タングステン、モリブデン、クロム等の成分の水溶性化合物を含有し、さらに、必要に応じて、公知の安定剤等を含有する。水溶性化合物としては、硫酸第一鉄、塩化第一鉄、硫酸第一鉄アンモニウム等の水溶性鉄化合物;タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム等の水溶性タングステン化合物;モリブデン酸ナトリウム、モリブデン酸アンモニウム、塩化モリブデン等の水溶性モリブデン化合物;塩化クロム、臭化クロム、硫酸クロム等の水溶性クロム化合物が例示できる。これらの水溶性化合物は、一種単独又は二種以上混合して用いることができる。各成分配合量については、上述した組成の無電解ニッケル多元合金めっき皮膜を形成できる範囲内で適宜調整すればよい。   Examples of such an electroless plating solution include a Ni-B electroless plating solution, a Ni-P electroless plating solution, a Ni-Cu-P electroless plating solution, and a Cu electroless plating solution. It is done. The Ni-B electroless plating solution contains nickel sulfate, a complexing agent, and a boron-containing organic reducing agent, and 2,2′-thiodiethanol, thiodiglycolic acid, etc. Is included. Ni-P-based electroless plating solutions are nickel salts such as nickel sulfate, nickel chloride and nickel carbonate; complexing agents such as citric acid, malic acid and succinic acid; reductions such as hypophosphorous acid and sodium hypophosphite Agent: Contains water-soluble compounds such as iron, tungsten, molybdenum, and chromium, and further contains known stabilizers as necessary. Examples of water-soluble compounds include water-soluble iron compounds such as ferrous sulfate, ferrous chloride, and ferrous ammonium sulfate; water-soluble tungsten compounds such as sodium tungstate, potassium tungstate, and ammonium tungstate; sodium molybdate, Examples thereof include water-soluble molybdenum compounds such as ammonium molybdate and molybdenum chloride; water-soluble chromium compounds such as chromium chloride, chromium bromide and chromium sulfate. These water-soluble compounds can be used singly or in combination of two or more. About each component compounding quantity, what is necessary is just to adjust suitably in the range which can form the electroless nickel multicomponent alloy plating film of the composition mentioned above.

Ni−Cu−P系無電解メッキ液は、硫酸ニッケル等のニッケル塩、硫酸銅等の銅塩、ホスフィン酸ナトリウム等の還元剤及びクエン酸三ナトリウム等の錯化剤を主成分として含有する。Cu系無電解メッキ液は、硫酸銅、塩化銅、酸化銅等の第二銅塩;エチレンジアミン四酢酸またはその塩(ナトリウム塩、カリウム塩等)、ロッシェル塩等の銅錯化剤;ホルムアルデヒド等の還元剤を含有する。さらに、三塩化砒素、三酢酸砒素、ひ酸、三酸化二ひ素、二水酸化トリフェニルひ素、アルサニル酸等のAs化合物;三酸化二アンチモン、五酸化二アンチモン、塩化アンチモン、吐酒石、しゅう酸アンチモンカリウム、ヘキサフルオロアンチモン酸塩、ヘキサクロロアンチモン酸塩等のSb化合物;硝酸ビスマス、水酸化ビスマス、しゅう酸ビスマス、酢酸酸化ビスマス、ホウ酸ビスマス、酸化ビスマス等のBi化合物;硫酸ベリリウム、塩化ベリリウム、硝酸ベリリウム、酢酸ベリリウム、臭化ベリリウム、ベリリウム酸ナトリウム、しゅう酸ベリリウム、フッ化ベリリウム等のBe化合物を含有するものが挙げられる。   The Ni—Cu—P-based electroless plating solution contains a nickel salt such as nickel sulfate, a copper salt such as copper sulfate, a reducing agent such as sodium phosphinate, and a complexing agent such as trisodium citrate as main components. Cu-based electroless plating solutions include cupric salts such as copper sulfate, copper chloride, and copper oxide; copper complexing agents such as ethylenediaminetetraacetic acid or its salts (sodium salt, potassium salt, etc.), Rochelle salt; Contains a reducing agent. Furthermore, As compounds such as arsenic trichloride, arsenic triacetate, arsenic acid, arsenic trioxide, triphenylarsenic dihydroxide, and arsanilic acid; antimony trioxide, antimony pentoxide, antimony chloride, tartar, oxa Sb compounds such as potassium antimony acid, hexafluoroantimonate, hexachloroantimonate; Bi compounds such as bismuth nitrate, bismuth hydroxide, bismuth oxalate, bismuth acetate, bismuth borate, bismuth oxide; beryllium sulfate, beryllium chloride , Beryllium nitrate, beryllium acetate, beryllium bromide, sodium beryllate, beryllium oxalate, and beryllium fluoride.

無電解メッキ液に樹脂フィルム11を接触させる方法としては、樹脂フィルム11を無電解メッキ液中に浸漬することが好ましい。無電解メッキ液と樹脂フィルム11とを接触させる温度としては、15℃〜120℃が好ましく、さらに好ましくは25℃〜85℃である。接触させる時間は、例えば、30秒〜16時間であり、1分間〜30分間程度であることが好ましい。   As a method for bringing the resin film 11 into contact with the electroless plating solution, it is preferable to immerse the resin film 11 in the electroless plating solution. The temperature at which the electroless plating solution and the resin film 11 are brought into contact is preferably 15 ° C to 120 ° C, more preferably 25 ° C to 85 ° C. The contact time is, for example, 30 seconds to 16 hours, and preferably about 1 minute to 30 minutes.

金属膜12の厚さは、特に限定されないが、通常、0.01μm〜5μm、好ましくは、0.05μm〜1μm、特に好ましくは、0.1μm〜0.5μmである。金属膜12の厚さが過度に小さいと、膜化が不十分でムラが生じるとともに、通電膜等としての機能を損なう傾向がある。金属膜12の厚さが過度に大きいと、膜質の劣化、歪の増大をまねく傾向がある。   The thickness of the metal film 12 is not particularly limited, but is usually 0.01 μm to 5 μm, preferably 0.05 μm to 1 μm, and particularly preferably 0.1 μm to 0.5 μm. If the thickness of the metal film 12 is excessively small, film formation is insufficient and unevenness tends to occur, and the function as a conductive film or the like tends to be impaired. If the thickness of the metal film 12 is excessively large, the film quality tends to deteriorate and the strain increases.

次に、図1(d)に示すように、無電解メッキ処理により形成された金属膜12を有する樹脂フィルム11を加熱処理し、金属膜12と樹脂フィルム11との密着性が高められた配線基板用フィルム基材10を作製する(加熱処理)。加熱処理の条件は、樹脂フィルム11の種類により適宜選択されるが、通常、無電解メッキ処理の処理温度(通常、15℃〜120℃程度)よりも高温で、且つ、樹脂フィルム11に用いた液晶ポリマー(LCP)の耐熱温度より低温において適当な時間行われる。例えば、温度200℃で30分間程度の加熱処理が好ましい。   Next, as shown in FIG. 1 (d), the resin film 11 having the metal film 12 formed by the electroless plating process is heat-treated to improve the adhesion between the metal film 12 and the resin film 11. The film base material 10 for substrates is produced (heat treatment). The conditions for the heat treatment are appropriately selected depending on the type of the resin film 11, but are usually higher than the treatment temperature for the electroless plating treatment (usually about 15 ° C. to 120 ° C.) and used for the resin film 11. It is carried out for an appropriate time at a temperature lower than the heat resistant temperature of the liquid crystal polymer (LCP). For example, heat treatment at a temperature of 200 ° C. for about 30 minutes is preferable.

このように、無電解メッキ処理により、液晶ポリマー(LCP)からなる樹脂フィルム11表面に金属膜12を形成した後、樹脂フィルム11を加熱処理することにより、樹脂フィルム11と金属膜12との密着力が高められる。これは、加熱処理により、樹脂フィルム11を構成する液晶ポリマー(LPC)の微細構造(ミクロ構造)が、例えば、スメクティック構造からネマティック構造またはランダム構造へと変化する過程で、液晶ポリマー(LPC)と金属膜12との界面が一種の活性化された状態になり、その結果、樹脂フィルム11と金属膜12との結合が強まるためと考えられる。
尚、液晶ポリマー(LPC)は、耐熱温度以下であれば、微細構造(ミクロ構造)は変化するが、電気的性質、吸水性、寸法安定性等のフィルムとしての実用的性質に変化が生じるほどのマクロな変化は生じない。また、無電解メッキ処理は、通常、100℃程度の温度において行われるので、樹脂フィルム11を構成する液晶ポリマー(LPC)の微細構造(ミクロ構造)の変化は軽微であり、実質的影響は生じない。
Thus, after forming the metal film 12 on the surface of the resin film 11 made of a liquid crystal polymer (LCP) by electroless plating, the resin film 11 is heat-treated so that the resin film 11 and the metal film 12 are in close contact with each other. Power is increased. This is because the liquid crystal polymer (LPC) constituting the resin film 11 has a fine structure (microstructure) changed from a smectic structure to a nematic structure or a random structure by heat treatment. It is considered that the interface with the metal film 12 becomes a kind of activated state, and as a result, the bond between the resin film 11 and the metal film 12 is strengthened.
Note that the liquid crystal polymer (LPC) has a fine structure (microstructure) that changes below the heat-resistant temperature, but changes in practical properties as a film such as electrical properties, water absorption, and dimensional stability. This macro change does not occur. In addition, since the electroless plating process is usually performed at a temperature of about 100 ° C., the change in the fine structure (micro structure) of the liquid crystal polymer (LPC) constituting the resin film 11 is slight, and a substantial influence is generated. Absent.

次に、フレキシブルプリント基板について説明する。
図2は、本実施の形態が適用されるフレキシブルプリント基板を説明するための図である。尚、図2は、フレキシブルプリント基板の実際の大きさを表わすものではない。
図2に示されたフレキシブルプリント基板20は、図1に示された配線基板用フィルム基材10の金属膜12をシード層として電気メッキを行うセミアディティブ法によって配線パターンを形成し、必要に応じて、電極端子形成、カバーレイ附与等の通常のプロセスを施して作製されたものである。フレキシブルプリント基板20は、液晶ポリマー(LCP)からなる樹脂フィルム11と、樹脂フィルム11上に無電解メッキ処理により形成されたメッキ膜である金属膜12と、金属膜12上に形成された回路パターン16とを備えている。回路パターン16は、金属膜12と、後述するように金属膜12を下地層として電気メッキ処理により形成されたメッキ層15とから構成されている。尚、金属膜12は、後述するように電気メッキ処理後に行われる短時間のエッチング処理により、メッキ層15が形成されない部分が除去されている。
Next, the flexible printed circuit board will be described.
FIG. 2 is a diagram for explaining a flexible printed circuit board to which the present embodiment is applied. FIG. 2 does not represent the actual size of the flexible printed circuit board.
The flexible printed circuit board 20 shown in FIG. 2 forms a wiring pattern by a semi-additive method in which electroplating is performed using the metal film 12 of the wiring board film base material 10 shown in FIG. 1 as a seed layer. Thus, it is manufactured by performing normal processes such as electrode terminal formation and coverlay provision. The flexible printed circuit board 20 includes a resin film 11 made of a liquid crystal polymer (LCP), a metal film 12 that is a plating film formed on the resin film 11 by electroless plating, and a circuit pattern formed on the metal film 12. 16. The circuit pattern 16 includes a metal film 12 and a plating layer 15 formed by electroplating using the metal film 12 as a base layer as will be described later. As will be described later, the metal film 12 has a portion where the plating layer 15 is not formed removed by a short etching process performed after the electroplating process.

次に、フレキシブルプリント基板の作製方法について説明する。
図3は、本実施の形態が適用されるフレキシブルプリント基板の作製方法を説明するための図である。尚、図3は、フレキシブルプリント基板の実際の大きさを表わすものではない。
図3(a)に示すように、配線基板用フィルム基材10を調製した後(配線基板用フィルム基材の調製)、図3(b)に示すように、配線基板用フィルム基材10の金属膜12上に、例えば、ポジ型のフォトレジストを塗布し、レジスト膜13を形成する(フォトレジスト塗布)。塗布方法としては、スピンコート、ディッピング、ロール塗布、ブレードコート、アプリケータコート、バーコート、スクリーン印刷等が挙げられる。
Next, a method for producing a flexible printed board will be described.
FIG. 3 is a diagram for explaining a method for manufacturing a flexible printed circuit board to which this embodiment is applied. FIG. 3 does not represent the actual size of the flexible printed circuit board.
After preparing the wiring board film base material 10 (preparation of the wiring board film base material) as shown in FIG. 3A, the wiring board film base material 10 is prepared as shown in FIG. On the metal film 12, for example, a positive photoresist is applied to form a resist film 13 (photoresist application). Examples of the coating method include spin coating, dipping, roll coating, blade coating, applicator coating, bar coating, and screen printing.

次に、図3(c)に示すように、フォトリソグラフィー処理により、レジスト膜13の回路パターンを形成を予定する部分のフォトレジストを除去する(フォトリソグラフィー処理)。即ち、露光装置(図示せず)を用いてレジスト膜13に回路パターンの潜像を形成し、現像を行ってレジスト膜13の回路パターンの形成を予定する部分を除去して、その部分に対応する金属膜12を露出させる。続いて、図3(d)に示すように、金属膜12の露出した部分を給電電極として電気メッキを行い、回路パターンの形成を予定する部分にメッキ層15を形成する(電気メッキ処理)。電気メッキは公知の方法が適用でき、例えば、硫酸銅メッキ、青化銅メッキ、ピロリン酸銅メッキ等が挙げられる。これらの中でも、メッキ液の取り扱い性、生産性、皮膜の特性などから硫酸銅メッキが好ましい。   Next, as shown in FIG. 3C, the portion of the photoresist in which the circuit pattern of the resist film 13 is to be formed is removed by photolithography (photolithography). That is, a latent image of a circuit pattern is formed on the resist film 13 by using an exposure apparatus (not shown), and development is performed to remove a portion of the resist film 13 where the circuit pattern is to be formed, so that the portion is supported. The metal film 12 to be exposed is exposed. Subsequently, as shown in FIG. 3D, electroplating is performed using the exposed portion of the metal film 12 as a feeding electrode, and a plating layer 15 is formed in a portion where a circuit pattern is to be formed (electroplating process). A known method can be applied to the electroplating, and examples thereof include copper sulfate plating, copper cyanide plating, and copper pyrophosphate plating. Among these, copper sulfate plating is preferable from the viewpoint of handleability of plating solution, productivity, and film characteristics.

次に、図3(e)に示すように、例えば、アセトン等のケトン系剥離液等を用いてフォトレジストを除去し、回路パターンの形成を予定する部分の金属膜12を露出させる(レジスト除去)。続いて、図3(f)に示すように、短時間のエッチングを行い、回路パターンの形成を予定する部分以外の不要な金属膜12を除去し、回路パターンが形成されたフレキシブルプリント基板20を作製する(エッチング処理)。尚、必要に応じて、カバーレイ等の加工が行われる。
上述したように、本実施の形態が適用される配線基板用フィルム基材10は、液晶ポリマーからなる樹脂フィルム11の表面に、スパッタ等によりシード層を形成する工程を経ることなく、無電解メッキによる金属膜12が形成されている。このような配線基板用フィルム基材10を用いることにより、工程の簡素化、接着層の不要化及び連続プロセスが実現し、安価で高機能のフレキシブルプリント基板20を作製することができる。
Next, as shown in FIG. 3E, the photoresist is removed using, for example, a ketone-based stripping solution such as acetone to expose the portion of the metal film 12 where the circuit pattern is to be formed (resist removal). ). Subsequently, as shown in FIG. 3F, etching is performed for a short time to remove the unnecessary metal film 12 other than the portion where the circuit pattern is to be formed, and the flexible printed circuit board 20 on which the circuit pattern is formed is formed. Prepare (etching process). Note that processing such as coverlay is performed as necessary.
As described above, the film substrate 10 for a wiring board to which the present embodiment is applied is an electroless plating without undergoing a step of forming a seed layer by sputtering or the like on the surface of the resin film 11 made of a liquid crystal polymer. A metal film 12 is formed. By using such a film substrate 10 for a wiring board, the process can be simplified, the need for an adhesive layer and a continuous process can be realized, and the flexible printed board 20 can be manufactured at low cost and with high functionality.

以下に、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本実施の形態は実施例に限定されるものではない。
(テープ剥離試験)
予め調製した配線基板用フィルム基材のメッキ膜面に、幅15mm、長さ40mmの粘着テープを、接着面長さ20mmになるように貼り付け、その後、粘着テープの他端を引き上げて、そのときの剥離状況を目視で観察した。
Hereinafter, the present embodiment will be described in more detail based on examples. Note that this embodiment is not limited to the examples.
(Tape peeling test)
An adhesive tape having a width of 15 mm and a length of 40 mm is applied to the plating film surface of the film base for a wiring board prepared in advance so that the adhesive surface has a length of 20 mm, and then the other end of the adhesive tape is pulled up, The peeling state at the time was visually observed.

(実施例1)
厚さ50μmの液晶ポリマーフィルム(株式会社クラレ製;Vecstar(登録商標) CT)を準備し、この液晶ポリマーフィルム表面を、CFシランである3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製:シランカップリング剤KBM−903)を塗布して活性化した。次に、表面を水洗した液晶ポリマーフィルムを触媒金属塩溶液(シプレ・ファーイースト株式会社製:CATALYST 6F)に浸漬し、取り出した後水洗し、さらに塩酸により酸活性処理を行って、液晶ポリマーフィルム表面に触媒金属を付与した。続いて、液晶ポリマフィルムを無電解メッキ液(奥野製薬工業株式会社製:無電解ニッケル−ホウ素メッキ液トップケミアロイB)中に、温度65℃で2分間浸漬し、表面に付与した触媒金属を核として無電解ニッケルメッキ処理を行い、次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、液晶ポリマーフィルム上にNiメッキ膜が形成された配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、テープが剥離せず、液晶ポリマーフィルムとNiメッキ膜との高い付着強度が確認された。
Example 1
A liquid crystal polymer film (made by Kuraray Co., Ltd .; Vecstar (registered trademark) CT) having a thickness of 50 μm was prepared, and the surface of the liquid crystal polymer film was 3-aminopropyltrimethoxysilane (made by Shin-Etsu Chemical Co., Ltd.) as CF silane: A silane coupling agent KBM-903) was applied and activated. Next, the liquid crystal polymer film whose surface was washed with water was immersed in a catalyst metal salt solution (Cypress Far East Co., Ltd .: CATALYST 6F), taken out, washed with water, and further subjected to an acid activation treatment with hydrochloric acid, to obtain a liquid crystal polymer film. A catalytic metal was applied to the surface. Subsequently, the liquid crystal polymer film was immersed in an electroless plating solution (Okuno Pharmaceutical Co., Ltd .: electroless nickel-boron plating solution top chemialloy B) at a temperature of 65 ° C. for 2 minutes, and the catalytic metal applied to the surface was applied. An electroless nickel plating treatment was performed as a nucleus, and then a heat treatment was performed in a nitrogen atmosphere at a temperature of 200 ° C. for 30 minutes to prepare a film substrate for a wiring board in which a Ni plating film was formed on a liquid crystal polymer film.
A tape peeling test of the thus prepared wiring board film base material was performed, but the tape was not peeled, and high adhesion strength between the liquid crystal polymer film and the Ni plating film was confirmed.

(実施例2)
無電解メッキ液としてニッケル−リン系メッキ液(奥野製薬工業株式会社製:無電解ニッケル−リン系メッキ液トップニコロンNAC)を用いること以外は、実施例1と同様な操作を行い、液晶ポリマフィルムを基材とした配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、テープが剥離せず、液晶ポリマーフィルムとNiメッキ膜との高い付着強度が確認された。
(Example 2)
A liquid crystal polymer was prepared in the same manner as in Example 1 except that a nickel-phosphorous plating solution (Okuno Pharmaceutical Co., Ltd .: electroless nickel-phosphorous plating solution Top Nicolon NAC) was used as the electroless plating solution. A film substrate for a wiring board using the film as a substrate was prepared.
A tape peeling test of the thus prepared wiring board film base material was performed, but the tape was not peeled, and high adhesion strength between the liquid crystal polymer film and the Ni plating film was confirmed.

(実施例3)
無電解メッキ液として銅系メッキ液(奥野製薬工業株式会社製:無電解メッキ液ATSアドカッパ)を用いること以外は、実施例1と同様な操作を行い、Cuメッキ膜が形成された液晶ポリマフィルムを基材とした配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、テープが剥離せず、液晶ポリマーフィルムとメッキ膜との高い付着強度が確認された。
(Example 3)
A liquid crystal polymer film on which a Cu plating film was formed by performing the same operation as in Example 1 except that a copper-based plating solution (Okuno Pharmaceutical Co., Ltd .: electroless plating solution ATS AD Kappa) was used as the electroless plating solution. A film substrate for a wiring board was prepared using the above as a substrate.
The tape peeling test of the film substrate for a wiring board prepared as described above was performed, but the tape was not peeled off, and high adhesion strength between the liquid crystal polymer film and the plating film was confirmed.

(実施例4)
厚さ50μmの液晶ポリマーフィルム(株式会社クラレ製;Vecstar(登録商標) CT)を準備し、この液晶ポリマーフィルム表面を、CFシランである3−アミノプロピルトリメトキシシラン(信越化学工業株式会社製:シランカップリング剤KBM−903)を塗布して活性化した。次に、表面を水洗した液晶ポリマーフィルムを触媒金属塩溶液(奥野製薬株式会社製:OPC−80キャタリストM+OPC SALM)に浸漬し、取り出した後水洗し、さらに、酸活性処理(奥野製薬株式会社製:OPC−500 アクセレータMX)を行って、液晶ポリマーフィルム表面に触媒金属を付与した。続いて、液晶ポリマフィルムを無電解メッキ液(奥野製薬工業株式会社製:ATSアドカッパIW)中に、温度30℃で5分間浸漬し、表面に付与した触媒金属を核として無電解銅メッキ処理を行い、次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、液晶ポリマーフィルム上にCuメッキ膜が形成された配線基板用フィルム基材を調製した。
続いて、このように調製した配線基板用フィルム基材のCuメッキ膜上に、スピンコートによりポジ型のフォトレジストを塗布し、厚さ6μmのレジスト膜を形成した。次に、露光装置を用いてレジスト膜に回路パターンの潜像を形成し、現像を行ってレジスト膜の回路パターンの形成を予定する部分を除去して、その部分に対応するCuメッキ膜を露出させた。続いて、Cuメッキ膜の露出した部分をシード層として硫酸銅電気メッキを行い、回路パターンの形成を予定する部分にCu電気メッキ層を形成した。次に、アセトンによりフォトレジストを除去し、回路パターンの形成を予定する部分のCuメッキ膜を露出させ、続いて、短時間のエッチングを行い、回路パターンの形成を予定する部分以外の不要なCuメッキ膜を除去し、Cu配線パターンが形成されたフレキシブルプリント基板を作製した。
Example 4
A liquid crystal polymer film (made by Kuraray Co., Ltd .; Vecstar (registered trademark) CT) having a thickness of 50 μm was prepared, and the surface of the liquid crystal polymer film was 3-aminopropyltrimethoxysilane (made by Shin-Etsu Chemical Co., Ltd.) as CF silane: A silane coupling agent KBM-903) was applied and activated. Next, the liquid crystal polymer film whose surface was washed with water was immersed in a catalyst metal salt solution (Okuno Pharmaceutical Co., Ltd .: OPC-80 Catalyst M + OPC SALM), taken out, washed with water, and further subjected to acid activation treatment (Okuno Pharmaceutical Co., Ltd.). Manufactured: OPC-500 Accelerator MX) to give a catalytic metal to the liquid crystal polymer film surface. Subsequently, the liquid crystal polymer film was immersed in an electroless plating solution (Okuno Pharmaceutical Co., Ltd .: ATS ADKAPPA IW) for 5 minutes at a temperature of 30 ° C., and an electroless copper plating treatment was performed using the catalyst metal applied to the surface as a nucleus. Then, a heat treatment was performed at a temperature of 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a film substrate for a wiring board in which a Cu plating film was formed on a liquid crystal polymer film.
Subsequently, a positive type photoresist was applied by spin coating on the Cu plating film of the film substrate for a wiring board prepared as described above to form a resist film having a thickness of 6 μm. Next, a latent image of the circuit pattern is formed on the resist film using an exposure apparatus, and development is performed to remove the portion of the resist film where the circuit pattern is to be formed, and the Cu plating film corresponding to the portion is exposed. I let you. Subsequently, copper sulfate electroplating was performed using the exposed portion of the Cu plating film as a seed layer, and a Cu electroplating layer was formed in a portion where a circuit pattern was to be formed. Next, the photoresist is removed with acetone to expose the portion of the Cu plating film on which the circuit pattern is to be formed, and then etching is performed for a short time to remove unnecessary Cu other than the portion on which the circuit pattern is to be formed. The plating film was removed, and a flexible printed board on which a Cu wiring pattern was formed was produced.

本発明が適用される配線基板用フィルム基材の作製方法によれば、液晶ポリマー(LCP)フィルムとの密着性が高いメッキ膜を設けたフレキ基板を作製することができる。このようなフレキ基板は、配線基板以外の種々の用途に適用が可能であり、例えば、電磁シールド、反射フィルム等が考えられる。   According to the method for producing a film substrate for a wiring board to which the present invention is applied, a flexible substrate provided with a plating film having high adhesion to a liquid crystal polymer (LCP) film can be produced. Such a flexible substrate can be applied to various uses other than the wiring substrate. For example, an electromagnetic shield, a reflective film, and the like are conceivable.

本実施の形態が適用される配線基板用フィルム基材の作製方法を説明するための図である。It is a figure for demonstrating the preparation methods of the film base material for wiring boards to which this Embodiment is applied. 本実施の形態が適用されるフレキシブルプリント基板を説明するための図である。It is a figure for demonstrating the flexible printed circuit board to which this Embodiment is applied. 本実施の形態が適用されるフレキシブルプリント基板の作製方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the flexible printed circuit board to which this Embodiment is applied.

符号の説明Explanation of symbols

10…配線基板用フィルム基材、11…樹脂フィルム、12…金属膜、13…レジスト膜、15…メッキ層、16…回路パターン、20…フレキシブルプリント基板、111…CFシラン被膜 DESCRIPTION OF SYMBOLS 10 ... Film base material for wiring boards, 11 ... Resin film, 12 ... Metal film, 13 ... Resist film, 15 ... Plating layer, 16 ... Circuit pattern, 20 ... Flexible printed circuit board, 111 ... CF silane coating

Claims (11)

液晶ポリマーからなる樹脂フィルムの少なくとも片面にメッキ処理により金属膜を形成するメッキ処理ステップと、
前記メッキ処理ステップにより形成された前記金属膜を有する前記樹脂フィルムを加熱する加熱処理ステップと、
を有することを特徴とする配線基板用フィルム基材の作製方法。
A plating step of forming a metal film by plating on at least one side of a resin film made of a liquid crystal polymer;
A heat treatment step of heating the resin film having the metal film formed by the plating step;
A method for producing a film substrate for a wiring board, comprising:
前記メッキ処理ステップは、前記樹脂フィルムと無電解メッキ液とを接触させることを特徴とする請求項1記載の配線基板用フィルム基材の作製方法。   The method for producing a film substrate for a wiring board according to claim 1, wherein the plating step comprises contacting the resin film with an electroless plating solution. 前記無電解メッキ液は、Ni−B系無電解メッキ液、Ni−P系無電解メッキ液及びCu系無電解メッキ液から選ばれるいずれか一種類であることを特徴とする請求項2記載の配線基板用フィルム基材の作製方法。   3. The electroless plating solution according to claim 2, wherein the electroless plating solution is any one selected from a Ni-B electroless plating solution, a Ni-P electroless plating solution, and a Cu electroless plating solution. A method for producing a film substrate for a wiring board. 前記メッキ処理ステップ前に、前記樹脂フィルムの表面をカーボンファンクショナルシランにより活性化する前処理工程をさらに有することを特徴とする請求項1記載の配線基板用フィルム基材の作製方法。   The method for producing a film substrate for a wiring board according to claim 1, further comprising a pretreatment step of activating the surface of the resin film with carbon functional silane before the plating step. 前記メッキ処理ステップ前に、前記樹脂フィルムの表面を乾式処理により活性化することを特徴とする請求項1記載の配線基板用フィルム基材の作製方法。   The method for producing a film substrate for a wiring board according to claim 1, wherein the surface of the resin film is activated by a dry treatment before the plating step. 前記乾式処理が、プラズマ照射処理であることを特徴とする請求項5記載の配線基板用フィルム基材の作製方法。   6. The method for producing a film substrate for a wiring board according to claim 5, wherein the dry treatment is a plasma irradiation treatment. 前記乾式処理が、大気中における空気プラズマ照射処理であることを特徴とする請求項5記載の配線基板用フィルム基材の作製方法。   6. The method for producing a film substrate for a wiring board according to claim 5, wherein the dry treatment is an air plasma irradiation treatment in the atmosphere. 前記加熱処理ステップは、前記メッキ処理における温度より高温で、且つ、前記液晶ポリマーの耐熱温度より低温で、前記樹脂フィルムを加熱することを特徴とする請求項1記載の配線基板用フィルム基材の作製方法。   The said heat treatment step heats the said resin film at a temperature higher than the temperature in the said plating process and lower than the heat-resistant temperature of the said liquid crystal polymer, The film base material for wiring boards of Claim 1 characterized by the above-mentioned. Manufacturing method. 配線基板用フィルム基材上に形成された配線パターンを有するフレキシブルプリント基板であって、
前記配線基板用フィルム基材は、液晶ポリマーからなる樹脂フィルムの少なくとも片面に、無電解メッキ処理の後に加熱されて形成された金属膜、を備え、
前記配線パターンは、前記金属膜をシード層として電気メッキ処理により形成されたものであることを特徴とするフレキシブルプリント基板。
A flexible printed board having a wiring pattern formed on a film substrate for a wiring board,
The film substrate for a wiring board includes a metal film formed by heating after electroless plating treatment on at least one surface of a resin film made of a liquid crystal polymer,
The flexible printed circuit board, wherein the wiring pattern is formed by electroplating using the metal film as a seed layer.
前記液晶ポリマーが、前記無電解メッキ処理後の状態と実質的に異なるミクロ構造を有することを特徴とする請求項9記載のフレキシブルプリント基板。   The flexible printed circuit board according to claim 9, wherein the liquid crystal polymer has a microstructure substantially different from a state after the electroless plating treatment. 前記金属膜は、Ni−B系、Ni−P系及びCu系から選ばれるいずれか一種であることを特徴とする請求項9記載のフレキシブルプリント基板。   The flexible printed circuit board according to claim 9, wherein the metal film is any one selected from a Ni—B system, a Ni—P system, and a Cu system.
JP2004324024A 2004-11-08 2004-11-08 Method of manufacturing film base member for wiring board and flexible printed board Withdrawn JP2006135179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324024A JP2006135179A (en) 2004-11-08 2004-11-08 Method of manufacturing film base member for wiring board and flexible printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324024A JP2006135179A (en) 2004-11-08 2004-11-08 Method of manufacturing film base member for wiring board and flexible printed board

Publications (1)

Publication Number Publication Date
JP2006135179A true JP2006135179A (en) 2006-05-25

Family

ID=36728436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324024A Withdrawn JP2006135179A (en) 2004-11-08 2004-11-08 Method of manufacturing film base member for wiring board and flexible printed board

Country Status (1)

Country Link
JP (1) JP2006135179A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156702A (en) * 2006-12-22 2008-07-10 Fujitsu Ltd Housing made from resin and manufacturing method therefor
JP2008221488A (en) * 2007-03-08 2008-09-25 Kanto Gakuin Univ Surface Engineering Research Institute Liquid crystal polymer film-metal-clad laminated sheet
JP2009176853A (en) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd Laminate for electromagnetic wave shield and method of manufacturing the same
US8147904B2 (en) 2007-03-19 2012-04-03 Furukawa Electric Co., Ltd. Metal clad laminate and method for manufacturing metal clad laminate
CN103124635A (en) * 2010-08-26 2013-05-29 株式会社斯凯亚 Method for producing resin sheet including decorative film and metal film
JP2018174051A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Conductive substrate and manufacturing method thereof
WO2024202254A1 (en) * 2023-03-31 2024-10-03 株式会社村田製作所 Laminated structure and printed board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156702A (en) * 2006-12-22 2008-07-10 Fujitsu Ltd Housing made from resin and manufacturing method therefor
JP2008221488A (en) * 2007-03-08 2008-09-25 Kanto Gakuin Univ Surface Engineering Research Institute Liquid crystal polymer film-metal-clad laminated sheet
US8147904B2 (en) 2007-03-19 2012-04-03 Furukawa Electric Co., Ltd. Metal clad laminate and method for manufacturing metal clad laminate
JP2009176853A (en) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd Laminate for electromagnetic wave shield and method of manufacturing the same
CN103124635A (en) * 2010-08-26 2013-05-29 株式会社斯凯亚 Method for producing resin sheet including decorative film and metal film
JP2018174051A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Conductive substrate and manufacturing method thereof
WO2024202254A1 (en) * 2023-03-31 2024-10-03 株式会社村田製作所 Laminated structure and printed board

Similar Documents

Publication Publication Date Title
US7739789B2 (en) Method for forming surface graft, conductive film and metal patterns
JP4712420B2 (en) Surface graft material, conductive material and method for producing the same
US20090029065A1 (en) Conductive circuit manufacturing method
JP4606924B2 (en) Graft pattern material, conductive pattern material and method for producing the same
JP6667119B1 (en) Laminated body for printed wiring board and printed wiring board using the same
JP5421598B2 (en) Manufacturing method of flexible printed circuit board
JP2006135179A (en) Method of manufacturing film base member for wiring board and flexible printed board
TW202007240A (en) Method of manufacturing printed wiring board
JP5750009B2 (en) Manufacturing method of laminate
WO2012133684A1 (en) Production method for laminate having patterned metal films, and plating layer-forming composition
JP2003082469A (en) Metallic film pattern forming method
US20070237969A1 (en) Surface-metallized polyimide material and method for manufacturing the same
JP3846331B2 (en) Method for producing fine particle dispersion
JP2000286531A (en) Manufacture of printed wiring board
JP5051754B2 (en) Conductive layer forming composition, conductive layer forming method, and circuit board manufacturing method
JP5036004B2 (en) Method for manufacturing circuit wiring board
JP2010272831A (en) Method of manufacturing flexible printed board
JP2008258293A (en) Forming method of patterned conductor layer, manufacturing method of circuit board and circuit board
JP5654205B2 (en) Manufacturing method of flexible printed circuit board
TW200831284A (en) Laminate, conductive pattern and method of forming conductive pattern, and printed circuit board, thin-layer transistor and device using the same
JPH10209609A (en) Manufacture of flexible printed circuit and flexible printed circuit manufactured by the method
JP2008088273A (en) Hydrophobic polymer, laminated form with electrically conductive film using the same, method for producing electrically conductive pattern, printed wiring board utilizing the laminated form, thin-layer transistor, and device equipped with them
JP2010171268A (en) Method for manufacturing circuit wiring board
JP2005275173A (en) Conductive pattern forming method and conductive pattern material
JP5469263B2 (en) Flexible printed circuit board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108