JP2010272831A - Method of manufacturing flexible printed board - Google Patents

Method of manufacturing flexible printed board Download PDF

Info

Publication number
JP2010272831A
JP2010272831A JP2009138660A JP2009138660A JP2010272831A JP 2010272831 A JP2010272831 A JP 2010272831A JP 2009138660 A JP2009138660 A JP 2009138660A JP 2009138660 A JP2009138660 A JP 2009138660A JP 2010272831 A JP2010272831 A JP 2010272831A
Authority
JP
Japan
Prior art keywords
film
polymer film
metal
flexible printed
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138660A
Other languages
Japanese (ja)
Inventor
Koichi Urushibara
幸一 漆原
Motoyuki Okada
素行 岡田
Minoru Yasusaka
稔 安坂
Masataka Miyamura
雅隆 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FAINTEKKU KK
Original Assignee
FAINTEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FAINTEKKU KK filed Critical FAINTEKKU KK
Priority to JP2009138660A priority Critical patent/JP2010272831A/en
Publication of JP2010272831A publication Critical patent/JP2010272831A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing flexible metal wiring board suitable for high definition and high frequency applications, with high adhesion strength between a polymer film and a metal foil. <P>SOLUTION: When the metal foil is formed on the polymer film, after performing vapor deposition by the conductor metal film thickness of 1 μm or less, and being subjected to irradiation with a low-speed electron beam, electroplating is formed for 1 μm or more and 30 μm or less, and a film base material for a wiring board with enhanced adhesion of a resin film and a metal film is manufactured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、フレキシブルプリント基板の作製方法等に関し、より詳しくは金属とポリマーフィルムとの接着強度に優れたフィルムを有する高精密且つ高周波用途に適したフレキシブルプリント基板の作成方法等に関する。  The present invention relates to a method for producing a flexible printed circuit board, and more particularly to a method for producing a flexible printed circuit board having a film excellent in adhesive strength between a metal and a polymer film and suitable for high-precision and high-frequency applications.

各種電子機器の高速化、高密度化に伴い、配線基板の高機能化が要求されている。特に、携帯機器の進展に伴い、携帯電話用途、携帯音楽機器や液晶ディスプレイ用途においては配線基板のフレキシブル性が必須で、これに対応したいわゆるフレキシブルプリント基板(以下、「フレキ基板」と記する)の開発が活発に進められている。    As various electronic devices become faster and higher in density, higher functionality of the wiring board is required. In particular, with the development of mobile devices, the flexibility of wiring boards is essential for mobile phone applications, portable music devices, and liquid crystal display applications, and so-called flexible printed circuit boards (hereinafter referred to as “flexible boards”) corresponding to this. Is actively being developed.

現在フレキ基板を用いて量産される配線の寸法は、ライン/スペースとして35μm〜70μm程度である。さらに、高周波対応として、パターンの微細化に対応できる素材、高周波での電気特性を劣化させない素材が求められており、低誘電率基板材料、低水分吸収性材料およびフィルム表面の凹凸が少ないことが望まれている。フレキ基板の基材はポリイミドフィルムが広く使用されているが、前述のような背景から、低吸湿性且つ絶縁性に優れた材料のフィルムが使用されはじめた。(非特許文献1参照)。    The size of wiring currently mass-produced using a flexible substrate is about 35 μm to 70 μm as a line / space. In addition, for high frequency, materials that can handle pattern miniaturization and materials that do not degrade electrical characteristics at high frequencies are required, and low dielectric constant substrate materials, low moisture absorption materials, and film surface irregularities are few. It is desired. A polyimide film is widely used as the base material of the flexible substrate, but from the background described above, a film made of a material having a low hygroscopic property and an excellent insulating property has begun to be used. (Refer nonpatent literature 1).

フレキ基板用フィルム上に銅箔膜を形成する方法として、密着性を確保するために、通常、NiまたはCr等を含む銅の薄膜を接着層としてスパッタで形成したのち、電気めっきをする(特許文献1,2,3,4参照)。続いて配線のパターニングにおけるエッチング工程では銅をエッチングする工程だけでなく、これらのNi、Cr等もエッチングするなどの工程が追加されるという問題がある。(特許文献5,6,7,8,9,10,11参照)また、Niは磁性金属であるため、高周波用途において支障を来たすおそれがある    As a method of forming a copper foil film on a film for a flexible substrate, in order to ensure adhesion, a copper thin film containing Ni or Cr is usually formed by sputtering as an adhesive layer, and then electroplated (patent) Reference 1, 2, 3, 4). Subsequently, in the etching process in the patterning of the wiring, there is a problem that not only a process of etching copper but also a process of etching these Ni, Cr and the like are added. (Refer to Patent Documents 5, 6, 7, 8, 9, 10, and 11) Further, since Ni is a magnetic metal, there is a risk of hindrance in high frequency applications.

一方、パッタ法だけで、フレキ基板用フィルム上に銅箔膜を形成する方法も提案されている。(特許文献12参考)。しかし、スパッタ法だけで銅箔の膜厚を12μmまで形成するには多大な時間を要して、実用的ではない。
スパッタ法によるシード層形成でのこのような問題は、無電界メッキ法を使えばある程度解消される。(特許文献13参照)即ち、無電界メッキによれば、プロセス効率が高まるとともに、フレキ基板用フィルム上に銅のシード層を直接形成することが可能である。しかし、従来行われているプラスチックフィルム上の無電界メッキは、前処理によりプラスチックフィルム表面に凹凸を形成し、いわゆるアンカー効果によってメッキ層を付着させる。例えば、ポリイミドフィルムの場合は、一般に、コンディショナーとよばれる前処理剤によってフレキ基板用フィルムの表面粗化処理が行われている。しかし、表面の凹凸は高周波用途では信号の散乱現象を引き起こし、適さない。
On the other hand, a method of forming a copper foil film on a film for a flexible substrate by using only a patch method has been proposed. (See Patent Document 12). However, it takes much time to form a copper foil film thickness of up to 12 μm by sputtering alone, which is not practical.
Such a problem in the formation of the seed layer by the sputtering method can be solved to some extent by using the electroless plating method. That is, according to electroless plating, it is possible to increase the process efficiency and form a copper seed layer directly on the flexible substrate film. However, the conventional electroless plating on a plastic film forms irregularities on the surface of the plastic film by pretreatment, and attaches a plating layer by a so-called anchor effect. For example, in the case of a polyimide film, the surface roughening treatment of the flexible substrate film is generally performed by a pretreatment agent called a conditioner. However, surface irregularities cause signal scattering in high frequency applications and are not suitable.

これらのポリマーフィルムは、スパッタ等の乾式法及びメッキ等の湿式法、いずれの方法を採用しても、ポリマーフィルムに対する金属膜の付着性が低く、シード層を形成することが困難である。これらのポリマーフィルムの分子が、主としてベンゼン環を骨格とした構造を有するため、高周波基板としての高い絶縁性を示すにも拘らず、ポリマーの表面安定性が高く、その結果、表面付着性が低下するものと考えられる。
とくに、液晶性ポリマ(以下「LCP」と記す)を用いた配線基板は、銅箔貼り付けタイプに限られ、LCPは、素材自体の絶縁性質が優れているにも拘らず、銅箔の薄膜化が困難で、高周波用途の高精細基板としての使用形態が制約されているという問題があった。このように、ポリマーフィルムを基材に用いて、簡単且つ低コストの工程によりシード層を形成した配線基板用フィルム基材の作製方法及びフレキ基板が望まれている。
These polymer films have low adhesion of the metal film to the polymer film, and it is difficult to form a seed layer, regardless of which of dry methods such as sputtering and wet methods such as plating. Since the molecules of these polymer films have a structure mainly composed of a benzene ring, the surface stability of the polymer is high despite the high insulation as a high-frequency substrate, resulting in poor surface adhesion. It is thought to do.
In particular, a wiring board using a liquid crystalline polymer (hereinafter referred to as “LCP”) is limited to a copper foil pasting type, and the LCP is a thin film of copper foil despite its excellent insulating properties. However, there is a problem that the form of use as a high-definition substrate for high-frequency applications is restricted. Thus, there is a demand for a method for producing a film substrate for a wiring board and a flexible substrate in which a seed layer is formed by a simple and low-cost process using a polymer film as a substrate.

特開2006−306099号公報JP 2006-306099 A 特開2007−247026号公報JP 2007-247026 A 特開2007−245645号公報JP 2007-245645 A 特開2007−245646号公報JP 2007-245646 A 特開平9−555575号公報JP-A-9-555575 特開2000−16503号公報JP 2000-16503 A 特開2000−340911号公報JP 2000-340911 A 特開2002−176242号公報JP 2002-176242 A 特開2005−15861号公報JP 2005-15861 A 特開2003−64431号公報JP 2003-64431 A 特開2003−180157号公報JP 2003-180157 A 特開2002−09420号公報JP 2002-09420 A 特開2006−135179号公報JP 2006-135179 A

小野寺稔、「マイクロファブリケーションを支える新材料技術−3.回路 基板用液晶ポリマーフィルムの開発と応用」、マイクロファブリケーション研究会第14回公開研究会、社団法人エレクトロニクス実装学会、平成16年9月8日、p16−22Atsushi Onodera, “New Material Technology for Microfabrication-3. Development and Application of Liquid Crystal Polymer Films for Circuit Boards”, Microfabrication Study Group 14th Public Research Society, Japan Institute of Electronics Packaging, September 2004 8th, p16-22

本発明は、上述した技術的課題を解決するためになされたものである。
即ち、本発明の目的は、フレキシブルポリマーフィルムを基材に用いた高精細且つ高周波用途に適した配線基板用フィルム基材の作製方法を提供することにある。
The present invention has been made to solve the technical problems described above.
That is, an object of the present invention is to provide a method for producing a film substrate for a wiring board suitable for high-definition and high-frequency applications using a flexible polymer film as a substrate.

かかる目的のもと、本発明によれば、5KeV以下の低速電子線を基材に照射しながら真空蒸着により1μm以下の膜厚で導電性金属薄膜を形成するステップと、所定の金属箔膜厚までめっき処理するステップと加熱乾燥するステップとを有することを特徴とする配線基板用フィルム基材の作製方法である。    For this purpose, according to the present invention, a step of forming a conductive metal thin film with a film thickness of 1 μm or less by vacuum deposition while irradiating a substrate with a low-energy electron beam of 5 KeV or less, and a predetermined metal foil thickness A method for producing a film substrate for a wiring board, comprising: a step of performing plating treatment and a step of drying by heating.

本発明が適用される配線基板用フィルム基材の真空蒸着作製方法において、密着を向上させるために、5KeV以下の低速電子線を照射しながら金属層を形成する方法が優れている。    In the vacuum deposition manufacturing method of the film substrate for a wiring board to which the present invention is applied, a method of forming a metal layer while irradiating a low-speed electron beam of 5 KeV or less is excellent in order to improve adhesion.

通常、蒸着源に電子線などの活性エネルギー線を照射して蒸着を行う方法はイオンプレーティングと称されて、良く知られている。この方法では蒸着する金属粒子のエネルギーを揃えて、製膜の特性を改善することである。また、活性エネルギー線は13.56MHzの高周波電源から供給して発生させる。さらに、効率よくするために、ヘリウム、アルゴン窒素、酸素などのガスを真空チャンバ内に供給して処理を行うのが通例である。したがって、この方法では、活性エネルギー線は基板と蒸発源との中間に設置されるか、蒸発源の近傍ないしは蒸発源に向けて活性エネルギー線を照射する必要がある。    In general, a method of performing deposition by irradiating an evaporation source with an active energy ray such as an electron beam is called ion plating and is well known. In this method, the energy of the deposited metal particles is made uniform to improve the film forming characteristics. The active energy ray is generated by being supplied from a 13.56 MHz high frequency power source. Furthermore, in order to improve efficiency, it is usual to perform processing by supplying a gas such as helium, argon nitrogen, or oxygen into the vacuum chamber. Therefore, in this method, it is necessary that the active energy ray is installed between the substrate and the evaporation source, or the active energy ray is irradiated in the vicinity of the evaporation source or toward the evaporation source.

これに対して、本発明では低速電子線を基板の近傍に設置し、基板に向けて照射するもので、従来のイオンプレーティングなどとは作用効果が全く異なる方法である。基板に向けて照射するには、発生源の周囲にグリッド電極を設け、制御すればよい。また、電子線を照射するに際し、イオンプレーティングのようにヘリウム、アルゴン、酸素、窒素などのガスを真空チャンバ内に挿入する必要はない。したがって、放電による紫外線が発生し、基材に照射されることはなく、フィルムの損傷がない。この低速電子線を照射しながら製膜を完成させることにより、密着性に優れる薄膜をうることができる。On the other hand, in the present invention, a low-speed electron beam is installed in the vicinity of the substrate and irradiated toward the substrate, and this method is completely different from the conventional ion plating. In order to irradiate the substrate, a grid electrode may be provided around the generation source and controlled. Further, when irradiating an electron beam, it is not necessary to insert a gas such as helium, argon, oxygen, or nitrogen into the vacuum chamber as in ion plating. Therefore, ultraviolet rays are generated by discharge, and the substrate is not irradiated, and the film is not damaged. A thin film having excellent adhesion can be obtained by completing the film formation while irradiating the low-speed electron beam.

本発明が適用される配線基板用フィルム基材の作製方法において、メッキ処理は電気めっき処理が好ましい。    In the method for producing a film substrate for a wiring board to which the present invention is applied, the plating treatment is preferably an electroplating treatment.

また、本発明が適用される配線基板用フィルム基材の作製方法における加熱処理は、下地のポリマーフィルムのガラス転移温度より高温で、且つ、ポリマーフィルムの分解温度より低い温度で樹脂フィルムを加熱することが好ましい。また、加熱乾燥処理は金属箔の損傷を防ぐため、窒素やアルゴンなどの不活性ガスの雰囲気下で行うことが好ましい。このような条件で樹脂フィルムを加熱することにより、金属膜とポリマーフィルムとの密着性をさらに高めることができる。    The heat treatment in the method for producing a film substrate for a wiring board to which the present invention is applied heats the resin film at a temperature higher than the glass transition temperature of the underlying polymer film and lower than the decomposition temperature of the polymer film. It is preferable. The heat drying treatment is preferably performed in an atmosphere of an inert gas such as nitrogen or argon in order to prevent damage to the metal foil. By heating the resin film under such conditions, the adhesion between the metal film and the polymer film can be further enhanced.

本発明によれば、ポリマーフィルムを基材に用いた高精細且つ高周波用途に適した配線基板用フィルム基材の作製方法が提供される。    ADVANTAGE OF THE INVENTION According to this invention, the preparation methods of the film base material for wiring boards suitable for the high-definition and high frequency use which used the polymer film for the base material are provided.

本実施の形態が適用されるフレキ基板の作製のための蒸着装置を説明するための図である。(実施例1)It is a figure for demonstrating the vapor deposition apparatus for preparation of the flexible substrate with which this Embodiment is applied. (Example 1)

以下、本発明を実施するための最良の形態(実施の形態)について詳細に説明する。尚、本発明は本実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。ポリマーフィルム11は、エポキシ樹脂、ポリイミド、ポリフェニレンサルファイド(PPS)、ポリエステル、テフロン、ポリアミド、ポリイミドエーテル、ポリアミドイミド、ポリスチレン、アラミド、ポリカーボネートから選ばれる一つまたは、これらの混合物からなる材料が使用できる。またポリエステルはサーモトロピック液晶等の従来公知の各種LCPを含み、なかでも、液晶性ポリエステルが好ましい。    Hereinafter, the best mode (embodiment) for carrying out the present invention will be described in detail. In addition, this invention is not limited to this Embodiment, It can implement in various deformation | transformation within the range of the summary. The polymer film 11 may be made of one material selected from epoxy resin, polyimide, polyphenylene sulfide (PPS), polyester, Teflon, polyamide, polyimide ether, polyamideimide, polystyrene, aramid, and polycarbonate, or a material made of a mixture thereof. Polyester includes various conventionally known LCPs such as thermotropic liquid crystal, and among them, liquid crystalline polyester is preferable.

ポリマーフィルムはフィルム作成時に表面付着した不純物を除去する目的で、脱脂処理を施す。通常はメチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類、アセトン、メチルエチルケトンやメチルイソブチルケトンなどのケトン類の溶液に浸漬して処理を行う。場合によっては、これらの液体を浸み込ませた紙、布、不織布などで拭いてもよい。また、一般にプリント基板で広く使用されている希塩酸などの酸水溶液、界面活性剤を含む水溶液で洗浄してもよい。    The polymer film is degreased for the purpose of removing impurities adhering to the surface during film production. Usually, the treatment is performed by dipping in a solution of alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. In some cases, it may be wiped with paper, cloth, nonwoven fabric or the like soaked with these liquids. Further, it may be washed with an acid aqueous solution such as dilute hydrochloric acid or a surfactant-containing aqueous solution that is generally widely used in printed circuit boards.

図1は、本実施の形態が適用される配線基板用フィルム基材を作製するための蒸着装置を説明するための図である。ポリマーフィルム11は蒸着装置の固定治具14を介して、蒸着ボート12の上方に固定する。蒸着ボート12には蒸発源となる金属13を置く。固定治具はポリマーフィルムの温度を一定に保つため、ヒーターが内臓してある。また、ポリマーフィルムの表面温度を一定に保つため、蒸発ボートとポリマーフィルムとの間に加熱ヒーター15が設置されている。低速電子線源16は加熱ヒータ15と基材11との間に設置される。低速電子線は電子の放出方向を基材方向に向けるため、グリッド17が電子線源の周囲に設置されている。  FIG. 1 is a diagram for explaining a vapor deposition apparatus for producing a film substrate for a wiring board to which the present embodiment is applied. The polymer film 11 is fixed above the vapor deposition boat 12 through a fixing jig 14 of the vapor deposition apparatus. A metal 13 serving as an evaporation source is placed on the vapor deposition boat 12. The fixing jig has a built-in heater in order to keep the temperature of the polymer film constant. In order to keep the surface temperature of the polymer film constant, a heater 15 is installed between the evaporation boat and the polymer film. The low-speed electron beam source 16 is installed between the heater 15 and the base material 11. Since the low-speed electron beam directs the electron emission direction toward the base material, the grid 17 is installed around the electron beam source.

ポリマーフィルム11はヒーター内臓の固定治具14に固定した後、蒸着ボート12の上方に固定する。続いて、装置全体を真空ポンプ18で排気し、真空計測器19で測定した装置内部の圧力が10−1Pa以下となるまで排気する。このとき、蒸着中のポリマーフィルムの温度を一定にする目的で、固定治具14と加熱ヒーター15で加熱し、150℃以上とする。The polymer film 11 is fixed to the upper part of the vapor deposition boat 12 after being fixed to the fixing jig 14 built in the heater. Subsequently, the entire apparatus is evacuated by the vacuum pump 18 and evacuated until the pressure inside the apparatus measured by the vacuum measuring device 19 becomes 10 −1 Pa or less. At this time, in order to keep the temperature of the polymer film during vapor deposition constant, the temperature is set to 150 ° C. or higher by heating with the fixing jig 14 and the heater 15.

装置の圧力が10−1Pa以下に達し、さらにポリマーフィルム基材の温度が150℃に達したら、低エネルギー電子線の電源を投入し、同時にグリッド17にバイアス電圧を5KeV以下の電圧で印加する。低速電子線は、100eV以上、5KeV以下が好ましい。電子線エネルギーが高いとポリマーフィルムの表面を改質するだけでなく、微小の凹凸を作り、いわゆる粗化してしまい、回路を形成したときに高周波信号を散乱するなどの特性を損なう。また、低速電子線が基板に近いと、熱によってフィルムが変形し実用に適さない。When the pressure of the apparatus reaches 10 −1 Pa or less and the temperature of the polymer film substrate reaches 150 ° C., the low energy electron beam is turned on, and at the same time, a bias voltage is applied to the grid 17 at a voltage of 5 KeV or less. . The low speed electron beam is preferably 100 eV or more and 5 KeV or less. When the electron beam energy is high, not only the surface of the polymer film is modified, but also fine irregularities are formed, so-called roughening, and characteristics such as scattering of high-frequency signals when a circuit is formed are impaired. If the low-speed electron beam is close to the substrate, the film is deformed by heat and is not suitable for practical use.

蒸着ボート12に電流を印加して加熱する。蒸発源である金属13は加熱され、蒸着が開始される。ポリマーフィルムに付着する金属の付着量は0.1〜10オングストローム毎秒であれば達成できる。  An electric current is applied to the vapor deposition boat 12 to heat it. The metal 13 which is an evaporation source is heated and vapor deposition is started. The amount of metal deposited on the polymer film can be achieved as long as it is 0.1 to 10 angstroms per second.

このとき、ポリマーフィルムに付着する金属の膜厚は1μm以下でよく、続く工程のめっき処理で厚膜めっきができればよい。金属の厚さが0.1μm以下の過度に薄いと、めっき処理液に浸漬したときにめっき液に溶解して、金属膜が形成されなかったり、めっき処理での膜化が不十分でムラが生じて、導電膜等としての機能を損なう傾向がある。金属の厚さが1μm以上の過度に大きいと、膜質が劣化し、膜の歪が増大し、最悪の場合は剥離する傾向がある。通常は0.1μmから0.5μmが最適である。  At this time, the film thickness of the metal adhering to the polymer film may be 1 μm or less, and it is sufficient that thick film plating can be performed by the plating process in the subsequent process. If the thickness of the metal is excessively less than 0.1 μm, it will dissolve in the plating solution when immersed in the plating treatment solution, and a metal film will not be formed, or the formation of the film in the plating treatment will be insufficient and unevenness will occur. It tends to occur and impair the function as a conductive film or the like. If the thickness of the metal is excessively 1 μm or more, the film quality deteriorates, the distortion of the film increases, and in the worst case, there is a tendency to peel off. Usually, 0.1 μm to 0.5 μm is optimal.

また、蒸着中のポリマーフィルム温度は金属の結晶の大きさとポリマーフィルムと金属箔との密着強度を大きく影響させるため厳密に制御されなければならない。通常はポリマーフィルム温度を100℃以上とし、ポリマーフィルムの分解開始温度以下がよい。望ましくは150℃から250℃で、その範囲で選択される。  Also, the polymer film temperature during vapor deposition must be strictly controlled in order to greatly affect the size of metal crystals and the adhesion strength between the polymer film and the metal foil. Usually, the polymer film temperature is set to 100 ° C. or higher, and is preferably lower than the decomposition start temperature of the polymer film. Desirably, it is selected in the range of 150 to 250 ° C.

続いて、蒸着金属付きポリマーフィルムは、添加剤でめっき応力を調整した、電気めっきをおこない必要な膜厚にする。  Subsequently, the polymer film with the deposited metal is subjected to electroplating in which the plating stress is adjusted with an additive to obtain a necessary film thickness.

銅の電気めっきは基板用のハイスロータイプの硫酸銅基本浴(硫酸銅:75g/L 硫酸:180g/L 塩素:40ppm)に市販の添加剤、荏原ユージライト社製のCu−Brite HA−Eまたは、メルテックス社製のST−901を添加し、調整した硫酸銅めっき液で、5〜30μmの厚さになるようにめっき処理施した。  Copper electroplating is a high-throw type copper sulfate basic bath (copper sulfate: 75 g / L, sulfuric acid: 180 g / L, chlorine: 40 ppm), a commercially available additive, Cu-Brite HA-E manufactured by Ebara Eugene Corporation. Alternatively, ST-901 manufactured by Meltex was added and plated with a prepared copper sulfate plating solution to a thickness of 5 to 30 μm.

また金のめっきは通常使われる 青化金2.3g/Lと青化カリ15g/Lおよびリン酸ソーダ4g/Lとからなるめっき浴を使用し、70℃で電流密度を0.1〜0.5A/dmに調整して電気めっきを行う。Gold plating uses a plating bath composed of 2.3 g / L of gold cyanide, 15 g / L of potassium cyanide and 4 g / L of sodium phosphate, and the current density is 0.1 to 0 at 70 ° C. Adjust to 5 A / dm 2 and perform electroplating.

次に、めっき処理により形成された金属膜を有するポリマーフィルムを加熱処理し、金属箔膜とポリマーフィルムとの密着性が高められた配線基板用フィルム基材を作製する。
(加熱処理)
加熱処理の条件は、ポリマーフィルムの種類により適宜選択されるが、通常、めっき処理の処理温度(通常、15℃〜120℃程度)よりも高温で、且つ、ポリマーフィルムの熱変形温度より低温において適当な時間行われる。例えば、温度200℃で30分間程度の加熱処理が好ましい。
Next, the polymer film having a metal film formed by plating is subjected to heat treatment to produce a wiring board film base material having improved adhesion between the metal foil film and the polymer film.
(Heat treatment)
The conditions for the heat treatment are appropriately selected depending on the type of the polymer film, but are usually higher than the treatment temperature of the plating treatment (usually about 15 ° C. to 120 ° C.) and lower than the thermal deformation temperature of the polymer film. It takes place for an appropriate time. For example, heat treatment at a temperature of 200 ° C. for about 30 minutes is preferable.

このように、めっき処理により、樹脂フィルム表面に金属箔膜を形成した後、ポリマーフィルムを加熱処理することにより、ポリマーフィルムと金属箔膜との密着力が高められる。これは、加熱処理により、ポリマーフィルムを構成するポリマーの微細構造(ミクロ構造)が、温度で変化する過程で、ポリマーフィルムと銅箔膜との界面が活性化された状態になり、その結果、結合が強まるためと考えられる。
通常、ポリマーフィルムは、熱変形温度以下であれば、微細構造(ミクロ構造)は変化するが、電気的性質、吸水性、寸法安定性等のフィルムとしての実用的性質に変化が生じるほどのマクロな変化は生じない。また、めっき処理は、通常、100℃以下の温度において行われるのでポリマーフィルムの微細構造(ミクロ構造)の変化は軽微であり、実質的影響は生じない。
As described above, after the metal foil film is formed on the surface of the resin film by plating, the polymer film is heated to increase the adhesion between the polymer film and the metal foil film. This is because the heat treatment causes the polymer microstructure that makes up the polymer film to change with temperature, and the interface between the polymer film and the copper foil film is activated. This is thought to be because the bond is strengthened.
Usually, the polymer film changes its microstructure (microstructure) if it is below the heat distortion temperature, but it is macroscopic enough to change the practical properties of the film such as electrical properties, water absorption, and dimensional stability. No change will occur. In addition, since the plating treatment is usually performed at a temperature of 100 ° C. or lower, the change in the fine structure (microstructure) of the polymer film is slight and no substantial influence is produced.

以下に、実施例に基づき本実施の形態をさらに詳細に説明する。なお、本実施の形態は実施例に限定されるものではない。
(テープ剥離試験)
予め調製した配線基板用フィルム基材のメッキ膜面に、幅15mm、長さ40mmの粘着テープを、接着面長さ20mmになるように貼り付け、その後、粘着テープの他端を引き上げて、そのときの剥離状況を目視で観察した。
Hereinafter, the present embodiment will be described in more detail based on examples. Note that this embodiment is not limited to the examples.
(Tape peeling test)
Adhesive tape with a width of 15 mm and a length of 40 mm is applied to the plating film surface of the film substrate film substrate prepared in advance so that the adhesive surface has a length of 20 mm. The peeling state at the time was visually observed.

(実施例1)
厚さ25μmのLCPフィルム11(株式会社クラレ製;Vecstar(登録商標)CT)を準備し、このLCPフィルム表面を、イソプロピルアルコールを含ませた不織布で表面をこすり、脱脂処理をした。続いて、LCPフィルムを固定板14に固定し、真空蒸着装置の蒸発ボート12上に固定する。蒸発ボート12に蒸発源である銅13の塊を蒸着後にLCPフィルム上に付着する量が0.2μmとなるようにして置く。真空装置内を真空ポンプ18で排気し、同時に固定治具のヒーター14と加熱ヒーター15とに通電して、LCPフィルム11を加熱する。LCPフィルムの温度が200℃に達したら通電を停止する。続いて、低速電子線源16の電源を投入し、1KeVとなるようにグリッド17の電圧調整し、照射を開始する。さらに真空蒸着装置内の圧力が10−2Paとなったら、蒸発ボート12を加熱して、蒸着を開始する。金属銅13の塊が消失したら蒸着源への通電と低速電子線の照射をやめる。LCPフィルム11が50℃以下に冷却できたことを確認したら、真空ポンプ18の排気を停止し、リークバルブ20を開とし、真空装置内を常圧に戻す。つづいて、LCPフィルムをハイスロータイプの硫酸銅基本浴(硫酸銅:75g/L 硫酸:180g/L 塩素:40ppm)に市販の添加剤、荏原ユージライト社製のCu−Brite HA−Eを加えた浴中に投入し、銅箔の膜厚が18μmとした。次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、LCP配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、銅箔がテープに付着せず、LCPフィルムと銅箔膜との高い付着強度が確認された。
Example 1
A 25 μm-thick LCP film 11 (manufactured by Kuraray Co., Ltd .; Vecstar (registered trademark) CT) was prepared, and the surface of this LCP film was rubbed with a non-woven fabric containing isopropyl alcohol to perform a degreasing treatment. Subsequently, the LCP film is fixed to the fixing plate 14 and fixed on the evaporation boat 12 of the vacuum evaporation apparatus. A mass of copper 13 as an evaporation source is deposited on the evaporation boat 12 so that the amount deposited on the LCP film after deposition is 0.2 μm. The inside of the vacuum apparatus is evacuated by a vacuum pump 18 and at the same time, the heater 14 and the heater 15 of the fixing jig are energized to heat the LCP film 11. When the temperature of the LCP film reaches 200 ° C., the energization is stopped. Subsequently, the low-speed electron beam source 16 is turned on, the voltage of the grid 17 is adjusted so as to be 1 KeV, and irradiation is started. Further, when the pressure in the vacuum deposition apparatus reaches 10 −2 Pa, the evaporation boat 12 is heated to start the deposition. When the lump of metallic copper 13 disappears, the energization to the vapor deposition source and the irradiation with the low-speed electron beam are stopped. When it is confirmed that the LCP film 11 can be cooled to 50 ° C. or lower, the exhaust of the vacuum pump 18 is stopped, the leak valve 20 is opened, and the inside of the vacuum apparatus is returned to normal pressure. Subsequently, the LCP film was added to a high-throw type copper sulfate basic bath (copper sulfate: 75 g / L, sulfuric acid: 180 g / L, chlorine: 40 ppm), and a commercially available additive, Cu-Brite HA-E manufactured by Ebara Eugelite, was added. The film thickness of the copper foil was 18 μm. Next, a heat treatment was performed at a temperature of 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a film base material for an LCP wiring board.
A tape peeling test of the film substrate for a wiring board thus prepared was conducted, but the copper foil did not adhere to the tape, and high adhesion strength between the LCP film and the copper foil film was confirmed.

(実施例2)
厚さ25μmのポリイミドフィルム11(宇部興産社製;ユーピレックス(登録商標))を準備し、このポリイミドフィルム表面を、イソプロピルアルコールを含ませた不織布で表面をこすり、脱脂処理をした。続いて、ポリイミドフィルムを固定板14に固定し、真空蒸着装置の蒸発ボート12上に固定する。蒸発ボート12に蒸発源である銅13の塊を蒸着後にポリイミドフィルム上に付着する量が0.3μmとなるようにして置く。真空装置内を真空ポンプ18で排気し、同時に固定治具のヒーター14と加熱ヒーター15とに通電して、ポリイミドフィルム11を加熱する。ポリイミドフィルムの温度が220℃に達したら通電を停止し、続いて、低速電子線16の電源を投入し、1KeVとなるようにグリッド17電圧を調整し、照射を開始する。さらに真空蒸着装置内の圧力が10−2Paとなったら、蒸発ボート12を加熱して、蒸着を開始する。銅13の塊が消失したら蒸発ボートへの通電と、低速電子線の照射をやめる。ポリイミドフィルム11が50℃以下に冷却できたことを確認したら、真空ポンプ18の排気を停止し、リークバルブ20を開とし、真空装置内を常圧に戻す。つづいて、ポリイミドフィルムをハイスロータイプの硫酸銅基本浴(硫酸銅:75g/L 硫酸:180g/L 塩素:40ppm)に市販の添加剤、荏原ユージライト社製のCu−Brite HA−Eを加えた浴中に投入し、銅箔の膜厚が18μmとした。次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、ポリイミド配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、銅箔がテープに付着せず、ポリイミドフィルムと銅箔膜との高い付着強度が確認された。
(Example 2)
A polyimide film 11 having a thickness of 25 μm (manufactured by Ube Industries, Ltd .; Upilex (registered trademark)) was prepared, and the surface of the polyimide film was rubbed with a non-woven fabric containing isopropyl alcohol for degreasing treatment. Subsequently, the polyimide film is fixed to the fixing plate 14 and fixed on the evaporation boat 12 of the vacuum evaporation apparatus. A lump of copper 13 as an evaporation source is deposited on the evaporation boat 12 so that the amount deposited on the polyimide film after deposition is 0.3 μm. The inside of the vacuum apparatus is evacuated by a vacuum pump 18, and simultaneously the heater 14 and the heater 15 of the fixing jig are energized to heat the polyimide film 11. When the temperature of the polyimide film reaches 220 ° C., the energization is stopped, and then the low-speed electron beam 16 is turned on, the grid 17 voltage is adjusted to 1 KeV, and irradiation is started. Further, when the pressure in the vacuum vapor deposition apparatus becomes 10 −2 Pa, the evaporation boat 12 is heated to start vapor deposition. When the lump of copper 13 disappears, the energization of the evaporation boat and the irradiation of the low speed electron beam are stopped. When it is confirmed that the polyimide film 11 can be cooled to 50 ° C. or lower, the exhaust of the vacuum pump 18 is stopped, the leak valve 20 is opened, and the inside of the vacuum apparatus is returned to normal pressure. Next, a commercially available additive, Cu-Brite HA-E manufactured by Sugawara Eugleite Co., Ltd. was added to a high-throw type copper sulfate basic bath (copper sulfate: 75 g / L, sulfuric acid: 180 g / L, chlorine: 40 ppm). The film thickness of the copper foil was 18 μm. Next, a heat treatment was performed at a temperature of 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a film substrate for a polyimide wiring board.
The tape peeling test of the film substrate for a wiring board thus prepared was conducted, but the copper foil did not adhere to the tape, and high adhesion strength between the polyimide film and the copper foil film was confirmed.

(実施例3)
厚さ25μmのPPS11(東レ株式会社製;トレリナ(登録商標)))を準備し、このポリイミドフィルム表面を、イソプロピルアルコールを含ませた不織布で表面をこすり、脱脂処理をした。続いて、PPSフィルムを固定板14に固定し、真空蒸着装置の蒸発ボート12上に固定する。蒸発ボート12に蒸発源である銅13の塊を蒸着後にPPSフィルム上に付着する量が0.2μmとなるようにして置く。真空装置内を真空ポンプ18で排気し、同時に固定治具のヒーター14と加熱ヒーター15とに通電して、PPSフィルム11を加熱する。PPSフィルムの温度が180℃に達したら通電を停止し、続いて、低速電子線16の電源を投入し、0.8KeVとなるようにグリッド17電圧を調整し、照射を開始する。さらに真空蒸着装置内の圧力が10−2Paとなったら、蒸発ボート12を加熱して、蒸着を開始する。銅13の塊が消失したら低速電子線の照射をやめ、蒸発ボートへの通電をやめる。PPSフィルム11が50℃以下に冷却できたことを確認したら、真空ポンプ18の排気を停止し、リークバルブ20を開とし、真空装置内を常圧に戻す。つづいて、PPSフィルムをハイスロータイプの硫酸銅基本浴(硫酸銅:75g/L 硫酸:180g/L 塩素:40ppm)に市販の添加剤、荏原ユージライト社製のCu−Brite HA−Eを加えた浴中に投入し、銅箔の膜厚が18μmとした。次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、PPS配線基板用フィルム基材を調製した。
このように調製した配線基板用フィルム基材のテープ剥離試験を行ったが、銅箔がテープに付着せず、PPSドフィルムと銅箔膜との高い付着強度が確認された。
(Example 3)
A PPS11 having a thickness of 25 μm (manufactured by Toray Industries, Inc .; Torelina (registered trademark)) was prepared, and the surface of the polyimide film was rubbed with a non-woven fabric containing isopropyl alcohol for degreasing treatment. Subsequently, the PPS film is fixed to the fixing plate 14 and fixed on the evaporation boat 12 of the vacuum evaporation apparatus. An evaporation boat 12 is placed so that a mass of copper 13 as an evaporation source is deposited on the PPS film after vapor deposition is 0.2 μm. The inside of the vacuum apparatus is evacuated by a vacuum pump 18 and at the same time, the PPS film 11 is heated by energizing the heater 14 and the heater 15 of the fixture. When the temperature of the PPS film reaches 180 ° C., energization is stopped, and then the low-speed electron beam 16 is turned on, the grid 17 voltage is adjusted to 0.8 KeV, and irradiation is started. Further, when the pressure in the vacuum deposition apparatus reaches 10 −2 Pa, the evaporation boat 12 is heated to start the deposition. When the lump of copper 13 disappears, the low-speed electron beam is stopped and the energization of the evaporation boat is stopped. When it is confirmed that the PPS film 11 can be cooled to 50 ° C. or lower, the exhaust of the vacuum pump 18 is stopped, the leak valve 20 is opened, and the inside of the vacuum apparatus is returned to normal pressure. Subsequently, a commercially available additive, Cu-Brite HA-E manufactured by Sugawara Eugleite Co., was added to a high-throw type copper sulfate basic bath (copper sulfate: 75 g / L, sulfuric acid: 180 g / L, chlorine: 40 ppm). The film thickness of the copper foil was 18 μm. Next, heat treatment was performed at a temperature of 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a film base material for a PPS wiring board.
The tape peeling test of the film substrate for a wiring board thus prepared was conducted, but the copper foil did not adhere to the tape, and high adhesion strength between the PPS film and the copper foil film was confirmed.

(比較例)
厚さ25μmのLCPフィルム11(株式会社クラレ製;Vecstar(登録商標)CT)を準備し、このLCPフィルム表面を、イソプロピルアルコールを含ませた不織布で表面をこすり、脱脂処理をした。続いて、LCPフィルムを固定板14に固定し、真空蒸着装置の蒸発ボート12上に固定する。蒸発ボートに蒸発源である銅金属(純度99.99%)13の塊を蒸着後にLCPフィルム上に付着する量が0.5μmとなるようにして置く。真空装置内を真空ポンプ18で排気し、同時に固定治具のヒーター14と加熱ヒーター15とに通電して、LCPフィルム11を加熱する。LCPフィルムの温度が130℃に達したら通電を停止し、さらに真空蒸着装置内の圧力が10−2Paとなったら、蒸発ボート12を加熱して、蒸着を開始する。銅金属13の塊が消失したら通電をやめる。LCPフィルム11が50℃以下に冷却できたことを確認したら、真空ポンプ18の排気を停止し、リークバルブ20を開とし、真空装置内を常圧に戻す。つづいて、LCPフィルム基板用のハイスロータイプの硫酸銅基本浴(硫酸銅:75g/L 硫酸:180g/L 塩素:40ppm)に市販の添加剤、メルテックス社製のST−901を添加した浴中に入れ、銅箔の膜厚が12.5μmとした。次いで、窒素雰囲気中で、温度200℃で30分間の熱処理を行い、LCP配線基板用フィルム基材を調製した。このように調製した配線基板用フィルム基材のテープ剥離試験を行ったところ、テープに銅箔が付着し、LCPと銅箔膜とは実用には十分な付着強度がなかった。
(Comparative example)
A 25 μm-thick LCP film 11 (manufactured by Kuraray Co., Ltd .; Vecstar (registered trademark) CT) was prepared, and the surface of this LCP film was rubbed with a non-woven fabric containing isopropyl alcohol to perform a degreasing treatment. Subsequently, the LCP film is fixed to the fixing plate 14 and fixed on the evaporation boat 12 of the vacuum evaporation apparatus. A lump of copper metal (purity 99.99%) 13 as an evaporation source is placed on an evaporation boat so that the amount deposited on the LCP film after deposition is 0.5 μm. The inside of the vacuum apparatus is evacuated by a vacuum pump 18 and at the same time, the heater 14 and the heater 15 of the fixing jig are energized to heat the LCP film 11. When the temperature of the LCP film reaches 130 ° C., the energization is stopped, and when the pressure in the vacuum deposition apparatus reaches 10 −2 Pa, the evaporation boat 12 is heated to start the deposition. When the lump of copper metal 13 disappears, the energization is stopped. When it is confirmed that the LCP film 11 can be cooled to 50 ° C. or lower, the exhaust of the vacuum pump 18 is stopped, the leak valve 20 is opened, and the inside of the vacuum apparatus is returned to normal pressure. Subsequently, a high-throw type copper sulfate basic bath for LCP film substrates (copper sulfate: 75 g / L, sulfuric acid: 180 g / L, chlorine: 40 ppm), a commercially available additive, ST-901 manufactured by Meltex, was added. The thickness of the copper foil was 12.5 μm. Next, a heat treatment was performed at a temperature of 200 ° C. for 30 minutes in a nitrogen atmosphere to prepare a film base material for an LCP wiring board. When the tape peeling test of the film base material for wiring boards prepared as described above was performed, the copper foil adhered to the tape, and the LCP and the copper foil film did not have sufficient adhesion strength for practical use.

本発明が適用される配線基板用フィルム基材の作製方法によれば、密着性が高いフレキシブルプリント基板を作成することができる。この方法は配線基板以外の種々の用途に応用が可能であり、例えば電磁シールドフィルム、反射防止フィルム、タッチセンサシート、平面アンテナなどが考えられる。      According to the method for producing a wiring board film substrate to which the present invention is applied, a flexible printed board having high adhesion can be produced. This method can be applied to various uses other than the wiring board. For example, an electromagnetic shield film, an antireflection film, a touch sensor sheet, a planar antenna, and the like can be considered.

11 配線基板用フィルム基材
12 金属蒸着ボート
13 金属蒸発源
15 加熱ヒーター
16 低速電子線源
17 グリッド
18 真空ポンプ
19 真空圧力計
20 リークバルブ
DESCRIPTION OF SYMBOLS 11 Film base material for wiring boards 12 Metal vapor deposition boat 13 Metal evaporation source 15 Heater 16 Low-speed electron beam source 17 Grid 18 Vacuum pump 19 Vacuum pressure gauge 20 Leak valve

Claims (5)

ポリマーフィルム上に導電体金属を蒸発源として5KeV以下に加速された低速電子線をポリマーフィルムに向けて照射しながら金属薄膜の膜厚が1μm以下となるように蒸着させた後、電気めっきで膜厚1μm以上30μm以下で金属を膜形成し、加熱乾燥することを特徴とするフレキシブルプリント基板の作製方法。    The polymer film was deposited by electroplating after irradiating the polymer film with a low-velocity electron beam accelerated to 5 KeV or less using a conductive metal as an evaporation source on the polymer film so that the film thickness of the metal thin film was 1 μm or less. A method for producing a flexible printed circuit board, comprising forming a metal film with a thickness of 1 μm to 30 μm and drying by heating. 前記蒸発源の導電体金属として、銅、金、銀、アルミニウム、ニッケル、クロムから選ばれる一つまたは、これらの混合物からなることを特徴とする請求項1記載のフレキシブルプリント基板の作製方法。    2. The method for producing a flexible printed circuit board according to claim 1, wherein the conductive metal of the evaporation source is one selected from copper, gold, silver, aluminum, nickel, and chromium, or a mixture thereof. 前記電気めっきによる金属箔を形成した後加熱乾燥として、ポリマーフィルムのガラス転移温度以上でかつ、分解開始温度以下で処理することを特徴とする請求項1記載のフレキシブルプリント基板の作製方法。    2. The method for producing a flexible printed circuit board according to claim 1, wherein the metal foil is formed by electroplating and then heated and dried, and is treated at a temperature not lower than a glass transition temperature of the polymer film and not higher than a decomposition start temperature. 前記加熱乾燥として、窒素、アルゴンなどの不活性ガス中で処理することを特徴とする請求項1記載のフレキシブルプリント基板の作製方法。    The method for producing a flexible printed circuit board according to claim 1, wherein the heat drying is performed in an inert gas such as nitrogen or argon. 前記ポリマーフィルムとして、エポキシ樹脂、ポリイミド、ポリフェニレンスルフィド、ポリエステル、テフロン、ポリアミド、ポリイミドエーテル、ポリアミドイミド、ポリスチレン、アラミド、ポリカーボネートから選ばれる一つまたは、これらの混合物からなることを特徴とする請求項1記載のフレキシブルプリント基板の作製方法。    The polymer film is made of one or a mixture selected from epoxy resin, polyimide, polyphenylene sulfide, polyester, Teflon, polyamide, polyimide ether, polyamideimide, polystyrene, aramid, and polycarbonate. The manufacturing method of the flexible printed circuit board of description.
JP2009138660A 2009-05-20 2009-05-20 Method of manufacturing flexible printed board Pending JP2010272831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138660A JP2010272831A (en) 2009-05-20 2009-05-20 Method of manufacturing flexible printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138660A JP2010272831A (en) 2009-05-20 2009-05-20 Method of manufacturing flexible printed board

Publications (1)

Publication Number Publication Date
JP2010272831A true JP2010272831A (en) 2010-12-02

Family

ID=43420588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138660A Pending JP2010272831A (en) 2009-05-20 2009-05-20 Method of manufacturing flexible printed board

Country Status (1)

Country Link
JP (1) JP2010272831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462967B1 (en) 2013-02-19 2014-11-20 주식회사 멕트론 Method for preparing flexible metal clad laminate and flexible metal clad laminate prepared from the same
KR20160088151A (en) * 2015-01-15 2016-07-25 한국과학기술연구원 Complex of Organic Material and Metal
WO2018150549A1 (en) * 2017-02-17 2018-08-23 株式会社クラレ Production method for thermoplastic liquid crystal polymer film with metal deposition layer, thermoplastic liquid crystal polymer film with metal deposition layer obtained using said production method, production method for metal-clad laminate, and metal-clad laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104187A (en) * 1989-08-28 1991-05-01 Internatl Business Mach Corp <Ibm> Pattern writing on substrate
JPH05287500A (en) * 1992-04-07 1993-11-02 Nissin Electric Co Ltd Production of film carrier type substrate
WO2005051652A1 (en) * 2003-11-26 2005-06-09 Dowa Mining Co., Ltd. Metal-clad substrate and method for producing same
JP2008211060A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Method of manufacturing substrate having metal film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104187A (en) * 1989-08-28 1991-05-01 Internatl Business Mach Corp <Ibm> Pattern writing on substrate
JPH05287500A (en) * 1992-04-07 1993-11-02 Nissin Electric Co Ltd Production of film carrier type substrate
WO2005051652A1 (en) * 2003-11-26 2005-06-09 Dowa Mining Co., Ltd. Metal-clad substrate and method for producing same
JP2008211060A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Method of manufacturing substrate having metal film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462967B1 (en) 2013-02-19 2014-11-20 주식회사 멕트론 Method for preparing flexible metal clad laminate and flexible metal clad laminate prepared from the same
KR20160088151A (en) * 2015-01-15 2016-07-25 한국과학기술연구원 Complex of Organic Material and Metal
KR101669981B1 (en) 2015-01-15 2016-10-27 한국과학기술연구원 Complex of Organic Material and Metal
WO2018150549A1 (en) * 2017-02-17 2018-08-23 株式会社クラレ Production method for thermoplastic liquid crystal polymer film with metal deposition layer, thermoplastic liquid crystal polymer film with metal deposition layer obtained using said production method, production method for metal-clad laminate, and metal-clad laminate
CN110050515A (en) * 2017-02-17 2019-07-23 株式会社可乐丽 The manufacturing method and metal-coated laminated board of the manufacturing method of liquid crystal polymer films with metal vapor deposition layer, the liquid crystal polymer films with metal vapor deposition layer manufactured with the manufacturing method, metal-coated laminated board
CN110050515B (en) * 2017-02-17 2023-11-28 株式会社可乐丽 Thermoplastic liquid crystal polymer film with metal vapor deposition layer, metal-clad laminate and method for manufacturing same

Similar Documents

Publication Publication Date Title
US3767538A (en) Method of coating plastic films with metal
WO2017016395A1 (en) Method for preparing adhesive-free, polyimide flexible printed circuit board
JP5421598B2 (en) Manufacturing method of flexible printed circuit board
TW201942222A (en) Method for manufacturing LCP-based flexible copper-clad plate, and article thereof
JPH0382750A (en) Alteration of at least one facet of polyimide base
TW201335955A (en) Conductive film forming method, copper particulate dispersion and circuit board
JP2005116674A (en) Conductive sheet, product using it and manufacturing method for product
JP2010272831A (en) Method of manufacturing flexible printed board
JP2010219075A (en) Printed wiring board and method of manufacturing the same
JP2014086451A (en) Flexible electronic device and manufacturing method of flexible electronic device
JP3331153B2 (en) Method for producing composite film of polyimide film and metal thin film
CN103840243B (en) A kind of manufacture method of flexible co-planar waveguide
JPWO2011114997A1 (en) Two-layer flexible substrate and manufacturing method thereof
JP5654205B2 (en) Manufacturing method of flexible printed circuit board
US20040194988A1 (en) EMI-shielding assembly and method for making same
JP2004307980A (en) Method for manufacturing metal coated liquid crystal polyester substrate
KR100747627B1 (en) Method for producing 2 layered conductive metal plated polyimide substrate
JP4580496B2 (en) Plasma processing apparatus and plasma processing method
JP2005057183A (en) Flexible printed circuit board and manufacturing method thereof
JP5469263B2 (en) Flexible printed circuit board
JP2006351646A (en) Circuit board and its manufacturing method
TW202112913A (en) Polyarylene sulfide resin film, metal layered product, production method for polyarylene sulfide resin film, and production method for metal layered product
KR101375237B1 (en) The fabrication method of thin electromagnetic shield film and electromagnetic shield film thereby
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
JP2007288011A (en) Method for manufacturing polyimide wiring substrate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120116

A621 Written request for application examination

Effective date: 20120521

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Effective date: 20130419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130807

Free format text: JAPANESE INTERMEDIATE CODE: A02