JP2006134948A - Light emitting light source - Google Patents

Light emitting light source Download PDF

Info

Publication number
JP2006134948A
JP2006134948A JP2004319569A JP2004319569A JP2006134948A JP 2006134948 A JP2006134948 A JP 2006134948A JP 2004319569 A JP2004319569 A JP 2004319569A JP 2004319569 A JP2004319569 A JP 2004319569A JP 2006134948 A JP2006134948 A JP 2006134948A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
optical axis
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004319569A
Other languages
Japanese (ja)
Inventor
Kenji Honma
健次 本間
Hironobu Kiyomoto
浩伸 清本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2004319569A priority Critical patent/JP2006134948A/en
Publication of JP2006134948A publication Critical patent/JP2006134948A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting light source capable of improving use efficiency of light for improved and uniform brightness by properly controlling an emission direction of the light emitted by a light emitting layer of a light emitting element. <P>SOLUTION: A light emitting element 2 in which a plurality of layers including a light emitting layer 7 are laminated, is provided inside a recess 5 in which a light reflecting part 6 is formed. A front side outgoing surface A and a rear side outgoing surface B are formed on the side surface of the light emitting element 2. A front side reflecting surface R2 corresponding to the outgoing surface A and a rear side reflecting surface R1 corresponding to the outgoing surface B are formed as the light reflecting part 6. The reflecting surfaces R1 and R2 are so formed that inclination angles θ1 and θ2 against an install surface 5a differ from each other. A connection point 23 between the reflecting surface R1 and the reflecting surface R2 is set on the rear side in optical axis direction F instead of the front side surface 2a of the light emitting element 2 in the optical axis direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光ダイオード(LED)素子などの発光素子を用いた発光光源に関し、さらに詳しくは液晶表示装置などの表示装置の光源や、照明装置の光源として用いられる発光光源に関する。   The present invention relates to a light-emitting light source using a light-emitting element such as a light-emitting diode (LED) element, and more particularly to a light-emitting light source used as a light source for a display device such as a liquid crystal display device or a light source for a lighting device.

LED素子などの発光素子を用いた発光光源は、例えば特許文献1に記載されている。図11は、特許文献1に記載されているチップ型発光装置の構造を示す断面図である。発光装置は、基板61と、該基板61に搭載されるLED素子62と、上下に貫通する上面視円形状の開口部63aを有し、該開口部63aの内壁が傾斜面からなり、該傾斜面でLED素子62を中央に囲むように基板61上に載置されるリフレクタ63とを備えて構成されている。リフレクタ63の傾斜面は、LED素子62の設置面61aに対する傾斜角θa,θbが異なる2つの反射面64a,64bを連接して形成されている。2つの反射面64a,64bは、その傾斜角θa,θbがLED素子62の発光中心からの光を当該反射面64a,64bの中腹部分65a,65bで直上方向(光軸方向F)に反射するように選ばれて形成されている。なお、2つの反射面64a,64bが連接される位置66は、設置面61aを基準として、LED素子62の発光部の位置67よりも離れている。   A light-emitting light source using a light-emitting element such as an LED element is described in Patent Document 1, for example. FIG. 11 is a cross-sectional view showing the structure of a chip-type light emitting device described in Patent Document 1. The light emitting device includes a substrate 61, an LED element 62 mounted on the substrate 61, and an opening 63a having a circular shape when viewed from above, and an inner wall of the opening 63a is formed of an inclined surface. The reflector 63 is mounted on the substrate 61 so as to surround the LED element 62 in the center. The inclined surface of the reflector 63 is formed by connecting two reflecting surfaces 64 a and 64 b having different inclination angles θa and θb with respect to the installation surface 61 a of the LED element 62. The two reflection surfaces 64a and 64b have angles of inclination θa and θb that reflect light from the light emission center of the LED element 62 in the directly upward direction (optical axis direction F) at the middle portions 65a and 65b of the reflection surfaces 64a and 64b. Is selected and formed. The position 66 where the two reflecting surfaces 64a and 64b are connected is further away from the position 67 of the light emitting portion of the LED element 62 with respect to the installation surface 61a.

また、発光素子を用いた発光光源では、発光素子から発せられる光を効率よく外部に出射させて光の利用効率を高めるために、発光層が発する光が側面から出射するように側面を形成した発光素子が用いられている。このような側面から光が出射される発光素子を用いた発光光源は、例えば特許文献2に記載されている。   Moreover, in the light emitting light source using the light emitting element, the side surface is formed so that the light emitted from the light emitting layer is emitted from the side surface in order to efficiently emit the light emitted from the light emitting element to the outside and increase the light utilization efficiency. A light emitting element is used. A light-emitting light source using a light-emitting element that emits light from such a side surface is described in Patent Document 2, for example.

図12は、特許文献2に記載されている光学デバイスの構造を示す断面図である。光学デバイスは、凹設部71を有する基体70と、凹設部71内に取り付けられる発光素子72とを備えて構成されている。発光素子72の側面には、当該発光素子72の設置面側に向かうに連れて幅が小さくなる傾斜面73が形成されている。この傾斜面73から発光素子72の設置面側即ち光軸方向Fの後方側に向かって光が出射する。また、凹設部71の内周面74は、リフレクタとして構成されている。リフレクタは、外側に向かって側面傾斜が増大する例えば半放物線の形に形成されている。
特開2000−269551号公報 特表2003−523635号公報
FIG. 12 is a cross-sectional view showing the structure of the optical device described in Patent Document 2. The optical device includes a base body 70 having a recessed portion 71 and a light emitting element 72 attached in the recessed portion 71. On the side surface of the light emitting element 72, an inclined surface 73 is formed that decreases in width toward the installation surface side of the light emitting element 72. Light is emitted from the inclined surface 73 toward the installation surface side of the light emitting element 72, that is, toward the rear side in the optical axis direction F. Further, the inner peripheral surface 74 of the recessed portion 71 is configured as a reflector. The reflector is formed in the shape of a semiparabola, for example, whose side slope increases toward the outside.
JP 2000-269551 A Special table 2003-523635 gazette

特許文献1に記載されている装置では、傾斜角θa,θbの異なる2つの反射面64a,64bが連接されて形成されているが、2つの反射面64a,64bはいずれも光軸方向Fの前方側に向かって斜め方向に出射する光の進行方向を制御するために形成されているものである。そのため、特許文献1に記載されている装置に対して、図12に示されているような側面から光を出射させる傾斜面73を有する発光素子72を用いた場合、傾斜面73から出射した光の進行方向を適切に制御することができないという問題がある。   In the apparatus described in Patent Document 1, two reflecting surfaces 64a and 64b having different inclination angles θa and θb are formed to be connected to each other, but the two reflecting surfaces 64a and 64b are both in the optical axis direction F. It is formed in order to control the traveling direction of light emitted in an oblique direction toward the front side. Therefore, when the light emitting element 72 having the inclined surface 73 that emits light from the side surface as shown in FIG. 12 is used for the device described in Patent Document 1, the light emitted from the inclined surface 73 is used. There is a problem that the direction of travel cannot be appropriately controlled.

また特許文献2に記載されているデバイスでは、リフレクタの形状即ち反射面の形状を例えば半放物線の形にして非球面とし、傾斜面73から光軸方向Fの後方側に向かって斜め方向に出射される出射光の反射方向を制御するようにしている。しかしながら、このリフレクタの形状では、光軸方向Fに対して垂直方向に出射する光や、光軸方向Fの前方側に出射する光の進行方向を適切に制御することができないという問題がある。   Further, in the device described in Patent Document 2, the shape of the reflector, that is, the shape of the reflecting surface is made an aspherical surface, for example, in the form of a semiparabola, and is emitted obliquely from the inclined surface 73 toward the rear side in the optical axis direction F The reflection direction of the emitted light is controlled. However, the shape of the reflector has a problem that the traveling direction of the light emitted in the direction perpendicular to the optical axis direction F and the light emitted forward of the optical axis direction F cannot be appropriately controlled.

本発明の目的は、発光素子の発光層が発する光の進行方向を適切に制御して、光の利用効率の向上を図ることができると共に、輝度の向上及び輝度の均一化を図ることの可能な発光光源を提供することにある。   An object of the present invention is to appropriately control the traveling direction of light emitted from a light emitting layer of a light emitting element to improve light utilization efficiency, and to improve luminance and make luminance uniform. It is to provide a simple light emission source.

本発明は、発光層を含む複数の層を積層して構成された発光素子と、凹部を有すると共に該凹部内に光反射部が形成された支持部材とを備え、前記発光素子から発した光を前記凹部の開口面から直接出射させると共に、前記凹部内に形成された前記光反射部で反射させて前記凹部の開口面から出射させるように構成した発光光源において、
前記発光層の表面に対して垂直であって前記凹部の開口面側に向かう方向を光軸方向とし、
前記発光素子の側面には、前記光軸方向に平行な縦断面との交差線の形状が互いに異なる少なくとも2つの出射面が形成されており、
前記光反射部は、前記縦断面との交差線の形状が互いに異なる複数の反射面を連接して構成されており、複数の反射面のうち前記光軸方向に対して最も後方側に位置する後方側反射面と該後方側反射面に連接される前方側反射面とは、前記発光素子における光軸方向前方側表面の位置より後方で連接されていることを特徴とする発光光源である。
The present invention includes a light emitting device configured by laminating a plurality of layers including a light emitting layer, and a support member having a recess and having a light reflecting portion formed in the recess, and the light emitted from the light emitting device In a light emitting light source configured to emit directly from the opening surface of the recess, and reflected by the light reflecting portion formed in the recess and exit from the opening surface of the recess,
The direction perpendicular to the surface of the light emitting layer and toward the opening surface side of the recess is the optical axis direction,
On the side surface of the light emitting element, at least two emission surfaces having different shapes of intersecting lines with a longitudinal section parallel to the optical axis direction are formed,
The light reflecting portion is configured by connecting a plurality of reflecting surfaces having mutually different shapes of intersecting lines with the longitudinal section, and is located on the rearmost side with respect to the optical axis direction among the plurality of reflecting surfaces. The light-emitting light source is characterized in that the rear-side reflection surface and the front-side reflection surface connected to the rear-side reflection surface are connected rearward from the position of the front surface in the optical axis direction of the light-emitting element.

本発明によれば、発光素子の光軸方向前方側表面から光が出射すると共に、発光素子の側面に形成されている少なくとも2つの光出射面からもそれぞれ光が出射する。そして、光軸方向前方側表面からの出射光は、そのほとんどが発光素子が設置されている凹部の開口面から直接出射され、その一部即ち光軸方向に対して大きく傾斜して出射する光は、凹部内に形成された光反射部で反射して反射方向が制御されて凹部の開口面から出射する。ここで、凹部の開口面とは、凹部と該凹部が形成されている支持部材の光軸方向前端面とが交わる部分の仮想平面をいう。   According to the present invention, light is emitted from the front surface in the optical axis direction of the light emitting element, and light is also emitted from at least two light emitting surfaces formed on the side surface of the light emitting element. And most of the emitted light from the front surface in the optical axis direction is directly emitted from the opening surface of the recess in which the light emitting element is installed, and a part thereof, that is, light that is emitted with a large inclination with respect to the optical axis direction. Is reflected from the light reflecting portion formed in the recess, and the reflection direction is controlled, and the light is emitted from the opening surface of the recess. Here, the opening surface of the concave portion refers to a virtual plane at a portion where the concave portion and the front end surface in the optical axis direction of the support member where the concave portion is formed intersect.

また、発光素子の側面の光出射面からの出射光は、光軸方向前方側表面から出射する出射光と比べると、光軸方向に直交する方向の成分が大きな光である。そのため、発光素子の側面からの出射光の一部は、凹部内に形成された光反射部において、発光素子の光軸方向前方側表面の位置よりも光軸方向後方側に位置する部分に入射する。この部分には、少なくとも、後方側反射面と該後方側反射面に連接される前方側反射面の一部とが形成されている。後方側反射面と前方側反射面とは形状が異なるので、各反射面における反射方向の制御特性がそれぞれ異なる。即ち、各反射面に同一方向から光を入射させた場合、各反射面での反射方向がそれぞれ異なる。なお、ここでの形状とは、光軸方向に平行な縦断面との交差線の形状をいう。また、光軸方向に平行な縦断面とは、発光素子の中心を通り、光軸方向に平行な平面をいう。したがって、後方側反射面及び前方側反射面のそれぞれの形状を適宜選択することによって、発光素子の側面の光出射面からの出射光の反射方向を適切に制御することが可能となる。また、発光素子の光軸方向前方側表面から出射する出射光のうち光軸方向に対して傾斜して出射する光は、光反射部において、発光素子の光軸方向前方側表面の位置よりも光軸方向前方側に位置する反射面で反射方向が制御される。   Further, the emitted light from the light emitting surface on the side surface of the light emitting element has a larger component in the direction orthogonal to the optical axis direction than the emitted light emitted from the front surface in the optical axis direction. Therefore, a part of the light emitted from the side surface of the light emitting element is incident on the light reflecting portion formed in the concave portion at a position located on the rear side in the optical axis direction from the position on the front surface in the optical axis direction of the light emitting element. To do. In this portion, at least a rear side reflection surface and a part of a front side reflection surface connected to the rear side reflection surface are formed. Since the rear side reflection surface and the front side reflection surface have different shapes, the control characteristics of the reflection direction on the respective reflection surfaces are different. That is, when light is incident on each reflecting surface from the same direction, the reflecting direction on each reflecting surface is different. In addition, the shape here means the shape of the intersection line with the longitudinal section parallel to the optical axis direction. A vertical section parallel to the optical axis direction refers to a plane that passes through the center of the light emitting element and is parallel to the optical axis direction. Therefore, by appropriately selecting the shapes of the rear side reflection surface and the front side reflection surface, it is possible to appropriately control the reflection direction of the emitted light from the light emitting surface on the side surface of the light emitting element. Further, light emitted from the front surface on the front side in the optical axis direction of the light emitting element is emitted with an inclination with respect to the optical axis direction at the light reflecting portion, rather than the position on the front surface in the optical axis direction of the light emitting element. The reflection direction is controlled by a reflection surface located on the front side in the optical axis direction.

このように、発光素子の側面の出射面から出射する光を適切に制御するようにしたので、発光素子の発光層から発する光の利用効率の向上を図ると共に、発光光源の輝度の向上及び輝度の均一化を図ることが可能となる。   As described above, the light emitted from the emission surface on the side surface of the light emitting element is appropriately controlled, so that the utilization efficiency of the light emitted from the light emitting layer of the light emitting element is improved and the luminance of the light emitting light source is improved and the luminance is increased. Can be made uniform.

また本発明の好ましい実施態様によれば、前記反射面は、前記出射面に個別に対応させて形成されている。ここで、反射面を出射面に対応させて形成するとは、出射面から出射する光のうち該出射面に対して垂直方向に出射する光が入射するように反射面を形成することをいう。この実施態様では、各光出射面からの出射光は対応して形成されている反射面に入射して反射方向が制御される。このように各光出射面からの出射光を個別に制御するので、発光素子の発光層から発する光の利用効率の向上をより一層図ることができる。これによって、発光光源の輝度の向上及び輝度の均一化をより一層図ることが可能となる。   According to a preferred embodiment of the present invention, the reflecting surface is formed individually corresponding to the emitting surface. Here, forming the reflecting surface corresponding to the emitting surface means forming the reflecting surface so that light emitted from the emitting surface in a direction perpendicular to the emitting surface is incident. In this embodiment, the light emitted from each light emitting surface is incident on the correspondingly formed reflecting surface, and the reflection direction is controlled. Thus, since the emitted light from each light emitting surface is controlled individually, the utilization efficiency of the light emitted from the light emitting layer of the light emitting element can be further improved. Thereby, it is possible to further improve the luminance of the light emitting light source and make the luminance uniform.

また本発明の別の実施態様によれば、前記発光素子から出射される光が入射するように形成され、光軸方向前方側に光出射部を有する導光部材と、
前記導光部材に対して光軸方向後方側に配置される反射部材とをさらに備え、
前記導光部材の光出射部は、前記発光素子から発した光を透過させて前記導光部材の外部へ出射させる直接出射領域と、前記発光素子から発した光を全反射させて前記反射部材の方向へ向かわせると共に、前記反射部材で反射した光を透過させて前記導光部材の外部へ出射させる全反射領域とを有している。
According to another embodiment of the present invention, a light guide member that is formed so that light emitted from the light emitting element is incident thereon and has a light emitting portion on the front side in the optical axis direction,
A reflective member disposed on the rear side in the optical axis direction with respect to the light guide member,
The light emitting portion of the light guide member transmits a light emitted from the light emitting element and emits the light to the outside of the light guide member, and totally reflects the light emitted from the light emitting element to reflect the reflection member. And a total reflection region that transmits the light reflected by the reflecting member and emits the light to the outside of the light guide member.

この実施態様では、発光素子から発した光の少なくとも一部を、導光部材の光出射部における全反射領域と反射部材との間で反射させて進行方向を制御することができる。これによって、発光素子から発した光のうち特に光軸方向に対して斜め方向に進む光を適切に制御することが可能となる。   In this embodiment, at least a part of the light emitted from the light emitting element can be reflected between the total reflection region and the reflecting member in the light emitting portion of the light guide member to control the traveling direction. As a result, it is possible to appropriately control light traveling in an oblique direction with respect to the optical axis direction among the light emitted from the light emitting element.

また、前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって傾斜して形成される後方側出射面とを有し、
前記後方側反射面が前記後方側出射面に対応し、前記前方側反射面が前記前方側出射面に対応しており、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面の位置よりも前方側に位置している。
The emission surface formed on the light-emitting element includes an end surface of the light-emitting layer, a front-side emission surface formed perpendicular to the surface of the light-emitting layer, and a rear side in the optical axis direction of the front-side emission surface A rear side emission surface formed to be inclined from the end toward the rear side in the optical axis direction and toward the inside of the light emitting element;
The rear reflective surface corresponds to the rear outgoing surface, the front reflective surface corresponds to the front outgoing surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. It is located on the front side of the surface position.

この構成では、前記後方側反射面の前方側端部が、前記前方側出射面の後方側端部の位置よりも後方側に位置しているので、後方側出射面から出射した出射光を、主として後方側反射面に入射させ、前方側出射面から出射した出射光を、主として前方側反射面に入射させることができる。また、前記前方側反射面の前方側端部が、前記発光素子の前方側表面の位置よりも前方側に位置しているので、前方側出射面から光軸方向前方側に向かって出射した出射光も、前方側反射面に入射させることができる。したがって、後方側反射面及び前方側反射面のそれぞれの形状を適宜選択することによって、発光素子の側面からの出射光の進行方向を適切に制御することが可能となる。これによって、発光素子の発光層から発する光の利用効率の向上を図ることができると共に、発光光源の輝度の向上及び輝度の均一化を図ることが可能となる。   In this configuration, since the front side end of the rear side reflection surface is located on the rear side of the position of the rear side end of the front side emission surface, the emitted light emitted from the rear side emission surface, The outgoing light that is mainly incident on the rear reflecting surface and emitted from the front emitting surface can be mainly incident on the front reflecting surface. In addition, since the front end of the front reflective surface is located on the front side of the front surface of the light emitting element, the output emitted from the front emission surface toward the front side in the optical axis direction. The incident light can also be incident on the front reflecting surface. Therefore, it is possible to appropriately control the traveling direction of the emitted light from the side surface of the light emitting element by appropriately selecting the shapes of the rear side reflection surface and the front side reflection surface. Accordingly, it is possible to improve the utilization efficiency of light emitted from the light emitting layer of the light emitting element, and to improve the luminance of the light emitting light source and make the luminance uniform.

また、前記後方側反射面は、前記縦断面との交差線が前記発光素子の設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記縦断面との交差線が前記設置面に対して前記第1傾斜角とは異なる第2傾斜角で延びる直線になるように形成されるようにしてもよい。   Further, the rear side reflection surface is formed so that an intersecting line with the vertical section is a straight line extending at a first inclination angle with respect to the installation surface of the light emitting element, and the front side reflection surface is the vertical section. May be formed to be a straight line extending at a second inclination angle different from the first inclination angle with respect to the installation surface.

この構成では、光軸方向に平行な縦断面との交差線が直線になるように反射面を形成するので、容易に実施することができる。
また、前記後方側反射面は、前記縦断面との交差線が曲線になるように形成され、前記前方側反射面は、前記縦断面との交差線が前記後方側反射面の交差線とは異なる曲線になるように形成されるようにしてもよい。
In this configuration, the reflecting surface is formed so that the intersecting line with the longitudinal section parallel to the optical axis direction is a straight line, so that it can be easily implemented.
In addition, the back side reflection surface is formed so that a crossing line with the vertical cross section becomes a curve, and the front side reflection surface has a cross line with the vertical cross section that is a cross line of the back side reflection surface. You may make it form so that it may become a different curve.

この構成では、縦断面との交差線が曲線となるように反射面を形成するので、出射面に対して垂直方向に出射する光だけでなく、出射面に対して斜め方向に出射する光の反射方向も適切に制御することができる。したがって、発光素子の発光層から発する光の利用効率の向上をより一層図ることができると共に、発光光源の輝度の向上及び輝度の均一化をより一層図ることが可能となる。   In this configuration, the reflecting surface is formed so that the intersecting line with the longitudinal section becomes a curve, so that not only the light exiting in the direction perpendicular to the exit surface but also the light exiting in the oblique direction with respect to the exit surface. The reflection direction can also be controlled appropriately. Therefore, it is possible to further improve the utilization efficiency of the light emitted from the light emitting layer of the light emitting element, and to further improve the luminance of the light emitting light source and make the luminance uniform.

また、前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって傾斜して形成される後方側出射面とを有し、
前記後方側反射面は、前記後方側出射面に対応させて前記縦断面との交差線が前記発光素子の設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記設置面に対して前記第1傾斜角より大きい第2傾斜角で延びる直線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置するようにしてもよい。
The emission surface formed on the light-emitting element includes an end surface of the light-emitting layer, a front-side emission surface formed perpendicular to the surface of the light-emitting layer, and a rear side in the optical axis direction of the front-side emission surface A rear side emission surface formed to be inclined from the end toward the rear side in the optical axis direction and toward the inside of the light emitting element;
The rear reflecting surface is formed so that an intersecting line with the longitudinal section corresponds to the rear emitting surface and is a straight line extending at a first inclination angle with respect to the light emitting element installation surface. The reflecting surface is formed so that an intersection line with the longitudinal section corresponds to the front-side emitting surface and is a straight line extending at a second inclination angle larger than the first inclination angle with respect to the installation surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. You may make it located in the front side rather than the surface.

この構成では、後方側出射面から出射した出射光は、主として後方側反射面に入射し、前方側出射面から出射した出射光は、主として前方側反射面に入射する。したがって、後方側反射面及び前方側反射面のそれぞれの傾斜角を適宜選択することによって、発光素子の側面からの出射光を適切に制御することが可能となる。この構成では、前方側反射面の第2傾斜角を後方側反射面の第1傾斜角より大きくしたことによって、前方側反射面で反射した光を、発光素子の前方を横切って発光素子から離れるように光軸方向に対して斜め方向に進ませることができる。この斜め方向に進む光は、導光部材の光出射部における全反射領域と反射部材との間で反射することによって、その進行方向が制御される。これによって、発光素子の発光層から発する光の利用効率の向上を図ることができると共に、発光光源の輝度の向上及び輝度の均一化を図ることが可能となる。   In this configuration, outgoing light emitted from the rear side outgoing surface is mainly incident on the rear side reflective surface, and outgoing light emitted from the front side outgoing surface is mainly incident on the front side reflective surface. Therefore, it is possible to appropriately control the emitted light from the side surface of the light emitting element by appropriately selecting the inclination angles of the rear side reflection surface and the front side reflection surface. In this configuration, by making the second inclination angle of the front reflection surface larger than the first inclination angle of the rear reflection surface, the light reflected by the front reflection surface is separated from the light emitting element across the front of the light emitting element. Thus, it can be advanced in an oblique direction with respect to the optical axis direction. The traveling direction of the light traveling in the oblique direction is controlled by being reflected between the total reflection region and the reflecting member in the light emitting portion of the light guide member. Accordingly, it is possible to improve the utilization efficiency of light emitted from the light emitting layer of the light emitting element, and to improve the luminance of the light emitting light source and make the luminance uniform.

また前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって所定の角度で形成される後方側出射面とを有し、
前記後方側反射面は、前記発光素子の設置面から光軸方向前方側に向かって形成される段差部の先端部に連接されると共に、前記後方側出射面に対応させて前記縦断面との交差線が前記設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記設置面に対して前記第1傾斜角より大きい第2傾斜角で延びる直線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置するようにしてもよい。
The emission surface formed on the light-emitting element includes an end surface of the light-emitting layer, a front-side emission surface formed perpendicular to the surface of the light-emitting layer, and a rear-side end in the optical axis direction of the front-side emission surface A rear-side emission surface formed at a predetermined angle toward the rear side in the optical axis direction from the portion and toward the inside of the light-emitting element,
The rear-side reflection surface is connected to a tip portion of a step portion formed from the light-emitting element installation surface toward the front side in the optical axis direction, and corresponds to the rear-side emission surface and the longitudinal section. An intersection line is formed to be a straight line extending at a first inclination angle with respect to the installation surface, and the front-side reflection surface corresponds to the front-side emission surface, and the intersection line with the longitudinal section is the installation surface. Is formed to be a straight line extending at a second inclination angle larger than the first inclination angle,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. You may make it located in the front side rather than the surface.

この構成では、後方側出射面から出射した出射光は、主として後方側反射面に入射し、前方側出射面から出射した出射光は、主として前方側反射面に入射する。したがって、後方側反射面及び前方側反射面のそれぞれの傾斜角を適宜選択することによって、発光素子の側面からの出射光を適切に制御することが可能となる。この構成では、設置面に形成される段差部の先端部に連接させて後方側反射面を形成したので、設置面から直接後方側反射面を形成した場合に比べて、後方側反射面の第1傾斜角が小さくなるので、後方側反射面で反射した光を、発光素子の前方を横切ることなく発光素子から離れるように光軸方向に対して斜め方向に進ませることができる。この斜め方向に進む光は、導光部材の光出射部における全反射領域と反射部材との間で反射することによって、その進行方向が制御される。これによって、発光素子の発光層から発する光の利用効率の向上を図ることができると共に、発光光源の輝度の向上及び輝度の均一化を図ることが可能となる。   In this configuration, outgoing light emitted from the rear side outgoing surface is mainly incident on the rear side reflective surface, and outgoing light emitted from the front side outgoing surface is mainly incident on the front side reflective surface. Therefore, it is possible to appropriately control the emitted light from the side surface of the light emitting element by appropriately selecting the inclination angles of the rear side reflection surface and the front side reflection surface. In this configuration, the rear side reflection surface is formed by connecting to the tip of the stepped portion formed on the installation surface, so that the rear side reflection surface of the rear side reflection surface is compared with the case where the rear side reflection surface is formed directly from the installation surface. Since 1 inclination angle becomes small, the light reflected by the back side reflective surface can be advanced in the oblique direction with respect to the optical axis direction so as to leave the light emitting element without crossing the front of the light emitting element. The traveling direction of the light traveling in the oblique direction is controlled by being reflected between the total reflection region and the reflecting member in the light emitting portion of the light guide member. Accordingly, it is possible to improve the utilization efficiency of light emitted from the light emitting layer of the light emitting element, and to improve the luminance of the light emitting light source and make the luminance uniform.

また前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって所定の角度で形成される後方側出射面とを有し、
前記後方側反射面は、前記後方側出射面に対応させて前記縦断面との交差線が曲線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記後方側反射面の交差線とは異なる曲線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置するようにしてもよい。
The emission surface formed on the light-emitting element includes an end surface of the light-emitting layer, a front-side emission surface formed perpendicular to the surface of the light-emitting layer, and a rear-side end in the optical axis direction of the front-side emission surface A rear-side emission surface formed at a predetermined angle toward the rear side in the optical axis direction from the portion and toward the inside of the light-emitting element,
The rear reflecting surface is formed so that a cross line with the longitudinal section is curved corresponding to the rear emitting surface, and the front reflecting surface corresponds to the front emitting surface. Formed so that the line of intersection with the surface is a different curve from the line of intersection of the rear reflective surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. You may make it located in the front side rather than the surface.

この構成では、縦断面との交差線が曲線となるように前方側反射面及び後方側反射面を形成するので、前方側出射面及び後方側出射面の各出射面に対して垂直方向に出射する光だけでなく、各出射面に対して斜め方向に出射する光の反射方向を適切に制御することができる。これによって、発光素子の発光層から発する光の利用効率の向上をより一層図ることができると共に、発光光源の輝度の向上及び輝度の均一化をより一層図ることが可能となる。   In this configuration, the front-side reflection surface and the rear-side reflection surface are formed so that the intersecting line with the longitudinal section is a curve, so that the light is emitted in a direction perpendicular to the emission surfaces of the front-side emission surface and the rear-side emission surface. It is possible to appropriately control the reflection direction of not only the light to be emitted but also the light emitted in an oblique direction with respect to each emission surface. As a result, the utilization efficiency of light emitted from the light emitting layer of the light emitting element can be further improved, and the luminance of the light emitting light source can be further improved and the luminance can be made uniform.

また本発明の別の実施態様によれば、前記凹部内に、前記発光素子からの光によって励起されて予め定める色彩光を発する蛍光体を攪拌させた樹脂が充填されている。この実施態様では、発光素子から発する色彩光と、発光素子からの光によって励起された蛍光体から発する色彩光とを混合して得られる色彩光を出射させることができる。例えば、青色光を発する発光素子と、黄色光を発する蛍光体とを用いることによって、白色光を得ることができる。また、紫外光を発する発光素子と、赤色光、緑色光及び青色光をそれぞれ発する3種類の蛍光体とを用いることによっても、白色光を得ることができる。このように、発光素子が発する光の色彩と、樹脂に攪拌される蛍光体が発する光の色彩とを適宜選択して組み合わせることによって、発光光源が発する光の色彩のバリエーションを増やすことができる。   According to another embodiment of the present invention, the recess is filled with a resin in which a phosphor that is excited by light from the light emitting element and emits predetermined color light is stirred. In this embodiment, it is possible to emit the color light obtained by mixing the color light emitted from the light emitting element and the color light emitted from the phosphor excited by the light from the light emitting element. For example, white light can be obtained by using a light emitting element that emits blue light and a phosphor that emits yellow light. White light can also be obtained by using a light emitting element that emits ultraviolet light and three kinds of phosphors that emit red light, green light, and blue light, respectively. Thus, by appropriately selecting and combining the color of the light emitted from the light emitting element and the color of the light emitted from the phosphor stirred by the resin, variations in the color of the light emitted from the light emitting light source can be increased.

本発明によれば、発光素子の発光層が発する光の利用効率の向上を図ることができると共に、輝度の向上及び輝度の均一化を図ることが可能となる。
また本発明の好ましい実施態様によれば、発光素子の側面に複数の光出射面を形成すると共に、その光出射面にそれぞれ個別に対応する反射面を形成したので、各光出射面からの出射光の反射方向をより適切に制御することができる。これによって、発光素子の発光層が発する光の利用効率の向上をより一層図ることができると共に、輝度の向上及び輝度の均一化をより一層図ることが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, while improving the utilization efficiency of the light which the light emitting layer of a light emitting element emits, it becomes possible to aim at a brightness improvement and the uniformity of a brightness | luminance.
According to a preferred embodiment of the present invention, a plurality of light exit surfaces are formed on the side surface of the light emitting element, and reflection surfaces corresponding to the respective light exit surfaces are individually formed. The reflection direction of the incident light can be controlled more appropriately. As a result, it is possible to further improve the utilization efficiency of the light emitted from the light emitting layer of the light emitting element, and to further improve the luminance and make the luminance uniform.

また本発明の別の実施態様によれば、発光素子から出射する光が入射される導光部材と、該導光部材に対して光軸方向後方側に配置される反射部材とを備えるので、発光素子から発した光、特に光軸方向に対して斜め方向に発した光を、導光部材の全反射領域と反射部材との間で反射させて進行方向を制御することが可能となる。   Moreover, according to another embodiment of the present invention, since the light guide member into which the light emitted from the light emitting element is incident, and the reflection member disposed on the rear side in the optical axis direction with respect to the light guide member, It is possible to control the traveling direction by reflecting light emitted from the light emitting element, particularly light emitted obliquely with respect to the optical axis direction, between the total reflection region of the light guide member and the reflecting member.

また本発明の別の実施態様によれば、発光素子からの光によって励起されて予め定める色彩光を発する蛍光体を攪拌させた樹脂が、発光素子が設置される凹部内に充填されているので、発光素子が発する光の色彩と、樹脂に攪拌される蛍光体が発する光の色彩とを適宜選択して組み合わせることができる。これによって、発光光源が発する光の色彩のバリエーションを増やすことができる。   Further, according to another embodiment of the present invention, the resin in which the phosphor that is excited by the light from the light emitting element and emits predetermined color light is stirred is filled in the recess in which the light emitting element is installed. The color of light emitted from the light emitting element and the color of light emitted from the phosphor stirred by the resin can be appropriately selected and combined. Thereby, the variation of the color of the light which a light emission light source emits can be increased.

(第1の実施形態)
図1は、本発明の第1実施形態である発光光源1の概略的構成を示す断面図であり、図2は発光光源1に用いられる発光素子2の概略的構造を示す側面図である。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a light-emitting light source 1 according to a first embodiment of the present invention, and FIG. 2 is a side view illustrating a schematic structure of a light-emitting element 2 used in the light-emitting light source 1.

発光光源1は図1に示すように、発光素子2と、導電性材料からなる一対のリードフレーム3,4とを備えて構成される。支持部材としての一方のリードフレーム3は、棒状のリード部分3aの一端部に受け皿部3bを形成して構成され、受け皿部3bには凹部5が形成されている。凹部5は、平坦な底面5aを有すると共に、底面5aと開口面5bとが平行になるように形成される。開口面5bとは、凹部5とこの凹部5が形成されたリードフレーム3の表面とが交わる部分の仮想平面である。また、凹部5は、上面視円形状に形成されている。そして、凹部5内には、その表面に例えば金属膜を形成することによって光反射部6が形成されている。また、他方のリードフレーム4は、棒状に形成される。   As shown in FIG. 1, the light-emitting light source 1 includes a light-emitting element 2 and a pair of lead frames 3 and 4 made of a conductive material. One lead frame 3 as a support member is configured by forming a tray portion 3b at one end of a rod-shaped lead portion 3a, and a recess portion 5 is formed in the tray portion 3b. The recess 5 has a flat bottom surface 5a and is formed so that the bottom surface 5a and the opening surface 5b are parallel to each other. The opening surface 5b is a virtual plane at a portion where the concave portion 5 and the surface of the lead frame 3 on which the concave portion 5 is formed intersect. Moreover, the recessed part 5 is formed in the top view circular shape. And in the recessed part 5, the light reflection part 6 is formed by forming a metal film in the surface, for example. The other lead frame 4 is formed in a rod shape.

発光素子2は図2に示すように、発光層7を含む複数の層を積層して構成され、発光素子2の側面には2つの出射面A,Bが形成されている。発光素子2は、上面視矩形状に形成されており、発光層7が凹部5の底面5aに平行となるように凹部5内に設置される。なお、発光光源1においては、発光層7の表面に対して垂直であって凹部5の開口面5b側に向かう方向を光軸方向Fとする。出射面Aは、発光素子2の光軸方向前方側表面2aの端部から底面(設置面)5a側に向かって発光層7の表面に対して垂直に形成されると共に、発光層7の端面を含んで形成される。以下、出射面Aを、前方側出射面Aと称する。また出射面Bは、前方側出射面Aにおける光軸方向後方側端部21から設置面5a側かつ発光素子2の内側に向かって傾斜して形成される。以下、出射面Bを、後方側出射面Bと称する。   As shown in FIG. 2, the light emitting element 2 is configured by laminating a plurality of layers including the light emitting layer 7, and two emission surfaces A and B are formed on the side surface of the light emitting element 2. The light emitting element 2 is formed in a rectangular shape when viewed from above, and is installed in the recess 5 so that the light emitting layer 7 is parallel to the bottom surface 5 a of the recess 5. In the light emitting light source 1, a direction perpendicular to the surface of the light emitting layer 7 and toward the opening surface 5 b side of the recess 5 is defined as an optical axis direction F. The emission surface A is formed perpendicular to the surface of the light emitting layer 7 from the end of the front surface 2a in the optical axis direction of the light emitting element 2 toward the bottom surface (installation surface) 5a, and the end surface of the light emitting layer 7 Formed. Hereinafter, the emission surface A is referred to as a front emission surface A. Further, the emission surface B is formed so as to be inclined from the rear end portion 21 in the optical axis direction on the front emission surface A toward the installation surface 5 a side and the inside of the light emitting element 2. Hereinafter, the emission surface B is referred to as a rear emission surface B.

なお、発光素子2の側面には、出射面A,Bだけでなく、後方側出射面Bの光軸方向後方側端部22から発光素子2の光軸方向後方側表面まで発光層7の表面に対して垂直に延びて形成される面Cが形成されている。発光層7からの光は面Cで大部分が全反射するので、面Cからはほとんど光は出射しない。そして、面Cから出射する光は、出射面A,Bから出射する光に比べてはるかに少ないので、面Cは出射面としては利用せず、後述するように対応する反射面は形成していない。   In addition, on the side surface of the light emitting element 2, not only the emission surfaces A and B but also the surface of the light emitting layer 7 from the rear end portion 22 in the optical axis direction of the rear emission surface B to the rear surface in the optical axis direction of the light emitting element 2. A surface C is formed to extend perpendicularly to the surface. Most of the light from the light emitting layer 7 is totally reflected at the surface C, so that almost no light is emitted from the surface C. Since the light emitted from the surface C is much less than the light emitted from the emission surfaces A and B, the surface C is not used as the emission surface, and a corresponding reflection surface is formed as described later. Absent.

また、発光素子2において、発光層7を挟んで対向する2つの表面、即ち光軸方向前方側表面2aと光軸方向後方側表面とには、それぞれ電極が位置している。したがって、発光素子2を凹部5の設置面5aに設置することによって、設置面5a側に位置する一方側電極はリードフレーム3に電気的に接続される。また開口面5b側に位置する他方側電極は、ボンディングワイヤ8によって他方のリードフレーム4の一端部に電気的に接続される。リードフレーム3の受け皿部3b側の端部と、リードフレーム4のボンディングワイヤ8側の端部とは、透光性を有するモールド樹脂でモールドされて固定される。このモールド樹脂を所定の形状に成型して導光部材9が形成されている。したがって、導光部材9を構成するモールド樹脂は凹部5の内部にも充填されており、発光素子2から発した光は直ちに導光部材9に入射して、導光部材9の内部を進むことになる。   In the light emitting element 2, electrodes are located on two surfaces facing each other with the light emitting layer 7 interposed therebetween, that is, the front surface 2a in the optical axis direction and the rear surface in the optical axis direction. Therefore, by installing the light emitting element 2 on the installation surface 5 a of the recess 5, one side electrode located on the installation surface 5 a side is electrically connected to the lead frame 3. The other electrode located on the opening surface 5 b side is electrically connected to one end portion of the other lead frame 4 by a bonding wire 8. The end of the lead frame 3 on the tray 3b side and the end of the lead frame 4 on the bonding wire 8 side are fixed by being molded with a translucent mold resin. The light guide member 9 is formed by molding the mold resin into a predetermined shape. Therefore, the mold resin constituting the light guide member 9 is also filled in the recess 5, and the light emitted from the light emitting element 2 immediately enters the light guide member 9 and travels inside the light guide member 9. become.

発光光源1では、リードフレーム3,4に電流・電圧を印加することによって、印加された電流・電圧は発光素子2に印加され、発光層7から光が発する。発光光源1では、発光素子2から出射した光を凹部5の開口面5bから直接出射させると共に、凹部5内に形成された光反射部6で反射させて凹部5の開口面5bから出射させる。発光素子2は、光軸方向前方側表面2aから光を出射すると共に、後述するように側面からも光を出射する。したがって、発光素子2の光軸方向前方側表面2aから出射した光は、ほとんどが凹部5の開口面5bから直接出射し、一部が光反射部6で反射してから凹部5の開口面5bから出射する。また発光素子2の側面から出射した光は、そのほとんどが光反射部6で反射してから凹部5の開口面5bから出射する。そして、凹部5の開口面5bから出射した光は、導光部材9によって光軸方向Fに向かって出射される。   In the light emitting light source 1, by applying current / voltage to the lead frames 3, 4, the applied current / voltage is applied to the light emitting element 2, and light is emitted from the light emitting layer 7. In the light emitting source 1, the light emitted from the light emitting element 2 is directly emitted from the opening surface 5 b of the recess 5, and is reflected by the light reflecting portion 6 formed in the recess 5 and is emitted from the opening surface 5 b of the recess 5. The light emitting element 2 emits light from the front surface 2a in the optical axis direction and also emits light from the side surface as described later. Therefore, most of the light emitted from the front surface 2 a in the optical axis direction of the light emitting element 2 is directly emitted from the opening surface 5 b of the recess 5, and part of the light is reflected by the light reflecting portion 6 and then the opening surface 5 b of the recess 5. Exits from. Further, most of the light emitted from the side surface of the light emitting element 2 is reflected by the light reflecting portion 6 and then emitted from the opening surface 5 b of the recess 5. The light emitted from the opening surface 5 b of the recess 5 is emitted toward the optical axis direction F by the light guide member 9.

図3は、発光光源1における光反射部6の形状を示す模式図である。光反射部6は、後方側反射面R1と前方側反射面R2とからなる。後方側反射面R1は、光軸方向Fに平行で発光素子2の中心を通る縦断面との交差線が設置面5aに対して第1傾斜角θ1で延びる直線となるように形成される。また前方側反射面R2は、後方側反射面R1の前方側端部23に連接されると共に、前記縦断面との交差線が設置面5aに対して第1傾斜角θ1とは異なる第2傾斜角θ2で延びる直線になるように形成される。図3では、第1傾斜角θ1>第2傾斜角θ2の場合が示されている。   FIG. 3 is a schematic diagram showing the shape of the light reflecting portion 6 in the light emitting light source 1. The light reflecting portion 6 includes a rear side reflection surface R1 and a front side reflection surface R2. The rear-side reflection surface R1 is formed such that an intersecting line with a longitudinal section that is parallel to the optical axis direction F and passes through the center of the light emitting element 2 is a straight line that extends at a first inclination angle θ1 with respect to the installation surface 5a. Further, the front-side reflection surface R2 is connected to the front-side end portion 23 of the rear-side reflection surface R1, and the second inclination in which the intersection line with the longitudinal section is different from the first inclination angle θ1 with respect to the installation surface 5a. It is formed to be a straight line extending at an angle θ2. FIG. 3 shows a case where the first inclination angle θ1> the second inclination angle θ2.

後方側反射面R1は、後方側出射面Bに対応して形成された反射面であり、前方側反射面R2は、前方側出射面Aに対応して形成された反射面である。出射面からは様々な方向に向かって光が出射するが、出射面に対して垂直方向に向かって出射する光が最も多い。ここで、出射面に対応させて反射面を形成するとは、当該出射面に対して垂直方向に出射する光が入射される位置に反射面を形成することをいう。   The rear side reflection surface R1 is a reflection surface formed corresponding to the rear side emission surface B, and the front side reflection surface R2 is a reflection surface formed corresponding to the front side emission surface A. Light exits in various directions from the exit surface, but the most light exits in the direction perpendicular to the exit surface. Here, the formation of the reflection surface corresponding to the emission surface means that the reflection surface is formed at a position where light emitted in a direction perpendicular to the emission surface is incident.

ここで、後方側反射面R1の光軸方向距離H1は、設置面5aから前方側出射面Aの後方側端部21までの光軸方向距離Hd以下に設定される。また、後方側反射面R1の光軸方向距離H1と前方側反射面R2の光軸方向距離H2との和は、発光素子2の光軸方向距離Hc以上に設定されている。このように形成することによって、後方側反射面R1の前方側端部23が、前方側出射面Aの後方側端部21の位置よりも後方側に位置し、前方側反射面R2の前方側端部24が、発光素子2の前方側表面2aの位置よりも前方側に位置していることになる。   Here, the optical axis direction distance H1 of the rear side reflection surface R1 is set to be equal to or less than the optical axis direction distance Hd from the installation surface 5a to the rear side end portion 21 of the front side emission surface A. Further, the sum of the optical axis direction distance H1 of the rear side reflection surface R1 and the optical axis direction distance H2 of the front side reflection surface R2 is set to be equal to or greater than the optical axis direction distance Hc of the light emitting element 2. By forming in this way, the front side end portion 23 of the rear side reflection surface R1 is located on the rear side of the position of the rear side end portion 21 of the front side emission surface A, and the front side of the front side reflection surface R2 is located. The end 24 is positioned on the front side of the front surface 2 a of the light emitting element 2.

このような発光光源1では、後方側出射面Bから出射した出射光は、主として後方側反射面R1に入射し、前方側出射面Aから出射した出射光は、主として前方側反射面R2に入射する。したがって、2つの反射面R1,R2の傾斜角θ1,θ2を適宜選択することによって、発光素子2の側面からの出射光の反射方向(進行方向)を適切に制御することが可能となる。これによって、発光素子2の発光層7から発する光の利用効率の向上を図ることができると共に、発光光源1の輝度の向上及び輝度の均一化を図ることが可能となる。   In such a light-emitting light source 1, the outgoing light emitted from the rear side outgoing surface B is mainly incident on the rear side reflective surface R <b> 1, and the outgoing light emitted from the front side outgoing surface A is mainly incident on the front side reflective surface R <b> 2. To do. Therefore, by appropriately selecting the inclination angles θ1 and θ2 of the two reflecting surfaces R1 and R2, the reflection direction (traveling direction) of the emitted light from the side surface of the light emitting element 2 can be appropriately controlled. As a result, the utilization efficiency of light emitted from the light emitting layer 7 of the light emitting element 2 can be improved, and the luminance of the light emitting light source 1 can be improved and the luminance can be made uniform.

(第2の実施形態)
図4は、本発明の第2の実施形態を説明するための模式図である。第2実施形態は、上述した第1実施形態と類似した構成であるので、同一の構成には同一の参照符号を付して詳細な説明は省略する。なお、発光素子2の光軸方向前方側表面2aから出射する光については第1実施形態と同様であるので、以下の説明では発光素子2の側面から出射する光について説明する。
(Second Embodiment)
FIG. 4 is a schematic diagram for explaining a second embodiment of the present invention. Since the second embodiment has a configuration similar to that of the first embodiment described above, the same configuration is denoted by the same reference numeral, and detailed description thereof is omitted. Since light emitted from the front surface 2a in the optical axis direction of the light emitting element 2 is the same as that in the first embodiment, the light emitted from the side surface of the light emitting element 2 will be described below.

第2実施形態では、前記縦断面との交差線が曲線となるように後方側反射面R1を形成し、さらに前記縦断面との交差線が後方側反射面R1の交差線とは異なる曲線となるように前方側反射面R2を形成している。反射面R1,R2は、発光素子2の中心を通り光軸方向Fに平行な座標軸をz軸とし、光軸方向Fに垂直な平面内で互いに直交する2つの座標軸をそれぞれx軸、y軸としたとき、z軸上の座標点P1,P2を基準点として、曲面形状を表わす数式に従って形成することができる。   In 2nd Embodiment, back side reflective surface R1 is formed so that the crossing line with the said longitudinal cross section may become a curve, and also the crossing line with the said vertical cross section differs from the crossing line of the back side reflective surface R1. Thus, the front-side reflection surface R2 is formed. The reflecting surfaces R1 and R2 have a coordinate axis passing through the center of the light emitting element 2 and parallel to the optical axis direction F as a z axis, and two coordinate axes orthogonal to each other in a plane perpendicular to the optical axis direction F as an x axis and a y axis, respectively. , The coordinate points P1 and P2 on the z-axis can be used as reference points to form a curved surface shape.

このように反射面R1,R2を曲面に形成したことによって、図5に示すように、出射面A,Bから出射される最も強い光、即ち出射面A,Bに対して垂直方向に出射する光以外の光の反射方向も適切に制御することができる。これによって、発光素子2の発光層7から発する光の利用効率の向上をより一層図ることができると共に、発光光源1の輝度の向上及び輝度の均一化をより一層図ることが可能となる。   By forming the reflecting surfaces R1 and R2 into curved surfaces in this way, as shown in FIG. 5, the strongest light emitted from the emission surfaces A and B, that is, emitted in a direction perpendicular to the emission surfaces A and B. The reflection direction of light other than light can also be controlled appropriately. As a result, the utilization efficiency of light emitted from the light emitting layer 7 of the light emitting element 2 can be further improved, and the luminance of the light emitting light source 1 can be further improved and the luminance can be made uniform.

反射面R1,R2の形状としては、以下の数式で表される非球面形状であるコニック面又はバイコニック面を用いるのが好ましい。
コニック面は、以下の数式(1)で表わされる。
As the shapes of the reflecting surfaces R1 and R2, it is preferable to use a conic surface or a biconic surface which is an aspherical shape represented by the following formula.
The conic surface is expressed by the following formula (1).

Figure 2006134948
バイコニック面は、以下の数式(2)で表わされる。
Figure 2006134948
The biconic surface is expressed by the following formula (2).

Figure 2006134948
ここで、バイコニック面のXZ平面における断面の形状をZ=g1(X)と表すとき、この曲線の曲率をcv、コーニック係数をccとし、YZ平面における断面の形状をZ=g2(Y)と表すとき、この曲線の曲率をcvx(≠cv)、コーニック係数をccxとしている。また、a,b,c,dは、いずれも高次項の係数である。
Figure 2006134948
Here, when the cross-sectional shape in the XZ plane of the biconic surface is expressed as Z = g1 (X), the curvature of this curve is cv, the conic coefficient is cc, and the cross-sectional shape in the YZ plane is Z = g2 (Y). When expressed, the curvature of this curve is cvx (≠ cv) and the conic coefficient is ccx. Also, a, b, c, and d are all higher-order term coefficients.

(第3の実施形態)
図6は、本発明の第3の実施形態の要部を示す模式図であり、図7は第3実施形態である発光光源1の概略的構成を示す断面図である。第3実施形態は、上述した第1実施形態と類似した構成であり、同一の構成には同一の参照符号を付して詳細な説明は省略する。なお、発光素子2の光軸方向前方側表面2aから出射する光については第1実施形態と同様であるので、以下の説明では発光素子2の側面から出射する光について説明する。
(Third embodiment)
FIG. 6 is a schematic view showing the main part of the third embodiment of the present invention, and FIG. 7 is a cross-sectional view showing a schematic configuration of the light emitting source 1 according to the third embodiment. The third embodiment has a configuration similar to that of the above-described first embodiment, and the same configuration is denoted by the same reference numeral and detailed description thereof is omitted. Since light emitted from the front surface 2a in the optical axis direction of the light emitting element 2 is the same as that in the first embodiment, the light emitted from the side surface of the light emitting element 2 will be described below.

第3実施形態では、前方側反射面R2の傾斜角θ2を、後方側反射面R1の傾斜角θ1よりも大きく設定すると共に、導光部材9を特定の形状に形成し、さらに導光部材9の出射部に対向するように反射部材10を配置している。導光部材9は、図7に示すように、光軸方向Fの前方側に光出射部9a,9bを有する。光出射部9aは、発光素子2の光軸方向Fの前方側に形成される略半球形状部分であり、光出射部9bは、略半球形状部分9aの周囲に略円環状に形成される平面部分である。略半球形状部分である光出射部9aは、発光素子2から発した光を透過させて導光部材9の外部へ出射させる直接出射領域である。また、光出射部9aの周囲に略円環状に形成される平面部分である光出射部9bは、発光素子2から発した光を全反射させて反射部材10の方向へ向かわせると共に、反射部材10で反射した光を透過させて導光部材9の外部へ出射させる全反射領域である。   In the third embodiment, the inclination angle θ2 of the front reflection surface R2 is set to be larger than the inclination angle θ1 of the rear reflection surface R1, the light guide member 9 is formed in a specific shape, and the light guide member 9 is further formed. The reflecting member 10 is arranged so as to face the emission part. As shown in FIG. 7, the light guide member 9 includes light emitting portions 9 a and 9 b on the front side in the optical axis direction F. The light emitting portion 9a is a substantially hemispherical portion formed on the front side in the optical axis direction F of the light emitting element 2, and the light emitting portion 9b is a plane formed in a substantially annular shape around the substantially hemispherical portion 9a. Part. The light emitting portion 9 a that is a substantially hemispherical portion is a direct emission region that transmits light emitted from the light emitting element 2 and emits the light to the outside of the light guide member 9. The light emitting portion 9b, which is a plane portion formed in a substantially annular shape around the light emitting portion 9a, totally reflects the light emitted from the light emitting element 2 and directs it toward the reflecting member 10, and also reflects the reflecting member. This is a total reflection region in which the light reflected by 10 is transmitted and emitted to the outside of the light guide member 9.

第3実施形態では、前方側反射面R2を発光素子2の発光層7の端面に対向する位置に形成するとともに、第2傾斜角θ2を90度に近い比較的大きな角度に設定することによって、前方側反射面R2での反射光を、発光素子2の前方を横切って発光素子2から離れるように光軸方向Fに対して比較的大きな傾斜角度で斜め方向に進行させることができる。例えば、前方側出射面Aから垂直に出射した光が前方側反射面R2で反射した後に全反射領域9bで全反射するためには、2θ2−90°≧arcsin(1/n)を満たすように第2傾斜角θ2を設定すればよい。ここで、nは導光部材9の空気に対する屈折率である。但し、前方側出射面Aから垂直に出射して前方側反射面R2で反射した光が、反射部材10に到達する前に全反射領域9bに到達するためには、第2傾斜角θ2は大きくなりすぎてもよくない。即ち、上記反射した光の光軸方向Fの到達距離がLであるときの水平方向(光軸方向Fに垂直方向)の到達位置が、導光部材9の外周縁部よりも内側になるように、第2傾斜角θ2を選択すると共に、導光部材9及び反射部材10の大きさや形状を適宜設計する。   In the third embodiment, the front-side reflection surface R2 is formed at a position facing the end surface of the light-emitting layer 7 of the light-emitting element 2, and the second tilt angle θ2 is set to a relatively large angle close to 90 degrees. The reflected light from the front-side reflection surface R2 can travel in an oblique direction with a relatively large inclination angle with respect to the optical axis direction F so as to cross the front of the light emitting element 2 and away from the light emitting element 2. For example, in order for light emitted perpendicularly from the front-side emission surface A to be totally reflected by the total reflection region 9b after being reflected by the front-side reflection surface R2, 2θ2−90 ° ≧ arcsin (1 / n) is satisfied. The second inclination angle θ2 may be set. Here, n is the refractive index of the light guide member 9 with respect to the air. However, in order for the light emitted perpendicularly from the front emission surface A and reflected by the front reflection surface R2 to reach the total reflection region 9b before reaching the reflection member 10, the second inclination angle θ2 is large. It doesn't have to be too much. That is, the arrival position in the horizontal direction (perpendicular to the optical axis direction F) when the arrival distance of the reflected light in the optical axis direction F is L is located inside the outer peripheral edge of the light guide member 9. In addition, the second inclination angle θ2 is selected, and the sizes and shapes of the light guide member 9 and the reflection member 10 are appropriately designed.

上記のような発光素子2から離れていく光は、導光部材9の光出射部における全反射領域9bと反射部材10との間で反射することによって、その進行方向が制御される。このように、発光素子2から離れていく光の進行方向を導光部材9で制御することによって、導光部材9の周縁部分の輝度の向上を図ることができる。   The light traveling away from the light emitting element 2 as described above is reflected between the total reflection region 9 b and the reflection member 10 in the light emitting portion of the light guide member 9, and the traveling direction thereof is controlled. In this way, by controlling the traveling direction of the light leaving the light emitting element 2 with the light guide member 9, it is possible to improve the luminance of the peripheral portion of the light guide member 9.

なお、前方側反射面R2で反射する光は、第2傾斜角θ2と、発光素子2の発光層7から全反射領域9bまでの距離Lと、反射部材10の反射面の形状とを適宜設定することによって、導光部材9の周縁部分から出射されるように進行方向を制御することができる。反射部材10の反射面の形状は、上述したコニック面やバイコニック面を用いることが好ましい。   The light reflected by the front reflective surface R2 is appropriately set with the second inclination angle θ2, the distance L from the light emitting layer 7 to the total reflection region 9b of the light emitting element 2, and the shape of the reflective surface of the reflective member 10. By doing so, the traveling direction can be controlled so as to be emitted from the peripheral portion of the light guide member 9. The shape of the reflecting surface of the reflecting member 10 is preferably the above-described conic surface or biconic surface.

図7に示すグラフは、導光部材9の出射部上における位置と輝度との関係を示している。このグラフにおいて、実線L1は従来技術のように反射面が1つである場合の輝度特性を示しており、点線L2は本実施形態のように反射面が複数個である場合の輝度特性を示している。このグラフからわかるように、本実施形態では導光部材9の周縁部分おける輝度の強度に加えて、中央部分における輝度の強度も向上している。このように本実施形態では、発光素子2の発光層7から発する光の利用効率の向上を図ることができると共に、発光光源1の輝度の向上及び輝度の均一化を図ることが可能となる。   The graph shown in FIG. 7 shows the relationship between the position of the light guide member 9 on the emission part and the luminance. In this graph, the solid line L1 indicates the luminance characteristic when there is one reflecting surface as in the prior art, and the dotted line L2 indicates the luminance characteristic when there are a plurality of reflecting surfaces as in this embodiment. ing. As can be seen from this graph, in the present embodiment, in addition to the luminance intensity at the peripheral portion of the light guide member 9, the luminance intensity at the central portion is also improved. As described above, in the present embodiment, it is possible to improve the utilization efficiency of light emitted from the light emitting layer 7 of the light emitting element 2 and to improve the luminance of the light emitting light source 1 and make the luminance uniform.

また、前方側反射面R2の第2傾斜角θ2を後方側反射面R1の第1傾斜角θ1よりも大きくするので、第2傾斜角θ2を第1傾斜角θ1より小さくする場合に比べて、凹部5の直径φを小さくすることができる(図6参照)。これによって、リードフレーム3の小型化を図ることができる。   Further, since the second inclination angle θ2 of the front-side reflection surface R2 is larger than the first inclination angle θ1 of the rear-side reflection surface R1, compared to the case where the second inclination angle θ2 is smaller than the first inclination angle θ1, The diameter φ of the recess 5 can be reduced (see FIG. 6). As a result, the lead frame 3 can be reduced in size.

(第4の実施形態)
図8は、本発明の第4の実施形態の要部を示す模式図であり、図9は第4実施形態である発光光源1の概略的構成を示す断面図である。第4実施形態は、上述した第3実施形態と類似した構成であり、同一の構成には同一の参照符号を付して詳細な説明は省略する。なお、発光素子2の光軸方向前方側表面2aから出射する光については第1実施形態と同様であるので、以下の説明では発光素子2の側面から出射する光について説明する。
(Fourth embodiment)
FIG. 8 is a schematic view showing a main part of a fourth embodiment of the present invention, and FIG. 9 is a cross-sectional view showing a schematic configuration of a light emitting source 1 according to the fourth embodiment. The fourth embodiment has a configuration similar to that of the above-described third embodiment, and the same configuration is denoted by the same reference numeral and detailed description thereof is omitted. Since light emitted from the front surface 2a in the optical axis direction of the light emitting element 2 is the same as that in the first embodiment, the light emitted from the side surface of the light emitting element 2 will be described below.

第4実施形態では、後方側反射面R1は、設置面5aから光軸方向Fの前方側に向かって形成される段差部15の先端部に連接されると共に、前記縦断面との交差線が設置面5aに対して第1傾斜角θ1で延びる直線になるように形成される。また、前方側反射面R2は、後方側反射面R1の前方側端部23に連接されると共に、前記縦断面との交差線が設置面5aに対して第1傾斜角θ1より大きい第2傾斜角θ2で延びる直線となるように形成される。また、導光部材9を特定の形状に形成し、さらに導光部材9の光出射部に対向するように反射部材10を配置している。   In the fourth embodiment, the rear-side reflecting surface R1 is connected to the tip end portion of the step portion 15 formed from the installation surface 5a toward the front side in the optical axis direction F, and an intersecting line with the longitudinal section is formed. It is formed to be a straight line extending at a first inclination angle θ1 with respect to the installation surface 5a. The front-side reflection surface R2 is connected to the front-side end portion 23 of the rear-side reflection surface R1, and the second inclination whose intersection line with the longitudinal section is larger than the first inclination angle θ1 with respect to the installation surface 5a. It is formed to be a straight line extending at an angle θ2. In addition, the light guide member 9 is formed in a specific shape, and the reflection member 10 is disposed so as to face the light emitting portion of the light guide member 9.

第4実施形態では、後方側反射面R1を、段差部15の先端部から光軸方向前方側に延びるように形成したので、設置面5aから形成する場合に比べて、第1傾斜角θ1を小さくすることができる。即ち、図8に示すように、本実施形態における第1傾斜角θ1は、後方側反射面R1を設置面5aから形成する場合の第1傾斜角θ1aに比べて、小さくなる。これによって、後方側反射面R1による反射光を、発光素子2の前方を横切らせることなく発光素子2から離れるように光軸方向に対して斜め方向に進ませることができる。また、第3実施形態と同様に、前方側反射面R2を発光素子2の発光層7の端面に対向する位置に形成するとともに、第2傾斜角θ2を90度に近い比較的大きな角度に設定することによって、前方側反射面R2で反射した光を、発光素子2の前方を横切って発光素子2から離れるように光軸方向Fに対して比較的大きな傾斜角度で斜め方向に進行させることができる。   In the fourth embodiment, the rear reflection surface R1 is formed so as to extend from the tip of the step portion 15 to the front side in the optical axis direction, so that the first inclination angle θ1 is set as compared with the case where the rear reflection surface R1 is formed from the installation surface 5a. Can be small. That is, as shown in FIG. 8, the first inclination angle θ1 in the present embodiment is smaller than the first inclination angle θ1a when the rear side reflection surface R1 is formed from the installation surface 5a. As a result, the reflected light from the rear-side reflecting surface R1 can be advanced in an oblique direction with respect to the optical axis direction so as to be away from the light emitting element 2 without traversing the front of the light emitting element 2. Similarly to the third embodiment, the front-side reflection surface R2 is formed at a position facing the end surface of the light-emitting layer 7 of the light-emitting element 2, and the second inclination angle θ2 is set to a relatively large angle close to 90 degrees. By doing so, the light reflected by the front-side reflection surface R2 can travel in an oblique direction with a relatively large inclination angle with respect to the optical axis direction F so as to cross the front of the light-emitting element 2 and away from the light-emitting element 2. it can.

このように後方側反射面R1及び前方側反射面R2で反射して発光素子2から離れていく光は、導光部材9の光出射部における全反射領域9bと反射部材10との間で反射することによって、その進行方向が制御される。これによって、導光部材9の周縁部分の輝度の向上を図ることができる。   Thus, the light reflected by the rear reflective surface R1 and the front reflective surface R2 and leaving the light emitting element 2 is reflected between the total reflection region 9b and the reflective member 10 in the light emitting portion of the light guide member 9. By doing so, the traveling direction is controlled. Thereby, the brightness of the peripheral portion of the light guide member 9 can be improved.

図9に示すグラフは、導光部材9の出射面上における位置と輝度との関係を示している。このグラフにおいて、細い実線L1は従来の技術のように反射面が1つである場合の輝度特性を示しており、点線L2は反射面が複数個である場合の輝度特性を示しており、太い実線L3は本実施形態のように段差部15の先端から後方側反射面R1を形成した場合の輝度特性を示している。このグラフからわかるように、本実施形態では導光部材9の周縁部分における輝度の強度が、段差部15を形成しない場合に比べて向上している。さらに本実施形態では、段差部15を形成しない場合に比べて、導光部材9の中心部分における輝度の強度が減少しているので、輝度の最低値と最高値との差が小さくなり、輝度の均一化が図られている。このように本実施形態では、発光素子2の発光層7から発する光の利用効率の向上を図ることができると共に、発光光源1の輝度の向上及び輝度の均一化を図ることが可能となる。   The graph shown in FIG. 9 shows the relationship between the position of the light guide member 9 on the exit surface and the luminance. In this graph, the thin solid line L1 indicates the luminance characteristic when there is one reflecting surface as in the conventional technique, and the dotted line L2 indicates the luminance characteristic when there are a plurality of reflecting surfaces, and is thick. A solid line L3 indicates luminance characteristics when the rear side reflection surface R1 is formed from the tip of the step portion 15 as in the present embodiment. As can be seen from this graph, in the present embodiment, the luminance intensity at the peripheral portion of the light guide member 9 is improved as compared with the case where the step portion 15 is not formed. Furthermore, in this embodiment, since the intensity of the luminance in the central portion of the light guide member 9 is reduced as compared with the case where the step portion 15 is not formed, the difference between the minimum value and the maximum value of the luminance is reduced. Is made uniform. As described above, in the present embodiment, it is possible to improve the utilization efficiency of light emitted from the light emitting layer 7 of the light emitting element 2 and to improve the luminance of the light emitting light source 1 and make the luminance uniform.

また、前方側反射面R2の第2傾斜角θ2を後方側反射面R1の第1傾斜角θ1よりも大きくするので、第2傾斜角θ2を第1傾斜角θ1より小さくする場合に比べて、凹部5の直径φを小さくすることができる(図8参照)。これによって、リードフレーム3の小型化を図ることができる。   Further, since the second inclination angle θ2 of the front-side reflection surface R2 is larger than the first inclination angle θ1 of the rear-side reflection surface R1, compared to the case where the second inclination angle θ2 is smaller than the first inclination angle θ1, The diameter φ of the recess 5 can be reduced (see FIG. 8). As a result, the lead frame 3 can be reduced in size.

(第5の実施形態)
図10は、本発明の第5の実施形態を示す模式図である。第5実施形態は、上述した第3実施形態に類似しているので、同一の構成には同一の参照符号を付して詳細な説明は省略する。
(Fifth embodiment)
FIG. 10 is a schematic diagram showing a fifth embodiment of the present invention. Since the fifth embodiment is similar to the third embodiment described above, the same components are denoted by the same reference numerals and detailed description thereof is omitted.

第5実施形態では、凹部5内に、発光素子2からの光によって励起され予め定める色彩光を発する蛍光体を攪拌させた樹脂11が充填されている。この構成では、発光素子2から発する色彩光と蛍光体から発する色彩光とが混合されて得られる色彩光を出射させることができる。例えば、青色光を発する発光素子2を用いると共に、黄色光を発する蛍光体を攪拌させた樹脂11を凹部5内に充填することによって、白色光を得ることができる。また、紫外光を発する発光素子と、赤色光、緑色光及び青色光をそれぞれ発する3種類の蛍光体を攪拌させた樹脂11を凹部5内に充填することによっても、白色光を得ることができる。このように、発光素子2が発する光の色彩と、樹脂11に攪拌される蛍光体が発する光の色彩とを適宜選択して組み合わせることによって、発光光源1が発する光の色彩のバリエーションを増やすことができる。   In the fifth embodiment, the recess 11 is filled with a resin 11 in which a phosphor that is excited by light from the light emitting element 2 and emits predetermined color light is agitated. In this configuration, it is possible to emit color light obtained by mixing the color light emitted from the light emitting element 2 and the color light emitted from the phosphor. For example, white light can be obtained by using the light emitting element 2 that emits blue light and filling the recess 11 with the resin 11 in which the phosphor that emits yellow light is stirred. Further, white light can also be obtained by filling the recess 5 with a resin 11 in which a light emitting element that emits ultraviolet light and three types of phosphors that respectively emit red light, green light, and blue light are stirred. . As described above, by appropriately selecting and combining the color of the light emitted from the light emitting element 2 and the color of the light emitted from the phosphor stirred by the resin 11, variations in the color of the light emitted from the light emitting light source 1 are increased. Can do.

上述した各実施形態では、凹部5は上面視円形状になるように形成したけれども、発光素子2の形状に対応させて上面視矩形状に形成してもよい。また、発光素子2は上面視矩形状に形成したけれども、凹部5の形状に対応させて上面視円形状に形成してもよい。   In each of the embodiments described above, the concave portion 5 is formed to have a circular shape when viewed from above, but may be formed to have a rectangular shape when viewed from above corresponding to the shape of the light emitting element 2. Further, although the light emitting element 2 is formed in a rectangular shape in a top view, it may be formed in a circular shape in a top view corresponding to the shape of the recess 5.

また、発光素子2を反転させて、即ち出射面Aが設置面5a側に位置するように凹部5内に設置することもできる。さらに、発光素子2の側面に形成される出射面は、平面状に形成されているけれども、曲面状に形成してもよい。   Further, the light emitting element 2 can be inverted, that is, installed in the recess 5 so that the emission surface A is located on the installation surface 5a side. Furthermore, although the emission surface formed on the side surface of the light emitting element 2 is formed in a flat shape, it may be formed in a curved surface shape.

また、導光部材9を構成するモールド樹脂を凹部5内に充填して導光部材9を形成したけれども、モールド樹脂を凹部5内に充填させることなく、導光部材9の後方側表面が凹部5の開口面5bに一致するように導光部材9を形成してもよい。   Further, although the light guide member 9 is formed by filling the mold resin constituting the light guide member 9 into the recess 5, the rear surface of the light guide member 9 is recessed without filling the mold resin into the recess 5. Alternatively, the light guide member 9 may be formed so as to coincide with the opening surface 5b.

なお、いくつかの実施形態を説明したが、これらの実施形態の記載は例示に過ぎず、本発明の範囲を限定するものではない。また、実施形態において説明した構成要素は、可能な限り組み合わせることができる。   In addition, although several embodiment was described, description of these embodiment is only an illustration and does not limit the scope of the present invention. In addition, the components described in the embodiments can be combined as much as possible.

本発明の発光光源は、発光装置、照明装置、表示装置など応用することができる。本発明の発光光源は、比較的薄型であるので、特に照明装置に用いる場合、例えば壁や家具に埋め込んで使用することができる。また本発明の発光光源は、輝度ムラが少ないので、照明装置に用いた場合には均一な照明が可能であり、表示装置に用いた場合は見やすい表示を実現することが可能となる。   The light-emitting light source of the present invention can be applied to a light-emitting device, a lighting device, a display device, and the like. Since the light-emitting light source of the present invention is relatively thin, it can be used by being embedded in, for example, a wall or furniture, particularly when used in a lighting device. In addition, since the light emission source of the present invention has little luminance unevenness, uniform illumination is possible when used in an illumination device, and easy-to-see display can be realized when used in a display device.

第1実施形態である発光光源1の概略的構成を示す断面図。1 is a cross-sectional view illustrating a schematic configuration of a light emission source 1 according to a first embodiment. 発光光源1に用いられる発光素子2の概略的構造を示す側面図。1 is a side view showing a schematic structure of a light emitting element 2 used in a light emitting light source 1. 発光光源1における光反射部6の形状を示す模式図。The schematic diagram which shows the shape of the light reflection part 6 in the light emission light source 1. FIG. 本発明の第2実施形態を説明するための模式図。The schematic diagram for demonstrating 2nd Embodiment of this invention. 第2実施形態における出射光制御の態様を示す模式図。The schematic diagram which shows the aspect of the emitted light control in 2nd Embodiment. 本発明の第3実施形態の要部を示す模式図。The schematic diagram which shows the principal part of 3rd Embodiment of this invention. 第3実施形態である発光光源1の概略的構成を示す断面図。Sectional drawing which shows schematic structure of the light emission source 1 which is 3rd Embodiment. 本発明の第4実施形態の要部を示す模式図。The schematic diagram which shows the principal part of 4th Embodiment of this invention. 第4実施形態である発光光源1の概略的構成を示す断面図。Sectional drawing which shows schematic structure of the light emission source 1 which is 4th Embodiment. 本発明の第5実施形態を示す模式図。The schematic diagram which shows 5th Embodiment of this invention. 先行技術を説明するための模式図。The schematic diagram for demonstrating a prior art. 先行技術を説明するための模式図。The schematic diagram for demonstrating a prior art.

符号の説明Explanation of symbols

1…発光光源、2…発光素子、2a…光軸方向前方側表面、3,4…リードフレーム、5…凹部、5a…底面(設置面)、5b…開口面、6…光反射部、7…発光層、8…ボンディングワイヤ、9…導光部材、9a…光出射部(直接出射領域)、9b…光出射部(全反射領域)10…反射部材、11…樹脂、15…段差部、21,22…光軸方向後方側端部、23,24…光軸方向前方側端部、A…前方側出射面、B…後方側出射面、F…光軸方向、R1…後方側反射面、R2…前方側反射面、θ1…第1傾斜角、θ2…第2傾斜角。   DESCRIPTION OF SYMBOLS 1 ... Light emitting light source, 2 ... Light emitting element, 2a ... Optical axis direction front side surface, 3, 4 ... Lead frame, 5 ... Recessed part, 5a ... Bottom surface (installation surface), 5b ... Opening surface, 6 ... Light reflection part, 7 DESCRIPTION OF SYMBOLS ... Light emitting layer, 8 ... Bonding wire, 9 ... Light guide member, 9a ... Light emission part (direct emission area), 9b ... Light emission part (total reflection area) 10 ... Reflective member, 11 ... Resin, 15 ... Step part 21, 22 ... optical axis direction rear side end, 23, 24 ... optical axis direction front side end, A ... front side emission surface, B ... rear side emission surface, F ... optical axis direction, R 1 ... rear side reflection surface , R2 ... front-side reflecting surface, θ1 ... first inclination angle, θ2 ... second inclination angle.

Claims (10)

発光層を含む複数の層を積層して構成された発光素子と、凹部を有すると共に該凹部内に光反射部が形成された支持部材とを備え、前記発光素子から発した光を前記凹部の開口面から直接出射させると共に、前記凹部内に形成された前記光反射部で反射させて前記凹部の開口面から出射させるように構成した発光光源において、
前記発光層の表面に対して垂直であって前記凹部の開口面側に向かう方向を光軸方向とし、
前記発光素子の側面には、前記光軸方向に平行な縦断面との交差線の形状が互いに異なる少なくとも2つの出射面が形成されており、
前記光反射部は、前記縦断面との交差線の形状が互いに異なる複数の反射面を連接して構成されており、複数の反射面のうち前記光軸方向に対して最も後方側に位置する後方側反射面と該後方側反射面に連接される前方側反射面とは、前記発光素子における光軸方向前方側表面の位置より後方で連接されていることを特徴とする発光光源。
A light-emitting element configured by laminating a plurality of layers including a light-emitting layer; and a support member having a concave portion and having a light reflecting portion formed in the concave portion, and emitting light emitted from the light-emitting element in the concave portion. In the light emitting light source configured to emit directly from the opening surface and reflect from the light reflecting portion formed in the recess and emit from the opening surface of the recess,
The direction perpendicular to the surface of the light emitting layer and toward the opening surface side of the recess is the optical axis direction,
On the side surface of the light emitting element, at least two emission surfaces having different shapes of intersecting lines with a longitudinal section parallel to the optical axis direction are formed,
The light reflecting portion is configured by connecting a plurality of reflecting surfaces having mutually different shapes of intersecting lines with the longitudinal section, and is located on the rearmost side with respect to the optical axis direction among the plurality of reflecting surfaces. The light-emitting light source, wherein the rear-side reflection surface and the front-side reflection surface connected to the rear-side reflection surface are connected rearward from the position of the front-side surface in the optical axis direction of the light-emitting element.
請求項1に記載の発光光源において、
前記反射面は、前記出射面に個別に対応させて形成することを特徴とする発光光源。
The light-emitting light source according to claim 1,
The light-emitting light source is characterized in that the reflection surface is formed individually corresponding to the emission surface.
請求項1又は2に記載の発光光源において、
前記発光素子から出射される光が入射するように形成され、光軸方向前方側に光出射部を有する導光部材と、
前記導光部材に対して光軸方向後方側に配置される反射部材とを備え、
前記導光部材の光出射部は、前記発光素子から発した光を透過させて前記導光部材の外部へ出射させる直接出射領域と、前記発光素子から発した光を全反射させて前記反射部材の方向へ向かわせると共に、前記反射部材で反射した光を透過させて前記導光部材の外部へ出射させる全反射領域とを有することを特徴とする発光光源。
The light-emitting light source according to claim 1 or 2,
A light guide member that is formed so that light emitted from the light emitting element is incident thereon, and has a light emitting portion on the front side in the optical axis direction;
A reflective member disposed on the rear side in the optical axis direction with respect to the light guide member,
The light emitting portion of the light guide member transmits a light emitted from the light emitting element and emits the light to the outside of the light guide member, and totally reflects the light emitted from the light emitting element to reflect the reflection member. And a total reflection region that transmits the light reflected by the reflecting member and emits the light to the outside of the light guide member.
請求項2に記載の発光光源において、
前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって傾斜して形成される後方側出射面とを有し、
前記後方側反射面が前記後方側出射面に対応し、前記前方側反射面が前記前方側出射面に対応しており、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面の位置よりも前方側に位置していることを特徴とする発光光源。
The light-emitting light source according to claim 2,
The light emitting surface formed on the light emitting element includes an end surface of the light emitting layer, a front light emitting surface formed perpendicular to the surface of the light emitting layer, and a rear side end portion in the optical axis direction of the front light emitting surface. From the rear side of the optical axis direction and the rear side emission surface formed to be inclined toward the inside of the light emitting element,
The rear reflective surface corresponds to the rear outgoing surface, the front reflective surface corresponds to the front outgoing surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. A light emitting source characterized by being positioned in front of a surface position.
請求項4に記載の発光光源において、
前記後方側反射面は、前記縦断面との交差線が前記発光素子の設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記縦断面との交差線が前記設置面に対して前記第1傾斜角とは異なる第2傾斜角で延びる直線になるように形成されることを特徴とする発光光源。
The light-emitting light source according to claim 4,
The back-side reflection surface is formed so that an intersection line with the longitudinal section is a straight line extending at a first inclination angle with respect to the light-emitting element installation surface, and the front-side reflection surface is A light-emitting light source characterized in that an intersection line is formed to be a straight line extending at a second inclination angle different from the first inclination angle with respect to the installation surface.
請求項4に記載の発光光源において、
前記後方側反射面は、前記縦断面との交差線が曲線になるように形成され、前記前方側反射面は、前記縦断面との交差線が前記後方側反射面の交差線とは異なる曲線になるように形成されることを特徴とする発光光源。
The light-emitting light source according to claim 4,
The back side reflection surface is formed such that a cross line with the vertical cross section becomes a curve, and the front side reflection surface has a cross line with the vertical cross section different from a cross line of the back side reflection surface. A light emitting source characterized by being formed so as to become.
請求項3に記載の発光光源において、
前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって傾斜して形成される後方側出射面とを有し、
前記後方側反射面は、前記後方側出射面に対応させて前記縦断面との交差線が前記発光素子の設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記設置面に対して前記第1傾斜角より大きい第2傾斜角で延びる直線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置していることを特徴とする発光光源。
The light-emitting light source according to claim 3,
The light emitting surface formed on the light emitting element includes an end surface of the light emitting layer, a front light emitting surface formed perpendicular to the surface of the light emitting layer, and a rear side end portion in the optical axis direction of the front light emitting surface. From the rear side of the optical axis direction and the rear side emission surface formed to be inclined toward the inside of the light emitting element,
The rear reflecting surface is formed so that an intersecting line with the longitudinal section corresponds to the rear emitting surface and is a straight line extending at a first inclination angle with respect to the light emitting element installation surface. The reflecting surface is formed so that an intersection line with the longitudinal section corresponds to the front-side emitting surface and is a straight line extending at a second inclination angle larger than the first inclination angle with respect to the installation surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. A light emitting source characterized by being positioned in front of the surface.
請求項3に記載の発光光源において、
前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって所定の角度で形成される後方側出射面とを有し、
前記後方側反射面は、前記発光素子の設置面から光軸方向前方側に向かって形成される段差部の先端部に連接されると共に、前記後方側出射面に対応させて前記縦断面との交差線が前記設置面に対して第1傾斜角で延びる直線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記設置面に対して前記第1傾斜角より大きい第2傾斜角で延びる直線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置していることを特徴とする発光光源。
The light-emitting light source according to claim 3,
The light emitting surface formed on the light emitting element includes an end surface of the light emitting layer, a front light emitting surface formed perpendicular to the surface of the light emitting layer, and a rear side end portion in the optical axis direction of the front light emitting surface. A rear side emission surface formed at a predetermined angle from the rear side in the optical axis direction and toward the inner side of the light emitting element,
The rear-side reflection surface is connected to a tip portion of a step portion formed from the light-emitting element installation surface toward the front side in the optical axis direction, and corresponds to the rear-side emission surface and the longitudinal section. An intersection line is formed to be a straight line extending at a first inclination angle with respect to the installation surface, and the front-side reflection surface corresponds to the front-side emission surface, and the intersection line with the longitudinal section is the installation surface. Is formed to be a straight line extending at a second inclination angle larger than the first inclination angle,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. A light-emitting light source characterized by being positioned in front of the surface.
請求項3に記載の発光光源において、
前記発光素子に形成される出射面は、前記発光層の端面を含み、前記発光層表面に対して垂直に形成される前方側出射面と、該前方側出射面の光軸方向後方側端部から光軸方向後方側かつ発光素子内側に向かって所定の角度で形成される後方側出射面とを有し、
前記後方側反射面は、前記後方側出射面に対応させて前記縦断面との交差線が曲線になるように形成され、前記前方側反射面は、前記前方側出射面に対応させて前記縦断面との交差線が前記後方側反射面の交差線とは異なる曲線になるように形成され、
前記後方側反射面の前方側端部は、前記前方側出射面の後方側端部の位置よりも後方側に位置し、前記前方側反射面の前方側端部は、前記発光素子の前方側表面よりも前方側に位置していることを特徴とする発光光源。
The light-emitting light source according to claim 3,
The light emitting surface formed on the light emitting element includes an end surface of the light emitting layer, a front light emitting surface formed perpendicular to the surface of the light emitting layer, and a rear side end portion in the optical axis direction of the front light emitting surface. A rear side emission surface formed at a predetermined angle from the rear side in the optical axis direction and toward the inner side of the light emitting element,
The rear reflecting surface is formed so that a cross line with the longitudinal section is curved corresponding to the rear emitting surface, and the front reflecting surface corresponds to the front emitting surface. Formed so that the line of intersection with the surface is a different curve from the line of intersection of the rear reflective surface,
A front side end of the rear side reflection surface is located rearward of a position of a rear side end of the front side emission surface, and a front side end portion of the front side reflection surface is a front side of the light emitting element. A light-emitting light source characterized by being positioned in front of the surface.
請求項1〜9のいずれか1項に記載の発光光源において、
前記凹部内に、前記発光素子からの光によって励起されて予め定める色彩光を発する蛍光体を攪拌させた樹脂が充填されていることを特徴とする発光光源。
In the light emission light source of any one of Claims 1-9,
A light emitting light source, wherein the recess is filled with a resin in which a phosphor that is excited by light from the light emitting element and emits predetermined color light is stirred.
JP2004319569A 2004-11-02 2004-11-02 Light emitting light source Pending JP2006134948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319569A JP2006134948A (en) 2004-11-02 2004-11-02 Light emitting light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319569A JP2006134948A (en) 2004-11-02 2004-11-02 Light emitting light source

Publications (1)

Publication Number Publication Date
JP2006134948A true JP2006134948A (en) 2006-05-25

Family

ID=36728247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319569A Pending JP2006134948A (en) 2004-11-02 2004-11-02 Light emitting light source

Country Status (1)

Country Link
JP (1) JP2006134948A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004640A (en) * 2006-06-20 2008-01-10 Toyoda Gosei Co Ltd Light emitting device
JP2008258413A (en) * 2007-04-05 2008-10-23 Rohm Co Ltd Semiconductor light-emitting device
JP2010171294A (en) * 2009-01-26 2010-08-05 Rohm Co Ltd Light-emitting device
JP2012119320A (en) * 2010-12-03 2012-06-21 Samsung Led Co Ltd Light source for illumination and method for manufacturing of the same
KR200461195Y1 (en) 2007-02-02 2012-06-28 렉스타 일렉트로닉스 코포레이션 Light emitting diode
JP2013048193A (en) * 2011-08-29 2013-03-07 Toyoda Gosei Co Ltd Semiconductor light-emitting device
CN106195662A (en) * 2011-08-09 2016-12-07 Lg伊诺特有限公司 Illuminator
JP2018113420A (en) * 2017-01-13 2018-07-19 シチズン電子株式会社 Light-emitting device, and imaging device using the same
JP2019036638A (en) * 2017-08-16 2019-03-07 日亜化学工業株式会社 Light-emitting device
CN110094643A (en) * 2018-01-30 2019-08-06 日亚化学工业株式会社 Light emitting device
JP2020145458A (en) * 2018-01-30 2020-09-10 日亜化学工業株式会社 Light-emitting device
JPWO2021106127A1 (en) * 2019-11-28 2021-06-03

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004640A (en) * 2006-06-20 2008-01-10 Toyoda Gosei Co Ltd Light emitting device
KR200461195Y1 (en) 2007-02-02 2012-06-28 렉스타 일렉트로닉스 코포레이션 Light emitting diode
JP2008258413A (en) * 2007-04-05 2008-10-23 Rohm Co Ltd Semiconductor light-emitting device
JP2010171294A (en) * 2009-01-26 2010-08-05 Rohm Co Ltd Light-emitting device
JP2012119320A (en) * 2010-12-03 2012-06-21 Samsung Led Co Ltd Light source for illumination and method for manufacturing of the same
CN106195662A (en) * 2011-08-09 2016-12-07 Lg伊诺特有限公司 Illuminator
JP2013048193A (en) * 2011-08-29 2013-03-07 Toyoda Gosei Co Ltd Semiconductor light-emitting device
JP2018113420A (en) * 2017-01-13 2018-07-19 シチズン電子株式会社 Light-emitting device, and imaging device using the same
JP2019036638A (en) * 2017-08-16 2019-03-07 日亜化学工業株式会社 Light-emitting device
CN110094643A (en) * 2018-01-30 2019-08-06 日亚化学工业株式会社 Light emitting device
JP2019134017A (en) * 2018-01-30 2019-08-08 日亜化学工業株式会社 Light-emitting device
JP2020145458A (en) * 2018-01-30 2020-09-10 日亜化学工業株式会社 Light-emitting device
US10920937B2 (en) 2018-01-30 2021-02-16 Nichia Corporation Light emitting device
US11527864B2 (en) 2018-01-30 2022-12-13 Nichia Corporation Light emitting device
JPWO2021106127A1 (en) * 2019-11-28 2021-06-03
WO2021106127A1 (en) * 2019-11-28 2021-06-03 三菱電機株式会社 Semiconductor laser device
TWI766332B (en) * 2019-11-28 2022-06-01 日商三菱電機股份有限公司 Semiconductor laser device
JP7199570B2 (en) 2019-11-28 2023-01-05 三菱電機株式会社 Semiconductor laser device

Similar Documents

Publication Publication Date Title
US9880416B2 (en) Light emitting device package and backlight unit using the same
JP5025612B2 (en) LED light source and light emitter using the same
JP5241068B2 (en) Side light emitting device, backlight unit using the same as light source, and liquid crystal display device using the same
JP2004186092A (en) Light emitting source, light emitting source array and equipment using the light emitting source
JP2004363210A (en) Optical semiconductor device
JP2005317977A (en) Led lamp unit
JP2006309242A (en) Optical lens, light emitting element package using same, and backlight unit
JP2006237217A (en) Semiconductor light emitting device and surface emission device
JP2006134948A (en) Light emitting light source
JP2006351522A (en) Back light and liquid crystal display device
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP4635863B2 (en) Surface emitting device
JP4143074B2 (en) Light emitting diode
JP5538479B2 (en) LED light source and light emitter using the same
JP5119379B2 (en) Surface illumination light source device and surface illumination device
JP2006100009A (en) Ring-shaped light-emitting substance
JP2005197320A (en) Luminous light source and optical device using it
JP2010097138A (en) Lens
TW201506321A (en) Light emitting diode light source module
JP2008277189A (en) Linear light source apparatus, and manufacturing method thereof
TWI522693B (en) Light source module
JP2007108543A (en) Optical film and illumination device using the optical film
JP2012227537A (en) Led light source and luminous body using the same
JP2004288866A (en) Led lamp
JPH01205480A (en) Light emitting diode and led surface light emission source