JP2006133861A - Flame sensor unit - Google Patents

Flame sensor unit Download PDF

Info

Publication number
JP2006133861A
JP2006133861A JP2004319257A JP2004319257A JP2006133861A JP 2006133861 A JP2006133861 A JP 2006133861A JP 2004319257 A JP2004319257 A JP 2004319257A JP 2004319257 A JP2004319257 A JP 2004319257A JP 2006133861 A JP2006133861 A JP 2006133861A
Authority
JP
Japan
Prior art keywords
infrared sensor
reference potential
flame detector
flame
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004319257A
Other languages
Japanese (ja)
Other versions
JP4693389B2 (en
Inventor
Takatoshi Yamagishi
貴俊 山岸
Kazuhisa Nakano
主久 中野
Eisei Morita
英聖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2004319257A priority Critical patent/JP4693389B2/en
Publication of JP2006133861A publication Critical patent/JP2006133861A/en
Application granted granted Critical
Publication of JP4693389B2 publication Critical patent/JP4693389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame sensor unit capable of reducing overall consumption current in the flame sensor unit. <P>SOLUTION: The flame sensor unit includes an infrared sensor 1 internally consuming a drive current, an amplification means 4 for amplifying the output signal of the infrared sensor 1, a fire identification section 6 for identifying a fire based on the output signal amplified in the amplification means 4, and a power supply circuit 32 for supplying a drive voltage at least to the infrared sensor 1. In the above flame sensor unit, a zener diode 8, as a reference potential generation device, is connected in series to the infrared sensor 1, so that the drive current for both the infrared sensor 1 and the zener diode 8 is shared. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は炎感知器に関し、特に消費電流の軽減を図る炎感知器に関するものである。   The present invention relates to a flame detector, and more particularly to a flame detector that reduces current consumption.

図4は一例としての従来の炎感知器のセンサ出力を増幅する回路図である。
従来の炎感知器のセンサ出力を増幅する回路は、焦電素子を用いるもの等の赤外線センサ100のセンサ出力がコンデンサ101を介してオペアンプで構成された増幅部102に入力され、その増幅部102で増幅させて図示省略の炎判断手段に取り込み、炎判断手段で炎感知を行うようにしていた。
そして、電源としては、赤外線センサ100にアイドリング電流を流すためと、増幅部102を駆動させるための定電圧電源(図示省略)が設けられ、増幅部102の動作点を決定する基準電位を出力する基準電圧発生回路104が設けられている。
FIG. 4 is a circuit diagram for amplifying the sensor output of a conventional flame detector as an example.
In a conventional circuit for amplifying the sensor output of a flame detector, the sensor output of an infrared sensor 100 such as one using a pyroelectric element is input via a capacitor 101 to an amplifying unit 102 composed of an operational amplifier. It was amplified and taken into flame determination means (not shown), and flame detection was performed by the flame determination means.
As a power source, a constant voltage power source (not shown) for supplying an idling current to the infrared sensor 100 and driving the amplifying unit 102 is provided, and a reference potential for determining an operating point of the amplifying unit 102 is output. A reference voltage generation circuit 104 is provided.

また、従来の赤外線検出回路では、赤外線センサの電流信号を電流電圧変換回路で電圧信号に変換し、その電圧信号を電圧増幅回路で増幅させ、判別回路に出力し、判別回路で炎判断を行うようにしている。
そして、電源としては、電圧増幅回路の動作点を設定する基準電圧を出力する基準電圧源が設けられている。また、図示されていないが、赤外線センサと、増幅部102を駆動させるための定電圧電源が設けられているものである(例えば、特許文献1参照)。
特開2003−227753号公報(第6頁、図2)
In the conventional infrared detection circuit, the current signal of the infrared sensor is converted into a voltage signal by the current-voltage conversion circuit, the voltage signal is amplified by the voltage amplification circuit, output to the determination circuit, and the flame is determined by the determination circuit. I am doing so.
And as a power supply, the reference voltage source which outputs the reference voltage which sets the operating point of a voltage amplifier circuit is provided. Although not shown, an infrared sensor and a constant voltage power source for driving the amplifying unit 102 are provided (see, for example, Patent Document 1).
Japanese Patent Laying-Open No. 2003-227753 (page 6, FIG. 2)

図4に示す従来の炎感知器のセンサ出力を増幅する回路や特許文献1に記載の赤外線検出回路では、いずれも定電圧電源により赤外線センサ及び増幅回路に駆動電流を供給しながら、それとは別に増幅回路の動作点を設定するための基準電圧源にも駆動電流が必要となって電流が消費されるため、消費電流を低減できないという問題点があった。   In the circuit for amplifying the sensor output of the conventional flame detector shown in FIG. 4 and the infrared detection circuit described in Patent Document 1, the drive current is supplied to the infrared sensor and the amplification circuit by a constant voltage power supply, and separately from that, The reference voltage source for setting the operating point of the amplifier circuit also requires a drive current and consumes the current, which causes a problem that the current consumption cannot be reduced.

本発明はかかる問題点を解決するためになされたもので、炎感知器全体の消費電流の軽減を図ることができる炎感知器を提供することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to provide a flame detector capable of reducing current consumption of the entire flame detector.

本発明に係る炎感知器は、内部で駆動電流を消費する赤外線センサと、該赤外線センサの出力信号を増幅する増幅手段と、該増幅手段で増幅された出力信号に基づいて火災判別を行う火災判別部と、少なくとも前記赤外線センサに駆動電圧を供給する電源回路とを備えた炎感知器において、前記赤外線センサに対して直列に基準電位発生素子を接続して前記赤外線センサと該基準電位発生素子との駆動電流を共通化したものである。   A flame detector according to the present invention includes an infrared sensor that consumes a drive current therein, an amplification unit that amplifies an output signal of the infrared sensor, and a fire that performs fire discrimination based on the output signal amplified by the amplification unit In a flame detector comprising a determination unit and at least a power supply circuit for supplying a driving voltage to the infrared sensor, a reference potential generating element is connected in series to the infrared sensor, and the infrared sensor and the reference potential generating element are connected. And a common drive current.

本発明は以上説明したように、少なくとも赤外線センサに駆動電圧を供給する電源回路を備え、赤外線センサに対して直列に基準電位発生素子を接続して赤外線センサと基準電位発生素子との駆動電流を共通化したので、赤外線センサの駆動電流を利用することができ、従来の基準電位発生用の電源の消費電流がなくなるため、その分の消費電流が軽減されるという効果がある。   As described above, the present invention includes at least a power supply circuit that supplies a drive voltage to the infrared sensor, and a reference potential generating element is connected in series with the infrared sensor to generate a drive current between the infrared sensor and the reference potential generating element. Since it is shared, the drive current of the infrared sensor can be used, and the current consumption of the conventional power supply for generating the reference potential is eliminated, so that the current consumption is reduced accordingly.

図1は本発明に係る実施の形態1の炎感知器の構成を示すブロック図、図2は同炎感知器の主赤外線センサの出力信号をMPUに取り込むまでの具体的な構成を示す回路図、図3は同炎感知器の赤外線センサの内部構成を示す回路図である。
図3は主赤外線センサ1を示しており、この主赤外線センサ1は駆動電流を消費するものとして内部に赤外線を受けて電荷を発生させる焦電体1aと、焦電体1aの電荷を電圧に変換するゲート抵抗1bと、ゲート抵抗1bの電圧を増幅するFET1cとが組み込まれて構成されている。なお、副赤外線センサ11も同様である。
この主赤外線センサ1は赤外線を受光して電気信号に変換して増幅器2に出力する。この増幅器2及び周波数フィルタ3による増幅部4を介して増幅部42で増幅された信号は下側整流器5により下側整流されてMPU6に入力される。
FIG. 1 is a block diagram showing the configuration of the flame detector according to the first embodiment of the present invention, and FIG. 2 is a circuit diagram showing a specific configuration until the output signal of the main infrared sensor of the flame detector is taken into the MPU. FIG. 3 is a circuit diagram showing the internal configuration of the infrared sensor of the flame detector.
FIG. 3 shows a main infrared sensor 1. The main infrared sensor 1 consumes a drive current, and receives pyroelectric body 1a that generates an electric charge by receiving infrared rays therein. The charge of the pyroelectric body 1a is converted into a voltage. A gate resistor 1b for conversion and an FET 1c for amplifying the voltage of the gate resistor 1b are incorporated. The sub infrared sensor 11 is the same.
The main infrared sensor 1 receives infrared rays, converts them into electrical signals, and outputs them to the amplifier 2. The signal amplified by the amplifying unit 42 via the amplifying unit 4 by the amplifier 2 and the frequency filter 3 is rectified on the lower side by the lower rectifier 5 and input to the MPU 6.

また、この炎感知器は主赤外線センサ1と同様の構成の副赤外線センサ11を備えており、この副赤外線センサ11も同様に赤外線を受光して電気信号を出力し、増幅器12及び周波数フィルタ13による増幅部14を介して増幅部14で増幅された信号は下側整流器15により下側整流されてMPU6に入力される。
MPU6は、詳細には示さないが、下側整流器5、15の出力をA/D変換して取り込んで、炎が発生しているかどうかを判別する。
The flame detector includes a sub-infrared sensor 11 having the same configuration as the main infrared sensor 1, and the sub-infrared sensor 11 similarly receives infrared rays and outputs an electric signal, and an amplifier 12 and a frequency filter 13. The signal amplified by the amplification unit 14 via the amplification unit 14 is subjected to lower rectification by the lower rectifier 15 and input to the MPU 6.
Although not shown in detail, the MPU 6 takes in the outputs of the lower rectifiers 5 and 15 after A / D conversion and determines whether or not a flame has occurred.

また、MPU6は火災信号発生部31と接続されている。火災信号発生部31は、MPU6からの検出信号を受信して火災信号を発生して出力するためのものである。
32は電源部で、MPU6に対して電源供給すると同時に増幅器2、12にも電源を供給する。33は電源部32に所定の直流電圧を供給する電源兼信号線、34は電源兼信号線33に設けられ、電源供給されていることを監視する回線電圧監視部で、火災の場合に電源兼信号線33の電圧が異常でないことを確認してMPU6に検出信号の出力動作を行わせるようにしている。
The MPU 6 is connected to the fire signal generator 31. The fire signal generator 31 receives the detection signal from the MPU 6 and generates and outputs a fire signal.
A power supply unit 32 supplies power to the MPU 6 and also supplies power to the amplifiers 2 and 12. Reference numeral 33 denotes a power supply / signal line for supplying a predetermined DC voltage to the power supply section 32. Reference numeral 34 denotes a line voltage monitoring section provided on the power supply / signal line 33 for monitoring the supply of power. After confirming that the voltage of the signal line 33 is not abnormal, the MPU 6 is made to output the detection signal.

次に、本発明の実施の形態1に係る炎感知器の主赤外線センサの出力信号をMPUに取り込むまでの具体的な構成について図2に基づいて説明する。
図2において、図示しない光学フィルタによって炎のゆらぎ成分であるCO2共鳴放射の波長帯域(例えば、4.4μm)の信号を出力する主赤外線センサ1の出力を増幅する増幅部4はオペアンプで構成され、炎のゆらぎ成分を通過させる周波数フィルタ3はハイパスフィルタ3aと、ローパスフィルタ3bとからなる。
Next, a specific configuration until the output signal of the main infrared sensor of the flame detector according to Embodiment 1 of the present invention is taken into the MPU will be described with reference to FIG.
In FIG. 2, an amplifier 4 that amplifies the output of the main infrared sensor 1 that outputs a signal in the wavelength band (for example, 4.4 μm) of CO 2 resonance radiation that is a fluctuation component of a flame by an optical filter (not shown) is composed of an operational amplifier. The frequency filter 3 that passes the fluctuation component of the flame is composed of a high-pass filter 3a and a low-pass filter 3b.

その増幅部4の出力側はコンデンサ8を介して下側整流器5に接続されている。その下側整流器5はオペアンプ5aと、ダイオード5b及び抵抗5cと、コンデンサ8との間に設けられた抵抗5dとで構成されている。
そして、オペアンプ5aの帰還経路にダイオード5bが配置されているため、基準電位の上側はほぼクリップされて高い電圧とはならず、オペアンプ5aは下側波を出力し、MPU6に入力される。
The output side of the amplifying unit 4 is connected to the lower rectifier 5 via a capacitor 8. The lower rectifier 5 includes an operational amplifier 5 a, a diode 5 b and a resistor 5 c, and a resistor 5 d provided between the capacitor 8.
Since the diode 5b is arranged in the feedback path of the operational amplifier 5a, the upper side of the reference potential is almost clipped and does not become a high voltage, and the operational amplifier 5a outputs a lower side wave and is input to the MPU 6.

電源部32はMPU6に対して電源供給する第1の定電圧IC32aと、増幅器2や主赤外線センサ1等の各部に電源供給する第2の定電圧IC32bとで構成されている。その電源部32には電源兼信号線33より所定の直流電圧が供給されている
また、第2の定電圧IC32bは主赤外線センサ1と主赤外線センサ1に直列に接続される基準電位発生素子であるツエナーダイオード8に接続されている。
この構成により、主赤外線センサ1の出力は、基準電位に重畳され、この基準電位は増幅器2による交流増幅の中点となるように設定されている。また、9はソース抵抗、10はコンデンサである。
なお、基準電位を発生させる基準電位発生素子としてツエナーダイオード8を用いているが、ツエナーダイオード8の代わりにシャントレギュレータを用いることもできる。
The power supply unit 32 includes a first constant voltage IC 32 a that supplies power to the MPU 6 and a second constant voltage IC 32 b that supplies power to each unit such as the amplifier 2 and the main infrared sensor 1. A predetermined DC voltage is supplied from the power / signal line 33 to the power supply unit 32. The second constant voltage IC 32b is a reference potential generating element connected in series to the main infrared sensor 1 and the main infrared sensor 1. It is connected to a certain Zener diode 8.
With this configuration, the output of the main infrared sensor 1 is superimposed on the reference potential, and this reference potential is set to be the midpoint of the AC amplification by the amplifier 2. Reference numeral 9 is a source resistance, and 10 is a capacitor.
Although the Zener diode 8 is used as a reference potential generating element for generating the reference potential, a shunt regulator can be used instead of the Zener diode 8.

また、図2は炎感知器のの主赤外線センサの出力信号をMPUに取り込むまでの具体的な構成を示すが、図1に示す副赤外線センサ11にも図2に示す増幅部4及び下側整流器5等と同様の構成の回路が設けられている。
なお、主赤外線センサ1側と相違するのは、副赤外線センサ11側では図示しない光学フィルタが炎の成分の波長帯域より少しずれた波長帯域(例えば、5.0μm)の信号を出力するように構成されている点である。
2 shows a specific configuration until the output signal of the main infrared sensor of the flame detector is taken into the MPU. The sub-infrared sensor 11 shown in FIG. 1 also includes the amplifying unit 4 and the lower side shown in FIG. A circuit having the same configuration as that of the rectifier 5 and the like is provided.
The main infrared sensor 1 is different from the sub infrared sensor 11 in that an optical filter (not shown) outputs a signal in a wavelength band (for example, 5.0 μm) slightly shifted from the wavelength band of the flame component. It is a point that is configured.

次に、本発明に係る実施の形態1の炎感知器の動作について説明する。
主赤外線センサ1と副赤外線センサ11のセンサ出力は、増幅部4、14で各々増幅された後に、下側整流器5、15を介してMPU6に入力される。
MPU6では、A/D変換されたされた主・副赤外線センサ1、11に基づく下側波の信号をサンプリングする。
そして、MPU6は波形データを作成するために所定の閾値以上のものだけを取り出す波形データ作成処理を行って波形データを作成し、炎が発生したかどうかを波形データに基づいて判断する。
Next, the operation of the flame detector according to the first embodiment of the present invention will be described.
The sensor outputs of the main infrared sensor 1 and the sub infrared sensor 11 are amplified by the amplifiers 4 and 14 and then input to the MPU 6 via the lower rectifiers 5 and 15.
The MPU 6 samples a signal of the lower side wave based on the main / sub infrared sensors 1 and 11 subjected to A / D conversion.
Then, the MPU 6 performs waveform data creation processing for extracting only data having a predetermined threshold value or more to create waveform data, creates waveform data, and determines whether or not a flame has occurred based on the waveform data.

このとき、例えば主・副赤外線センサ1、11側に基づく波形データの出力値が所定の比のとき(例えば、主赤外線センサ1の出力値と副赤外線センサ11の出力値が3:1のとき)に火災と判断することしている。   At this time, for example, when the output value of the waveform data based on the main / sub infrared sensor 1, 11 side is a predetermined ratio (for example, when the output value of the main infrared sensor 1 and the output value of the sub infrared sensor 11 are 3: 1) ) Is determined to be a fire.

以上のように本実施の形態1によれば、電源回路である第2の定電圧IC32bから主赤外線センサ1に供給される電源が基準電位発生素子であるツエナーダイオード8を駆動できるようにしたので、基準電位発生に必要な消費電流がなくなり、その分の消費電流が軽減されることとなる。   As described above, according to the first embodiment, the power supplied from the second constant voltage IC 32b, which is a power supply circuit, to the main infrared sensor 1 can drive the Zener diode 8, which is a reference potential generating element. Thus, the current consumption necessary for generating the reference potential is eliminated, and the current consumption is reduced accordingly.

上記実施の形態1では、主・副赤外線センサ1、11のセンサ出力についてそれぞれMPU22に入力するようにし、火災判別を行うようにしているが、主赤外線センサ1側の出力をMPU22に入力するようにしても閾値を設けることによってMPU22で火災判別を行うことができることはいうまでもない。   In the first embodiment, the sensor outputs of the main and sub infrared sensors 1 and 11 are input to the MPU 22 to perform fire discrimination, but the output of the main infrared sensor 1 side is input to the MPU 22. However, it goes without saying that a fire determination can be made by the MPU 22 by providing a threshold value.

本発明に係る実施の形態1の炎感知器の構成を示すブロック図。The block diagram which shows the structure of the flame detector of Embodiment 1 which concerns on this invention. 同炎感知器の主赤外線センサの出力信号をMPUに取り込むまでの具体的な構成を示す回路図。The circuit diagram which shows the concrete structure until it takes in the output signal of the main infrared sensor of the flame detector in MPU. 同炎感知器の赤外線センサの内部構成を示す回路図。The circuit diagram which shows the internal structure of the infrared sensor of the flame detector. 従来の炎感知器のセンサ出力を半波整流する回路図。The circuit diagram which carries out the half wave rectification of the sensor output of the conventional flame detector.

符号の説明Explanation of symbols

1 主赤外線センサ、2 増幅器、3 周波数フィルタ、4 増幅部、5 下側整流器、6 MPU(火災判別部)、8 ツエナーダイオード(基準電位発生素子)、9 ソース抵抗、11 副赤外線センサ、12 増幅器、13 バンドパスフィルタ、14 増幅部、15 下側整流器、32b 第2の定電圧IC(電源回路)。

1 main infrared sensor, 2 amplifier, 3 frequency filter, 4 amplifying unit, 5 lower rectifier, 6 MPU (fire discrimination unit), 8 Zener diode (reference potential generating element), 9 source resistance, 11 sub infrared sensor, 12 amplifier , 13 Band pass filter, 14 Amplifier, 15 Lower rectifier, 32b Second constant voltage IC (power supply circuit).

Claims (2)

内部で駆動電流を消費する赤外線センサと、該赤外線センサの出力信号を増幅する増幅手段と、該増幅手段で増幅された出力信号に基づいて火災判別を行う火災判別部と、少なくとも前記赤外線センサに駆動電圧を供給する電源回路とを備えた炎感知器において、
前記赤外線センサに対して直列に基準電位発生素子を接続して前記赤外線センサと該基準電位発生素子との駆動電流を共通化したことを特徴とする炎感知器。
An infrared sensor that consumes a drive current internally; an amplifying unit that amplifies the output signal of the infrared sensor; a fire discriminating unit that performs a fire discrimination based on the output signal amplified by the amplifying unit; and at least the infrared sensor In a flame detector comprising a power supply circuit for supplying a driving voltage,
A flame detector, wherein a reference potential generating element is connected in series to the infrared sensor to share a drive current between the infrared sensor and the reference potential generating element.
前記基準電位発生素子はツエナーダイオード又はシャントレギュレータであることを特徴とする請求項1記載の炎感知器。
The flame detector according to claim 1, wherein the reference potential generating element is a Zener diode or a shunt regulator.
JP2004319257A 2004-11-02 2004-11-02 Flame detector Expired - Lifetime JP4693389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319257A JP4693389B2 (en) 2004-11-02 2004-11-02 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319257A JP4693389B2 (en) 2004-11-02 2004-11-02 Flame detector

Publications (2)

Publication Number Publication Date
JP2006133861A true JP2006133861A (en) 2006-05-25
JP4693389B2 JP4693389B2 (en) 2011-06-01

Family

ID=36727393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319257A Expired - Lifetime JP4693389B2 (en) 2004-11-02 2004-11-02 Flame detector

Country Status (1)

Country Link
JP (1) JP4693389B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170733A (en) * 1983-02-04 1984-09-27 ソムフイ Detector for luminous intensity
JPH01216497A (en) * 1988-02-24 1989-08-30 Matsushita Electric Works Ltd Thermal sensor
JP2001141559A (en) * 1999-11-12 2001-05-25 Nohmi Bosai Ltd Flame detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170733A (en) * 1983-02-04 1984-09-27 ソムフイ Detector for luminous intensity
JPH01216497A (en) * 1988-02-24 1989-08-30 Matsushita Electric Works Ltd Thermal sensor
JP2001141559A (en) * 1999-11-12 2001-05-25 Nohmi Bosai Ltd Flame detector

Also Published As

Publication number Publication date
JP4693389B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5340817B2 (en) Voltage detector
US11604092B2 (en) Data output device
US20160004267A1 (en) Dynamic biasing for regulator circuits
CN104182097B (en) For preventing the touch control terminal and its method of proximity transducer erroneous judgement
JP2008244554A (en) Overcurrent protection circuit of audio system
KR101984548B1 (en) Apparatus for detecting noise in Power Supply of PLC Analogue Input and Output Module
JP4693389B2 (en) Flame detector
US7042134B2 (en) Transconductance circuit for piezoelectric transducer
JPH0530749A (en) Power supply device
JP2008256522A (en) Control circuit of photomultiplier
JP4584676B2 (en) Flame detector
US9810746B2 (en) Magnetic sensor
JPH08279784A (en) Infrared receiver
TW200629687A (en) A constant voltage power supply circuit
JP6632736B2 (en) Energized state determination device
US11517759B2 (en) Device for generating electrical, magnetic and/or electromagnetic signals for treating the human body, and method for operating such a device
JP2008073073A (en) Impedance detector, impedance detection method, living body recognition apparatus and fingerprint authentication apparatus
KR100460898B1 (en) Solenoid valve force device of automatic transmission
JPH0991557A (en) Photoelectric smoke sensor
KR102207002B1 (en) Optical detecting apparatus
JPH11253414A (en) Respiration measuring device and method
KR100246772B1 (en) Device for driving laser
JP2005037267A (en) Output monitoring method and device of pulsed laser system
KR102219713B1 (en) Laser seeker
JP2006222803A (en) Audio amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150