JP2006133810A - Display device and electronic equipment - Google Patents

Display device and electronic equipment Download PDF

Info

Publication number
JP2006133810A
JP2006133810A JP2006027994A JP2006027994A JP2006133810A JP 2006133810 A JP2006133810 A JP 2006133810A JP 2006027994 A JP2006027994 A JP 2006027994A JP 2006027994 A JP2006027994 A JP 2006027994A JP 2006133810 A JP2006133810 A JP 2006133810A
Authority
JP
Japan
Prior art keywords
polarization axis
light
unit
transmission
transmission polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006027994A
Other languages
Japanese (ja)
Other versions
JP2006133810A5 (en
Inventor
Nobutaka Suzuki
信孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006027994A priority Critical patent/JP2006133810A/en
Publication of JP2006133810A publication Critical patent/JP2006133810A/en
Publication of JP2006133810A5 publication Critical patent/JP2006133810A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display device capable of performing bright display, without accompanying steep increase in power consumption, by effectively using light as a display capable of displaying on both the front and the rear surfaces. <P>SOLUTION: The liquid crystal display 100 is equipped with two liquid crystal cells 10 and 20, a backlight 40 which is formed between the liquid crystal cells 10 and 20 and can irradiate the liquid crystal cells 10 and 20 with light, and two reflecting and polarizing plates 31 and 32, which are formed between the back light 40 and respective liquid crystal cells 10 and 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表示装置、及び電子機器に関し、特に、表裏両面からの表示を可能とする表示装置に関するものである。     The present invention relates to a display device and an electronic apparatus, and more particularly to a display device that enables display from both front and back surfaces.

従来から2枚の液晶パネル間にバックライトとする光源を挟み、表裏両面の表示を可能とした表示装置が知られており、例えば特許文献1或いは特許文献2に記載されている。   2. Description of the Related Art Conventionally, a display device in which a light source serving as a backlight is sandwiched between two liquid crystal panels and display on both front and back sides is known. For example, Patent Document 1 or Patent Document 2 describes this type of display device.

特開平10−90678号公報JP-A-10-90678 特開2001−290445号公報Japanese Patent Laid-Open No. 2001-290445

上記のような表示装置においては、液晶パネルと光源との間に偏光板を配し、所定方向の偏光のみを液晶パネルに入射させるものとしているが、この場合、偏光板の偏光軸(透過軸)と一致しない偏光方向の光は、偏光板に吸収されてしまうため、表示に利用できる光量が著しく減少し、表示が暗くなる場合がある。したがって、明るい表示を得るためには、より明るい光源を必要とし、その結果、消費電力が高くなる問題が生じ得る。
また一方の液晶パネル側から観察した際に、他方の液晶パネルの影が観察されることに起因する表示品位の劣化を生じていた。
In the display device as described above, a polarizing plate is arranged between the liquid crystal panel and the light source so that only polarized light in a predetermined direction is incident on the liquid crystal panel. In this case, the polarizing axis (transmission axis) of the polarizing plate is used. ) Is not absorbed by the polarizing plate, the amount of light that can be used for display is significantly reduced, and the display may be darkened. Therefore, in order to obtain a bright display, a brighter light source is required, and as a result, the problem of high power consumption may occur.
Further, when observed from the side of one liquid crystal panel, the display quality deteriorated due to the shadow of the other liquid crystal panel being observed.

本発明は、上記の課題を解決するためになされたものであって、表裏両面の表示が可能な表示装置であって、バックライト光を有効に利用し、消費電力の増加を伴わずに明るい表示が可能であり、且つ一方の液晶パネル側から観察した際に、他方の液晶パネルの影が観察されることに起因する表示品位の劣化を防止できる表示装置と、それを備えた電子機器を提供することを目的とする。   The present invention has been made to solve the above-described problem, and is a display device capable of displaying both front and back surfaces, which effectively uses backlight light and is bright without increasing power consumption. A display device capable of display and capable of preventing deterioration of display quality caused by observing the shadow of the other liquid crystal panel when observed from the one liquid crystal panel side, and an electronic apparatus including the display device The purpose is to provide.

上記の目的を達成するために、本発明の表示装置は、第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、該照明手段と前記第2の透過偏光軸可変手段との間に配設された反射型偏光選択手段とを備え、前記照明手段が前記反射型偏光選択手段からの反射光を透過可能とされ、前記第2の透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする。   In order to achieve the above object, a display device of the present invention is a display device comprising first transmission polarization axis varying means and second transmission polarization axis varying means, wherein the second transmission polarization axis is provided. The size of the display area of the axis variable means is made smaller than the size of the display area of the first transmission polarization axis variable means, and the first transmission polarization axis variable means and the second transmission polarization axis variable means An illuminating means disposed between the illuminating means and the second transmissive polarization axis variable means, and disposed between the illuminating means and the second transmissive polarization axis variable means. A reflection-type polarization selection means, wherein the illumination means is capable of transmitting the reflected light from the reflection-type polarization selection means, and light absorption is performed between the second transmission polarization axis varying means and the illumination means. A light-shielding layer made of a body is provided, and the light-shielding layer has the second transmission polarization axis. So as to correspond to the size of the display area of the variable means, wherein the light-transmissive region is provided.

このような表示装置によると、照明手段により出射された照明光のうち反射型偏光選択手段にて透過選択された透過光(第1の偏光とする)のみが第2の透過偏光軸可変手段に入射する一方、その反射型偏光選択手段にて反射選択された所定の偏光方向を備えた反射光(第2の偏光とする)が、照明手段を介して逆側の第1の透過偏光軸可変手段に入射することとなる。そして、第1の透過偏光軸可変手段から選択的に外部に出射可能となるため、照明手段にて出射された照明光を無駄なく表示に供させることが可能となる。したがって、表裏両面の表示が可能な表示装置において、光を有効に利用し、消費電力の増加を伴わずに明るい表示が可能となる。
更に第2の透過偏光軸可変手段と照明手段との間には、光吸収体からなる遮光層が配設されており、該遮光層は、第2のの透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられているため、第2の透過偏光軸可変手段側から観察した際に、一方の透過偏光軸可変手段の影が観察されることに起因する表示品位の劣化を防止できる。
なお、反射型偏光選択手段としては、例えば複数種類の相互に異なる複屈折性高分子フィルムを積層した積層体、或いはコレステリック液晶の円偏光二色性を利用したものなどを用いることができる。上記反射型偏光選択手段としては、3M社により提供されるDBEF(商品名)や日東電工社により提供されるNIPOCS等の光学フィルムを例示できる。
According to such a display device, only the transmitted light (referred to as the first polarized light) transmitted and selected by the reflective polarization selection means among the illumination light emitted by the illumination means is used as the second transmission polarization axis variable means. On the other hand, the reflected light having a predetermined polarization direction (reflected as the second polarized light) reflected and selected by the reflection-type polarization selection means is changed to the first transmission polarization axis on the opposite side via the illumination means. It will enter the means. Since the first transmission polarization axis variable means can selectively emit to the outside, the illumination light emitted by the illumination means can be used for display without waste. Therefore, in a display device capable of displaying both front and back surfaces, light can be used effectively and bright display can be achieved without increasing power consumption.
Further, a light shielding layer made of a light absorber is disposed between the second transmission polarization axis varying means and the illumination means, and the light shielding layer is provided in the display area of the second transmission polarization axis varying means. Since the light transmission region is provided so as to correspond to the size, it is caused by observing the shadow of one transmission polarization axis variable unit when observed from the second transmission polarization axis variable unit side. Deterioration of display quality can be prevented.
In addition, as a reflection type polarization | polarized-light selection means, the laminated body which laminated | stacked multiple types of mutually different birefringent polymer films, or the thing using the circular dichroism of a cholesteric liquid crystal etc. can be used, for example. Examples of the reflection-type polarized light selecting means include DBEF (trade name) provided by 3M Company and optical films such as NIPOCS provided by Nitto Denko Corporation.

本発明の他の表示装置の形態は、第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、該照明手段と前記第1の透過偏光軸可変手段との間に配設された反射型偏光選択手段とを備え、前記照明手段が前記反射型偏光選択手段からの反射光を透過可能とされ、前記第の第2透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする。   Another embodiment of the display device of the present invention is a display device comprising a first transmission polarization axis variable means and a second transmission polarization axis variable means, wherein the second transmission polarization axis variable means displays. The size of the area is made smaller than the size of the display area of the first transmission polarization axis variable means, and is disposed between the first transmission polarization axis variable means and the second transmission polarization axis variable means. Illuminating means capable of irradiating light to the first and second transmission polarization axis variable means, and a reflection type polarization selection means disposed between the illumination means and the first transmission polarization axis variable means. The illuminating means is capable of transmitting the reflected light from the reflective polarization selection means, and a light-blocking light comprising an optical absorber is provided between the second transmission polarization axis varying means and the illuminating means. A light-shielding layer is provided on the display area of the second transmission polarization axis varying means. So as to correspond to the size, characterized in that the light-transmissive region is provided.

又本発明の他の表示装置の形態は、第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、該照明手段と前記第1の透過偏光軸可変手段との間に配設された第1の反射型偏光選択手段と、前記照明手段と前記第2の透過偏光軸可変手段との間に配設された第2の反射型偏光選択手段とを備え、前記照明手段が前記第1の反射型偏光選択手段からの反射光と、前記第2の反射型偏光選択手段からの反射光を透過可能とされ、前記第の第2透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする。
ここで、前記反射型偏光選択手段は、所定方向の直線偏光を反射する一方、それと交差する方向の直線偏光を透過するものであって、前記2つの反射型偏光選択手段は、それぞれ互いの反射偏光軸が交差する方向に設定されているものとすることができる。このように偏光軸方向に基づいて反射或いは透過の選択を行う反射型偏光選択手段を用いた場合、互いの反射型偏光選択手段の反射偏光軸を交差(好ましくは直交)させることで、上述のように一方の反射型偏光選択手段で反射された反射光を、効率良く他方の反射型偏光選択手段にて透過させることが可能となる。
According to another aspect of the present invention, there is provided a display device including a first transmission polarization axis variable unit and a second transmission polarization axis variable unit, wherein the second transmission polarization axis variable unit includes: The size of the display area is made smaller than the size of the display area of the first transmission polarization axis variable means, and is arranged between the first transmission polarization axis variable means and the second transmission polarization axis variable means. And illumination means capable of irradiating light to the first and second transmission polarization axis variable means, and a first reflection disposed between the illumination means and the first transmission polarization axis variable means. Type polarization selection means, and second reflection type polarization selection means disposed between the illumination means and the second transmission polarization axis varying means, wherein the illumination means is the first reflection type polarization. The reflected light from the selection means and the reflected light from the second reflective polarization selection means can be transmitted. A light-shielding layer made of a light absorber is disposed between the second second transmission polarization axis varying unit and the illumination unit, and the light-shielding layer is displayed on the second transmission polarization axis varying unit. A light transmission region is provided so as to correspond to the size of the region.
Here, the reflection type polarization selection means reflects linear polarization in a predetermined direction and transmits linear polarization in a direction crossing the reflection direction. The two reflection type polarization selection means reflect each other. It can be set in the direction in which the polarization axes intersect. When the reflection type polarization selection unit that selects reflection or transmission based on the polarization axis direction is used as described above, the reflection polarization axes of the reflection type polarization selection units are crossed (preferably orthogonal) to each other. As described above, the reflected light reflected by one of the reflection type polarization selection means can be efficiently transmitted by the other reflection type polarization selection means.

さらに、このように偏光軸方向の違いに基づき偏光選択を行う反射型偏光選択手段を適用した場合、該反射型偏光選択手段と前記透過偏光軸可変手段との間に、所定方向の偏光軸(以下、吸収偏光軸とも言う)を備えた偏光を吸収する一方、それと交差する方向の偏光軸(以下、透過偏光軸とも言う)を備えた偏光を透過する吸収型偏光選択手段を形成し、前記反射型偏光選択手段の反射偏光軸と、前記吸収型偏光選択手段の透過偏光軸とを互いに交差する方向に設定することができる。すなわち、反射型偏光選択手段にて透過選択された偏光を、吸収型偏光選択手段にて再度偏光選択することにより、透過偏光軸可変手段に入射する偏光選択性が一層高くなり、透過偏光軸可変手段から出射される表示の特性が一層高いものとなる。特に、吸収型偏光選択手段は一般的に反射型偏光選択手段に比して偏光選択度が高いため、該吸収型偏光選択手段を反射型偏光選択手段と透過偏光軸可変手段との間に設けることで、透過偏光軸可変手段へ入射する光の偏光選択度は一層高いものとなる。   Furthermore, when the reflection type polarization selection means for selecting the polarization based on the difference in the polarization axis direction is applied, a polarization axis (in a predetermined direction) is provided between the reflection type polarization selection means and the transmission polarization axis variable means. Forming absorption-type polarization selection means that transmits polarized light having a polarization axis in a direction intersecting with the polarization axis (hereinafter also referred to as transmission polarization axis), The reflection polarization axis of the reflection type polarization selection means and the transmission polarization axis of the absorption type polarization selection means can be set in a direction crossing each other. That is, by selecting again the polarization selected by the reflection type polarization selection unit using the absorption type polarization selection unit, the polarization selectivity incident on the transmission polarization axis variable unit is further increased, and the transmission polarization axis is variable. The display characteristics emitted from the means are further improved. In particular, since the absorption polarization selection means generally has higher polarization selectivity than the reflection polarization selection means, the absorption polarization selection means is provided between the reflection polarization selection means and the transmission polarization axis variable means. As a result, the polarization selectivity of the light incident on the transmission polarization axis varying means is further increased.

一方、前記反射型偏光選択手段を、円偏光2色性を利用したコレステリック液晶にて構成し、所定回転方向の円偏光を反射する一方、それと反対の回転方向の円偏光を透過する反射型円偏光選択手段を用いることができる。この場合、前記2つの反射型偏光選択手段(反射型円偏光選択手段)は、それぞれ反射する円偏光の回転方向を同方向に設定するのがよい。   On the other hand, the reflection type polarization selecting means is constituted by a cholesteric liquid crystal using circular polarization dichroism, and reflects circular polarization in a predetermined rotation direction, while transmitting circular polarization in the opposite rotation direction. Polarization selection means can be used. In this case, it is preferable that the two reflection-type polarization selection means (reflection-type circular polarization selection means) set the rotation directions of the circularly polarized light to be reflected in the same direction.

コレステリック液晶を用いた反射型円偏光選択手段は、光の進行方向側から見て、所定の回転方向(第1の回転方向)で入射する円偏光を、回転方向の変換を伴って反射選択する一方、他方の向きの回転方向(第2の回転方向)で入射する円偏光を透過選択する。なお、本発明の場合、光が向かってくる方向を回転方向を定める基準とする。   The reflection-type circularly polarized light selecting means using cholesteric liquid crystal selectively reflects circularly polarized light incident in a predetermined rotational direction (first rotational direction) as seen from the light traveling direction side, with conversion of the rotational direction. On the other hand, circularly polarized light that is incident in the rotation direction (second rotation direction) in the other direction is selected for transmission. In the case of the present invention, the direction in which the light comes is used as a reference for determining the rotation direction.

したがって、上述のように2つの反射型円偏光選択手段について、それぞれ反射する円偏光の回転方向を同一方向に設定すれば(例えば第1の回転方向を反射するものと設定)、第1の回転方向を備えた円偏光は、一方の反射型円偏光選択手段にて反射されて第2の回転方向となり、他方の反射型円偏光選択手段にて透過選択されて、透過偏光軸可変手段に出射可能となる。
すなわち、反射型円偏光選択手段を用いた場合、それぞれ反射する円偏光の回転方向を同一方向に設定することで、上述のように一方の反射型偏光選択手段で反射された反射光を、他方の反射型偏光選択手段にて透過させることが可能となる。
Therefore, as described above, if the rotation directions of the circularly polarized light to be reflected are set to the same direction for the two reflective circularly polarized light selecting means (for example, the first rotational direction is set to be reflected), the first rotation is performed. The circularly polarized light having the direction is reflected by one of the reflective circularly polarized light selecting means to be in the second rotational direction, transmitted through the other reflective circularly polarized light selecting means, and output to the transmissive polarization axis variable means. It becomes possible.
That is, when the reflective circularly polarized light selecting means is used, the reflected light reflected by one of the reflective polarized light selecting means as described above is changed to the same direction by setting the rotation direction of the circularly polarized light to be reflected to the same direction. It is possible to transmit with the reflection type polarization selection means.

上記反射型円偏光選択手段を用いた場合において、該反射型円偏光選択手段と前記透過偏光軸可変手段との間にλ/4位相差板を設けることで、反射型円偏光選択手段を透過した所定の回転方向を備える円偏光が、透過偏光軸可変手段の透過偏光軸と平行な方向の直線偏光に変換され、該直線偏光が透過偏光軸可変手段において偏光軸変換を伴って選択的に出射されることとなる。
前記反射型偏光選択手段と、前記吸収型偏光選択手段の間に散乱部材を配設することで、前記反射偏光選択手段の表面反射が抑制され、写り込みが防止できる。
In the case of using the reflection type circularly polarized light selecting means, a λ / 4 phase difference plate is provided between the reflective type circularly polarized light selecting means and the transmission polarization axis varying means to transmit the reflective type circularly polarized light selecting means. The circularly polarized light having a predetermined rotation direction is converted into linearly polarized light in a direction parallel to the transmitted polarization axis of the transmission polarization axis variable means, and the linearly polarized light is selectively converted with polarization axis conversion in the transmission polarization axis variable means. It will be emitted.
By disposing a scattering member between the reflection-type polarization selection unit and the absorption-type polarization selection unit, surface reflection of the reflection-polarization selection unit can be suppressed and reflection can be prevented.

前記照明手段は、光源と、該光源からの光を導く導光板とを備え、光板の複屈折量をλ/2とし、該導光板の遅相軸と、前記各反射型偏光選択手段の反射偏光軸とのなす角度を約45°に設定することもできる。この場合、導光板の遅相軸と、反射型偏光選択手段の反射偏光軸とのなす角度を約45°に設定したために、導光板から出射した照明光のうち、上記反射型偏光選択手段にて反射されて戻ってきた直線偏光の位相をλ/2ずらすことで、直線偏光の向きが90°変わり、この場合、2枚の反射偏光子の反射偏光軸を平行に配置させても、反射光は他方の反射型偏光選択手段を確実に透過することとなる。   The illumination means includes a light source and a light guide plate that guides light from the light source, the birefringence amount of the light plate is λ / 2, the slow axis of the light guide plate, and the reflection of each reflection type polarization selection means The angle formed with the polarization axis can be set to about 45 °. In this case, since the angle formed between the slow axis of the light guide plate and the reflection polarization axis of the reflection type polarization selection means is set to about 45 °, the illumination light emitted from the light guide plate is reflected in the reflection type polarization selection means. By shifting the phase of the linearly polarized light reflected and returned by λ / 2, the direction of the linearly polarized light is changed by 90 °. In this case, even if the reflective polarization axes of the two reflective polarizers are arranged in parallel, the reflected light is reflected. The light is surely transmitted through the other reflective polarization selection means.

次に、本発明の電子機器は、上記表示装置を備えたことを特徴とする。このような電子機器は、低消費電力且つ簡便な構成で、表裏両面の表示が可能となり、しかも両面において明るい表示を提供することが可能となる。   Next, an electronic apparatus according to the present invention includes the display device. Such an electronic device can display both front and back surfaces with low power consumption and a simple configuration, and can provide bright display on both surfaces.

以下、本発明の一実施の形態を図面を参照して説明する。なお、本実施形態で示す図面においては、図面を見やすくするため、各構成要素の膜厚や寸法の比率などは適宜異ならせてある。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings shown in the present embodiment, the film thicknesses and ratios of dimensions of the respective components are appropriately changed in order to make the drawings easy to see.

[第1の実施形態]
図1は本発明の表示装置の第1の実施形態である液晶表示装置の概略構成を示す断面図であり、図2はその表示原理を説明するための図であって、表示原理の説明に必要な構成要素のみを示す図である。
[First Embodiment]
FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device according to a first embodiment of the display device of the present invention. FIG. 2 is a diagram for explaining the display principle. It is a figure which shows only a required component.

本実施の形態の液晶表示装置100は、図1に示すように、一対の液晶セル10,20と、各液晶セル10,20に共通のバックライト(照明装置)40とを備えたもので、各液晶セル10,20を介してバックライト40からの透過光を表示面1,2に出射させ、表裏両面に表示を行うものである。液晶セル10(20)は、上基板13(24)と下基板14(23)とが対向配置され、これら上基板13(24)と下基板14(23)とに挟まれた空間に、液晶が封入されて液晶層15(25)が構成されている。なお、液晶セル10,20の液晶層15(25)は透過偏光軸可変手段として機能し、液晶としては90°ツイスト角を有するTN液晶が用いられている。また、本実施の形態では、液晶セル10,20のバックライト40側を背面側(後面側)、それとは逆側を観察側(前面側)とする。   As shown in FIG. 1, the liquid crystal display device 100 of the present embodiment includes a pair of liquid crystal cells 10 and 20 and a backlight (illumination device) 40 common to the liquid crystal cells 10 and 20. Transmitted light from the backlight 40 is emitted to the display surfaces 1 and 2 through the liquid crystal cells 10 and 20 to perform display on both the front and back surfaces. In the liquid crystal cell 10 (20), an upper substrate 13 (24) and a lower substrate 14 (23) are arranged to face each other, and a liquid crystal is placed in a space sandwiched between the upper substrate 13 (24) and the lower substrate 14 (23). Is enclosed to form the liquid crystal layer 15 (25). Note that the liquid crystal layer 15 (25) of the liquid crystal cells 10 and 20 functions as a transmission polarization axis varying unit, and TN liquid crystal having a 90 ° twist angle is used as the liquid crystal. In the present embodiment, the backlight 40 side of the liquid crystal cells 10 and 20 is the back side (rear side), and the opposite side is the observation side (front side).

バックライト40は照明手段として液晶セル10,20の背面側に配置されている。バックライト40は、冷陰極管やLED等からなる光源42と導光板41を有しており、導光板41の長手方向側面(液晶セル10,20に面視した面)から各液晶セル10,20に対して光照射可能に構成されている。なお、バックライト40としては、例えば有機ELを光源として両面発光する構成を得ることも可能である。この場合、有機ELライトは面発光光源であるため、側面からの光を導光板の表裏面に均一に出射させるための複雑な設計や加工が不要となる。また、導光板のパターンとの干渉によるモアレも発生し難くなる。さらに、導光板41は、反射された偏光の偏光状態が変化し難いように複屈折の少ない材料、例えばアクリル系、PC系、ポリオレフィン系樹脂等にて構成されるのが好ましい。   The backlight 40 is disposed on the back side of the liquid crystal cells 10 and 20 as illumination means. The backlight 40 includes a light source 42 and a light guide plate 41 made of a cold cathode tube, an LED, and the like, and each of the liquid crystal cells 10, 20 from the longitudinal side surface of the light guide plate 41 (surface viewed from the liquid crystal cells 10, 20). 20 can be irradiated with light. As the backlight 40, it is possible to obtain a structure that emits light on both sides using, for example, an organic EL as a light source. In this case, since the organic EL light is a surface-emitting light source, complicated design and processing for uniformly emitting light from the side surface to the front and back surfaces of the light guide plate are not required. Also, moire due to interference with the pattern of the light guide plate is less likely to occur. Furthermore, it is preferable that the light guide plate 41 is made of a material with little birefringence, such as an acrylic resin, a PC resin, a polyolefin resin, or the like so that the polarization state of the reflected polarized light hardly changes.

各液晶セル10,20とバックライト40の間には、反射型偏光選択手段としての反射偏光板31,32がそれぞれ配設されている。反射偏光板31,32は、所定方向の直線偏光を反射する一方、それと交差する方向の直線偏光を透過するものであって、本実施形態では、各反射偏光板31,32は、それぞれ互いの反射偏光軸が交差する方向に設定されている。   Between each of the liquid crystal cells 10 and 20 and the backlight 40, reflective polarizing plates 31 and 32 are disposed as reflective polarization selection means, respectively. The reflective polarizing plates 31 and 32 reflect linearly polarized light in a predetermined direction while transmitting linearly polarized light in a direction intersecting with the linearly polarized light. In the present embodiment, the reflective polarizing plates 31 and 32 are each It is set in the direction in which the reflection polarization axes intersect.

液晶セル10(20)の観察側には、吸収偏光板11(22)が、液晶セル10(20)のバックライト40側(背面側)には、同じく吸収偏光板12(21)が配設されている。この場合、吸収偏光板12(21)の透過偏光軸は、反射偏光板31,32の透過偏光軸と略同一方向に設定されている。   The absorption polarizing plate 11 (22) is arranged on the observation side of the liquid crystal cell 10 (20), and the absorption polarizing plate 12 (21) is also arranged on the backlight 40 side (back side) of the liquid crystal cell 10 (20). Has been. In this case, the transmission polarization axis of the absorbing polarizing plate 12 (21) is set in substantially the same direction as the transmission polarization axes of the reflection polarizing plates 31 and 32.

液晶セル10(20)において、ガラスやプラスチックなどの透光性材料からなる下基板14(23)の内面側には、ITO(Indium Tin Oxide)等の透明導電膜からなる画素電極(図示略)が形成され、画素電極を覆うようにポリイミド等からなる配向膜(図示略)が積層されている。本実施の形態の場合、下基板14(23)はTFT等の画素スイッチング素子、データ線、走査線等が形成された素子基板から構成されているが、図1においては画素スイッチング素子、データ線、走査線等の図示は省略する。   In the liquid crystal cell 10 (20), a pixel electrode (not shown) made of a transparent conductive film such as ITO (Indium Tin Oxide) is provided on the inner surface side of the lower substrate 14 (23) made of a translucent material such as glass or plastic. An alignment film (not shown) made of polyimide or the like is laminated so as to cover the pixel electrode. In the case of the present embodiment, the lower substrate 14 (23) is composed of a pixel switching element such as a TFT, an element substrate on which a data line, a scanning line, etc. are formed. Illustration of scanning lines and the like is omitted.

一方、ガラスやプラスチックなどの透光性材料からなる上基板13(24)の内面側には、ITO等の透明導電膜からなる共通電極(図示略)、ポリイミド等からなる配向膜(図示略)が順次積層されている。   On the other hand, on the inner surface side of the upper substrate 13 (24) made of a translucent material such as glass or plastic, a common electrode (not shown) made of a transparent conductive film such as ITO, an alignment film made of polyimide or the like (not shown). Are sequentially stacked.

上基板13(24)側、下基板14(23)側の配向膜は、ともにラビング処理等の水平配向処理がなされており、該上基板側及び下基板側の各配向膜の配向方向は、互いに交差する方向に設定され、両基板間に挟まれる液晶は90°ねじれた構成とした。液晶層15の液晶分子は選択電圧印加(電圧オン)時に上基板13(24)と下基板14(23)との間において基板面に垂直な方向に配向した状態となる。なお、本実施例では、90°ツイストのTN液晶について例示したが、液晶モードはこのモードに限定されるものではなく、他の液晶モードにも適応可能なことはいうまでもない。   Both the alignment films on the upper substrate 13 (24) side and the lower substrate 14 (23) side are subjected to a horizontal alignment process such as a rubbing process, and the alignment directions of the alignment films on the upper substrate side and the lower substrate side are: The liquid crystal set in the direction intersecting each other and sandwiched between both substrates was twisted by 90 °. The liquid crystal molecules of the liquid crystal layer 15 are aligned in a direction perpendicular to the substrate surface between the upper substrate 13 (24) and the lower substrate 14 (23) when a selection voltage is applied (voltage on). In this embodiment, the 90 ° twisted TN liquid crystal is exemplified. However, the liquid crystal mode is not limited to this mode, and needless to say, it can be applied to other liquid crystal modes.

また、背面側の吸収偏光板12(21)と、観察側の吸収偏光板11(22)とは、上記各配向膜の配向方向と同様、透過軸方向が交差するように設定されている。すなわち、図2に示すように、背面側の吸収偏光板12(21)の透過偏光軸は、下基板14(23)内面に形成された配向膜の配向方向と略平行であって、且つ反射偏光板31(32)の透過偏光軸と略平行に設定され、観察側の吸収偏光板11(22)の透過偏光軸は、背面側の吸収偏光板12(21)の透過偏光軸と交差(好ましくは直交)するように設定されている。   Further, the back-side absorption polarizing plate 12 (21) and the observation-side absorption polarizing plate 11 (22) are set so that the transmission axis directions intersect like the alignment directions of the alignment films. That is, as shown in FIG. 2, the transmission polarization axis of the back-side absorption polarizing plate 12 (21) is substantially parallel to the alignment direction of the alignment film formed on the inner surface of the lower substrate 14 (23) and is reflective. It is set substantially parallel to the transmission polarization axis of the polarizing plate 31 (32), and the transmission polarization axis of the absorption polarizing plate 11 (22) on the observation side intersects the transmission polarization axis of the absorption polarizing plate 12 (21) on the back side ( It is set to be preferably orthogonal.

以下、本実施の形態の液晶表示装置100の表示原理を図2を用いて説明する。まず、図2の左側に示したように、導光板41から第1の液晶セル10(表側の液晶セル10)側に出射された光は、表側の反射偏光板31にて偏光選択が行なわれる。すなわち、反射偏光板31の透過偏光軸(紙面に平行な方向)と平行な方向の偏光軸を有する偏光(第1の偏光)が、該反射偏光板31を透過する一方、反射偏光板31の反射偏光軸(紙面に垂直な方向)と平行な方向の偏光軸を有する偏光(第2の偏光)が、該反射偏光板31にて反射される。   Hereinafter, the display principle of the liquid crystal display device 100 of the present embodiment will be described with reference to FIG. First, as shown on the left side of FIG. 2, the light emitted from the light guide plate 41 to the first liquid crystal cell 10 (front side liquid crystal cell 10) side is subjected to polarization selection by the front side reflective polarizing plate 31. . That is, polarized light (first polarized light) having a polarization axis parallel to the transmission polarization axis (direction parallel to the paper surface) of the reflective polarizing plate 31 is transmitted through the reflective polarizing plate 31, while Polarized light (second polarized light) having a polarization axis parallel to the reflective polarization axis (direction perpendicular to the paper surface) is reflected by the reflective polarizing plate 31.

反射偏光板31を透過した第1の偏光は、液晶セル10の背面側の吸収偏光板12(透過偏光軸が紙面と平行な方向)を透過して、液晶層15に入射し、該液晶層15にて選択電圧の印加状態に基づき偏光軸の変換が行われる。選択電圧非印加状態(電圧オフ)の場合、偏光軸の変換を伴って液晶層15を透過し、さらに観察側の吸収偏光板11(透過偏光軸が紙面と垂直な方向)を透過して、表側の表示面(第1の表示面)にて明(白)表示となる。逆に、選択電圧印加状態(電圧オン)の場合、偏光軸の変換を伴わずに液晶層15を透過するものの、観察側の吸収偏光板11に吸収されて、暗(黒)表示となる。   The first polarized light transmitted through the reflective polarizing plate 31 is transmitted through the absorption polarizing plate 12 on the back side of the liquid crystal cell 10 (the direction in which the transmission polarization axis is parallel to the paper surface) and is incident on the liquid crystal layer 15. At 15, the polarization axis is converted based on the application state of the selection voltage. When the selection voltage is not applied (voltage off), the liquid crystal layer 15 is transmitted along with the conversion of the polarization axis, and further, the absorption polarizing plate 11 on the observation side (the direction of the transmission polarization axis is perpendicular to the paper surface) is transmitted. The display side (first display surface) on the front side is bright (white). On the contrary, in the selection voltage application state (voltage on), although it passes through the liquid crystal layer 15 without conversion of the polarization axis, it is absorbed by the absorption polarizing plate 11 on the observation side and becomes dark (black) display.

一方、反射偏光板31にて反射された第2の偏光は、導光板41を透過して、裏側の反射偏光板32に入射する。なお、この場合、導光板41は上述のように複屈折が少ない材料(好ましくは概ねゼロ)にて形成されているため、該導光板41を透過する際に、偏光軸の変換を伴わない。   On the other hand, the second polarized light reflected by the reflective polarizing plate 31 passes through the light guide plate 41 and enters the reflective polarizing plate 32 on the back side. In this case, since the light guide plate 41 is formed of a material having low birefringence (preferably substantially zero) as described above, the polarization axis is not converted when passing through the light guide plate 41.

裏側の反射偏光板32は、その反射偏光軸が、表側の反射偏光板31の反射偏光軸と交差するように設定されているため、裏側の反射偏光板32に入射した第2の偏光は、該反射偏光板32を透過し、第2の液晶セル20(裏側の液晶セル)の背面側の吸収偏光板21(透過偏光軸が紙面と垂直な方向)を透過して、液晶層25に入射し、該液晶層25にて選択電圧の印加状態に基づき偏光軸の変換が行われる。選択電圧非印加状態(電圧オフ)の場合、偏光軸の変換を伴って液晶層25を透過し、さらに観察側の吸収偏光板22(透過偏光軸が紙面と平行な方向)を透過して、裏側の表示面(第2の表示面)にて明(白)表示となる。一方、選択電圧印加状態(電圧オン)の場合、偏光軸の変換を伴わずに液晶層25を透過するものの、観察側の吸収偏光板22に吸収されて、暗(黒)表示となる。   Since the reflective polarizing axis 32 of the back side is set so that the reflective polarizing axis thereof intersects the reflective polarizing axis of the reflective polarizing plate 31 of the front side, the second polarized light incident on the reflective polarizing plate 32 of the back side is The light passes through the reflective polarizing plate 32, passes through the absorption polarizing plate 21 (the direction in which the transmission polarization axis is perpendicular to the paper surface) on the back side of the second liquid crystal cell 20 (back side liquid crystal cell), and enters the liquid crystal layer 25. Then, the polarization axis is converted in the liquid crystal layer 25 based on the application state of the selection voltage. In the non-selection voltage application state (voltage off), the liquid crystal layer 25 is transmitted with the conversion of the polarization axis, and further, the absorption polarizing plate 22 on the observation side (the direction in which the transmission polarization axis is parallel to the paper surface) is transmitted, The display surface (second display surface) on the back side is bright (white). On the other hand, in the selection voltage application state (voltage on), the light is transmitted through the liquid crystal layer 25 without conversion of the polarization axis, but is absorbed by the absorption polarizing plate 22 on the observation side and becomes dark (black) display.

他方、図2の右側に示したように、導光板41から裏側の液晶セル20側に出射された光についても、上記同様、裏側の反射偏光板31にて偏光選択が行なわれ、第3の偏光が該反射偏光板32を透過する一方、第4の偏光が該反射偏光板32にて反射され、透過した第3の偏光は液晶セル20を介して裏側の表示面(第2の表示面)に出射可能とされる。また、反射された第4の偏光は、表側の反射偏光板31及び液晶セル10を介して、表側の表示面(第1の表示面)に出射可能とされ、これにより表裏両面の表示を可能としている。   On the other hand, as shown on the right side of FIG. 2, the light emitted from the light guide plate 41 to the liquid crystal cell 20 on the back side is also selected for polarization by the reflective polarizing plate 31 on the back side as described above, and the third While the polarized light is transmitted through the reflective polarizing plate 32, the fourth polarized light is reflected by the reflective polarizing plate 32, and the transmitted third polarized light is transmitted through the liquid crystal cell 20 to the rear display surface (second display surface). ) Can be emitted. The reflected fourth polarized light can be emitted to the front display surface (first display surface) via the front-side reflective polarizing plate 31 and the liquid crystal cell 10, thereby enabling display on both the front and back surfaces. It is said.

以上のように、本実施形態では、一方の反射偏光板(例えば反射偏光板31)で反射された偏光が、他方の反射偏光板(例えば反射偏光板32)を透過できるようになるため、光の利用効率が高くなり、表裏両面のパネルの輝度が上昇する。また、導光板1枚で2枚の液晶パネルの照明を兼ねることができるため、薄型化が可能となり、更に部品点数の削減も可能となる。   As described above, in this embodiment, the polarized light reflected by one reflective polarizing plate (for example, the reflective polarizing plate 31) can be transmitted through the other reflective polarizing plate (for example, the reflective polarizing plate 32). Use efficiency increases, and the brightness of the front and back panels increases. In addition, since one light guide plate can also serve as illumination for two liquid crystal panels, the thickness can be reduced and the number of components can be reduced.

[第2の実施形態]
本実施形態では導光板41の複屈折量を概ねゼロとしたが、例えば導光板41の複屈折量をλ/2とし、該導光板41の遅相軸と、各反射偏光板31,32の反射偏光軸とのなす角度を約45°に設定し、更に、各反射偏光板31,32の反射偏光軸を平行とすることもできる。このように、導光板41の遅相軸と、反射偏光板31,32の反射偏光軸とのなす角度を約45°に設定すると、導光板41から出射した照明光のうち、上記反射偏光板にて反射されて戻ってきた直線偏光が、前記導光板41を透過することにより該反射光の位相がλ/2ずれるため、前述の直線偏光の向きが90°回転する。前記反射偏光板31,32の反射偏光軸を平行としているため、一方の反射偏光板で反射された直線偏光は、導光板で90°回転し、他方の反射偏光板の反射軸と垂直方向(透過軸と平行)の直線偏光となるため、反射光は他方の反射偏光板を確実に透過することとなる。このように、導光板の複屈折量と軸方向を制御することで各反射偏光板の反射偏光軸の角度を90°変えることもできる。また、液晶表示装置の明視方向を変えることもできる。
[Second Embodiment]
In this embodiment, the birefringence amount of the light guide plate 41 is set to approximately zero. However, for example, the birefringence amount of the light guide plate 41 is set to λ / 2, and the slow axis of the light guide plate 41 and the reflection polarizing plates 31 and 32 are The angle formed with the reflection polarization axis can be set to about 45 °, and the reflection polarization axes of the reflection polarizing plates 31 and 32 can be made parallel. As described above, when the angle formed between the slow axis of the light guide plate 41 and the reflective polarization axes of the reflective polarizing plates 31 and 32 is set to about 45 °, the reflective polarizing plate out of the illumination light emitted from the light guide plate 41. Since the linearly polarized light reflected and returned by the light passes through the light guide plate 41 and the phase of the reflected light is shifted by λ / 2, the direction of the linearly polarized light is rotated by 90 °. Since the reflection polarizing axes of the reflection polarizing plates 31 and 32 are parallel, the linearly polarized light reflected by one reflection polarizing plate is rotated by 90 ° by the light guide plate and is perpendicular to the reflection axis of the other reflection polarizing plate ( Therefore, the reflected light is surely transmitted through the other reflective polarizing plate. Thus, the angle of the reflection polarization axis of each reflective polarizing plate can be changed by 90 ° by controlling the birefringence amount and the axial direction of the light guide plate. In addition, the clear viewing direction of the liquid crystal display device can be changed.

[第3の実施形態]
図3は第2の実施形態の液晶表示装置の概略構成を示す断面図であり、図4はその表示原理を説明するための図であって、表示原理の説明に必要な構成要素のみを示す図である。なお、図1に示した第1の実施形態の液晶表示装置100と同じ符号のものについては、特に断り書きのない限り同じ構成とする。
[Third Embodiment]
FIG. 3 is a cross-sectional view showing a schematic configuration of the liquid crystal display device of the second embodiment, and FIG. 4 is a diagram for explaining the display principle, and shows only the components necessary for explaining the display principle. FIG. Note that components having the same reference numerals as those of the liquid crystal display device 100 of the first embodiment shown in FIG. 1 have the same configuration unless otherwise specified.

液晶表示装置200は、図3に示すように、図1の第1の実施形態と同様、2つの液晶セル10,20と、各液晶セル10,20に共通のバックライト(照明装置)40とを備えたもので、各液晶セル10,20を介してバックライト40からの透過光を表示面1,2に出射させ、表裏両面に表示を行うものである。   As shown in FIG. 3, the liquid crystal display device 200 includes two liquid crystal cells 10 and 20 and a backlight (illumination device) 40 common to the liquid crystal cells 10 and 20, as in the first embodiment of FIG. The transmitted light from the backlight 40 is emitted to the display surfaces 1 and 2 through the liquid crystal cells 10 and 20 to display on both the front and back surfaces.

各液晶セル10,20とバックライト40の間には、反射型偏光選択手段としての反射偏光板35,36がそれぞれ配設されている。反射偏光板35,36は、コレステリック液晶にて構成され、所定回転方向の円偏光を反射する一方、それと反対の回転方向の円偏光を透過するものであって、本実施形態では、各反射偏光板35,36は、それぞれ反射する円偏光の回転方向が同方向に設定されている。すなわち、一方の反射偏光板35にて反射された円偏光を、他方の反射偏光板36においては透過可能に構成したものである。   Between each of the liquid crystal cells 10 and 20 and the backlight 40, reflective polarizing plates 35 and 36 are disposed as reflective polarization selection means, respectively. The reflective polarizing plates 35 and 36 are made of cholesteric liquid crystal and reflect circularly polarized light in a predetermined rotational direction, while transmitting circularly polarized light in the opposite rotational direction. In the present embodiment, each reflective polarized light is reflected. In the plates 35 and 36, the rotational directions of the circularly polarized light reflected are set in the same direction. That is, the circularly polarized light reflected by one reflective polarizing plate 35 can be transmitted through the other reflective polarizing plate 36.

液晶セル10(20)の背面側、すなわち吸収偏光板12(21)の背面側にはλ/4位相差板16(26)が配設されている。この場合、λ/4位相差板16(26)の位相差軸は、円偏光が該λ/4位相差板16(26)を透過した後に、吸収偏光板12(21)を透過可能な直線偏光となるように設定されている。   A λ / 4 retardation plate 16 (26) is disposed on the back side of the liquid crystal cell 10 (20), that is, on the back side of the absorbing polarizing plate 12 (21). In this case, the phase difference axis of the λ / 4 retardation plate 16 (26) is a straight line that can be transmitted through the absorption polarizing plate 12 (21) after the circularly polarized light is transmitted through the λ / 4 retardation plate 16 (26). It is set to be polarized light.

以下、本実施の形態の液晶表示装置200の表示原理を図4を用いて説明する。なお、以下に示す円偏光の回転方向は、光の進行方向反対側から見た回転方向を示すものとする。   Hereinafter, the display principle of the liquid crystal display device 200 of the present embodiment will be described with reference to FIG. In addition, the rotation direction of the circularly polarized light shown below shall show the rotation direction seen from the light traveling direction opposite side.

まず、図4の左側に示したように、導光板41から第1の液晶セル10(表側の液晶セル10)側に出射された光は、表側の反射偏光板35にて偏光選択が行なわれる。すなわち、反射偏光板35では、回転方向が左回りの円偏光(第1の偏光)が、該反射偏光板35を透過する一方、回転方向が右回りの円偏光(第2の偏光)が、該反射偏光板35にて反射される。そして、この反射後の円偏光は、左回りの円偏光(第3の偏光)となる。   First, as shown on the left side of FIG. 4, the light emitted from the light guide plate 41 toward the first liquid crystal cell 10 (front side liquid crystal cell 10) is subjected to polarization selection by the front side reflective polarizing plate 35. . That is, in the reflective polarizing plate 35, the circularly polarized light whose rotation direction is counterclockwise (first polarized light) is transmitted through the reflective polarizing plate 35, while the circularly polarized light whose rotation direction is clockwise (second polarized light) is Reflected by the reflective polarizing plate 35. The reflected circularly polarized light becomes counterclockwise circularly polarized light (third polarized light).

反射偏光板35を透過した第1の偏光は、液晶セル10の背面側に形成されたλ/4位相差板16を透過して紙面に平行な方向に偏光軸を備えた直線偏光となり、さらに該直線偏光が、吸収偏光板12(透過偏光軸が紙面と平行な方向)を透過して、液晶層15に入射し、該液晶層15にて選択電圧の印加状態に基づき偏光軸の変換が行われる。選択電圧非印加状態(電圧オフ)の場合、偏光軸の変換を伴って液晶層15を透過し、さらに観察側の吸収偏光板11(透過偏光軸が紙面と垂直な方向)を透過して、表側の表示面(第1の表示面)にて明(白)表示となる。逆に、選択電圧印加状態(電圧オン)の場合、偏光軸の変換を伴わずに液晶層15を透過するものの、観察側の吸収偏光板11に吸収されて、暗(黒)表示となる。   The first polarized light transmitted through the reflective polarizing plate 35 passes through the λ / 4 retardation plate 16 formed on the back side of the liquid crystal cell 10 and becomes linearly polarized light having a polarization axis in a direction parallel to the paper surface. The linearly polarized light passes through the absorption polarizing plate 12 (the direction of the transmission polarization axis is parallel to the paper surface) and enters the liquid crystal layer 15, and the polarization axis is converted by the liquid crystal layer 15 based on the selection voltage application state. Done. When the selection voltage is not applied (voltage off), the liquid crystal layer 15 is transmitted along with the conversion of the polarization axis, and further, the absorption polarizing plate 11 on the observation side (the direction of the transmission polarization axis is perpendicular to the paper surface) is transmitted. The display side (first display surface) on the front side is bright (white). On the contrary, in the selection voltage application state (voltage on), although it passes through the liquid crystal layer 15 without conversion of the polarization axis, it is absorbed by the absorption polarizing plate 11 on the observation side and becomes dark (black) display.

一方、反射偏光板35にて反射された第2の偏光は、導光板41を透過して、裏側の反射偏光板36に入射する。なお、この場合、導光板41は上述のように複屈折が少ない材料(好ましくは概ねゼロ)にて形成されているため、該導光板41を透過する際に、円偏光の回転方向の変換を伴わない。   On the other hand, the second polarized light reflected by the reflective polarizing plate 35 passes through the light guide plate 41 and enters the reflective polarizing plate 36 on the back side. In this case, since the light guide plate 41 is formed of a material having low birefringence (preferably substantially zero) as described above, the rotation direction of the circularly polarized light is converted when passing through the light guide plate 41. Not accompanied.

裏側の反射偏光板36は、その反射回転方向が、表側の反射偏光板35の反射回転方向と交差するように設定されているため、裏側の反射偏光板36に入射した第2の偏光は、該反射偏光板36を透過し、第2の液晶セル20(裏側の液晶セル)の背面側に形成されたλ/4位相差板26を透過して紙面に平行な方向に偏光軸を備えた直線偏光となり、さらに該直線偏光が、吸収偏光板21(透過偏光軸が紙面と平行な方向)を透過して、液晶層25に入射し、該液晶層25にて選択電圧の印加状態に基づき偏光軸の変換が行われる。   Since the reflection rotation direction of the back side reflection polarizing plate 36 is set so as to intersect the reflection rotation direction of the front side reflection polarizing plate 35, the second polarized light incident on the back side reflection polarizing plate 36 is The light passes through the reflective polarizing plate 36, passes through the λ / 4 retardation plate 26 formed on the back side of the second liquid crystal cell 20 (back side liquid crystal cell), and has a polarization axis in a direction parallel to the paper surface. It becomes linearly polarized light, and further, the linearly polarized light is transmitted through the absorption polarizing plate 21 (the direction of the transmission polarization axis is parallel to the paper surface) and enters the liquid crystal layer 25, and the liquid crystal layer 25 is based on the application state of the selection voltage. Conversion of the polarization axis is performed.

選択電圧非印加状態(電圧オフ)の場合、偏光軸の変換を伴って液晶層25を透過し、さらに観察側の吸収偏光板22(透過偏光軸が紙面と垂直な方向)を透過して、裏側の表示面(第2の表示面)にて明(白)表示となる。一方、選択電圧印加状態(電圧オン)の場合、偏光軸の変換を伴わずに液晶層25を透過するものの、観察側の吸収偏光板22に吸収されて、暗(黒)表示となる。   When the selection voltage is not applied (voltage off), the liquid crystal layer 25 is transmitted along with the conversion of the polarization axis, and further, the absorption polarizing plate 22 on the observation side (the transmission polarization axis is perpendicular to the paper surface) is transmitted. The display surface (second display surface) on the back side is bright (white). On the other hand, in the selection voltage application state (voltage on), the light is transmitted through the liquid crystal layer 25 without conversion of the polarization axis, but is absorbed by the absorption polarizing plate 22 on the observation side and becomes dark (black) display.

他方、図2の右側に示したように、導光板41から裏側の液晶セル20側に出射された光についても、上記同様、裏側の反射偏光板36にて偏光選択が行なわれ、左回りの円偏光(第3の偏光)が該反射偏光板36を透過する一方、右回りの円偏光(第4の偏光)が該反射偏光板36にて反射され、その反射光は左回りの円偏光(第1の偏光)となる。   On the other hand, as shown on the right side of FIG. 2, the light emitted from the light guide plate 41 to the back side liquid crystal cell 20 is also selected by the back side reflective polarizing plate 36 in the same manner as described above, and is counterclockwise. While circularly polarized light (third polarized light) is transmitted through the reflective polarizing plate 36, clockwise circularly polarized light (fourth polarized light) is reflected by the reflective polarizing plate 36, and the reflected light is counterclockwise circularly polarized light. (First polarization).

反射偏光板36を透過した第3の偏光は液晶セル20を介して裏側の表示面(第2の表示面)に出射可能とされる。また、反射された第1の偏光は、表側の反射偏光板35及び液晶セル10を介して、表側の表示面(第1の表示面)に出射可能とされ、これにより表裏両面の表示を可能としている。   The third polarized light transmitted through the reflective polarizing plate 36 can be emitted to the rear display surface (second display surface) via the liquid crystal cell 20. Also, the reflected first polarized light can be emitted to the front display surface (first display surface) via the front reflective polarizing plate 35 and the liquid crystal cell 10, thereby enabling display on both the front and back surfaces. It is said.

以上のように、本実施形態においても、反射偏光板を円偏光2色性を利用したコレステリック液晶にて構成し、円偏光の回転方向に基づいて偏光選択を行うものとすることで、一方の反射偏光板(例えば反射偏光板35)で反射された偏光が、他方の反射偏光板(例えば反射偏光板36)を透過できるようになるため、光の利用効率が高くなり、表裏両面のパネルの輝度が上昇する。また、導光板1枚で2枚の液晶パネルの照明を兼ねることができるため、薄型化が可能となり、更に部品点数の削減も可能となる。   As described above, also in the present embodiment, the reflective polarizing plate is configured by a cholesteric liquid crystal using circular dichroism, and polarization selection is performed based on the rotation direction of circularly polarized light. Since the polarized light reflected by the reflective polarizing plate (for example, the reflective polarizing plate 35) can be transmitted through the other reflective polarizing plate (for example, the reflective polarizing plate 36), the light utilization efficiency is increased. Brightness increases. In addition, since one light guide plate can also serve as illumination for two liquid crystal panels, the thickness can be reduced and the number of components can be reduced.

[第4の実施形態]
図5は第3の実施形態の液晶表示装置の概略構成を示す断面図である。液晶表示装置は、各液晶セル10,20と各反射偏光子35,36との間にはそれぞれ表面を粗面化処理が施されたフィルムからなる散乱層51,52を配設する構成とした以外は、図1に示した第1の実施形態と同様の構成とした。前述の構成としたことにより、反射偏光板の鏡面反射を防止することが可能になる。また、表面に粗面化処理が施されているため、ニュートンリングの発生を抑制できる。
本実施例では、散乱層51,52として表面を粗面化処理を施したフィルム材料を用いたが、粘着層中にビーズを混入し散乱機能を付加した散乱粘着層を用いて、液晶セル10,20にそれぞれ反射偏光板35,35を貼着する構成としても良い。前述の構成とすることで、上述の効果に加え、更なる薄型化が可能になる。また、振動や衝撃による位置ズレや異物の混入を防止できる。
[Fourth Embodiment]
FIG. 5 is a cross-sectional view showing a schematic configuration of the liquid crystal display device of the third embodiment. The liquid crystal display device has a configuration in which scattering layers 51 and 52 made of films whose surfaces are roughened are disposed between the liquid crystal cells 10 and 20 and the reflective polarizers 35 and 36, respectively. Except for the above, the configuration is the same as that of the first embodiment shown in FIG. With the above-described configuration, it is possible to prevent specular reflection of the reflective polarizing plate. Moreover, since the surface is roughened, the generation of Newton rings can be suppressed.
In this embodiment, a film material whose surfaces are roughened is used as the scattering layers 51 and 52. However, the liquid crystal cell 10 is formed using a scattering adhesive layer in which beads are mixed in the adhesive layer and a scattering function is added. , 20 may be configured such that reflective polarizing plates 35, 35 are attached to the respective plates. With the above-described configuration, it is possible to further reduce the thickness in addition to the above-described effects. In addition, it is possible to prevent positional deviation due to vibration and impact and contamination of foreign matters.

[第5の実施形態]
図6は第4の実施形態の液晶表示装置の概略構成を示す断面図である。図6に示すように、液晶セル10,20の表示領域のサイズは異なっており、液晶セル10の表示領域のサイズに対して、液晶セル20の表示領域のサイズが小さく構成してある。また、液晶セル20と反射偏光板32との間には、光吸収体からなる遮光層61が配設されている。それ以外の構成については、図1に示した第1の実施形態と同様の構成とした。
前述の構成としたことにより、液晶セル10側から観察した際に、液晶セル20の影が観察されることに起因する表示品位の劣化を軽減することができる。
[Fifth Embodiment]
FIG. 6 is a sectional view showing a schematic configuration of the liquid crystal display device of the fourth embodiment. As shown in FIG. 6, the size of the display area of the liquid crystal cells 10 and 20 is different, and the size of the display area of the liquid crystal cell 20 is smaller than the size of the display area of the liquid crystal cell 10. A light shielding layer 61 made of a light absorber is disposed between the liquid crystal cell 20 and the reflective polarizing plate 32. Other configurations are the same as those in the first embodiment shown in FIG.
By adopting the above-described configuration, it is possible to reduce deterioration in display quality caused by observing the shadow of the liquid crystal cell 20 when observed from the liquid crystal cell 10 side.

[第6の実施形態]
次に、図7及び図8を参照して、本発明に係る第6実施形態の電子機器について説明する。本発明の電子機器の一実施形態たる携帯電話1000は、図7に示す折り畳み状態と、図8に示す使用状態とを備えた折り畳み式の携帯電話であって、本体部1001と、表示体部1002とを有している。
[Sixth Embodiment]
Next, with reference to FIG.7 and FIG.8, the electronic device of 6th Embodiment which concerns on this invention is demonstrated. A mobile phone 1000 according to an embodiment of the electronic apparatus of the present invention is a foldable mobile phone having a folded state shown in FIG. 7 and a use state shown in FIG. 1002.

表示体部1002の内部には、上記液晶表示装置が配置され、表示体部1002にて表側表示面1003と、裏側表示面1004にて表示画面を視認できるように構成されている。このような携帯電話1000によると、各種操作や各種状況に応じて、特に折り畳み状態と使用状態の状態変化に応じて、表側表示面1003及び/又は裏側表示面1004において、明るい表示画面を視認することができるようになる。   The liquid crystal display device is arranged inside the display body portion 1002, and the display body portion 1002 is configured so that the display screen can be viewed on the front side display surface 1003 and the back side display surface 1004. According to such a mobile phone 1000, a bright display screen is visually recognized on the front display surface 1003 and / or the back display surface 1004 according to various operations and various situations, in particular, depending on the state change between the folded state and the use state. Will be able to.

以上、本発明の表示装置に係る液晶表示装置、及び本発明の電子機器に係る携帯電話の実施形態をそれぞれ示したが、本発明はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えることが可能である。   The embodiments of the liquid crystal display device according to the display device of the present invention and the mobile phone according to the electronic device of the present invention have been described above, but the present invention is not limited to this, and departs from the gist of the present invention. Various modifications can be made within the range not to be performed.

本発明の第1実施形態の液晶表示装置の概略構成を示す断面図。1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device according to a first embodiment of the present invention. 図1の液晶表示装置の表示原理を示す説明図。FIG. 2 is an explanatory diagram illustrating a display principle of the liquid crystal display device of FIG. 1. 本発明の第3実施形態の液晶表示装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the liquid crystal display device of 3rd Embodiment of this invention. 図3の液晶表示装置の表示原理を示す説明図。FIG. 4 is an explanatory diagram illustrating a display principle of the liquid crystal display device of FIG. 3. 本発明の第4実施形態の液晶表示装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the liquid crystal display device of 4th Embodiment of this invention. 本発明の第5実施形態の液晶表示装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the liquid crystal display device of 5th Embodiment of this invention. 本発明の第6実施形態の電子機器の折り畳み状態を示す斜視図。The perspective view which shows the folding state of the electronic device of 6th Embodiment of this invention. 図7の電子機器の使用状態を示す斜視図。FIG. 8 is a perspective view illustrating a usage state of the electronic device of FIG. 7.

符号の説明Explanation of symbols

100、200 液晶表示装置、10,20 液晶セル(透過偏光軸可変手段)、11,12,21,22 吸収偏光板(吸収型偏光選択手段)、31,32,35,36 反射偏光板(反射型偏光選択手段)、 15,25 液晶層(透過偏光軸可変手段)、40 バックライト、41 導光板、42 光源、51,52 散乱層、61 遮光層
100, 200 Liquid crystal display device, 10, 20 Liquid crystal cell (transmission polarization axis variable means), 11, 12, 21, 22, Absorption polarizing plate (absorption polarization selection means), 31, 32, 35, 36 Reflection polarizing plate (reflection) Type polarization selection means), 15, 25 liquid crystal layer (transmission polarization axis variable means), 40 backlight, 41 light guide plate, 42 light source, 51, 52 scattering layer, 61 light shielding layer

Claims (10)

第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、
前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、
前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、
該照明手段と前記第2の透過偏光軸可変手段との間に配設された反射型偏光選択手段とを備え、
前記照明手段が前記反射型偏光選択手段からの反射光を透過可能とされ、
前記第2の透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、
該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする表示装置。
A display device comprising first transmission polarization axis varying means and second transmission polarization axis varying means,
The size of the display area of the second transmission polarization axis variable means is made smaller than the size of the display area of the first transmission polarization axis variable means,
An illuminating unit disposed between the first transmission polarization axis variable unit and the second transmission polarization axis variable unit, and capable of irradiating the first and second transmission polarization axis variable units with light;
A reflection-type polarization selection unit disposed between the illumination unit and the second transmission polarization axis variable unit;
The illumination means is capable of transmitting the reflected light from the reflective polarization selection means;
A light-shielding layer made of a light absorber is disposed between the second transmission polarization axis varying unit and the illumination unit,
The display device, wherein the light shielding layer is provided with a light transmission region so as to correspond to a size of the display region of the second transmission polarization axis varying unit.
第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、
前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、
前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、
該照明手段と前記第1の透過偏光軸可変手段との間に配設された反射型偏光選択手段とを備え、
前記照明手段が前記反射型偏光選択手段からの反射光を透過可能とされ、
前記第2透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、
該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする表示装置。
A display device comprising first transmission polarization axis varying means and second transmission polarization axis varying means,
The size of the display area of the second transmission polarization axis variable means is made smaller than the size of the display area of the first transmission polarization axis variable means,
An illuminating unit disposed between the first transmission polarization axis variable unit and the second transmission polarization axis variable unit, and capable of irradiating the first and second transmission polarization axis variable units with light;
A reflection-type polarization selection unit disposed between the illumination unit and the first transmission polarization axis varying unit;
The illumination means is capable of transmitting the reflected light from the reflective polarization selection means;
A light-shielding layer made of a light absorber is disposed between the second transmission polarization axis varying unit and the illumination unit,
The display device, wherein the light shielding layer is provided with a light transmission region so as to correspond to a size of the display region of the second transmission polarization axis varying unit.
第1の透過偏光軸可変手段と、第2の透過偏光軸可変手段とを具備する表示装置であって、
前記第2の透過偏光軸可変手段の表示領域のサイズを前記第1の透過偏光軸可変手段の表示領域のサイズよりも小さくしてなり、
前記第1の透過偏光軸可変手段と前記第2の透過偏光軸可変手段の間に配設され、前記第1及び第2の透過偏光軸可変手段に対して光照射可能な照明手段と、
該照明手段と前記第1の透過偏光軸可変手段との間に配設された第1の反射型偏光選択手段と、前記照明手段と前記第2の透過偏光軸可変手段との間に配設された第2の反射型偏光選択手段とを備え、
前記照明手段が前記第1の反射型偏光選択手段からの反射光と、前記第2の反射型偏光選択手段からの反射光を透過可能とされ、
前記第2透過偏光軸可変手段と前記照明手段との間には、光吸収体からなる遮光層が配設されており、
該遮光層は、前記第2の透過偏光軸可変手段の表示領域のサイズに対応するように、光の透過領域が設けられていることを特徴とする表示装置。
A display device comprising first transmission polarization axis varying means and second transmission polarization axis varying means,
The size of the display area of the second transmission polarization axis variable means is made smaller than the size of the display area of the first transmission polarization axis variable means,
An illuminating unit disposed between the first transmission polarization axis variable unit and the second transmission polarization axis variable unit, and capable of irradiating the first and second transmission polarization axis variable units with light;
A first reflection-type polarization selection unit disposed between the illumination unit and the first transmission polarization axis variable unit; and a unit between the illumination unit and the second transmission polarization axis variable unit. Second reflected polarization selection means,
The illumination means is capable of transmitting reflected light from the first reflective polarization selection means and reflected light from the second reflective polarization selection means;
A light-shielding layer made of a light absorber is disposed between the second transmission polarization axis varying unit and the illumination unit,
The display device, wherein the light shielding layer is provided with a light transmission region so as to correspond to a size of the display region of the second transmission polarization axis varying unit.
前記2つの反射型偏光選択手段は、所定方向の直線偏光を反射する一方、それと交差する方向の直線偏光を透過するものであって、
前記2つの反射型偏光選択手段は、それぞれ互いの反射偏光軸が交差する方向に設定されていることを特徴とする請求項3に記載の表示装置。
The two reflective polarization selection means reflect linearly polarized light in a predetermined direction while transmitting linearly polarized light in a direction intersecting the predetermined direction,
The display device according to claim 3, wherein the two reflection-type polarization selection units are set in directions in which the reflection polarization axes intersect each other.
前記第1の反射型偏光選択手段と前記第1の透過偏光軸可変手段との間若しくは前記第2の反射型偏光選択手段と前記第2の透過偏光軸可変手段との間に、所定方向の直線偏光を吸収する一方、それと交差する方向の直線偏光を透過する吸収型偏光選択手段が形成され、
前記第1の反射型偏光選択手段の反射偏光軸若しくは前記第2の反射型偏光選択手段の反射偏光軸と、前記吸収型偏光選択手段の透過偏光軸とが互いに交差する方向に設定されていることを特徴とする請求項1乃至3のいずれか1項に記載の表示装置。
Between the first reflective polarization selection means and the first transmission polarization axis variable means or between the second reflection polarization selection means and the second transmission polarization axis variable means in a predetermined direction. Absorptive polarization selection means that absorbs linearly polarized light while transmitting linearly polarized light in a direction intersecting the linearly polarized light is formed.
The reflection polarization axis of the first reflection type polarization selection unit or the reflection polarization axis of the second reflection type polarization selection unit and the transmission polarization axis of the absorption type polarization selection unit are set to intersect each other. The display device according to claim 1, wherein the display device is a display device.
前記反射型偏光選択手段は、コレステリック液晶にて構成され、所定回転方向の円偏光を反射する一方、それと反対の回転方向の円偏光を透過するものであって、前記2つの反射型偏光選択手段は、それぞれ反射する円偏光の回転方向が同方向に設定されていることを特徴とする請求項1乃至3のいずれか1項に記載の表示装置。   The reflection type polarization selection means is composed of cholesteric liquid crystal and reflects circular polarization in a predetermined rotation direction while transmitting circular polarization in the opposite rotation direction. The two reflection type polarization selection means 4. The display device according to claim 1, wherein the rotation directions of the circularly polarized light respectively reflected are set in the same direction. 5. 前記第1の反射型偏光選択手段と前記第1の透過偏光軸可変手段との間若しくは前記第2の反射型偏光選択手段と前記第2の透過偏光軸可変手段との間にλ/4位相差板が配設されていることを特徴とする請求項6に記載の表示装置。   Λ / 4 position between the first reflective polarization selection means and the first transmission polarization axis variable means or between the second reflection polarization selection means and the second transmission polarization axis variable means The display device according to claim 6, further comprising a phase difference plate. 前記反射型偏光選択手段と、前記吸収型偏光選択手段の間に散乱部材が配設されてなることを特徴とする請求項5または7のいずれか1項に記載の表示装置。   8. The display device according to claim 5, wherein a scattering member is disposed between the reflection-type polarization selection unit and the absorption-type polarization selection unit. 9. 前記照明手段は、光源と、該光源からの光を導く導光板とを備え、前記導光板の複屈折量がλ/2とされ、該導光板の遅相軸と、前記反射型偏光選択手段の反射偏光軸とのなす角度が約45°に設定されていることを特徴とする請求項1乃至8のいずれか1項に記載の表示装置。   The illumination unit includes a light source and a light guide plate that guides light from the light source, and the birefringence amount of the light guide plate is λ / 2, the slow axis of the light guide plate, and the reflective polarization selection unit 9. The display device according to claim 1, wherein an angle formed by the reflection polarization axis is set to about 45 °. 請求項1ないし9のいずれか1項に記載の表示装置を備えたことを特徴とする電子機器。   An electronic apparatus comprising the display device according to claim 1.
JP2006027994A 2002-10-24 2006-02-06 Display device and electronic equipment Withdrawn JP2006133810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027994A JP2006133810A (en) 2002-10-24 2006-02-06 Display device and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002309581 2002-10-24
JP2006027994A JP2006133810A (en) 2002-10-24 2006-02-06 Display device and electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003198130A Division JP2004199027A (en) 2002-10-24 2003-07-16 Display device and electronic equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007158371A Division JP2007256983A (en) 2002-10-24 2007-06-15 Display device and electronic apparatus
JP2008112128A Division JP4603594B2 (en) 2002-10-24 2008-04-23 Display device and electronic device

Publications (2)

Publication Number Publication Date
JP2006133810A true JP2006133810A (en) 2006-05-25
JP2006133810A5 JP2006133810A5 (en) 2007-08-09

Family

ID=36727345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027994A Withdrawn JP2006133810A (en) 2002-10-24 2006-02-06 Display device and electronic equipment

Country Status (1)

Country Link
JP (1) JP2006133810A (en)

Similar Documents

Publication Publication Date Title
KR100723111B1 (en) Display unit
KR100610652B1 (en) Liquid crystal display
JP4603594B2 (en) Display device and electronic device
US6906767B1 (en) LCD with diffuser having particular haze value and diffuser-reflector distance, and reduced parallax
JP2004117652A (en) Composite display device
JP5327755B2 (en) Liquid crystal device
KR20040031858A (en) Liquid crystal display
JP2011002596A (en) Liquid crystal display device
JP2004199028A (en) Display device and electronic equipment
JP2007256983A (en) Display device and electronic apparatus
JP2007025228A (en) Liquid crystal display device
JP2006133810A (en) Display device and electronic equipment
JP2004170792A (en) Display device and electronic device
JP2007219172A (en) Liquid crystal display device
JP4083785B2 (en) Liquid crystal display
JP2007011049A (en) Transflective liquid crystal display device
JP4695344B2 (en) Display device and electronic apparatus using the same
JP4466186B2 (en) Display device and electronic device
JP5690861B2 (en) Liquid crystal device
JP2004138633A (en) Display device and electronic appliance
JP2006058704A (en) Liquid crystal display
JP2007114478A (en) Liquid crystal display apparatus
JP2005258327A (en) Liquid crystal display
KR20060059430A (en) Liquid crystal display
JP2004205784A (en) Liquid crystal display

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080514

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080704

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090605