JP2006132515A - Straight wing vertical shaft type wind mill for wind power generation - Google Patents

Straight wing vertical shaft type wind mill for wind power generation Download PDF

Info

Publication number
JP2006132515A
JP2006132515A JP2004351967A JP2004351967A JP2006132515A JP 2006132515 A JP2006132515 A JP 2006132515A JP 2004351967 A JP2004351967 A JP 2004351967A JP 2004351967 A JP2004351967 A JP 2004351967A JP 2006132515 A JP2006132515 A JP 2006132515A
Authority
JP
Japan
Prior art keywords
wind
wing
blade
stage
wings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004351967A
Other languages
Japanese (ja)
Inventor
Shiro Yamashita
四郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004351967A priority Critical patent/JP2006132515A/en
Publication of JP2006132515A publication Critical patent/JP2006132515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce phenomena in which force applied to a wing instantaneously differs and rotation energy of a straight wing vertical shaft type wind mill fluctuates depending on amount of wind velocity fluctuation of natural wind by the arrangement of wings. <P>SOLUTION: Length of the conventional wing is divided into small parts having length of 1/2 or more, these small parts are divided into upper and lower parts, and the wings are arranged by deviating positions of the wings from each other at each step. Consequently, since influence force of the wing received from natural wind differs depending on step, well-balanced rotation force is obtained on the whole and rotation of the wind mill is made smooth. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、風力発電用の直線翼垂直軸型風車に関するもので、特に翼の配置の改良に焦点を合わせた風車である。The present invention relates to a straight blade vertical axis wind turbine for wind power generation, and particularly a wind turbine focused on improving blade arrangement.

一般に、風力発電用の風車には、大きく分けて2種類の風車がり、風に対して回転軸が水平になっている水平軸型風車と、風に対して回転軸が垂直になっている垂直軸型風車が知られている。In general, there are two types of wind turbines for wind power generation: a horizontal axis type wind turbine whose rotation axis is horizontal to the wind, and a vertical axis whose rotation axis is perpendicular to the wind. Axial wind turbines are known.

垂直軸型風車は、方位制御機構を必要とせず、風向きを考慮せずに回転することができる。The vertical axis type windmill does not require an azimuth control mechanism and can rotate without considering the wind direction.

垂直軸型風車には、サボニウス形やパドル形風車のように翼に発生する抗力で回転させる抗力形と、直線翼形やダリウス形風車のように飛行機の翼と同じ断面を持ち揚力で回転させる揚力形が知られている。The vertical axis type windmill has a drag type that rotates by the drag generated on the wings like Savonius type and paddle type windmills, and it has the same cross section as an airplane wing like a straight wing type and Darius type windmill and rotates by lift force Lift form is known.

抗力形風車は、周速比(翼端速度÷風速)は1以上になることはないが、揚力形風車は回転始めると周速比は1以上になり、回転トルクも高い空力特性を持ち、一般的に前者より回転数が高い特長がある。The drag-type wind turbine does not have a peripheral speed ratio (blade tip speed ÷ wind speed) of 1 or more, but when the lift-type wind turbine starts to rotate, the peripheral speed ratio becomes 1 or more, and the rotational torque has high aerodynamic characteristics. Generally, it has the feature that the number of rotations is higher than the former.

特開2003−314429号公報JP 2003-314429 A 特開2004−108330号公報JP 2004-108330 A 特開2004−270578号公報JP 2004-270578 A

発明が解決しようとする課題Problems to be solved by the invention

一般的な従来型の直線翼垂直軸型風車をモデル化した傾視図が図5,図6,図7であり、それを上からみた平面図が図8、図9、図10である。
特許文献1は3枚翼垂直軸型風車で、ローターをより軽量で安価にするために翼の保持に関する構造様式を説明し、特許文献2は翼の形そのものの改良について、そして特許文献3は外部電力と併用逐電可能なバッテリーを用いた風力発電機の説明についてそれぞれ述べているが、これらの文献の翼の配置は図5、図6の従来型のパターンと同じである。また、一般に市販されている垂直軸型風車の翼の配置も図5、図6、図7のいずれかに属するのがほとんどである。
図5は翼200が3枚と回転軸201そして翼200の回転エネルギーを回転軸201に伝達するアーム202さらに発電機300から構成されており、3枚の翼200は図8から120度の等角度で配置さている。図6、図7は翼200が4枚形と5枚形であり、翼200の間隔はそれぞれ図9、図10より90度と72度の等角度で配置されている。
5, 6, and 7 are perspective views modeling a general conventional straight blade vertical axis wind turbine, and FIGS. 8, 9, and 10 are plan views as viewed from above.
Patent Document 1 describes a three-blade vertical axis type windmill, which describes a structural mode related to blade retention in order to make the rotor lighter and cheaper, Patent Document 2 describes improvement of the shape of the blade itself, and Patent Document 3 describes The description of wind power generators using batteries that can be used together with external power is described, but the arrangement of the wings in these documents is the same as the conventional pattern in FIGS. Further, the arrangement of the blades of a vertical axis type wind turbine that is generally commercially available belongs to one of FIGS. 5, 6, and 7.
5 includes three blades 200, a rotating shaft 201, an arm 202 that transmits the rotational energy of the blades 200 to the rotating shaft 201, and a generator 300. The three blades 200 are 120 degrees from FIG. Arranged at an angle. 6 and 7, the wings 200 have four and five blades, and the wings 200 are arranged at an equal angle of 90 degrees and 72 degrees from FIGS. 9 and 10, respectively.

図5、図6、図7における従来型の直線翼垂直軸型風車では、自然風の流入変動量と翼200の位置関係のタイミングから、風車が強く風力を受けることもあれば、逆に弱く風力を受けることもある。これにより風車の翼に与える力の変動から回転エネルギーに揺らぎが生じ、回転数のむらと効率の低下をまねく問題がある。5, 6, and 7, the conventional straight blade vertical axis wind turbine may receive strong wind force or may be weak due to the timing of the relative flow of natural wind and the positional relationship between the blades 200. Sometimes it receives wind power. As a result, the rotational energy fluctuates due to fluctuations in the force applied to the blades of the windmill, resulting in problems such as uneven rotation speed and reduced efficiency.

課題を解決するための手段Means for solving the problem

上記の課題を解決するために、直線翼垂直軸型風車の翼を上下に2段以上に分割し、各段内における翼の枚数は2枚以上とし、段内の翼の配置は等角度とする。さらに、各段ごとの翼の位置関係は請求項2記載の方法とし、段ごとに回転翼部分をずらすことにより風力エネルギーを分散し、回転の変動を極力押さえることを目的としている。In order to solve the above problems, the blades of a straight blade vertical axis type wind turbine are divided into two or more stages in the vertical direction, the number of blades in each stage is two or more, and the arrangement of the blades in each stage is equiangular To do. Furthermore, the positional relationship of the blades at each stage is the method described in claim 2, and the object is to disperse the wind energy by shifting the rotor blade part for each stage and suppress the fluctuation of rotation as much as possible.

段数を2段から3段へと増すに従い、従来型の1段に比べて1枚の翼にかかるエネルギーがより多く分散され、翼全体ではバランスの取れた方向に力が加わることになり、回転がよりスムーズとなる。As the number of stages is increased from two to three, more energy is applied to one blade compared to the conventional one, and the entire blade is applied with a force in a balanced direction. Becomes smoother.

以下、図面を参照しながら、本発明の実施形態を説明する。説明するにあたり、流速のエネルギーは風が通過する面積に比例することから、面積を一定とし、翼の高さや回転半径は同じとする。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the explanation, since the energy of the flow velocity is proportional to the area through which the wind passes, it is assumed that the area is constant and the height of the blade and the radius of rotation are the same.

本発明である翼の位置関係を示した傾視図が図1、図2、図3、図4であり、それを上から見た平面図が図11、図12、図13、図14である。1, 2, 3, and 4 are perspective views showing the positional relationship of the wing according to the present invention, and plan views of the blades as viewed from above are FIGS. 11, 12, 13, and 14. is there.

図1の翼長は図5における従来型の3枚翼200の長さの1/2であり、それを上下2段に分ける。図1の下段の3枚翼2は図11からわかるようにそれぞれ120度の等角度で配置され、上段の3枚の翼1は下段の翼2の中間にくるように配置し、翼1もそれぞれ120度の等角度で配置する。The blade length in FIG. 1 is ½ of the length of the conventional three-blade 200 in FIG. 5, which is divided into two upper and lower stages. As shown in FIG. 11, the lower three blades 2 in FIG. 1 are arranged at an equal angle of 120 degrees, the upper three blades 1 are arranged so as to be in the middle of the lower blade 2, and the blade 1 is also Each is arranged at an equal angle of 120 degrees.

図2の翼長は図6における従来型の4枚翼200の長さの1/2であり、それを上下2段に分ける。図2の下段の4枚翼2は図12からわかるようにそれぞれ90度のの等角度で配置され、上段の4枚の翼1は下段の翼2の中間にくるように配置し、翼1もそれぞれ90度の等角度で配置する。The blade length in FIG. 2 is ½ of the length of the conventional four-blade 200 in FIG. 6, and it is divided into two upper and lower stages. As shown in FIG. 12, the lower four blades 2 in FIG. 2 are arranged at an equal angle of 90 degrees, and the upper four blades 1 are arranged so as to be in the middle of the lower blade 2. Are arranged at an equal angle of 90 degrees.

図3の翼長は図7における従来型の5枚翼200の長さの1/2であり、それを上下2段に分ける。図3の下段の5枚翼2は図13からわかるようにそれぞれ72度のの等角度で配置され、上段の5枚の翼1は下段の翼2の中間にくるように配置し、翼1もそれぞれ72度の等角度で配置する。The blade length in FIG. 3 is ½ of the length of the conventional five-blade 200 in FIG. 7 and is divided into two upper and lower stages. As shown in FIG. 13, the lower five blades 2 in FIG. 3 are arranged at an equal angle of 72 degrees, and the upper five blades 1 are arranged so as to be in the middle of the lower blade 2. Are also arranged at an equal angle of 72 degrees.

図4の翼長は図5の3枚の翼200の長さをそれぞれ1/3の長さにし、それを上中下の3段に分けた代表図である。下段の3枚の翼102はそれぞれ120度の等角度で配置され、中段の3枚の翼101は120度の1/3である40度を下段の翼よりずらして配置し、また上段の翼100は中段の翼よりさらに40度ずらして配置したものである。中段、上段の翼間の中心角度は下段の角度と同じであり、それぞれ120度の等角度で配置されている。図14は図4を上から見た平面図であり、翼は40度ずつ等角度で配置されている。The blade length in FIG. 4 is a representative view in which the length of each of the three blades 200 in FIG. 5 is set to 1/3 and divided into upper, middle, and lower three stages. The lower three wings 102 are arranged at an equal angle of 120 degrees, the middle three wings 101 are arranged by shifting 40 degrees, which is 1/3 of 120 degrees, from the lower wing, and the upper wings 100 is arranged by shifting 40 degrees from the middle wing. The center angle between the middle and upper blades is the same as the lower blade angle, and each is arranged at an equal angle of 120 degrees. FIG. 14 is a plan view of FIG. 4 as viewed from above, and the wings are arranged at equal angles by 40 degrees.

風に対して図1の下段翼2の配置と図5の翼200の配置が同じと仮定した場合、自然風から受ける翼2の影響力は翼200の場合に比べて、翼の長さが1/2であることから小さくなる。従って、瞬間的に大きな力が翼に作用した場合、下段の翼2は翼200より小さい力で済む。また上段の翼1は下段の翼2と配置が異なるため、下段の翼2ほど影響力を受けない。逆に、風力の弱い風が瞬間的に翼2に作用した場合、翼1には翼2以上の風が吹くことになり、翼2と翼1は風の影響力に対して逆の操作をし、全体的に風車の回転をスムーズにする効果がある。
図2の2段4枚翼と図3の2段5枚翼の場合も上記載の効果が現れる。
図4の翼3段分による配置は上記の2段の翼配置の原理から回転がさらになめらかになる。
Assuming that the arrangement of the lower wing 2 in FIG. 1 and the arrangement of the wing 200 in FIG. 5 are the same with respect to the wind, the influence of the wing 2 from natural wind is less than that of the wing 200. It becomes small because it is 1/2. Therefore, when a large force is instantaneously applied to the wing, the lower wing 2 needs a smaller force than the wing 200. Further, since the upper wing 1 is arranged differently from the lower wing 2, the lower wing 2 is not affected as much as the lower wing 2. On the contrary, when a weak wind is momentarily applied to the wing 2, the wing 1 is blown by the wind higher than the wing 2, and the wing 2 and the wing 1 are operated in reverse to the influence of the wind. As a result, the wind turbine rotates smoothly as a whole.
The above-described effect also appears in the case of the two-stage four-blade of FIG. 2 and the two-stage five-blade of FIG.
The arrangement of the three wings in FIG. 4 makes the rotation even smoother due to the principle of the two-stage wing arrangement described above.

発明の効果The invention's effect

本発明の原理により、2段式以上に翼を配置した場合、各段ごとに風の影響力が異なるため、全体的に風力の変動を押さえることができる。その結果、風車の回転をスムーズにし、実験結果から従来の方法より回転数が上がった。When the blades are arranged in two or more stages according to the principle of the present invention, the influence of wind is different for each stage, so that fluctuations in wind power can be suppressed as a whole. As a result, the rotation of the windmill was smoothed and the number of rotations was higher than the conventional method from the experimental results.

さらに、従来の翼の長さの1/3にした3段式では、2段式より回転数が上がり効率も上昇した。Furthermore, in the three-stage type in which the length of the conventional blade is 1/3, the number of rotations is higher than that in the two-stage type and the efficiency is also increased.

本発明における2段3枚直線翼垂直軸型風車の斜視図である。It is a perspective view of the two-stage three-sheet straight blade vertical axis type windmill in the present invention. 本発明における2段4枚直線翼垂直軸型風車の斜視図である。1 is a perspective view of a two-stage four-blade vertical axis wind turbine according to the present invention. 本発明における2段5枚直線翼垂直軸型風車の斜視図である。1 is a perspective view of a two-stage five-blade vertical axis wind turbine according to the present invention. 本発明における3段3枚直線翼垂直軸型風車の斜視図である。1 is a perspective view of a three-stage three-blade vertical axis vertical wind turbine according to the present invention. 従来型の1段3枚直線翼垂直軸型風車の斜視図である。It is a perspective view of a conventional one-stage three-sheet straight blade vertical axis wind turbine. 従来型の1段4枚直線翼垂直軸型風車の斜視図である。It is a perspective view of a conventional one-stage four-line straight blade vertical axis type wind turbine. 従来型の1段5枚直線翼垂直軸型風車の斜視図である。It is a perspective view of a conventional one-stage five-blade vertical axis wind turbine. を上から見た1段3枚直線翼垂直軸型風車の平面図である。It is a top view of the 1 step | paragraph 3 straight blade | wing vertical axis type windmill which looked at from the top. を上から見た1段4枚直線翼垂直軸型風車の平面図である。It is a top view of the 1 step | paragraph 4 straight blade | wing vertical axis type windmill which looked at from the top. を上から見た1段5枚直線翼垂直軸型風車の平面図である。It is a top view of the 1 step | paragraph 5 straight blade | wing vertical axis type windmill which looked at from the top. を上から見た2段3枚直線翼垂直軸型風車の平面図である。FIG. 2 is a plan view of a two-stage three-line straight-blade vertical axis wind turbine as viewed from above. を上から見た2段4枚直線翼垂直軸型風車の平面図である。FIG. 2 is a plan view of a two-stage four-blade vertical axis wind turbine as viewed from above. を上から見た2段5枚直線翼垂直軸型風車の平面図である。FIG. 2 is a plan view of a two-stage five-blade vertical axis wind turbine viewed from above. を上から見た2段4枚直線翼垂直軸型風車の平面図である。FIG. 2 is a plan view of a two-stage four-blade vertical axis wind turbine as viewed from above.

符号の説明Explanation of symbols

1 本発明における2段式上段側の翼
2 本発明における2段式下段側の翼
3 風車の回転軸
4 アーム
5 翼の軌道
100 本発明における3段式上段側の翼
101 本発明における3段式中段側の翼
102 本発明における3段式下段側の翼
103 風車の回転軸
104 アーム
105 翼の軌道
200 従来型の翼
201 風車の回転軸
202 アーム
203 翼の軌道
300 発電機
DESCRIPTION OF SYMBOLS 1 Two-stage type upper stage wing in this invention 2 Two-stage type lower stage wing in this invention 3 Windmill rotating shaft 4 Arm 5 Blade trajectory 100 Three-stage upper stage wing 101 in this invention Three stages in this invention Middle stage side blade 102 Three-stage lower stage blade 103 of the present invention Wind turbine rotating shaft 104 Arm 105 Blade track 200 Conventional blade 201 Wind turbine rotating shaft 202 Arm 203 Blade track 300 Generator

Claims (2)

垂直回転軸に直交する面内で、回転軸を中心として等角度で複数の直線翼が設けられた風力発電用の風車において、直線翼を上下に2段以上に分け、各段ごとに翼の配置を一定方向にずらしていくことを特徴とする風力発電用の風車。In a wind turbine for wind power generation in which a plurality of straight blades are provided at equal angles around the rotation axis in a plane perpendicular to the vertical rotation shaft, the straight blades are divided into two or more stages in the vertical direction, A wind turbine for wind power generation, characterized by shifting the arrangement in a certain direction. 直線翼をN段M翼に配置した場合、段内における翼と翼の中心角度をθとしたとき、それぞれの角度はθ=360°÷Mで決めることができ、また各段ごとの翼のずれ角度αは下段からI番目の段ではα=(I−1)×θ÷Nである請求項1に記載の風力発電用の風車。When straight wings are arranged in N-stage M wings, when the central angle between the wings and the wings in the stage is θ, each angle can be determined by θ = 360 ° ÷ M. The wind turbine for wind power generation according to claim 1, wherein the deviation angle α is α = (I−1) × θ ÷ N in the I-th stage from the lower stage.
JP2004351967A 2004-11-05 2004-11-05 Straight wing vertical shaft type wind mill for wind power generation Pending JP2006132515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351967A JP2006132515A (en) 2004-11-05 2004-11-05 Straight wing vertical shaft type wind mill for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351967A JP2006132515A (en) 2004-11-05 2004-11-05 Straight wing vertical shaft type wind mill for wind power generation

Publications (1)

Publication Number Publication Date
JP2006132515A true JP2006132515A (en) 2006-05-25

Family

ID=36726277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351967A Pending JP2006132515A (en) 2004-11-05 2004-11-05 Straight wing vertical shaft type wind mill for wind power generation

Country Status (1)

Country Link
JP (1) JP2006132515A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112226A1 (en) * 2010-03-08 2011-09-15 Nguyen Huy T Vertical windmill
CN102312783A (en) * 2010-06-29 2012-01-11 伍康旺 Wind power generation system of vertical tower shaft with helical-structure fan blades
CN103061968A (en) * 2013-02-04 2013-04-24 李万红 Triple working wind energy drum
CN103195658A (en) * 2013-05-02 2013-07-10 李万红 Wind energy mobile power station
CN104728046A (en) * 2015-03-06 2015-06-24 东南大学 Novel wind wave power generation system
WO2015155782A1 (en) * 2014-04-11 2015-10-15 Naithani Vedprakash Vertical axis windmill

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112226A1 (en) * 2010-03-08 2011-09-15 Nguyen Huy T Vertical windmill
CN102312783A (en) * 2010-06-29 2012-01-11 伍康旺 Wind power generation system of vertical tower shaft with helical-structure fan blades
CN103061968A (en) * 2013-02-04 2013-04-24 李万红 Triple working wind energy drum
CN103195658A (en) * 2013-05-02 2013-07-10 李万红 Wind energy mobile power station
WO2015155782A1 (en) * 2014-04-11 2015-10-15 Naithani Vedprakash Vertical axis windmill
CN104728046A (en) * 2015-03-06 2015-06-24 东南大学 Novel wind wave power generation system

Similar Documents

Publication Publication Date Title
AU2003257728B2 (en) Assembly of energy flow collectors, such as windpark, and method of operation
US6688842B2 (en) Vertical axis wind engine
US20110006526A1 (en) Pitch control arrangement for wind turbine
US20100322770A1 (en) Turbine blade constructions particular useful in vertical-axis wind turbines
US10378510B2 (en) Vertical axis wind turbine with self-orientating blades
CN101189430A (en) Horizontal axis windmill
US9273666B2 (en) Magnus type wind power generator
JP5470626B2 (en) Wind power generator
Zhao et al. Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack
JP5924125B2 (en) Blade for vertical axis wind turbine and vertical axis wind turbine
CN104204510B (en) The blade for wind turbine with guide card
JP2010121518A (en) Vertical shaft magnus type wind turbine generator
KR20120061264A (en) Vertical axis wind turbine having cascaded mutiblade
CN205578183U (en) Self -adaptation becomes vertical axis wind -force drive arrangement and aerogenerator of oar
JP2006132515A (en) Straight wing vertical shaft type wind mill for wind power generation
RU2267647C1 (en) Wind motor with &#34;banana&#34; blades and method of control of rotational frequency of wind-power turbine
KR101508304B1 (en) Wind power generation of vertical type
CN109322785A (en) The wind wheel apparatus of the coaxial birotor vertical axis windmill of nested type
KR20110083476A (en) The vertical axis wind turbine using drag force and lift force simultaneouly
JP6126287B1 (en) Vertical axis spiral turbine
JP2001073925A (en) Windmill
WO2013136660A1 (en) Vertical axis wind turbine
Mir-Nasiri Conceptual Design and Center-point Force Dynamic Simulation of a New Horizontal Axis Semi-exposed Wind Turbine (HASWT)
JP2005054757A (en) Hybrid type wind mill
KR101552167B1 (en) Vertical wind power generation device with rotating blade