JP2006132383A - Vertical shaft pelton turbine - Google Patents

Vertical shaft pelton turbine Download PDF

Info

Publication number
JP2006132383A
JP2006132383A JP2004320524A JP2004320524A JP2006132383A JP 2006132383 A JP2006132383 A JP 2006132383A JP 2004320524 A JP2004320524 A JP 2004320524A JP 2004320524 A JP2004320524 A JP 2004320524A JP 2006132383 A JP2006132383 A JP 2006132383A
Authority
JP
Japan
Prior art keywords
pipes
jet
runner
branch pipes
vertical shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320524A
Other languages
Japanese (ja)
Inventor
Masahiro Tanaka
正広 田中
Shigeki Matsuoka
茂樹 松岡
Toshiaki Karaki
俊明 唐木
Tadashi Tsukamoto
直史 塚本
Jiyun Kourai
順 向来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Fuji Electric Systems Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2004320524A priority Critical patent/JP2006132383A/en
Publication of JP2006132383A publication Critical patent/JP2006132383A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase operation specific speed by suppressing interference of adjoining jets in a vertical shaft Pelton turbine using two steel penstocks. <P>SOLUTION: In the vertical shaft Pelton injecting jet 12 to a bucket 11 through a plurality of branch pipes 3-8 branching out of the two steel penstocks 1, 2, the branch pipes 3-8 are constructed with bent pipes including a bend 13 right front of a nozzle and bend directions of all branch pipes 3-8 are made same as a rotation direction of the runner 10. Consequently, since flare 12f of the jet 12 formed inside of bends of branch pipes 3-8 is oriented to an inner circumference side of all buckets 11 and interference of jets are suppressed, high specific speed at an operation point can be achieved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はペルトン水車に関し、特に2条の水圧鉄管から分岐管を分岐させる立軸ペルトン水車に関する。   The present invention relates to a Pelton turbine, and more particularly to an upright Pelton turbine that branches a branch pipe from two pieces of hydraulic iron pipe.

ペルトン水車は周知の通り、水圧鉄管から分岐する複数の分岐管を通してバケットに噴射したジェットによりランナを回転させるもので、横軸では単射形、2射形、立軸では4射形、5射形、6射形が多く採用されている。横軸ペルトン水車については、例えば特許文献1に記載され、立軸ペルトン水車については、例えば特許文献2に記載されている。
特開平8−218999号公報 特開平8ー151973号公報
As is well known, a Pelton turbine rotates a runner by jets injected into a bucket through a plurality of branch pipes branched from a hydraulic iron pipe. The horizontal axis is a single-shot type, two-shot type, the vertical axis is a four-shot type, and a five-shot type. The six-shot type is often used. The horizontal axis Pelton turbine is described in, for example, Patent Document 1, and the vertical axis Pelton turbine is described in, for example, Patent Document 2.
JP-A-8-218999 JP-A-8-151973

ところで、ペルトン水車にダムの水を導く水圧鉄管は一般には1条であるが、例えば横軸ペルトン水車が2台配置された発電所を1台の立軸ペルトン水車に改修する場合や、2つのダムからの水を1台の立軸ペルトン水車に集約する場合などでは、1台のペルトン水車に対して2条の水圧鉄管が存在することがある。   By the way, there are generally one hydraulic iron pipe that guides the water of a dam to a Pelton turbine. In the case of collecting water from a single vertical Pelton turbine, there are cases in which two hydraulic iron pipes exist for one Pelton turbine.

図2は、2条の水圧鉄管を有する立軸6射ペルトン水車における従来の分岐管形状を示すものである。図2において、2条の水圧鉄管1及び2からそれぞれ3本の分岐管3〜5及び6〜8が分岐し、各々の先端のノズル9から、ランナ10のバケット11にジェット12が噴射され、ランナ10は矢印方向に回転する。2条の水圧鉄管1,2の間隔は広いため、分岐管3〜5及び6〜8は、図示の通りいわばかに足状の形状が採用され、分岐管3,7は直管、分岐管4,5,6,8はノズル直前に曲り13を有する曲管となっている。   FIG. 2 shows the shape of a conventional branch pipe in a vertical-axis six-shot Pelton turbine having two hydraulic iron pipes. In FIG. 2, three branch pipes 3 to 5 and 6 to 8 respectively branch from two hydraulic iron pipes 1 and 2, and a jet 12 is jetted from a nozzle 9 at each end to a bucket 11 of a runner 10, The runner 10 rotates in the direction of the arrow. Since the interval between the two hydraulic iron pipes 1 and 2 is wide, the branch pipes 3 to 5 and 6 to 8 have a so-called foot shape as shown in the figure, and the branch pipes 3 and 7 are straight pipes and branch pipes. 4, 5, 6, and 8 are curved pipes having a bend 13 immediately before the nozzle.

図3は、ノズル直前に曲りを有する分岐管からのジェットを概念的に示す側面図である。図3に示すように、上流に曲り13を有する分岐管のノズル9から噴射されるジェット12には、通常、分岐管曲り方向の内側にフレアー(飛散水)12fが発生する。これは、ノズル部の圧力が曲り外側で高く、曲り内側で低くなるためと考えられる。   FIG. 3 is a side view conceptually showing a jet from a branch pipe having a bend just before the nozzle. As shown in FIG. 3, flare (splash water) 12f is usually generated inside the branch pipe bending direction in the jet 12 ejected from the nozzle 9 of the branch pipe having the bend 13 upstream. This is presumably because the pressure of the nozzle portion is high at the outside of the curve and low at the inside of the curve.

一方、6射ペルトン水車は高比速度になると、ジェット干渉が生じやすくなる。比速度nSは次の式で与えられる。
S=n・P1/2/H5/4
On the other hand, when the six-shot Pelton turbine is at a high specific speed, jet interference tends to occur. The specific speed n S is given by the following equation.
n S = n · P 1/2 / H 5/4

ここで、n:水車回転速度(min-1),P:水車出力(kW),H:有効落差(m)である。この式から分かるように、有効落差が同じと仮定した場合、比速度の高い状態では回転速度が高い、もしくは水車出力つまり水車流量が大きいことになる。 Here, n is the turbine speed (min −1 ), P is the turbine output (kW), and H is the effective head (m). As can be seen from this equation, when the effective head is assumed to be the same, the rotational speed is high or the turbine output, that is, the turbine flow rate is large when the specific speed is high.

6射ペルトン水車は60度ごとに配置されたノズルからジェットが噴射され、バケットに流入する。その場合のバケットとジェットとの関係の変化を図4(A)〜(C)に示す。図4において、例えば第1ジェット12(1)が太線で示すバケット11(1)に流入し、次いで後続のバケット11(2)に流入し始める際、バケット11(1),11(2)間には空隙があるので、その空隙には飛行中の水12(1)a(斜線部分)が存在する。一方、バケット11(1)はジェット流速のほぼ半分の速度で回転しており、空隙に存在する水12(1)aは徐々にバケット11(1)に流入する(図4(B)参照)。   A six-shot Pelton turbine is jetted from nozzles arranged every 60 degrees and flows into the bucket. The change in the relationship between the bucket and the jet in that case is shown in FIGS. In FIG. 4, for example, when the first jet 12 (1) flows into the bucket 11 (1) indicated by a thick line and then starts to flow into the subsequent bucket 11 (2), between the buckets 11 (1) and 11 (2). Since there is a gap, water 12 (1) a (shaded portion) in flight exists in the gap. On the other hand, the bucket 11 (1) rotates at a speed almost half of the jet flow velocity, and the water 12 (1) a existing in the gap gradually flows into the bucket 11 (1) (see FIG. 4B). .

その際、水12(1)aがバケット11(1)に流入し終わる前に、第2ジェット12(2)がバケット11(1)に流入を開始すると、隣り合うジェット12(1),12(2)同士が干渉し(図4(C)参照)、水車効率が急激に低下する。従って、6射形ペルトン水車では、このようなジェット干渉が生じないように運転点(比速度)を選定する必要がある。比速度が高い場合、バケット間の空隙が同じでもランナ回転速度が高く、もしくはジェット径が大きく(流量が多く)なるので、第1ジェット12(1)の流入終了点が第2ジェット12(2)の流入開始点に近づき、ジェット干渉が起こりやすくなる。   At that time, if the second jet 12 (2) starts to flow into the bucket 11 (1) before the water 12 (1) a finishes flowing into the bucket 11 (1), the adjacent jets 12 (1), 12 (2) They interfere with each other (see FIG. 4C), and the turbine efficiency is drastically reduced. Therefore, in the six-shot Pelton turbine, it is necessary to select an operation point (specific speed) so that such jet interference does not occur. When the specific speed is high, the runner rotation speed is high or the jet diameter is large (the flow rate is large) even if the gap between the buckets is the same, so that the inflow end point of the first jet 12 (1) is the second jet 12 (2 ) Approaches the inflow start point, and jet interference easily occurs.

その場合、ジェット12のフレアー12f(図3参照)がバケット外周側に飛散するように存在すると、図4において、第1ジェット12(1)のバケット11(1)への流入終了点が遅くなり、第2ジェット12(2)の流入開始点に近づくので、ジェット干渉が一層起こりやすくなる。   In that case, if the flare 12f (see FIG. 3) of the jet 12 exists so as to be scattered on the outer peripheral side of the bucket, in FIG. 4, the inflow end point of the first jet 12 (1) to the bucket 11 (1) is delayed. Since it approaches the inflow start point of the second jet 12 (2), jet interference is more likely to occur.

ところが、図2に示した従来のかに足状の分岐管形状には、分岐管4,5,6においてバケット外周側に向かうフレアー12fが存在する。そのため、ジェット干渉が生じやすく、結果として水圧鉄管が1条の通常の立軸水車よりも比速度の低い運転範囲しか選定できない。   However, the conventional crab-like branch pipe shape shown in FIG. 2 has a flare 12 f that extends toward the bucket outer periphery in the branch pipes 4, 5, and 6. For this reason, jet interference is likely to occur, and as a result, only an operating range in which the hydraulic iron pipe has a specific speed lower than that of a normal vertical shaft water turbine having one line can be selected.

そこで、この発明の課題は、2条の水圧鉄管を用いた立軸ペルトン水車において、隣り合うジェットの干渉を抑えて運転比速度を高めることにある。   Accordingly, an object of the present invention is to increase an operation specific speed by suppressing interference between adjacent jets in a vertical shaft Pelton turbine using two hydraulic iron pipes.

上記課題を解決するために、この発明は、2条の水圧鉄管から分岐する複数の分岐管を通してバケットにジェットが噴射される立軸ペルトンにおいて、前記複数の分岐管をノズルの直前に曲りを有する曲管で構成するとともに、すべての前記分岐管の曲り方向をランナの回転方向と同じにするものとする(請求項1)。   In order to solve the above-mentioned problems, the present invention provides a vertical pelton in which a jet is injected into a bucket through a plurality of branch pipes branched from two hydraulic iron pipes. It is configured by a pipe, and the bending direction of all the branch pipes is the same as the rotation direction of the runner (Claim 1).

請求項1の発明において、前記ランナの両側に前記2条の水圧鉄管を互いに平行に配置し、これらの水圧鉄管の先端を前記ランナに向かって互い違いに屈曲し、これらの先端に各複数の前記分岐管を前記ランナの中心に対して点対称にそれぞれ接続するとよい(請求項2)。   In the invention of claim 1, the two hydraulic iron pipes are arranged parallel to each other on both sides of the runner, the ends of the hydraulic iron pipes are bent alternately toward the runner, The branch pipes may be connected point-symmetrically with respect to the center of the runner (claim 2).

この発明によれば、すべての分岐管の曲り方向をランナの回転方向と同じにすることにより、各分岐管から噴射されるジェットのフレアーがバケットの外周側に飛散することがなくなり、2条の水圧鉄管を用いた場合においても運転比速度の低下を免れることができる。   According to this invention, by making the bending direction of all the branch pipes the same as the rotation direction of the runner, the flare of the jet injected from each branch pipe is prevented from scattering to the outer peripheral side of the bucket. Even when a hydraulic iron pipe is used, a reduction in the operation specific speed can be avoided.

図1はこの発明の実施の形態を示す6射形立軸ペルトン水車の分岐管形状を示す平面図である。なお、従来例と対応する部分には同一の符号を用いるものとする。図1において、ランナ10の両側に2条の水圧鉄管1及び2が互いに平行に配置され、これらの水圧鉄管1,2の先端1a,2aはランナ10に向かって互い違いに直角に屈曲されている。そして、これらの水圧鉄管1,2の先端1a,2aに各3本の分岐管3〜5及び6〜8がランナ10の中心に対して点対称にそれぞれ接続されている。ここで、各分岐管3〜8はノズル9の直前に曲り13を有する曲管で構成され、これら分岐管3〜8の曲り方向はすべて矢印で示したランナ10の回転方向と同じにされている。   FIG. 1 is a plan view showing a branch pipe shape of a six-shot vertical shaft Pelton turbine according to an embodiment of the present invention. In addition, the same code | symbol shall be used for the part corresponding to a prior art example. In FIG. 1, two hydraulic iron pipes 1 and 2 are arranged in parallel on both sides of the runner 10, and the ends 1 a and 2 a of these hydraulic iron pipes 1 and 2 are bent at right angles toward the runner 10 alternately. . The three branch pipes 3 to 5 and 6 to 8 are connected to the ends 1 a and 2 a of the hydraulic iron pipes 1 and 2 in a point-symmetric manner with respect to the center of the runner 10. Here, each branch pipe 3-8 is comprised by the curved pipe which has the curve 13 just before the nozzle 9, and all the bending directions of these branch pipes 3-8 are made the same as the rotation direction of the runner 10 shown by the arrow. Yes.

図示水車において、分岐管3〜8の曲り内側に生じるジェット12のフレアー12fは、すべてバケット11の内周側に向かう。その結果、フレアー12fが外周側に飛散してジェット干渉を招くことがなく、従って運転点の高比速度化が可能になる。また、図示の場合は、各3本の分岐管3〜5及び6〜8がランナ10の中心に対して点対称にそれぞれ接続されているため、ランナ10を挟んで相対する分岐管同士の損失が等しくなり、従ってジェット流速も等しくなる結果、ジェットからランナ10に作用する駆動力のランナ半径方向の成分(ラジアルスラスト)のバランスが良好になるなどの利点がある。なお、図示実施の形態では6射形立軸ペルトン水車の例を示したが、この発明は5射形あるいは4射形の立軸ペルトン水車に対しても同様に適用可能である。   In the illustrated water wheel, all of the flare 12f of the jet 12 generated inside the bends of the branch pipes 3 to 8 is directed to the inner peripheral side of the bucket 11. As a result, the flare 12f does not scatter to the outer peripheral side and cause jet interference, so that the specific speed of the operating point can be increased. Moreover, in the case of illustration, since the three branch pipes 3-5 and 6-8 are respectively connected point-symmetrically with respect to the center of the runner 10, the loss of the branch pipes facing each other across the runner 10 is lost. As a result, the jet flow velocities are also equal. As a result, there is an advantage that the balance of the component (radial thrust) in the runner radial direction of the driving force acting on the runner 10 from the jet becomes good. In the illustrated embodiment, an example of a six-shot vertical-axis Pelton turbine has been described. However, the present invention can be similarly applied to a five-shot or four-shoot vertical Pelton turbine.

この発明の実施の形態を示す6射形立軸ペルトン水車の分岐管形状を示す平面図である。It is a top view which shows the branch pipe shape of the 6 shot type | formula vertical shaft Pelton turbine which shows embodiment of this invention. 従来例を示す6射形立軸ペルトン水車の分岐管形状を示す平面図である。It is a top view which shows the branch pipe shape of the 6 shot type | formula vertical shaft Pelton turbine which shows a prior art example. ノズル直前に曲りを有する分岐管からのジェットを示す側面図である。It is a side view which shows the jet from the branch pipe which has a curve just before a nozzle. 6射形立軸ペルトン水車のバケットとジェットとの関係の変化を示す要部平面図である。It is a principal part top view which shows the change of the relationship between the bucket and jet of a six-shot type vertical axis Pelton turbine.

符号の説明Explanation of symbols

1 水圧鉄管
2 水圧鉄管
3〜8 分岐管
9 ノズル
10 ランナ
11 バケット
12 ジェット
12f フレアー
13 分岐管の曲り

DESCRIPTION OF SYMBOLS 1 Hydraulic iron pipe 2 Hydraulic iron pipe 3-8 Branch pipe 9 Nozzle 10 Runner 11 Bucket 12 Jet 12f Flare 13 Bend of branch pipe

Claims (2)

2条の水圧鉄管から分岐する複数の分岐管を通してバケットにジェットが噴射される立軸ペルトンにおいて、
前記複数の分岐管をノズルの直前に曲りを有する曲管で構成するとともに、すべての前記分岐管の曲り方向をランナの回転方向と同じにしたことを特徴とする立軸ペルトン水車。
In the vertical axis Pelton in which a jet is injected into a bucket through a plurality of branch pipes branched from two hydraulic iron pipes,
A vertical shaft Pelton turbine characterized in that the plurality of branch pipes are formed of curved pipes having a bend in front of a nozzle, and the bending directions of all the branch pipes are the same as the rotation direction of the runner.
前記ランナの両側に前記2条の水圧鉄管を互いに平行に配置し、これらの水圧鉄管の先端を前記ランナに向かって互い違いに屈曲し、これらの先端に各複数の前記分岐管を前記ランナの中心に対して点対称にそれぞれ接続したことを特徴とする請求項1記載の立軸ペルトン水車。

The two hydraulic iron pipes are arranged in parallel to each other on both sides of the runner, the ends of the hydraulic iron pipes are bent alternately toward the runner, and a plurality of the branch pipes are arranged at the ends of the center of the runner. The vertical shaft Pelton turbine according to claim 1, wherein the vertical shaft Pelton turbines are connected point-symmetrically to each other.

JP2004320524A 2004-11-04 2004-11-04 Vertical shaft pelton turbine Pending JP2006132383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320524A JP2006132383A (en) 2004-11-04 2004-11-04 Vertical shaft pelton turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320524A JP2006132383A (en) 2004-11-04 2004-11-04 Vertical shaft pelton turbine

Publications (1)

Publication Number Publication Date
JP2006132383A true JP2006132383A (en) 2006-05-25

Family

ID=36726163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320524A Pending JP2006132383A (en) 2004-11-04 2004-11-04 Vertical shaft pelton turbine

Country Status (1)

Country Link
JP (1) JP2006132383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202038A1 (en) * 2015-06-15 2016-12-22 钟太平 Oil pressure water circulation permanent electric generator
CN110529323A (en) * 2019-08-22 2019-12-03 桐城市畅润电力工程有限公司 A kind of automatic adjustment of quick start, which is cut, hits formula hydrogenerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1353483A (en) * 1962-09-25 1964-02-28 Neyrpic Ets New arrangement for supplying the injectors of a vertical axis, multi-jet impulse turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1353483A (en) * 1962-09-25 1964-02-28 Neyrpic Ets New arrangement for supplying the injectors of a vertical axis, multi-jet impulse turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202038A1 (en) * 2015-06-15 2016-12-22 钟太平 Oil pressure water circulation permanent electric generator
CN110529323A (en) * 2019-08-22 2019-12-03 桐城市畅润电力工程有限公司 A kind of automatic adjustment of quick start, which is cut, hits formula hydrogenerator

Similar Documents

Publication Publication Date Title
JP2009531593A5 (en)
JP2010281320A (en) Turbine stage
JP2009191656A (en) Turbine blade-cascade end wall
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
JP5882311B2 (en) Compressor and turbine engine with optimized efficiency
CN101713364A (en) hydraulic machine
US20140308119A1 (en) Hydraulic machinery
JP3910648B2 (en) Turbine nozzle, turbine blade and turbine stage
JP2007291874A (en) Axial flow hydro-turbine runner
JP2009257094A (en) Runner vane of axial flow hydraulic machine
EP3258063A1 (en) Axial flow turbine
JP6518526B2 (en) Axial flow turbine
RU2321766C2 (en) Blade system for wheel of hydraulic turbine
JP2010168903A (en) Centrifugal hydraulic machine
JP2006132383A (en) Vertical shaft pelton turbine
JP2012082826A (en) Turbine bucket shroud tail
EP0877861B1 (en) Hydroelectric power generation plant
JP5230568B2 (en) Runner and fluid machinery
JP6145372B2 (en) Steam turbine blade and steam turbine using the same
JP2005140078A (en) Hydraulic machine
JP2006125348A (en) Steam turbine and its turbine rotor
JPS5941024B2 (en) Francis type runner
JP2005090318A (en) Protection device for hydraulic turbine
JP4861132B2 (en) Hydraulic machine runner and method for producing hydraulic machine runner
JP2007107418A (en) Francis pump turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005