JP2006132330A - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
JP2006132330A
JP2006132330A JP2004318823A JP2004318823A JP2006132330A JP 2006132330 A JP2006132330 A JP 2006132330A JP 2004318823 A JP2004318823 A JP 2004318823A JP 2004318823 A JP2004318823 A JP 2004318823A JP 2006132330 A JP2006132330 A JP 2006132330A
Authority
JP
Japan
Prior art keywords
pressure
gear
working fluid
high pressure
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004318823A
Other languages
Japanese (ja)
Other versions
JP4604654B2 (en
Inventor
Hidenori Kajino
英紀 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004318823A priority Critical patent/JP4604654B2/en
Publication of JP2006132330A publication Critical patent/JP2006132330A/en
Application granted granted Critical
Publication of JP4604654B2 publication Critical patent/JP4604654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump device materializing a mechanism adjusting pressing force of a sealing body against a gear side part according to pressure of working fluid with a simple structure. <P>SOLUTION: A gear pump device 10 is provided with a gear 30 sending hydraulic oil to a high pressure side flow pass 40 from a low pressure side flow pass 42, and a case 14 pressed against the side part 36 of the gear 30. hydraulic oil in the high pressure side flow pass 40 is led to a first pressure operating surface 16 and a second pressure operating surface 18 formed on the case 14 in a multi-stage shape. The valves 20, 22 leads hydraulic oil in the high pressure side flow pass 40 to the second pressure operating surface 18 when pressure of hydraulic oil in the high pressure side flow pass 40 and leads hydraulic oil in the low pressure side flow pass 42 to the second pressure operating surface 18 when pressure of hydraulic oil in the high pressure side flow pass 40 is low. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ギヤを有するポンプ装置に関し、例えば車両用油圧サスペンションなどの油圧源として使用することができるギヤポンプに応用可能なポンプ装置に関する。   The present invention relates to a pump device having a gear, and more particularly to a pump device applicable to a gear pump that can be used as a hydraulic source such as a hydraulic suspension for vehicles.

構造が簡素、小型、軽量、騒音性に優れるなどの理由から、油圧システムの油圧源としてギヤポンプが使用されることがあり、ギヤポンプを改善するための技術がいくつか提案されている。例えば特許文献1では、簡単な構造で油液の吐出容量を変化させる可変容量ギヤポンプが提案されている。
特開2002−106479号公報
A gear pump is sometimes used as a hydraulic source of a hydraulic system because of its simple structure, small size, light weight, and excellent noise characteristics, and several techniques for improving the gear pump have been proposed. For example, Patent Document 1 proposes a variable displacement gear pump that changes the oil liquid discharge capacity with a simple structure.
JP 2002-106479 A

ギヤポンプなどのポンプ装置で使用されるギヤの側部からオイルなどの作動流体が漏出すると、ギヤの回転に伴う作動流体の吐出に関する作動効率が低下することがある。そこでギヤ側部の間隙を埋めるためにシール体をギヤの側部に押し当ててギヤ側部のシール性能を向上させることで、作動流体の吐出効率を良好に保つことができる。なお、ギヤ側部に対してシール体を押し当てることを特に「プレッシャーローディング」とも呼ぶ。このプレッシャーローディングにおいてギヤ側部のシール性能を向上させる観点からは、シール体をギヤ側部に強く押し当てることが好ましいが、シール体をギヤ側部に強く押し当てるとシール体とギヤ側部の間で発生する摩擦力が増大し、作動流体の吐出効率の向上を妨げることがある。そのためポンプ装置により調整される作動流体の吐出圧に応じて、作動流体が最適な吐出効率を示す「ギヤ側部に対するシール体の押し当て力」が存在し、「ギヤ側部に対するシール体の押し当て力」に応じて作動流体の吐出圧の上限も制限される。したがって、作動流体の所望吐出圧に応じて「ギヤ側部に対するシール体の押し当て力」を調整することが好ましく、特にそのような「ギヤ側部に対するシール体の押し当て力」の調整を簡素な構成で達成することが好ましい。   When a working fluid such as oil leaks from the side of a gear used in a pump device such as a gear pump, the operating efficiency related to the discharge of the working fluid accompanying the rotation of the gear may be reduced. Therefore, the discharge efficiency of the working fluid can be kept good by pressing the seal body against the side of the gear to improve the sealing performance of the side of the gear in order to fill the gap on the side of the gear. Note that the pressing of the seal body against the gear side portion is particularly called “pressure loading”. In this pressure loading, from the viewpoint of improving the sealing performance of the gear side portion, it is preferable to strongly press the seal body against the gear side portion. However, if the sealing body is strongly pressed against the gear side portion, the seal body and the gear side portion are preferably pressed. The frictional force generated between the two increases, which may hinder the improvement of the discharge efficiency of the working fluid. Therefore, depending on the discharge pressure of the working fluid adjusted by the pump device, there is a “pushing force of the seal body against the gear side” indicating the optimum discharge efficiency of the working fluid. The upper limit of the discharge pressure of the working fluid is also limited according to the “force”. Therefore, it is preferable to adjust the “pressing force of the seal body against the gear side portion” according to the desired discharge pressure of the working fluid, and in particular, the adjustment of the “pressing force of the seal body against the gear side portion” is simplified. It is preferable to achieve with a simple configuration.

本発明は上述の事情を鑑みてなされたものであり、その目的は、ギヤ側部に対するシール体の押し当て力を作動流体の圧力に応じて調整する機構を簡素な構成で達成するポンプ装置を提案することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pump device that achieves a mechanism that adjusts the pressing force of the seal body against the gear side portion according to the pressure of the working fluid with a simple configuration. It is to propose.

本発明の一態様は、ハウジング内に配置されるギヤを備えるポンプ装置に関する。このポンプ装置は、少なくとも一つの圧力作用面を含む圧力作用部を有し、前記圧力作用面に加えられる圧力に応じて前記ギヤの側部に対する押し当て力を変え、前記ギヤの側部における作動流体の流通の封止の程度を前記押し当て力に応じて変えるシール体と、前記ハウジング内の作動流体の圧力に応じて、高圧が加えられる前記圧力作用面の面積を制御する圧力調整手段と、を備えることを特徴とする。   One aspect of the present invention relates to a pump apparatus including a gear disposed in a housing. The pump device includes a pressure acting portion including at least one pressure acting surface, and changes a pressing force against the side portion of the gear according to pressure applied to the pressure acting surface, thereby operating the side portion of the gear. A seal body that changes the degree of sealing of the flow of fluid according to the pressing force; and a pressure adjusting means that controls the area of the pressure acting surface to which a high pressure is applied according to the pressure of the working fluid in the housing; It is characterized by providing.

当該ポンプ装置によれば、高圧が加えられる圧力作用面の面積がハウジング内の作動流体の圧力に応じて調整されるので、ハウジング内の作動流体の圧力に応じてギヤの側部に対する押し当て力が変えられ、ギヤの側部における作動流体の流通の封止の程度がコントロールされる。このように当該ポンプ装置は、圧力調整手段が前記ハウジング内の作動流体の圧力に応じてシール体の圧力作用部の特性を適宜変更することで、前記ギヤの側部における作動流体の流通の封止の程度を調整する。   According to the pump device, since the area of the pressure acting surface to which high pressure is applied is adjusted according to the pressure of the working fluid in the housing, the pressing force against the side of the gear according to the pressure of the working fluid in the housing And the degree of sealing of the working fluid flow at the side of the gear is controlled. Thus, in the pump device, the pressure adjusting means appropriately changes the characteristic of the pressure acting portion of the seal body in accordance with the pressure of the working fluid in the housing, thereby allowing the working fluid to flow in the side portion of the gear. Adjust the degree of stopping.

前記圧力作用部は、複数の圧力作用面を有し、前記圧力調整手段は、前記ハウジング内の作動流体の圧力に応じて、高圧が加えられる前記圧力作用面の数を制御してもよい。この場合、高圧が加えられる圧力作用面の数がハウジング内の作動流体の圧力に応じて調整されることで、高圧が加えられる圧力作用面の面積が調整される。   The pressure acting part may have a plurality of pressure acting surfaces, and the pressure adjusting means may control the number of pressure acting surfaces to which a high pressure is applied according to the pressure of the working fluid in the housing. In this case, the area of the pressure acting surface to which the high pressure is applied is adjusted by adjusting the number of pressure acting surfaces to which the high pressure is applied according to the pressure of the working fluid in the housing.

前記圧力調整手段は、前記ハウジング内の作動流体を使用して前記圧力作用面に高圧を加えてもよい。この場合、前記ハウジング内の作動流体を効果的に活用することができる。   The pressure adjusting means may apply a high pressure to the pressure acting surface using a working fluid in the housing. In this case, the working fluid in the housing can be effectively utilized.

前記シール体は、前記圧力作用部を構成する少なくとも一つの段部を有し、前記圧力作用面は、前記段部によって構成されてもよい。この場合、段部という簡単な構造で圧力作用部および圧力作用面を構成することができる。   The seal body may include at least one step portion constituting the pressure acting portion, and the pressure acting surface may be constituted by the step portion. In this case, the pressure acting portion and the pressure acting surface can be configured with a simple structure called a stepped portion.

前記ハウジング内の作動流体は、前記ギヤを介して低圧作動流体と高圧作動流体に分けられ、前記圧力調整手段は、前記ギヤの側部のうち低圧作動流体側の側部よりも高圧作動流体側の側部のほうが前記シール体によって強く押し当てられるように、高圧が加えられる前記圧力作用面の面積を制御してもよい。   The working fluid in the housing is divided into a low-pressure working fluid and a high-pressure working fluid through the gear, and the pressure adjusting means is on the high-pressure working fluid side of the side portion of the gear with respect to the low-pressure working fluid side portion. The area of the pressure acting surface to which a high pressure is applied may be controlled so that the side of the pressure member is strongly pressed by the seal body.

通常は、シール体がギヤ側部に強く押し当てられるほどギヤ側部における作動流体の流通の封止の効果が高い。したがって当該ポンプ装置によれば、少なくとも高圧作動流体側の側部において高い封止効果を確保することができるので、高圧作動流体が低圧作動流体に流入してしまうことを効果的に防ぐことができる。   Usually, the stronger the seal body is pressed against the gear side, the higher the effect of sealing the flow of working fluid in the gear side. Therefore, according to the pump device, since a high sealing effect can be ensured at least on the side portion on the high pressure working fluid side, it is possible to effectively prevent the high pressure working fluid from flowing into the low pressure working fluid. .

本発明によれば、ハウジング内の作動流体の圧力に応じて高圧が加えられる圧力作用面の面積が制御され、シール体のギヤ側面に対する押し当て力を調整する機構を簡素な構成で実現することができる。   According to the present invention, the area of the pressure acting surface to which a high pressure is applied according to the pressure of the working fluid in the housing is controlled, and a mechanism for adjusting the pressing force against the gear side surface of the seal body is realized with a simple configuration. Can do.

以下、図面を参照して本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態を適用したギヤポンプ装置10の断面図である。図2は、図1のC−C線部分の断面図である。なお図2に示される駆動ギヤ30および従動ギヤ32は上方から見た図が示されている。   FIG. 1 is a cross-sectional view of a gear pump device 10 to which an embodiment of the present invention is applied. FIG. 2 is a cross-sectional view taken along line CC in FIG. Note that the drive gear 30 and the driven gear 32 shown in FIG. 2 are viewed from above.

本実施の形態のギヤポンプ装置10は、ハウジング12内に配置され相互に噛み合う駆動ギヤ30および従動ギヤ32と、駆動ギヤ30および従動ギヤ32の各々に対して設けられ駆動ギヤ30および従動ギヤ32の一方の側部36(「第1ギヤ側部36」とも呼ぶ)に当接するケース14と、を備える。   The gear pump device 10 according to the present embodiment is provided in each of the drive gear 30 and the driven gear 32 arranged in the housing 12 and meshing with each other, and the drive gear 30 and the driven gear 32. And a case 14 in contact with one side portion 36 (also referred to as “first gear side portion 36”).

駆動ギヤ30は、駆動モータ(図示せず)に連結される駆動ギヤ軸部31を有し、駆動モータによって駆動ギヤ軸部31を中心に軸回転駆動される。従動ギヤ32は、駆動ギヤ30の回転に伴って従動ギヤ軸部33を中心に軸回転する。駆動モータと駆動ギヤ軸部31とは継手(図示せず)を介して連結されている。   The drive gear 30 has a drive gear shaft portion 31 connected to a drive motor (not shown), and is driven to rotate about the drive gear shaft portion 31 by the drive motor. The driven gear 32 rotates about the driven gear shaft 33 as the drive gear 30 rotates. The drive motor and the drive gear shaft 31 are connected via a joint (not shown).

ケース14は、図1に示すように円筒状の形状を有し、駆動ギヤ30あるいは従動ギヤ32の第1ギヤ側部36に密接して、第1ギヤ側部36における作動オイルの流通を封止する。ケース14の中央部には駆動ギヤ軸部31や従動ギヤ軸部33が挿入されるケース中心孔19が形成され、ケース中心孔19の全周囲には階段状に設けられた第1圧力作用段部15および第2圧力作用段部17が形成されている。第1圧力作用段部15の上面部分はリング状の第1圧力作用面16を構成し、第2圧力作用段部17の上面部分はリング状の第2圧力作用面18を構成する。このケース14は、第1圧力作用面16および第2圧力作用面18に加えられる圧力に応じて駆動ギヤ30あるいは従動ギヤ32に対する押し当て力を変え、駆動ギヤ30あるいは従動ギヤ32の第1ギヤ側部36における作動オイルの流通の封止の程度を押し当て力に応じて変える。   As shown in FIG. 1, the case 14 has a cylindrical shape and is in close contact with the first gear side portion 36 of the drive gear 30 or the driven gear 32 to seal the flow of hydraulic oil in the first gear side portion 36. Stop. A case center hole 19 into which the drive gear shaft portion 31 and the driven gear shaft portion 33 are inserted is formed in the center portion of the case 14, and a first pressure action stage provided in a step shape around the entire case center hole 19. A portion 15 and a second pressure acting step portion 17 are formed. The upper surface portion of the first pressure acting step portion 15 constitutes a ring-shaped first pressure acting surface 16, and the upper surface portion of the second pressure acting step portion 17 constitutes a ring-shaped second pressure acting surface 18. The case 14 changes the pressing force against the driving gear 30 or the driven gear 32 according to the pressure applied to the first pressure acting surface 16 and the second pressure acting surface 18, and the first gear of the driving gear 30 or the driven gear 32. The degree of sealing of the distribution of the working oil in the side portion 36 is changed according to the pressing force.

ハウジング12には、作動オイルの流路である高圧側流路40および低圧側流路42が形成されている。高圧側流路40および低圧側流路42は駆動ギヤ30および従動ギヤ32を介した位置に配置され、駆動ギヤ30および従動ギヤ32が回転することにより作動オイルが掻かれて低圧側流路42から高圧側流路40に作動オイルが流れ込む。そのためハウジング12内の作動オイルは低圧側流路42を流れる比較的低圧の作動オイル(「低圧作動オイル」とも呼ぶ)と、高圧側流路40を流れる比較的高圧の作動オイル(「高圧作動オイル」とも呼ぶ)とに分けられる。   The housing 12 is formed with a high-pressure side flow path 40 and a low-pressure side flow path 42, which are working oil flow paths. The high pressure side flow path 40 and the low pressure side flow path 42 are arranged at positions via the drive gear 30 and the driven gear 32, and the operating oil is scratched by the rotation of the drive gear 30 and the driven gear 32, and the low pressure side flow path 42. The working oil flows into the high-pressure side passage 40 from above. Therefore, the hydraulic oil in the housing 12 is relatively low pressure hydraulic oil (also referred to as “low pressure hydraulic oil”) flowing in the low pressure side flow path 42 and relatively high pressure hydraulic oil (“high pressure hydraulic oil” flowing in the high pressure side flow path 40. Is also called).

ハウジング12内には、高圧側流路40と第1圧力作用面16を連通する第1圧力調整油路44と、高圧側流路40と第2圧力作用面18を連通する第2圧力調整油路46とが形成されている。第2圧力調整油路46は、途中で分岐して第1圧力感応バルブ20を介し低圧側流路42に連通する。第1圧力感応バルブ20は、第2圧力調整油路46と低圧側流路42の間の作動オイルの流量を調整する。また第2圧力調整油路46には、高圧側流路40から流れ込んでくる作動オイルの流量を調整する第2圧力感応バルブ22が設けられている。   In the housing 12, a first pressure adjustment oil passage 44 that communicates the high pressure side flow path 40 and the first pressure application surface 16, and a second pressure adjustment oil that communicates the high pressure side flow passage 40 and the second pressure application surface 18. A passage 46 is formed. The second pressure adjusting oil passage 46 branches in the middle and communicates with the low pressure side passage 42 via the first pressure sensitive valve 20. The first pressure sensitive valve 20 adjusts the flow rate of the working oil between the second pressure adjusting oil passage 46 and the low pressure side passage 42. The second pressure adjusting oil passage 46 is provided with a second pressure sensitive valve 22 for adjusting the flow rate of the working oil flowing from the high pressure side passage 40.

第1圧力感応バルブ20および第2圧力感応バルブ22は、ハウジング12内の作動オイルの油圧に応じて作動する機械的な構造を有する。特に本実施の形態では、高圧側流路40内の作動オイルの圧力が所定の圧力以上に達すると、第2圧力感応バルブ22が開弁するとともに第1圧力感応バルブ20が閉弁する。一方、高圧側流路40内の作動オイルの圧力が所定の圧力よりも小さい場合には、第2圧力感応バルブ22が閉弁するとともに第1圧力感応バルブ20が開弁する。そのような第1圧力感応バルブ20および第2圧力感応バルブ22の構成の一例が図3に示されている。   The first pressure sensitive valve 20 and the second pressure sensitive valve 22 have a mechanical structure that operates according to the hydraulic pressure of the working oil in the housing 12. In particular, in the present embodiment, when the pressure of the working oil in the high-pressure side passage 40 reaches a predetermined pressure or higher, the second pressure sensitive valve 22 is opened and the first pressure sensitive valve 20 is closed. On the other hand, when the pressure of the working oil in the high-pressure channel 40 is smaller than a predetermined pressure, the second pressure sensitive valve 22 is closed and the first pressure sensitive valve 20 is opened. An example of the configuration of the first pressure sensitive valve 20 and the second pressure sensitive valve 22 is shown in FIG.

図3は、機械的な構造を有する第1圧力感応バルブ20および第2圧力感応バルブ22の一例を示す図である。高圧側流路40と第2圧力調整油路46の間、および低圧側流路42と第2圧力調整油路46の間には、ピストン−シリンダ構造を有する油圧調整シリンダ60および油圧調整ピストン62が配置されている。油圧調整シリンダ60の一方の端部には、高圧側流路40から分岐する高圧側分岐流路41が接続されている。油圧調整シリンダ60内において、油圧調整ピストン62の一方の側には高圧側分岐流路41から作動オイルが流入し、油圧調整ピストン62の他方の側には油圧調整ピストン62を押圧する油圧調整バネ64が配置されている。油圧調整ピストン62は、高圧側分岐流路41から流入する作動オイルによってもたらされる力と、油圧調整バネ64の弾性力のバランス関係に基づいて油圧調整シリンダ60内における配置位置を変える。   FIG. 3 is a diagram showing an example of the first pressure sensitive valve 20 and the second pressure sensitive valve 22 having a mechanical structure. Between the high-pressure side passage 40 and the second pressure adjustment oil passage 46 and between the low-pressure side passage 42 and the second pressure adjustment oil passage 46, a hydraulic pressure adjustment cylinder 60 and a hydraulic pressure adjustment piston 62 having a piston-cylinder structure. Is arranged. A high pressure side branch flow path 41 that branches from the high pressure side flow path 40 is connected to one end of the hydraulic pressure adjustment cylinder 60. In the hydraulic pressure adjustment cylinder 60, hydraulic oil flows into the one side of the hydraulic pressure adjustment piston 62 from the high pressure side branch passage 41 and presses the hydraulic pressure adjustment piston 62 to the other side of the hydraulic pressure adjustment piston 62. 64 is arranged. The hydraulic pressure adjusting piston 62 changes the arrangement position in the hydraulic pressure adjusting cylinder 60 based on the balance relationship between the force caused by the working oil flowing from the high pressure side branch flow path 41 and the elastic force of the hydraulic pressure adjusting spring 64.

例えば高圧側分岐流路41から油圧調整シリンダ60に流入する高圧作動オイルの圧力が比較的高い場合、油圧調整ピストン62は油圧調整バネ64の弾性力に抗うようにして油圧調整バネ64側へ移動する(図3の矢印A参照)。そして低圧側流路42と第2圧力調整油路46の間に油圧調整ピストン62が配置されると、高圧側流路40−第2圧力調整油路46間の作動オイルの流通が確保されるとともに、低圧側流路42−第2圧力調整油路46間の作動オイルの流通が止められる(図3の点線で描かれた62、64参照)。一方、高圧側分岐流路41から油圧調整シリンダ60に流入する高圧作動オイルの圧力が比較的低い場合、油圧調整ピストン62は油圧調整バネ64により押圧されて高圧作動オイル側へ移動する(図3の矢印B参照)。そして高圧側流路40と第2圧力調整油路46の間に油圧調整ピストン62が配置されると、高圧側流路40−第2圧力調整油路46間の作動オイルの流通が止められるとともに、低圧側流路42−第2圧力調整油路46間の作動オイルの流通が確保される(図3の実線で描かれた62、64参照)。   For example, when the pressure of the high pressure hydraulic oil flowing into the hydraulic pressure adjustment cylinder 60 from the high pressure side branch passage 41 is relatively high, the hydraulic pressure adjustment piston 62 moves toward the hydraulic pressure adjustment spring 64 against the elastic force of the hydraulic pressure adjustment spring 64. (See arrow A in FIG. 3). When the hydraulic pressure adjustment piston 62 is disposed between the low pressure side flow path 42 and the second pressure adjustment oil path 46, the flow of the working oil between the high pressure side flow path 40 and the second pressure adjustment oil path 46 is ensured. At the same time, the flow of the working oil between the low pressure side flow path 42 and the second pressure adjusting oil path 46 is stopped (see 62 and 64 drawn by the dotted line in FIG. 3). On the other hand, when the pressure of the high pressure hydraulic oil flowing into the hydraulic pressure adjustment cylinder 60 from the high pressure side branch passage 41 is relatively low, the hydraulic pressure adjustment piston 62 is pressed by the hydraulic pressure adjustment spring 64 and moves to the high pressure hydraulic oil side (FIG. 3). Arrow B). When the hydraulic pressure adjustment piston 62 is disposed between the high pressure side flow path 40 and the second pressure adjustment oil path 46, the flow of the working oil between the high pressure side flow path 40 and the second pressure adjustment oil path 46 is stopped. Thus, the flow of the working oil between the low pressure side flow path 42 and the second pressure adjustment oil path 46 is ensured (see 62 and 64 drawn with a solid line in FIG. 3).

このように図3に示す例では、油圧調整シリンダ60、油圧調整ピストン62、および油圧調整バネ64によって第1圧力感応バルブ20および第2圧力感応バルブ22が機械的に構成される。そして高圧側流路40内の高圧作動オイルの圧力に応じた油圧調整シリンダ60内における油圧調整ピストン62の移動によって第1圧力感応バルブ20および第2圧力感応バルブ22が開弁あるいは閉弁し、高圧側流路40内の高圧作動オイルを利用して高圧が加えられる圧力作用面の数を調整することで、高圧が加えられる前記圧力作用面の面積を制御する。第1圧力感応バルブ20が開弁するとともに第2圧力感応バルブ22が閉弁する場合、高圧側流路40から第1圧力調整油路44に高圧作動オイルが流入して第1圧力作用面16には高圧が加えられるが、第2圧力作用面18には低圧側流路42から第2圧力調整油路46に流入する低圧作動オイルによって比較的低圧が加えられる。一方、第1圧力感応バルブ20が閉弁するとともに第2圧力感応バルブ22が開弁する場合、高圧側流路40から第1圧力調整油路44および第2圧力調整油路46に高圧作動オイルが流入して、第1圧力作用面16だけではなく第2圧力作用面18にも高圧が加えられる。そして第2圧力作用面18に高圧側流路40内の高圧作動オイルが流入している状態で第1圧力感応バルブ20を開弁するとともに第2圧力感応バルブ22を閉弁することで、第2圧力作用面18には低圧側流路42内の低圧作動オイルの圧力が作用して比較的低圧が加えられる。   As described above, in the example illustrated in FIG. 3, the first pressure sensitive valve 20 and the second pressure sensitive valve 22 are mechanically configured by the hydraulic pressure adjusting cylinder 60, the hydraulic pressure adjusting piston 62, and the hydraulic pressure adjusting spring 64. The first pressure sensitive valve 20 and the second pressure sensitive valve 22 are opened or closed by the movement of the hydraulic pressure adjustment piston 62 in the hydraulic pressure adjustment cylinder 60 according to the pressure of the high pressure hydraulic oil in the high pressure side flow path 40. The area of the pressure acting surface to which the high pressure is applied is controlled by adjusting the number of pressure acting surfaces to which the high pressure is applied using the high pressure hydraulic oil in the high pressure side flow path 40. When the first pressure sensitive valve 20 is opened and the second pressure sensitive valve 22 is closed, the high pressure working oil flows from the high pressure side passage 40 into the first pressure adjusting oil passage 44 and the first pressure acting surface 16. Although a high pressure is applied to the second pressure acting surface 18, a relatively low pressure is applied to the second pressure acting surface 18 by the low pressure hydraulic oil flowing from the low pressure side passage 42 into the second pressure adjusting oil passage 46. On the other hand, when the first pressure sensitive valve 20 is closed and the second pressure sensitive valve 22 is opened, the high pressure hydraulic oil is transferred from the high pressure side passage 40 to the first pressure adjustment oil passage 44 and the second pressure adjustment oil passage 46. Flows into the second pressure acting surface 18 as well as the first pressure acting surface 16. The first pressure sensitive valve 20 is opened and the second pressure sensitive valve 22 is closed while the high pressure working oil in the high pressure side flow passage 40 is flowing into the second pressure acting surface 18. The pressure of the low-pressure working oil in the low-pressure side flow path 42 acts on the two pressure acting surface 18 to apply a relatively low pressure.

なお、油圧調整シリンダ60内における油圧調整ピストン62の移動特性は、高圧作動オイルの圧力および油圧調整バネ64のバネ特性によって変動するので、例えば高圧側流路40から油圧調整ピストン62内に流入することが予想される高圧作動オイルの圧力に応じて油圧調整バネ64のバネ定数を調整することで所望の「油圧調整ピストン62の移動特性」を得ることができる。なお図3には基本原理を示す構成が図示されており、実際のギヤポンプ装置10では他の部分の配置状態などに応じた変形が適宜加えられる。   Note that the movement characteristic of the hydraulic pressure adjusting piston 62 in the hydraulic pressure adjusting cylinder 60 varies depending on the pressure of the high pressure hydraulic oil and the spring characteristics of the hydraulic pressure adjusting spring 64, and therefore flows into the hydraulic pressure adjusting piston 62 from the high pressure side flow path 40, for example. By adjusting the spring constant of the hydraulic pressure adjustment spring 64 according to the pressure of the high-pressure hydraulic oil that is expected to be expected, a desired “movement characteristic of the hydraulic pressure adjustment piston 62” can be obtained. FIG. 3 shows a configuration showing the basic principle, and the actual gear pump device 10 is appropriately modified in accordance with the arrangement state of other parts.

また図1に示すように、第1圧力調整油路44におけるハウジング12とケース14の間には第1環状シール部材24が設けられ、第2圧力調整油路46におけるハウジング12とケース14の間には第2環状シール部材26が設けられて、ハウジング12とケース14の間がシールされている。   Further, as shown in FIG. 1, a first annular seal member 24 is provided between the housing 12 and the case 14 in the first pressure adjusting oil passage 44, and between the housing 12 and the case 14 in the second pressure adjusting oil passage 46. Is provided with a second annular seal member 26 to seal between the housing 12 and the case 14.

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

本実施の形態のギヤポンプ装置10では、駆動ギヤ30および従動ギヤ32の第1ギヤ側部36における作動オイルの流通封止の程度が高圧側流路40内の作動オイルの圧力に応じて変わる。例えば高圧側流路40内の作動オイルの圧力が比較的低い場合、第2圧力感応バルブ22は閉弁して、作動オイルによって第1圧力作用面16に高圧が加えられるとともに第2圧力作用面18に低圧が加えられた状態で、ケース14は駆動ギヤ30および従動ギヤ32の第1ギヤ側部36に押し当てられる。一方、高圧側流路40内の作動オイルの圧力が比較的高い場合、第2圧力感応バルブ22は開弁して、作動オイルによって第1圧力作用面16だけではなく第2圧力作用面18にも高圧が加えられ、ケース14は駆動ギヤ30および従動ギヤ32の第1ギヤ側部36に強い力で押し当てられる。   In the gear pump device 10 of the present embodiment, the degree of hydraulic oil circulation sealing in the first gear side portion 36 of the drive gear 30 and the driven gear 32 varies depending on the pressure of the hydraulic oil in the high-pressure side flow path 40. For example, when the pressure of the working oil in the high-pressure side passage 40 is relatively low, the second pressure sensitive valve 22 is closed, and a high pressure is applied to the first pressure acting surface 16 by the working oil and the second pressure acting surface. With the low pressure applied to the case 18, the case 14 is pressed against the first gear side 36 of the drive gear 30 and the driven gear 32. On the other hand, when the pressure of the working oil in the high-pressure side passage 40 is relatively high, the second pressure sensitive valve 22 is opened, and not only the first pressure acting surface 16 but also the second pressure acting surface 18 is caused by the working oil. The case 14 is pressed against the first gear side portion 36 of the drive gear 30 and the driven gear 32 with a strong force.

第1ギヤ側部36における作動オイルの流通封止の程度は駆動ギヤ30、従動ギヤ32に対するケース14の押し当て力に応じて変動するので、高圧側流路40内の作動オイルの圧力が低い場合よりも高い場合のほうが第1ギヤ側部36における作動オイルの流通封止の程度が高まる。したがって本実施の形態では、高圧側流路40内の作動オイルの圧力に応じて第1ギヤ側部36における作動オイルの流通封止の程度を適切にコントロールすることができ、駆動ギヤ30および従動ギヤ32によって生成され高圧側流路40内に吐出される作動オイルの昇圧に関する効率を良好に保つことができる(後述する図5参照)。   Since the degree of hydraulic oil flow sealing in the first gear side portion 36 varies depending on the pressing force of the case 14 against the drive gear 30 and the driven gear 32, the pressure of the hydraulic oil in the high-pressure side passage 40 is low. The higher the case, the higher the degree of hydraulic oil flow sealing at the first gear side 36. Therefore, in the present embodiment, the degree of hydraulic oil circulation sealing in the first gear side portion 36 can be appropriately controlled according to the pressure of the hydraulic oil in the high-pressure side passage 40, and the drive gear 30 and the driven gear can be controlled. The efficiency related to the pressure increase of the working oil generated by the gear 32 and discharged into the high-pressure channel 40 can be kept good (see FIG. 5 described later).

図4は、高圧側流路40内の作動オイルの圧力(「高圧側作動オイル圧力」とも呼ぶ)と作動効率の一般的な関係を示す図である。ここでいう「作動効率」とは、「作動オイルの圧力変動量」に対する「ギヤポンプ装置10の作動時に費やされるエネルギー量」の割合を直接的あるいは間接的に示す指標値である。図4において、タイプ1は「駆動ギヤ30、従動ギヤ32に対するケース14の押し当て力が小さい場合」の関係を示し、タイプ2は「駆動ギヤ30、従動ギヤ32に対するケース14の押し当て力が中程度の場合」の関係を示し、タイプ3は「駆動ギヤ30、従動ギヤ32に対するケース14の押し当て力が大きい場合」の関係を示す。図4に示すようにタイプ1〜タイプ3は、各々の特徴に応じて、それぞれ他のタイプよりも有利な範囲が存在する。例えば高圧作動オイル圧力が比較的小さい範囲(図4の「A」参照)ではタイプ1が作動効率に関して有利であり、高圧作動オイル圧力が中程度の範囲(図4の「B」参照)ではタイプ2が作動効率に関して有利であり、高圧作動オイル圧力が比較的大きい範囲(図4の「C」参照)ではタイプ3が作動効率に関して有利である。   FIG. 4 is a diagram showing a general relationship between the operating oil pressure in the high-pressure channel 40 (also referred to as “high-pressure operating oil pressure”) and the operating efficiency. The “operation efficiency” here is an index value that directly or indirectly indicates a ratio of “amount of energy consumed when the gear pump device 10 is operated” to “amount of pressure fluctuation of the working oil”. In FIG. 4, type 1 shows the relationship “when the pressing force of the case 14 against the driving gear 30 and the driven gear 32 is small”, and type 2 shows the relationship “the pressing force of the case 14 against the driving gear 30 and the driven gear 32. The relationship of “medium” is shown, and the type 3 shows the relationship of “when the pressing force of the case 14 against the driving gear 30 and the driven gear 32 is large”. As shown in FIG. 4, types 1 to 3 each have a more advantageous range than the other types depending on their characteristics. For example, in the range where the high pressure hydraulic oil pressure is relatively small (see “A” in FIG. 4), type 1 is advantageous in terms of operating efficiency, and in the range where the high pressure hydraulic oil pressure is moderate (see “B” in FIG. 4) 2 is advantageous in terms of operating efficiency, and type 3 is advantageous in terms of operating efficiency in the range where the high-pressure operating oil pressure is relatively large (see “C” in FIG. 4).

図5は、本実施の形態における「高圧側作動オイル圧力と作動効率の関係を示す図」(図5(a)参照)および「高圧側作動オイル圧力とギヤ押し当て力の関係を示す図」(図5(b)参照)を示す。ここでいう「ギヤ押し当て力」とは、駆動ギヤ30、従動ギヤ32の第1ギヤ側部36に対するケース14の押し当て力を意味する。本実施の形態において、高圧作動オイル圧力が比較的小さい範囲(図4の「A’」参照)では、第2圧力感応バルブ22が閉弁して第1圧力作用面16にのみ高圧が加えられ、ギヤ押し当て力は比較的小さい。そして高圧作動オイル圧力が比較的大きい範囲(図4の「B’」参照)では、第2圧力感応バルブ22が開弁して第1圧力作用面16および第2圧力作用面18に高圧が加えられ、ギヤ押し当て力は比較的大きくなる。これにより「高圧側作動オイル圧力と作動効率の関係」は図5(a)の実線で示すような関係となり、高圧側作動オイル圧力の範囲に応じた適切な作動効率を確保することができる。   FIG. 5 is a diagram showing the relationship between the high-pressure side hydraulic oil pressure and the operating efficiency (see FIG. 5A) and the diagram showing the relationship between the high-pressure side hydraulic oil pressure and the gear pressing force in the present embodiment. (See FIG. 5B). Here, the “gear pressing force” means the pressing force of the case 14 against the first gear side portion 36 of the drive gear 30 and the driven gear 32. In the present embodiment, in a range where the high pressure hydraulic oil pressure is relatively small (see “A ′” in FIG. 4), the second pressure sensitive valve 22 is closed and high pressure is applied only to the first pressure acting surface 16. The gear pressing force is relatively small. In a range where the high pressure hydraulic oil pressure is relatively large (see “B ′” in FIG. 4), the second pressure sensitive valve 22 is opened and high pressure is applied to the first pressure acting surface 16 and the second pressure acting surface 18. Therefore, the gear pressing force becomes relatively large. As a result, the “relationship between the high-pressure side hydraulic oil pressure and the operational efficiency” becomes a relationship as shown by the solid line in FIG. 5A, and it is possible to ensure an appropriate operational efficiency according to the range of the high-pressure side hydraulic oil pressure.

以上説明したように本実施の形態によれば、高圧側流路40の作動オイルの圧力に応じて第1圧力感応バルブ20および第2圧力感応バルブ22の開閉が調節され、高圧が加えられる圧力作用面の数、面積が適宜制御されるので、第1ギヤ側部36に対するケース14の押し当て力を適切な大きさにコントロールすることができる。特に本実施の形態では、複数形成された圧力作用面16、18のうち高圧が負荷される数が制御されており、第1ギヤ側部36に対するケース14の押し当て力が簡素な構成で段階的に調整されるので、押し当て力をより適切な大きさに調整することができる。これにより第1ギヤ側部36をケース14によって適切にシールするとともに、ケース14と駆動ギヤ30、従動ギヤ32との間の摩擦力によるエネルギーロスを減少させることができ、エネルギー効率に優れたギヤポンプ装置10の運転を実施することができる。また特に本実施の形態では、ケース14の圧力作用部分の構造的な特性を工夫することにより、上述のような効率の良いギヤポンプ装置10の運転が実現される。このように本実施の形態によれば、簡素な機械的な構成によって効率的なポンプ運転を実施することができるので、複雑化を防いでギヤポンプ装置10を安価に提供することも可能である。   As described above, according to the present embodiment, the opening and closing of the first pressure sensitive valve 20 and the second pressure sensitive valve 22 are adjusted according to the pressure of the working oil in the high pressure side passage 40, and the pressure at which high pressure is applied. Since the number and area of the working surfaces are appropriately controlled, the pressing force of the case 14 against the first gear side portion 36 can be controlled to an appropriate magnitude. In particular, in the present embodiment, the number of pressure applied surfaces 16 and 18 that are formed is controlled so that the pressure applied to the case 14 against the first gear side portion 36 is a simple configuration. Therefore, the pressing force can be adjusted to a more appropriate size. As a result, the first gear side portion 36 is properly sealed by the case 14, and energy loss due to frictional force between the case 14, the drive gear 30, and the driven gear 32 can be reduced, and the gear pump is excellent in energy efficiency. The operation of the device 10 can be carried out. Particularly in the present embodiment, the efficient operation of the gear pump device 10 as described above is realized by devising the structural characteristics of the pressure acting portion of the case 14. As described above, according to the present embodiment, efficient pump operation can be performed with a simple mechanical configuration, so that the gear pump device 10 can be provided at a low cost while preventing complication.

本発明は上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を上述の実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added to the above-described embodiments based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the present invention.

例えば、上述の実施の形態では図1に示すように駆動ギヤ30および従動ギヤ32によって圧力コントロールされる作動オイルの流路40、42が駆動ギヤ30および従動ギヤ32の回転方向を含む平面に沿って延設される例について説明したが、それに限定されない。本発明に係るギヤポンプ装置10では、ハウジング12内における作動オイルの流路を、上述の目的を達成することができる範囲で任意の方向へ延設することが可能ある。例えば図6に示すように、駆動ギヤ30および従動ギヤ32の回転方向を含む平面に対して垂直な方向へ高圧側流路40および低圧側流路42を延設することも可能である。   For example, in the above-described embodiment, as shown in FIG. 1, the hydraulic oil flow paths 40 and 42 controlled in pressure by the drive gear 30 and the driven gear 32 are along a plane including the rotation directions of the drive gear 30 and the driven gear 32. However, the present invention is not limited to this. In the gear pump device 10 according to the present invention, it is possible to extend the flow path of the working oil in the housing 12 in an arbitrary direction as long as the above-described object can be achieved. For example, as shown in FIG. 6, the high-pressure side flow path 40 and the low-pressure side flow path 42 can be extended in a direction perpendicular to a plane including the rotation direction of the drive gear 30 and the driven gear 32.

また、上述の実施の形態では第1圧力感応バルブ20および第2圧力感応バルブ22が図3に示す機械的な構成を有する例について説明したが、他の既存の技術を応用して第1圧力感応バルブ20および第2圧力感応バルブ22を構成することも可能である。例えば、高圧側流路40内の作動オイルの液圧を検出する液圧センサを設け、その液圧センサの検出結果に基づいて開閉がコントロールされる電磁バルブを第1圧力感応バルブ20および第2圧力感応バルブ22に適用することも可能である。   In the above-described embodiment, the example in which the first pressure-sensitive valve 20 and the second pressure-sensitive valve 22 have the mechanical configuration shown in FIG. 3 has been described. It is also possible to configure the sensitive valve 20 and the second pressure sensitive valve 22. For example, a hydraulic pressure sensor that detects the hydraulic pressure of the working oil in the high-pressure side flow path 40 is provided, and the electromagnetic valves whose opening and closing are controlled based on the detection result of the hydraulic pressure sensor are the first pressure sensitive valve 20 and the second It is also possible to apply to the pressure sensitive valve 22.

また、上述の実施の形態では第1圧力作用段部15および第2圧力作用段部17の二段構成によって二つの圧力作用面を形成する例について説明したが、これに限定されるものではない。例えば、三以上の多段構成によって三つの圧力作用面を形成したり、一つの段部によって形成される圧力作用面を複数に区画することで複数の圧力作用面を形成したり、段状構造以外の構造によって複数の圧力作用面を形成することも可能である。また、単数の圧力作用面を形成して、この圧力作用面のうち比較的高圧が加えられる面積と比較的低圧が加えられる面積とを高圧側流路40の作動オイルの圧力に応じて制御する機構を採用することで、第1ギヤ側部36に対するケース14の押し当て力を適切な大きさにコントロールすることも可能である。   Moreover, although the above-mentioned embodiment demonstrated the example which forms two pressure action surfaces by the two-step structure of the 1st pressure action step part 15 and the 2nd pressure action step part 17, it is not limited to this. . For example, three pressure action surfaces are formed by three or more multistage configurations, or a plurality of pressure action surfaces are formed by dividing a plurality of pressure action surfaces formed by one step portion, or other than stepped structures It is also possible to form a plurality of pressure acting surfaces by this structure. Further, a single pressure acting surface is formed, and an area where a relatively high pressure is applied and an area where a relatively low pressure is applied are controlled in accordance with the pressure of the working oil in the high pressure side flow path 40. By adopting the mechanism, it is possible to control the pressing force of the case 14 against the first gear side portion 36 to an appropriate magnitude.

また、上述の実施の形態では第1圧力作用面16および第2圧力作用面18がリング状に形成されている例について説明したが、ケース14を駆動ギヤ30、従動ギヤ32に対し押し当てることができれば半リング状等、どのような形状であってもよい。例えば、高圧が加えられる圧力作用面を高圧側作動オイルが流れる高圧側流路40側に形成し、第1ギヤ側部36のうち低圧作動オイルが流れる低圧側流路42側よりも高圧側流路40側のほうがケース14によって強く押し当てられるように設定することも可能である。この場合、比較的小さな圧力作用面に高圧が加えられるが、駆動ギヤ30、従動ギヤ32の第1ギヤ側部36に漏出しやすい高圧側流路40内の高圧作動オイルはケース14によって適切にシールされる。このように本変形例によれば、第1ギヤ側部36において高いシール効果を確保することができるだけではなく、駆動ギヤ30、従動ギヤ32に対するケース14の押し当てに費やされるエネルギー消費量を抑えることができる。   In the above-described embodiment, the example in which the first pressure acting surface 16 and the second pressure acting surface 18 are formed in a ring shape has been described, but the case 14 is pressed against the driving gear 30 and the driven gear 32. If possible, any shape such as a semi-ring shape may be used. For example, a pressure acting surface to which high pressure is applied is formed on the high pressure side flow path 40 side through which the high pressure side working oil flows, and the first gear side portion 36 has a higher pressure side flow than the low pressure side flow path 42 through which the low pressure working oil flows. It is also possible to set so that the road 40 side is strongly pressed by the case 14. In this case, although a high pressure is applied to a relatively small pressure acting surface, the high-pressure hydraulic oil in the high-pressure side passage 40 that easily leaks to the first gear side portion 36 of the drive gear 30 and the driven gear 32 is appropriately applied by the case 14. Sealed. As described above, according to the present modification, not only can a high sealing effect be ensured in the first gear side portion 36, but also the amount of energy consumed for pressing the case 14 against the drive gear 30 and the driven gear 32 can be suppressed. be able to.

また、上述の実施の形態ではギヤポンプに関して説明したが、本発明はハウジング内にギヤが配置されるポンプ装置全般に対して応用可能である。例えば少なくとも一部が作動オイルなどの流体に接するギヤを備えるベーンポンプなどの各種ポンプに対しても本発明は有効である。   Moreover, although the above-mentioned embodiment demonstrated the gear pump, this invention is applicable with respect to the pump apparatus with which a gear is arrange | positioned in a housing. For example, the present invention is also effective for various pumps such as a vane pump that includes a gear that is at least partially in contact with a fluid such as hydraulic oil.

本発明の一実施の形態を適用したギヤポンプ装置の断面図である。It is sectional drawing of the gear pump apparatus to which one embodiment of this invention is applied. 図1のC−C線部分の断面図である。It is sectional drawing of the CC line part of FIG. 機械的な構造を有する第1圧力感応バルブおよび第2圧力感応バルブの一例を示す図である。It is a figure which shows an example of the 1st pressure sensitive valve and 2nd pressure sensitive valve which have a mechanical structure. 高圧側流路内の作動オイルの圧力(「高圧側作動オイル圧力」とも呼ぶ)と作動効率の一般的な関係を示す図である。It is a figure which shows the general relationship of the pressure of the working oil in a high voltage | pressure side flow path (it is also called "high pressure side working oil pressure"), and operating efficiency. (a)は、本発明の一実施の形態における高圧側作動オイル圧力と作動効率の関係を示す図であり、(b)は、本発明の一実施の形態における高圧側作動オイル圧力とギヤ押し当て力の関係を示す図である。(A) is a figure which shows the relationship between the high voltage | pressure side hydraulic oil pressure in one embodiment of this invention, and operating efficiency, (b) is the high voltage | pressure side hydraulic oil pressure and gear pushing in one embodiment of this invention. It is a figure which shows the relationship of application force. 本発明の一変形例のギヤポンプ装置を示す図である。It is a figure which shows the gear pump apparatus of one modification of this invention.

符号の説明Explanation of symbols

10 ギヤポンプ装置、 12 ハウジング、 14 ケース、 15 第1圧力作用段部、 16 第1圧力作用面、 17 第2圧力作用段部、 18 第2圧力作用面、 19 ケース中心孔、 20 第1圧力感応バルブ、 22 第2圧力感応バルブ、 24 第1環状シール部材、 26 第2環状シール部材、 30 駆動ギヤ、 31 駆動ギヤ軸部、 32 従動ギヤ、 33 従動ギヤ軸部、 36 第1ギヤ側部、 37 第2ギヤ側部、 40 高圧側流路、 41 高圧側分岐流路、 42 低圧側流路、 44 第1圧力調整油路、 46 第2圧力調整油路、 60 油圧調整シリンダ、 62 油圧調整ピストン、 64 油圧調整バネ。   DESCRIPTION OF SYMBOLS 10 Gear pump apparatus, 12 Housing, 14 Case, 15 1st pressure action step part, 16 1st pressure action surface, 17 2nd pressure action step part, 18 2nd pressure action surface, 19 Case center hole, 20 1st pressure sensitivity Valve, 22 second pressure sensitive valve, 24 first annular seal member, 26 second annular seal member, 30 drive gear, 31 drive gear shaft portion, 32 driven gear, 33 driven gear shaft portion, 36 first gear side portion, 37 second gear side, 40 high pressure side flow path, 41 high pressure side branch flow path, 42 low pressure side flow path, 44 first pressure adjustment oil path, 46 second pressure adjustment oil path, 60 hydraulic pressure adjustment cylinder, 62 hydraulic pressure adjustment Piston, 64 Hydraulic adjustment spring.

Claims (5)

ハウジング内に配置されるギヤを備えるポンプ装置であって、
少なくとも一つの圧力作用面を含む圧力作用部を有し、前記圧力作用面に加えられる圧力に応じて前記ギヤの側部に対する押し当て力を変え、前記ギヤの側部における作動流体の流通の封止の程度を前記押し当て力に応じて変えるシール体と、
前記ハウジング内の作動流体の圧力に応じて、高圧が加えられる前記圧力作用面の面積を制御する圧力調整手段と、
を備えることを特徴とするポンプ装置。
A pump device comprising a gear arranged in a housing,
A pressure acting portion including at least one pressure acting surface, the pressing force against the side of the gear is changed according to the pressure applied to the pressure acting surface, and the working fluid is sealed in the side of the gear. A sealing body that changes the degree of stopping according to the pressing force;
Pressure adjusting means for controlling the area of the pressure acting surface to which a high pressure is applied according to the pressure of the working fluid in the housing;
A pump device comprising:
前記圧力作用部は、複数の圧力作用面を有し、
前記圧力調整手段は、前記ハウジング内の作動流体の圧力に応じて、高圧が加えられる前記圧力作用面の数を制御することを特徴とする請求項1に記載のポンプ装置。
The pressure acting part has a plurality of pressure acting surfaces,
2. The pump device according to claim 1, wherein the pressure adjusting unit controls the number of the pressure acting surfaces to which a high pressure is applied in accordance with the pressure of the working fluid in the housing.
前記圧力調整手段は、前記ハウジング内の作動流体を使用して前記圧力作用面に高圧を加えることを特徴とする請求項1または2に記載のポンプ装置。   The pump device according to claim 1, wherein the pressure adjusting unit applies a high pressure to the pressure acting surface using a working fluid in the housing. 前記シール体は、前記圧力作用部を構成する少なくとも一つの段部を有し、
前記圧力作用面は、前記段部によって構成されることを特徴とする請求項1乃至3のいずれかに記載のポンプ装置。
The seal body has at least one step portion constituting the pressure acting portion,
The pump device according to claim 1, wherein the pressure acting surface is constituted by the stepped portion.
前記ハウジング内の作動流体は、前記ギヤを介して低圧作動流体と高圧作動流体に分けられ、
前記圧力調整手段は、前記ギヤの側部のうち低圧作動流体側の側部よりも高圧作動流体側の側部のほうが前記シール体によって強く押し当てられるように、高圧が加えられる前記圧力作用面の面積を制御することを特徴とする請求項1乃至4のいずれかに記載のポンプ装置。
The working fluid in the housing is divided into a low pressure working fluid and a high pressure working fluid through the gear,
The pressure adjusting means is configured to apply the high pressure so that the side of the high pressure working fluid side of the side of the gear is pressed more strongly by the seal body than the side of the low pressure working fluid side. The pump device according to any one of claims 1 to 4, wherein the area of the pump is controlled.
JP2004318823A 2004-11-02 2004-11-02 Pump device Expired - Fee Related JP4604654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318823A JP4604654B2 (en) 2004-11-02 2004-11-02 Pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318823A JP4604654B2 (en) 2004-11-02 2004-11-02 Pump device

Publications (2)

Publication Number Publication Date
JP2006132330A true JP2006132330A (en) 2006-05-25
JP4604654B2 JP4604654B2 (en) 2011-01-05

Family

ID=36726118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318823A Expired - Fee Related JP4604654B2 (en) 2004-11-02 2004-11-02 Pump device

Country Status (1)

Country Link
JP (1) JP4604654B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850303A (en) * 1971-10-28 1973-07-16
JPS6385276A (en) * 1986-09-29 1988-04-15 Shimadzu Corp Gear pump
JPH038609U (en) * 1989-06-15 1991-01-28
JP2000009055A (en) * 1998-06-25 2000-01-11 Kubota Corp Gear pump
JP2002106479A (en) * 2000-09-29 2002-04-10 Tokico Ltd Variable displacement gear pump
JP2002227774A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gear pump or motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850303A (en) * 1971-10-28 1973-07-16
JPS6385276A (en) * 1986-09-29 1988-04-15 Shimadzu Corp Gear pump
JPH038609U (en) * 1989-06-15 1991-01-28
JP2000009055A (en) * 1998-06-25 2000-01-11 Kubota Corp Gear pump
JP2002106479A (en) * 2000-09-29 2002-04-10 Tokico Ltd Variable displacement gear pump
JP2002227774A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gear pump or motor

Also Published As

Publication number Publication date
JP4604654B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4365870B2 (en) Fluid pressure actuator
JP4770666B2 (en) Spool valve
JP5116546B2 (en) Variable displacement vane pump
CN101473284A (en) Fluid-controlled valve
CN102889397A (en) Energy-saving valve
JP2016535833A (en) Adjustable refrigerant pump
JP4976920B2 (en) Pump discharge control device
RU2638255C2 (en) Starting valve for fluid medium machine and operating in a vacuum system
JP6075866B2 (en) Pump control device
KR101702253B1 (en) Pump discharge flow-rate control device
JP2011085104A (en) Hydraulic motor drive device
WO2014132732A1 (en) Actuator unit
JP2020012553A (en) Electrically driven flow rate control valve
JP5329881B2 (en) Axial thrust unloader
JP4604654B2 (en) Pump device
JP6612610B2 (en) Fluid pressure pump and fluid pressure system
CN109154290B (en) Pump device
CN108331792A (en) Control has the hydraulic module and connecting rod of the hydraulic fluid stream of the connecting rod of the internal combustion engine of variable compression ratio
JP4326347B2 (en) Stepless transmission
KR101491179B1 (en) Variable Oil Pump
KR100429928B1 (en) Forced Lubricant in Swash Plate for Axial Piston Pump
KR20030085362A (en) Hydraulic breaking circuit
JP2008298184A (en) Hydraulic driving device
JP5464275B2 (en) Control device for hydraulic motor
KR101902697B1 (en) Neutral valve for continuously variable hydrostatic transmission with Pressure compensated flow control and, design methods for spool seat provided in the neutral valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees