JP2006131955A - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film Download PDF

Info

Publication number
JP2006131955A
JP2006131955A JP2004322131A JP2004322131A JP2006131955A JP 2006131955 A JP2006131955 A JP 2006131955A JP 2004322131 A JP2004322131 A JP 2004322131A JP 2004322131 A JP2004322131 A JP 2004322131A JP 2006131955 A JP2006131955 A JP 2006131955A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
film
substrate
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004322131A
Other languages
Japanese (ja)
Inventor
Katsuhito Wada
雄人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004322131A priority Critical patent/JP2006131955A/en
Publication of JP2006131955A publication Critical patent/JP2006131955A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a transparent conductive film showing a stable ohmic value, by appropriately evaluating film resistance. <P>SOLUTION: The method for producing the transparent conductive film on a substrate comprises the steps of: measuring a film thickness of the transparent conductive film formed in a film production chamber 3; simultaneously measuring the ohmic value of the transparent conductive film formed in a subsequent evaluation chamber 4; and feeding a measured result of film thickness and the ohmic value back to a film production condition in the film production chamber 3 to form the transparent conductive film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板上に透明電極薄膜等の透明導電膜を形成する透明導電膜の製造方法に関する。   The present invention relates to a method for producing a transparent conductive film in which a transparent conductive film such as a transparent electrode thin film is formed on a substrate.

透明導電膜は、太陽電池の光の入射側の透明電極や、タッチパネル、液晶ディスプレイの透明電極等に広く用いられており、その製膜技術は重要なものとなっている。この透明導電膜の製造方法としては、従来、スパッタリング法が多く用いられており、膜厚を製膜中に測定して製膜条件にフィードバックをかける方法が採用されている。膜厚の測定結果をフィードバックする手段としては、従来、膜厚変化による振動数の変化を利用した膜厚センサを用いる方法、エリプソメトリーによる方法、単色光の反射光測定による膜厚評価方法が知られている。   The transparent conductive film is widely used for a transparent electrode on the light incident side of a solar cell, a transparent electrode of a touch panel, a liquid crystal display, and the like, and the film forming technique is important. As a method for producing the transparent conductive film, a sputtering method has been conventionally used, and a method of measuring the film thickness during film formation and feeding back the film formation conditions is employed. As means for feeding back the measurement result of the film thickness, there are conventionally known a method using a film thickness sensor utilizing a change in frequency due to a change in film thickness, a method using ellipsometry, and a method for evaluating a film thickness by measuring reflected light of monochromatic light. It has been.

一方、樹脂製の基板を用いるなど、基板の温度を200℃以下にする必要がある場合には、形成される膜の導電率が不安定であり、場合によっては低下することが報告されている。このため、膜厚だけでなく導電率も一定になるように製膜条件を制御する必要がある。従来、この膜抵抗の評価方法としては、渦電流式プローブを用いるもの(例えば特許文献1参照)、ロール電極を用いるもの(例えば特許文献2参照)、光の透過率を利用するもの(例えば特許文献3参照)等がある。
特開平8−226943号公報 特開2000−155143号公報 特開平5−156439号公報
On the other hand, when the temperature of the substrate needs to be 200 ° C. or lower, such as using a resin substrate, it has been reported that the conductivity of the formed film is unstable and sometimes decreases. . For this reason, it is necessary to control the film forming conditions so that not only the film thickness but also the conductivity is constant. Conventionally, as a method for evaluating the film resistance, an eddy current probe is used (for example, see Patent Document 1), a roll electrode is used (for example, see Patent Document 2), or a light transmittance is used (for example, a patent). Reference 3).
JP-A-8-226943 JP 2000-155143 A JP-A-5-156439

しかし、従来のロール電極を用いた膜抵抗の評価方法では、基板上に均一に製膜されていない場合や、切断面を持ち絶縁されている構造がある場合、あるいは他の導電層と一部導通している構造がある場合などには、それらの構造の影響を受けるので、導電膜の表面に傷を付けずには正確に評価することができない。   However, in the conventional film resistance evaluation method using a roll electrode, when the film is not uniformly formed on the substrate, when there is a structure having a cut surface and being insulated, or partially with other conductive layers In the case where there is a conductive structure, the structure is affected by the structure. Therefore, accurate evaluation cannot be performed without scratching the surface of the conductive film.

一方、導電膜の局所的な抵抗を評価する方法として、渦電流式プローブを用いる方法や光の透過率を測定する方法があるが、渦電流式プローブを用いる方法では、太陽電池の透明電極のように、抵抗値が10Ω/□以上と高い場合には正確な評価ができない。更に、他の導電層が存在する場合には、その層を分離して測定することはできない。   On the other hand, as a method for evaluating the local resistance of the conductive film, there are a method using an eddy current probe and a method of measuring light transmittance. In the method using an eddy current probe, the transparent electrode of a solar cell is measured. Thus, when the resistance value is as high as 10Ω / □ or more, accurate evaluation cannot be performed. Furthermore, when another conductive layer exists, it cannot be measured by separating the layer.

また、光の透過率を利用する方法では、可撓等性の連続した基板を用い、大気開放することなく略連続して製膜を行う場合において、導電膜の透過率と抵抗値の関係が変化することが明らかになっており、採用することはできない。   In the method using light transmittance, when a continuous film having flexibility and the like is used and film formation is performed substantially continuously without opening to the atmosphere, there is a relationship between the transmittance of the conductive film and the resistance value. It is clear that it will change and cannot be adopted.

また、従来の製膜室において接触式のプローブを用いて膜抵抗を評価する方法では、製膜室において上記の構造に影響を受けずに測定するためには、測定位置の制御が必要であるが、製膜機構があるため、適当な位置で抵抗値を評価することは困難である。更に、導電膜を製膜室から搬出した後に評価する場合には、基板が搬送ロールと基板に加えられた張力のみで固定されていて接触が不安定になるため、正確に評価することができない。   Further, in the conventional method for evaluating film resistance using a contact type probe in a film forming chamber, it is necessary to control the measurement position in order to perform measurement without being affected by the above structure in the film forming chamber. However, since there is a film forming mechanism, it is difficult to evaluate the resistance value at an appropriate position. Further, when the conductive film is evaluated after being taken out of the film forming chamber, the substrate is fixed only by the tension applied to the transport roll and the substrate, and the contact becomes unstable, so that the accurate evaluation cannot be performed. .

本発明は、このような点に鑑みてなされたものであり、適正な膜抵抗の評価を行うことができ、安定した抵抗値が得られる透明導電膜の製造方法を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the manufacturing method of the transparent conductive film which can evaluate appropriate film resistance and can obtain the stable resistance value. .

本発明では上記課題を解決するために、基板上に透明導電膜を形成する透明導電膜の製造方法において、製膜室で形成された透明導電膜の膜厚を測定するとともに、後段の測定室で前記形成された透明導電膜の抵抗値を測定し、前記測定された膜厚と抵抗値の測定結果を前記製膜室での製膜条件にフィードバックして透明導電膜を形成することを特徴とする透明導電膜の製造方法が提供される。   In the present invention, in order to solve the above-mentioned problem, in the method for producing a transparent conductive film on the substrate, the film thickness of the transparent conductive film formed in the film forming chamber is measured, and the subsequent measurement chamber is measured. And measuring the resistance value of the formed transparent conductive film and feeding back the measurement result of the measured film thickness and resistance value to the film forming conditions in the film forming chamber to form a transparent conductive film. A method for producing a transparent conductive film is provided.

このような透明導電膜の製造方法によれば、適正な膜抵抗の評価を行うことができ、安定した抵抗値が得られる。   According to such a method for producing a transparent conductive film, an appropriate film resistance can be evaluated, and a stable resistance value can be obtained.

本発明の透明導電膜の製造方法は、基板上に透明導電膜を形成する透明導電膜の製造方法において、製膜室で形成された透明導電膜の膜厚を測定するとともに、後段の測定室で形成された透明導電膜の抵抗値を測定し、測定された膜厚と抵抗値の測定結果を製膜室での製膜条件にフィードバックして透明導電膜を形成するようにしたため、膜厚の測定結果と抵抗値の測定結果から適正な膜抵抗の評価を行うことができ、安定した抵抗値が得られるという利点がある。   The transparent conductive film manufacturing method of the present invention is a transparent conductive film manufacturing method for forming a transparent conductive film on a substrate. In the transparent conductive film manufacturing method, the film thickness of the transparent conductive film formed in the film forming chamber is measured, and the subsequent measurement chamber The film thickness was measured by measuring the resistance value of the transparent conductive film formed by the above method and feeding back the measurement results of the measured film thickness and resistance value to the film forming conditions in the film forming chamber. Thus, there is an advantage that an appropriate film resistance can be evaluated from the measurement result and the resistance value measurement result, and a stable resistance value can be obtained.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明の実施の形態の透明導電膜の製造装置の構成を模式的に示す図である。
この製造装置は、連続した基板上にスパッタリング法により透明電極の薄膜を形成する製膜装置として構成されており、ロール状に巻かれた可撓性の基板1を巻出し室2から搬出し、製膜室3において透明電極をマグネトロンスパッタで製膜した後、膜の厚さと抵抗を評価室4で評価し、巻取り室5においてロール状に巻き取るものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a configuration of a transparent conductive film manufacturing apparatus according to an embodiment of the present invention.
This manufacturing apparatus is configured as a film forming apparatus for forming a transparent electrode thin film on a continuous substrate by a sputtering method, and unloads a flexible substrate 1 wound in a roll shape from an unwinding chamber 2. After the transparent electrode is formed by magnetron sputtering in the film forming chamber 3, the thickness and resistance of the film are evaluated in the evaluation chamber 4 and wound in a roll shape in the winding chamber 5.

上記製膜室3は真空槽であり、ヒーター6とターゲット7が設置されている。また評価室4には、抵抗値測定用の搬送ロール8が設置されている。
そして、製膜室3で形成された透明導電膜の膜厚を測定するとともに、後段の評価室(測定室)で上記形成された透明導電膜の抵抗値を測定し、上記測定された膜厚と抵抗値の測定結果を製膜室3での製膜条件にフィードバックして透明導電膜を形成する。また、製造装置に基板1を設置した後は、大気に開放することなく、複数回透明電極を製膜するように構成されている。
The film forming chamber 3 is a vacuum chamber, and a heater 6 and a target 7 are installed. In the evaluation chamber 4, a transport roll 8 for measuring a resistance value is installed.
And while measuring the film thickness of the transparent conductive film formed in the film forming chamber 3, the resistance value of the formed transparent conductive film is measured in the subsequent evaluation chamber (measurement chamber), and the measured film thickness The measurement result of the resistance value is fed back to the film forming conditions in the film forming chamber 3 to form a transparent conductive film. Moreover, after installing the board | substrate 1 in a manufacturing apparatus, it is comprised so that a transparent electrode may be formed in multiple times, without opening to air | atmosphere.

基板1には、300m以上の連続したポリイミド系の樹脂を用いている。なお、この基板1は、上記のポリイミド系の樹脂以外に、ポリアミド系、ポリエチレン、PET、PEN等の樹脂からなるものや、ステンレスのものを使用することができる。また、基板上に半導体層や、太陽電池のように金属電極及び半導体層を製膜したものに対しても適用することができる。   For the substrate 1, a continuous polyimide resin of 300 m or more is used. In addition to the polyimide resin, the substrate 1 may be made of polyamide, polyethylene, PET, PEN, or the like, or stainless steel. The present invention can also be applied to a semiconductor layer or a metal electrode and a semiconductor layer formed on a substrate such as a solar cell.

基板1には図2に示すように、前もって略10mm間隔に基板1を貫通する直径略1mmの複数の孔10を設け、一面に銀からなる導電層150nm及びアモルファスシリコンからなる絶縁層800nmを積層し、基板1の反対側に銀からなる導電層200nmを積層する。そして、この基板1を装置に設置し、十分に排気した後に基板1を固定し、ヒーター6で加熱した後、透明電極の製膜を行う。   As shown in FIG. 2, the substrate 1 is provided with a plurality of holes 10 having a diameter of about 1 mm that penetrate the substrate 1 at intervals of about 10 mm in advance, and a conductive layer 150 nm made of silver and an insulating layer 800 nm made of amorphous silicon are laminated on one surface. Then, a conductive layer 200 nm made of silver is laminated on the opposite side of the substrate 1. Then, the substrate 1 is installed in the apparatus, and after sufficiently exhausting, the substrate 1 is fixed and heated by the heater 6, and then a transparent electrode is formed.

上記の基板1は、複数の孔10が設けられたものとしたが、例えばレーザースクライブによって絶縁層のみが分離され、スクライブされた部分で透明電極と導電層が導通していても良い。また、上記の孔10で透明電極と反対側の電極は導通していないが、導通していても良い。また、透明電極は全面に製膜せず、マスク製膜をしても良い。   The substrate 1 is provided with a plurality of holes 10. However, for example, only the insulating layer may be separated by laser scribing, and the transparent electrode and the conductive layer may be electrically connected in the scribed portion. Moreover, although the electrode on the opposite side to the transparent electrode in the hole 10 is not conductive, it may be conductive. Further, the transparent electrode may be formed into a mask without forming the film on the entire surface.

次に、上記透明電極の製膜方法を詳細に説明する。
製膜時の基板温度、製膜圧力はそれぞれ120℃、0.4Paとする。ターゲット7は250nm角のITO(インジウム‐酸化錫)とし、パワーはDC200Wとする。ターゲット7の材料にはITOを用いるが、ZnO、SnO2等を適用することもできる。また、RF電源を用いたり、基板1にバイアス電圧をかけることもできる。製膜手段としては、蒸着や、レーザーアブレーションを適用することもできる。また図1に示す装置では透明電極のみ製膜しているが、同時に半導体層や他の電極を製膜する製膜室を設けることもできる。
Next, the method for forming the transparent electrode will be described in detail.
The substrate temperature and film formation pressure during film formation are 120 ° C. and 0.4 Pa, respectively. The target 7 is 250 nm square ITO (indium-tin oxide), and the power is DC 200 W. ITO is used as the material of the target 7, but ZnO, SnO 2 or the like can also be applied. Further, an RF power source can be used or a bias voltage can be applied to the substrate 1. As the film forming means, vapor deposition or laser ablation can be applied. Further, in the apparatus shown in FIG. 1, only a transparent electrode is formed, but a film forming chamber for forming a semiconductor layer and other electrodes at the same time can be provided.

続いて、製膜室3のスパッタガスを排出した後、基板1を隣接する評価室4に搬送し、透明電極の膜厚及び抵抗値(抵抗率)の評価を行う。このとき、測定する位置と孔10との位置関係が一定になるように、基板1の製膜後の搬送距離、基板1の幅方向の位置を制御する。膜厚は、白色光をサンプルに照射し、反射スペクトルに表れている干渉効果を利用し、コンピュータで算出する。白色光を照射する位置は、装置内に設けた搬送ロールで支持された、上記基板1の孔10の略中間とする。   Subsequently, after the sputtering gas in the film forming chamber 3 is discharged, the substrate 1 is transferred to the adjacent evaluation chamber 4 and the film thickness and resistance value (resistivity) of the transparent electrode are evaluated. At this time, the transport distance after film formation of the substrate 1 and the position in the width direction of the substrate 1 are controlled so that the positional relationship between the measurement position and the hole 10 is constant. The film thickness is calculated by a computer by irradiating the sample with white light and utilizing the interference effect appearing in the reflection spectrum. The position for irradiating the white light is set approximately in the middle of the hole 10 of the substrate 1 supported by a transport roll provided in the apparatus.

図2は評価室4における抵抗値の測定部分を拡大して示す斜視図である。抵抗値の測定は、同図に示すように、端子間の距離が3mmの4接触端子の接触式のプローブ9を用いて行う。このプローブ9は、基板1の搬送が停止した後に、搬送ロール8で支持された部分に接触させることで、傷が付くのを防ぐと同時に安定した接触抵抗が得られるようにする。また、プローブ9の位置は上記白色光の照射位置と同じく、上記複数の孔10の略中間とする。この位置は基板の搬送上の誤差によりずれるが、ずれは±1mm程度であり、貫通孔の影響は抑制できる。   FIG. 2 is an enlarged perspective view showing a resistance value measurement portion in the evaluation chamber 4. As shown in the figure, the resistance value is measured using a contact type probe 9 having a 4-contact terminal with a distance between terminals of 3 mm. The probe 9 is brought into contact with the portion supported by the transport roll 8 after the transport of the substrate 1 is stopped, thereby preventing damage and at the same time obtaining a stable contact resistance. Further, the position of the probe 9 is set substantially in the middle of the plurality of holes 10 in the same manner as the irradiation position of the white light. Although this position is shifted due to an error in transporting the substrate, the shift is about ± 1 mm, and the influence of the through hole can be suppressed.

このようにして得られた膜厚及び抵抗値の情報を製膜条件にフィードバックをかけることで、透明電極の抵抗を安定化させることができる。
すなわち、基板上に透明電極を形成する製造方法において、製膜室3で形成された透明電極の膜厚をその場で測定して収集するとともに、後段の別室の評価室4で上記形成された透明電極の抵抗値を測定して収集し、収集した膜厚と抵抗値の測定結果の情報を製膜室3での製膜条件にフィードバックして透明電極を形成する。
The resistance of the transparent electrode can be stabilized by feeding back the information on the film thickness and the resistance value thus obtained to the film forming conditions.
That is, in the manufacturing method for forming the transparent electrode on the substrate, the film thickness of the transparent electrode formed in the film forming chamber 3 is measured and collected on the spot, and the above is formed in the evaluation chamber 4 in the separate chamber at the subsequent stage The transparent electrode is formed by measuring and collecting the resistance value of the transparent electrode, and feeding back information on the collected film thickness and the measurement result of the resistance value to the film forming conditions in the film forming chamber 3.

この製膜法により、透明電極に損傷を与えることなく、適正な膜抵抗の評価を行うことができ、安定した抵抗値が得られる。
ここで、本実施の形態では、基板上に導電層及び絶縁層を積層した上に、もしくは導電性の基板上に少なくとも絶縁層を積層した上に透明電極を製膜している。そして、図2に示す複数の接触端子を持つ接触式のプローブ9を使用し、このプローブ9を搬送ロール8で支持された基板1の搬送ロール8と反対側の部分に押し当てて抵抗値を測定しており、プローブ9を押し当てる位置が一定となるように制御している。
By this film forming method, an appropriate film resistance can be evaluated without damaging the transparent electrode, and a stable resistance value can be obtained.
Here, in this embodiment mode, the transparent electrode is formed on the conductive layer and the insulating layer stacked over the substrate or at least the insulating layer stacked on the conductive substrate. Then, a contact type probe 9 having a plurality of contact terminals shown in FIG. 2 is used, and this probe 9 is pressed against a portion of the substrate 1 supported by the transport roll 8 on the side opposite to the transport roll 8 to obtain a resistance value. The measurement is performed and the position where the probe 9 is pressed is controlled to be constant.

また、透明電極の形成面が、少なくとも基板1の切断部や透明電極が形成されていない部分からなる複数の絶縁部、もしくは透明電極と導電層が接触する部分を持つ構造を有しており、上記のプローブ9を構成する複数の接触端子間の距離が、上記の絶縁部や接触部間距離よりも小さく、プローブ9を押し当てる位置と上記構造の位置関係とが一定となるように制御している。   In addition, the formation surface of the transparent electrode has a structure having at least a plurality of insulating portions composed of portions where the cut portion of the substrate 1 and the transparent electrode are not formed, or a portion where the transparent electrode and the conductive layer are in contact with each other, The distance between the plurality of contact terminals constituting the probe 9 is smaller than the distance between the insulating portion and the contact portion, and the position where the probe 9 is pressed and the positional relationship of the structure are controlled to be constant. ing.

製膜室3での製膜条件としては、製膜に投入する電力及びガスの組成であり、またガスの組成は、スパッタガスのアルゴンに対する流量比である。
次に、上述のようにして透明電極を製膜した具体的な実施例を比較例と比べて説明する。
The film forming conditions in the film forming chamber 3 are the composition of electric power and gas input into the film forming, and the gas composition is the flow rate ratio of sputtering gas to argon.
Next, a specific example in which a transparent electrode is formed as described above will be described in comparison with a comparative example.

〔実施例〕
ターゲット7としては、密度99%、SnO2濃度が5%であり、250×250mmのITOの焼結体を用い、DC150Wのパワーを投入し、太陽電池用の透明電極を想定した約700Å程度の膜厚の透明導電薄膜を作製した。製膜時の基板1の温度は150℃とした。製膜は500ステップ行った。
〔Example〕
The target 7 has a density of 99%, a SnO 2 concentration of 5%, a sintered body of ITO of 250 × 250 mm, a power of DC 150 W is applied, and about 700 mm assuming a transparent electrode for a solar cell. A transparent conductive thin film having a thickness was prepared. The temperature of the substrate 1 during film formation was set to 150 ° C. Film formation was performed 500 steps.

基板1には、厚さが50μmのポリイミド系フィルムの両面に銀を150nm程度、透明電極の製膜両側に膜厚0.8μm程度のアモルファスシリコンからなる太陽電池を設け、貫通孔を10mm間隔で設けたものを用いた。   The substrate 1 is provided with solar cells made of amorphous silicon having a thickness of about 0.8 μm on both sides of a transparent electrode on which silver is formed on both sides of a polyimide film having a thickness of 50 μm, and through holes are provided at intervals of 10 mm. The provided one was used.

表1にスパッタガス中の酸素濃度、透明電極のシート抵抗値、そして得られた太陽電池の変換効率を示す。表1に示すように、500ステップの製膜を行っても安定した抵抗値の透明電極及び変換効率の太陽電池が得られた。   Table 1 shows the oxygen concentration in the sputtering gas, the sheet resistance value of the transparent electrode, and the conversion efficiency of the obtained solar cell. As shown in Table 1, a transparent electrode having a stable resistance value and a solar cell having a conversion efficiency were obtained even when film formation was performed in 500 steps.

Figure 2006131955
Figure 2006131955

〔比較例1〕
実施例とほぼ同じ構成で透明電極を作製した。ただし、抵抗値のフィードバックは行わず、実施例の初期で最適な酸素添加量のスパッタガスで製膜した。表1に同様に透明電極のシート抵抗、そして得られた太陽電池の変換効率を示す。表1に示すように、抵抗値が大幅に上昇し、太陽電池の変換効率が後のステップで低下した。
[Comparative Example 1]
A transparent electrode was fabricated with substantially the same configuration as in the example. However, the resistance value was not fed back, and a film was formed with a sputtering gas having an optimum oxygen addition amount in the initial stage of the example. Table 1 similarly shows the sheet resistance of the transparent electrode and the conversion efficiency of the obtained solar cell. As shown in Table 1, the resistance value increased significantly, and the conversion efficiency of the solar cell decreased in a later step.

〔比較例2〕
実施例と同じ条件で製膜、フィードバックを行った。ただし、測定方法を比較するため、測定ポイント間の距離が12mmのプローブを用いて測定した。評価結果は表1に示す通りである。表1に示すように、プローブの位置が孔と干渉し、評価結果が不安定になった。
[Comparative Example 2]
Film formation and feedback were performed under the same conditions as in the examples. However, in order to compare measurement methods, measurement was performed using a probe having a distance between measurement points of 12 mm. The evaluation results are as shown in Table 1. As shown in Table 1, the position of the probe interfered with the hole, and the evaluation result became unstable.

〔比較例3〕
実施例と同じ条件で製膜、フィードバックを行った。ただし、比較例2と同様、比較するために搬送ロールの中間に位置する部分にプローブを押し当てて測定した。評価結果は表1に示す通りである。表1に示すように、接触が不安定であるため、測定値が不安定になった。
[Comparative Example 3]
Film formation and feedback were performed under the same conditions as in the examples. However, as in Comparative Example 2, for comparison, the probe was pressed against the portion located in the middle of the transport roll and measured. The evaluation results are as shown in Table 1. As shown in Table 1, since the contact was unstable, the measured value became unstable.

本発明の実施の形態の透明導電膜の製造装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the manufacturing apparatus of the transparent conductive film of embodiment of this invention. 本発明の実施の形態の評価室における抵抗値の測定部分を拡大して示す斜視図である。It is a perspective view which expands and shows the measurement part of the resistance value in the evaluation chamber of embodiment of this invention.

符号の説明Explanation of symbols

1 基板
2 巻出し室
3 製膜室
4 評価室
5 巻取り室
6 ヒーター
7 ターゲット
8 搬送ロール
9 プローブ
10 孔
DESCRIPTION OF SYMBOLS 1 Substrate 2 Unwinding chamber 3 Film forming chamber 4 Evaluation chamber 5 Winding chamber 6 Heater 7 Target 8 Transport roll 9 Probe 10 Hole

Claims (6)

基板上に透明導電膜を形成する透明導電膜の製造方法において、製膜室で形成された透明導電膜の膜厚を測定するとともに、後段の測定室で前記形成された透明導電膜の抵抗値を測定し、前記測定された膜厚と抵抗値の測定結果を前記製膜室での製膜条件にフィードバックして透明導電膜を形成することを特徴とする透明導電膜の製造方法。   In the transparent conductive film manufacturing method for forming a transparent conductive film on a substrate, the thickness of the transparent conductive film formed in the film forming chamber is measured, and the resistance value of the transparent conductive film formed in the subsequent measurement chamber is measured. And forming a transparent conductive film by feeding back the measurement results of the measured film thickness and resistance value to the film forming conditions in the film forming chamber. 基板が設置された後、大気に開放することなく複数回透明導電膜を形成することを特徴とする請求項1記載の透明導電膜の製造方法。   2. The method for producing a transparent conductive film according to claim 1, wherein the transparent conductive film is formed a plurality of times without being opened to the atmosphere after the substrate is installed. 前記基板上に絶縁層を積層した上に透明導電膜を形成した後、複数の接触端子を持つ接触式のプローブを用いて前記透明導電膜の抵抗値を測定することを特徴とする請求項2記載の透明導電膜の製造方法。   3. The resistance value of the transparent conductive film is measured using a contact-type probe having a plurality of contact terminals after forming a transparent conductive film on an insulating layer stacked on the substrate. The manufacturing method of the transparent conductive film of description. 前記基板を搬送ロールで支持し、該搬送ロールで支持された部分の搬送ロールと反対側に接触式のプローブを押し当てて抵抗値を測定するとともに、前記プローブを押し当てる位置が一定となるように制御することを特徴とする請求項3記載の透明導電膜の製造方法。   The substrate is supported by a transport roll, and a resistance value is measured by pressing a contact-type probe on the opposite side of the transport roll of the portion supported by the transport roll, and the position where the probe is pressed is fixed. The method for producing a transparent conductive film according to claim 3, wherein the method is controlled. 前記製膜室での製膜条件は、製膜に投入する電力及びガスの組成であることを特徴とする請求項4記載の透明導電膜の製造方法。   The method for producing a transparent conductive film according to claim 4, wherein the film forming condition in the film forming chamber is a composition of electric power and gas input to the film forming. 前記ガスの組成は、スパッタガスのアルゴンに対する流量比であることを特徴とする請求項5記載の透明導電膜の製造方法。
6. The method for producing a transparent conductive film according to claim 5, wherein the composition of the gas is a flow ratio of sputtering gas to argon.
JP2004322131A 2004-11-05 2004-11-05 Method for producing transparent conductive film Pending JP2006131955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322131A JP2006131955A (en) 2004-11-05 2004-11-05 Method for producing transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004322131A JP2006131955A (en) 2004-11-05 2004-11-05 Method for producing transparent conductive film

Publications (1)

Publication Number Publication Date
JP2006131955A true JP2006131955A (en) 2006-05-25

Family

ID=36725765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322131A Pending JP2006131955A (en) 2004-11-05 2004-11-05 Method for producing transparent conductive film

Country Status (1)

Country Link
JP (1) JP2006131955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135362A (en) * 2018-03-27 2020-12-02 닛토덴코 가부시키가이샤 Film manufacturing apparatus and manufacturing method of double-sided laminated film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439377A (en) * 1987-08-04 1989-02-09 Nitto Denko Corp Thin film forming device
JPH01283357A (en) * 1988-01-09 1989-11-14 Sumitomo Bakelite Co Ltd Production of electrically conductive transparent film coated with thin metal oxide film
JPH09268369A (en) * 1996-04-02 1997-10-14 Fuji Electric Corp Res & Dev Ltd Sputtering film forming device
JP2002129321A (en) * 2000-10-23 2002-05-09 Canon Inc Film forming method by sputtering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439377A (en) * 1987-08-04 1989-02-09 Nitto Denko Corp Thin film forming device
JPH01283357A (en) * 1988-01-09 1989-11-14 Sumitomo Bakelite Co Ltd Production of electrically conductive transparent film coated with thin metal oxide film
JPH09268369A (en) * 1996-04-02 1997-10-14 Fuji Electric Corp Res & Dev Ltd Sputtering film forming device
JP2002129321A (en) * 2000-10-23 2002-05-09 Canon Inc Film forming method by sputtering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200135362A (en) * 2018-03-27 2020-12-02 닛토덴코 가부시키가이샤 Film manufacturing apparatus and manufacturing method of double-sided laminated film
KR102414971B1 (en) 2018-03-27 2022-07-01 닛토덴코 가부시키가이샤 Film manufacturing apparatus and manufacturing method of double-sided laminated film
US11384424B2 (en) 2018-03-27 2022-07-12 Nitto Denko Corporation Film manufacturing apparatus and manufacturing method of double-sided laminated film

Similar Documents

Publication Publication Date Title
US7095090B2 (en) Photoelectric conversion device
JP5512528B2 (en) Electrical pattern for biosensor and method of manufacturing the same
US5821597A (en) Photoelectric conversion device
KR102170097B1 (en) Electrically conductive substrate and method for manufacturing electrically conductive substrate
EP2259329A1 (en) Metal transparent conductors with low sheet resistance
CN101345247B (en) Photovoltaic apparatus and method of manufacturing the same
JP4660354B2 (en) Method and apparatus for processing conductive thin film
TW589646B (en) Transparent conductive film rolls and method for producing that, touch panels used that, and equipment for measuring surface resistance with non-contact
KR101734329B1 (en) Method for detecting chemical substances using impedance analysis
WO2014098131A1 (en) Substrate with transparent electrode and method for producing same
JP2014135010A (en) Manufacturing method of transparent electrode substrate, manufacturing method of device and manufacturing method of touch panel sensor
CN110506335A (en) Current-induced dark layer formation for metallization in electronic devices
KR20150022964A (en) Conductive film having oxide layer and method for manufacturing thereof
KR20210124210A (en) Temperature sensor film, conductive film and manufacturing method thereof
TWI538270B (en) Transistor structure and manufacturing method thereof
JP4487206B2 (en) Gas alarm
JP5478963B2 (en) Electronic device and method for manufacturing electronic device
JP2006131955A (en) Method for producing transparent conductive film
JP4497660B2 (en) Photovoltaic element manufacturing method
EP0911880B1 (en) Method of manufacturing an integrated thin film solar cell battery
JP2004119953A (en) Thin-film solar battery and method of manufacturing same
JP5099616B2 (en) Method for manufacturing transparent substrate with circuit pattern
CN109742036A (en) For measuring sensor, the method and device of film doping ratio
JP2003318431A (en) Method of manufacturing thin film solar battery, thin film forming apparatus, and thin film solar battery
JPWO2018225736A1 (en) Method for improving conductivity of graphene sheet and electrode structure using graphene sheet with improved conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Effective date: 20091126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100406

Free format text: JAPANESE INTERMEDIATE CODE: A02