JP2006131868A - Resin composition, optical member using the same composition and method for producing the same optical member - Google Patents

Resin composition, optical member using the same composition and method for producing the same optical member Download PDF

Info

Publication number
JP2006131868A
JP2006131868A JP2005008196A JP2005008196A JP2006131868A JP 2006131868 A JP2006131868 A JP 2006131868A JP 2005008196 A JP2005008196 A JP 2005008196A JP 2005008196 A JP2005008196 A JP 2005008196A JP 2006131868 A JP2006131868 A JP 2006131868A
Authority
JP
Japan
Prior art keywords
resin composition
component
monomer component
acrylate
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008196A
Other languages
Japanese (ja)
Inventor
Takeo Tomiyama
健男 富山
Akihiro Yoshida
明弘 吉田
Shingo Kobayashi
真悟 小林
Hiromasa Kawai
宏政 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005008196A priority Critical patent/JP2006131868A/en
Publication of JP2006131868A publication Critical patent/JP2006131868A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition having high optical transparency of a cured product and excellent in light resistance, heat resistance and mechanical properties, having small curing shrinkage and further excellent in storage stability, and an optical member using the resin composition, having high optical transparency, excellent in light resistance, heat resistance and mechanical properties and having small curing shrinkage and to provide a production method capable of simply preparing the optical member in a short time. <P>SOLUTION: The resin composition comprises an epoxy group-containing (meth)acrylate as a monomer component (A), a (meth)acrylate as a monomer component (B), an acrylic oligomer having a polymerization reaction property as a component (C) and an acid anhydride as an epoxy curing agent (D). The resin composition is liquid at 25°C and the resin composition is cured by heating or light irradiation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、その硬化物の光学的透明性が高く、耐熱性、耐光性、機械特性に優れる樹脂組成物、及びその硬化物を用いた透明基板、レンズ、接着剤、光導波路、発光ダイオード(LED)、フォトトランジスタ、フォトダイオード、固体撮像素子等の光半導体素子用途に好適な光学部材とその製造方法に関する。   The present invention is a resin composition having a high optical transparency of the cured product and excellent in heat resistance, light resistance and mechanical properties, and a transparent substrate, lens, adhesive, optical waveguide, light-emitting diode using the cured product ( LED), a phototransistor, a photodiode, an optical member suitable for optical semiconductor element applications such as a solid-state imaging device, and a manufacturing method thereof.

従来、光学部材用樹脂には透明性や耐光性に優れるアクリル系樹脂が一般に多用されてきた。一方、光・電子機器分野に利用される光学部材用樹脂には、電子基板等への実装プロセスや高温動作下での耐熱性や機械特性が求められ、エポキシ系樹脂がよく用いられていた。しかし、近年、光・電子機器分野でも高強度のレーザ光や青色光や近紫外光の利用が広がり、従来以上に透明性、耐熱性、耐光性に優れた樹脂が求められている。   Conventionally, acrylic resins having excellent transparency and light resistance have been widely used as optical member resins. On the other hand, the resin for optical members used in the field of optical / electronic equipment is required to have a mounting process on an electronic substrate and the like, heat resistance and mechanical characteristics under high temperature operation, and epoxy resin is often used. However, in recent years, the use of high-intensity laser light, blue light, and near-ultraviolet light has expanded in the field of optical and electronic equipment, and a resin that is more excellent in transparency, heat resistance, and light resistance than ever is required.

一般にエポキシ樹脂は可視域での透明性は高いが、紫外から近紫外域では十分な透明性が得られない。中でも脂環式ビスフェノールAジグリシジルエーテル等を用いたエポキシ樹脂は比較的透明性が高いが、熱や光によって着色し易い等の問題点がある。例えば、特許文献1、2では、脂環式ビスフェノールAジグリシジルエーテルに含まれる着色原因の一つである不純物の低減方法が開示されているが、更なる耐熱、耐紫外線着色性の向上が求められている。   In general, epoxy resins have high transparency in the visible range, but sufficient transparency cannot be obtained in the ultraviolet to near ultraviolet range. Among them, epoxy resins using alicyclic bisphenol A diglycidyl ether have relatively high transparency, but have problems such as being easily colored by heat and light. For example, Patent Documents 1 and 2 disclose a method for reducing impurities that are one of the causes of coloring contained in alicyclic bisphenol A diglycidyl ether, but further improvement in heat resistance and ultraviolet coloring resistance is required. It has been.

一方、光学特性に優れるアクリル系樹脂の欠点である耐熱性の向上も検討され、アクリル主鎖間への架橋構造の導入の例がある。例えば、特許文献3では、エポキシ基を含有する(メタ)アクリル系重合体及び多価カルボン酸との架橋による反応生成物が開示されている。しかし、実施例に示されているように、エポキシ基を含有する(メタ)アクリル系重合体が硬化剤の多価カルボン酸に不溶なことから、有機溶媒に溶解して成形、硬化しなくてはならない。また、エポキシ基を含有する低分子量の(メタ)アクリル系重合体を液状エポキシモノマーに溶解し硬化剤と反応させる例が、非特許文献1にて報告されている。しかし、この系も(メタ)アクリル系重合体の可溶化剤として、耐熱、耐光性に劣る液状エポキシモノマーを用いているため、更なる特性の向上が求められている。   On the other hand, improvement of heat resistance, which is a drawback of acrylic resins having excellent optical properties, has been studied, and there is an example of introducing a crosslinked structure between acrylic main chains. For example, Patent Document 3 discloses a reaction product obtained by crosslinking with a (meth) acrylic polymer containing an epoxy group and a polyvalent carboxylic acid. However, as shown in the examples, since the (meth) acrylic polymer containing an epoxy group is insoluble in the polyvalent carboxylic acid of the curing agent, it can be dissolved in an organic solvent and molded and cured. Must not. Non-patent document 1 reports an example in which a low molecular weight (meth) acrylic polymer containing an epoxy group is dissolved in a liquid epoxy monomer and reacted with a curing agent. However, since this system also uses a liquid epoxy monomer that is inferior in heat resistance and light resistance as a solubilizer for the (meth) acrylic polymer, further improvement in properties is required.

また、アクリル系樹脂は硬化収縮量が大きいという欠点がある。これはエポキシの開環重合反応と異なり、アクリレートではラジカル重合によってモノマーのファン・デ・ワールス距離が共有結合距離まで縮むためである。この硬化収縮によりアクリル系樹脂の硬化物に応力が発生し、被着体との接着性が劣るという問題がある。   In addition, acrylic resins have a drawback that the amount of cure shrinkage is large. This is because, unlike the ring-opening polymerization reaction of epoxy, in the case of acrylate, the Van de Waals distance of the monomer is reduced to the covalent bond distance by radical polymerization. Due to the curing shrinkage, a stress is generated in the cured product of the acrylic resin, and there is a problem that the adhesion to the adherend is inferior.

したがって、無溶剤系で室温において液状であり成形、硬化が容易で、その硬化物の透
明性、耐光性、耐熱性、機械特性に優れ、なおかつ硬化収縮の小さい、光学部材に好適な樹脂組成物が望まれている。
Therefore, a resin composition suitable for an optical member, which is a solvent-free system, is liquid at room temperature, is easy to mold and cure, has excellent transparency, light resistance, heat resistance, mechanical properties, and has a small curing shrinkage. Is desired.

特開2003−171439号公報JP 2003-171439 A 特開2004−75894号公報JP 2004-75894 A 特開2003−160640号公報JP 2003-160640 A 第53回ネットワークポリマ講演討論会予稿集」p49−52Proceedings of the 53rd Network Polymer Lecture Meeting "p49-52 「ネットワークポリマ」Vol.24,N0.3(2003)p148−155“Network Polymer” Vol. 24, N0.3 (2003) p148-155

本発明は、その硬化物の光学的透明性が高く、耐光性、耐熱性、機械特性に優れ、硬化収縮の小さい、さらに保存安定性に優れる樹脂組成物を提供するものである。また、本発明は、その樹脂組成物を用いて光学的透明性が高く、耐光性、耐熱性、機械特性に優れ、硬化収縮の小さい光学部材を提供し、さらに光学部材を短時間で簡易に作製する製造方法を提供するものである。   The present invention provides a resin composition in which the cured product has high optical transparency, excellent light resistance, heat resistance and mechanical properties, small curing shrinkage, and excellent storage stability. In addition, the present invention provides an optical member having high optical transparency, excellent light resistance, heat resistance, mechanical properties, small curing shrinkage using the resin composition, and further simplifying the optical member in a short time. The manufacturing method to produce is provided.

本発明は、[1]モノマー成分(A)としてエポキシ基含有(メタ)アクリレート、モノマー成分(B)として(メタ)アクリレート、成分(C)として重合反応性アクリルオリゴマー、エポキシの硬化剤(D)として酸無水物を含有してなり、25℃で液体であり、加熱又は光照射によって硬化する樹脂組成物である。   The present invention provides [1] an epoxy group-containing (meth) acrylate as the monomer component (A), (meth) acrylate as the monomer component (B), a polymerizable reactive acrylic oligomer as the component (C), and an epoxy curing agent (D). It is a resin composition that contains an acid anhydride, is liquid at 25 ° C., and is cured by heating or light irradiation.

また、本発明は、[2]さらに、ラジカル重合開始剤(E)と、エポキシ硬化促進剤(F)を含有してなる上記[1]に記載の樹脂組成物である。   Moreover, the present invention is [2] the resin composition as described in [1] above, further comprising a radical polymerization initiator (E) and an epoxy curing accelerator (F).

また、本発明は、[3]成分(C)の重合反応性アクリルオリゴマーが、(メタ)アクリロイル基末端のアクリルオリゴマー(マクロモノマー)であることを特徴とする上記[1]または上記[2]に記載の樹脂組成物である。   [3] The above-mentioned [1] or [2], wherein the polymerization-reactive acrylic oligomer of [3] component (C) is an acrylic oligomer (macromonomer) having a (meth) acryloyl group terminal. It is a resin composition as described in above.

また、本発明は、[4]モノマー成分(A)、モノマー成分(B)及び成分(C)のラジカル重合と、モノマー成分(A)及びエポキシの硬化剤(D)のイオン重合とが加熱又は光照射によって進行する上記[1]ないし上記[3]のいずれかに記載の樹脂組成物である。   In the present invention, [4] radical polymerization of monomer component (A), monomer component (B) and component (C) and ion polymerization of monomer component (A) and epoxy curing agent (D) are heated or The resin composition according to any one of [1] to [3], which proceeds by light irradiation.

また、本発明は、[5]モノマー成分(A)、モノマー成分(B)及び成分(C)を含有する第一液と、エポキシの硬化剤(D)、ラジカル重合開始剤(E)及びエポキシ硬化促進剤(F)を含有する第二液を混合してなり、加熱又は光照射によって硬化することを特徴とする上記[2]ないし上記[4]のいずれかに記載の樹脂組成物である。   The present invention also provides [5] a first liquid containing a monomer component (A), a monomer component (B) and a component (C), an epoxy curing agent (D), a radical polymerization initiator (E) and an epoxy. The resin composition according to any one of [2] to [4] above, wherein the resin composition is mixed with a second liquid containing a curing accelerator (F) and cured by heating or light irradiation. .

また、本発明は、[6]上記[1]ないし上記[5]のいずれかに記載の樹脂組成物を硬化して作製した光学部材である。   The present invention also provides [6] an optical member produced by curing the resin composition according to any one of [1] to [5].

また、本発明は、[7]上記[1]ないし上記[5]のいずれかに記載の樹脂組成物を用い、モノマー成分(A)、モノマー成分(B)及び成分(C)のラジカル重合を光照射によって行い、モノマー成分(A)とエポキシの硬化剤(D)のイオン重合をその後の加熱によって行うことを特徴とする光学部材の製造方法である。   The present invention also provides [7] radical polymerization of the monomer component (A), the monomer component (B) and the component (C) using the resin composition according to any one of [1] to [5]. It is a method for producing an optical member, characterized in that it is carried out by light irradiation and ion polymerization of the monomer component (A) and the epoxy curing agent (D) is carried out by subsequent heating.

本発明の樹脂組成物は、その硬化物の光学的透明性が高く、高温保管後の透過率の低下が少なく、高温での曲げ強度も大きく、耐熱性と機械特性に優れ、さらに硬化収縮が小さいため、光半導体用封止樹脂等の電子材料用樹脂組成物として好適である。また、本発明の樹脂組成物は、保存安定性にも優れる。そして、耐熱性、耐光性に優れ、硬化収縮が小さい本発明の樹脂組成物を光学部材へ適用することで光学素子の寿命や信頼性が向上する。また、本発明の光学部材の製造方法は、短時間で簡易に硬化物を得ることができる。   The resin composition of the present invention has high optical transparency of the cured product, little decrease in transmittance after storage at high temperature, high bending strength at high temperature, excellent heat resistance and mechanical properties, and shrinkage on curing. Since it is small, it is suitable as a resin composition for electronic materials such as a sealing resin for optical semiconductors. Moreover, the resin composition of this invention is excellent also in storage stability. And the lifetime and reliability of an optical element improve by applying the resin composition of this invention which is excellent in heat resistance and light resistance, and has small cure shrinkage to an optical member. Moreover, the manufacturing method of the optical member of this invention can obtain hardened | cured material easily in a short time.

本発明の樹脂組成物は、モノマー成分(A)としてエポキシ基含有(メタ)アクリレート、モノマー成分(B)として(メタ)アクリレート、成分(C)として重合反応性アクリルオリゴマー、エポキシの硬化剤(D)として酸無水物を含有する。更に、ラジカル重合開始剤(E)及びエポキシ硬化促進剤(F)を含有すると好ましい。   The resin composition of the present invention comprises an epoxy group-containing (meth) acrylate as the monomer component (A), a (meth) acrylate as the monomer component (B), a polymerization-reactive acrylic oligomer as the component (C), and an epoxy curing agent (D ) As an acid anhydride. Furthermore, it is preferable to contain a radical polymerization initiator (E) and an epoxy curing accelerator (F).

本発明の樹脂組成物は、エポキシ基含有(メタ)アクリレート(モノマー(A)成分)、(メタ)アクリレート(モノマー(B)成分)、及び重合反応性アクリルオリゴマー(成分(C))のラジカル重合によってアクリル主鎖を形成し、更に、アクリル側鎖のエポキシ基と酸無水物(エポキシの硬化剤(D))のイオン重合によってアクリル主鎖内及び主鎖間の架橋を形成し、更に重合反応性アクリルオリゴマーのラジカル重合によってアクリル主鎖へアクリルオリゴマーがグラフト重合されることによって、その立体障害から架橋密度を適度に低下させ耐熱性と機械特性のバランスを取ることが可能となる。また同時に、アクリルオリゴマーを含有することによって硬化収縮の低減も図られる。   The resin composition of the present invention is a radical polymerization of epoxy group-containing (meth) acrylate (monomer (A) component), (meth) acrylate (monomer (B) component), and polymerization-reactive acrylic oligomer (component (C)). Acrylic main chain is formed by ionic polymerization of the acrylic side chain epoxy group and acid anhydride (epoxy curing agent (D)) to form crosslinks within the acrylic main chain and between the main chains, and further polymerization reaction When the acrylic oligomer is graft-polymerized to the acrylic main chain by radical polymerization of the functional acrylic oligomer, the crosslinking density can be appropriately reduced due to the steric hindrance to balance heat resistance and mechanical properties. At the same time, curing shrinkage can be reduced by containing an acrylic oligomer.

アクリレートのラジカル重合とエポキシ基と酸無水物のイオン重合を行い、エポキシ樹脂をアクリレートで変性することは、例えば、「ネットワークポリマ」Vol.24,N0.3(2003)p148−155にも報告されている。しかし、これらはアクリレートモノマとエポキシモノマを用い、それぞれ別々に架橋した相互貫入高分子網目構造を形成するために透明性等の特性が低下するという問題がある。   Performing radical polymerization of acrylate and ionic polymerization of an epoxy group and an acid anhydride and modifying an epoxy resin with acrylate is described in, for example, “Network Polymer” Vol. 24, N0.3 (2003) p148-155. However, these use an acrylate monomer and an epoxy monomer, and have a problem that the properties such as transparency are deteriorated in order to form an interpenetrating polymer network structure that is separately crosslinked.

これに対し、本発明の樹脂組成物の材料系ではエポキシ基含有(メタ)アクリレート、(メタ)アクリレート、重合反応性アクリルオリゴマー及び酸無水物を用いることによって、アクリル主鎖内及び主鎖間にエポキシ基と酸無水物の架橋構造を形成し、さらにアクリル側鎖を形成するため均一で高い透明性が得られる。   On the other hand, in the material system of the resin composition of the present invention, by using an epoxy group-containing (meth) acrylate, (meth) acrylate, a polymerization reactive acrylic oligomer and an acid anhydride, the acrylic main chain and between the main chains are used. Since a cross-linked structure of an epoxy group and an acid anhydride is formed and an acrylic side chain is formed, uniform and high transparency can be obtained.

本発明で用いるモノマー成分(A)であるエポキシ基含有(メタ)アクリレートとしては、特に限定されないが、例えば、グリシジルメタクリレート、3,4−エポキシシクロヘキシルメチルアクリレート、3,4−エポキシシクロヘキシルメチルメタアクリレート、1,4−ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられ、中でもグリシジルメタクリレートが好ましい。ここで、本発明で用いる「(メタ)アクリレート」は、アクリレートとメタアクリレートを意味する(以下同じ)。   Although it does not specifically limit as an epoxy-group containing (meth) acrylate which is a monomer component (A) used by this invention, For example, glycidyl methacrylate, 3,4-epoxy cyclohexyl methyl acrylate, 3,4-epoxy cyclohexyl methyl methacrylate, Examples include 1,4-hydroxybutyl acrylate glycidyl ether, and glycidyl methacrylate is particularly preferable. Here, “(meth) acrylate” used in the present invention means acrylate and methacrylate (hereinafter the same).

本発明で用いるモノマー成分(B)である(メタ)アクリレートとしては、特に限定されないが、例えば、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、n−ブチルアクリレート、t−ブチルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、イソボルニルアクリレート等が挙げられ、これらは単独で又は二種類以上を組み合わせて使用することができる。また、モノマー成分(B)は多官能の(メタ)アクリレートを含んでいても良い。多官能の(メタ)アクリレートとしては、例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、1,10−デカンジオールジメタクリレート、ジメチロール−トリシクロデカンジメタクリレート、トリメチロールプロパントリメタクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート、1,10−デカンジオールジアクリレート、ネオペンチルグリコールジアクリレート、3−メチル−1,5−ペンタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート2−ブチル−2−エチル−1,3−プロパンジオールジアクリレート、1,9−ノナンジオールジアクリレート、ジメチロール−トリシクロデカンジアクリレート、エトキシ化イソシアヌル酸トリアクリレート等が挙げられる。   Although it does not specifically limit as (meth) acrylate which is a monomer component (B) used by this invention, For example, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, Examples include isobornyl methacrylate, n-butyl acrylate, t-butyl acrylate, cyclohexyl acrylate, benzyl acrylate, and isobornyl acrylate, and these can be used alone or in combination of two or more. Moreover, the monomer component (B) may contain polyfunctional (meth) acrylate. Examples of the polyfunctional (meth) acrylate include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, and 1,9-nonanediol. Dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane dimethacrylate, trimethylolpropane trimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol Diacrylate, 1,10-decanediol diacrylate, neopentyl glycol diacrylate, 3-methyl-1,5-pentanediol diacrylate, 1,6- Hexanediol diacrylate 2-butyl-2-ethyl-1,3-propanediol diacrylate, 1,9-nonanediol diacrylate, dimethylol - diacrylate, and the like ethoxylated isocyanuric acid triacrylate.

本発明における成分(C)の重合反応性アクリルオリゴマーとしては、特に限定されないが、(メタ)アクリロイル基を1つ以上含有するアクリルオリゴマーであることが好ましく、(メタ)アクリロイル基末端のアクリルオリゴマー(マクロモノマー)であることがより好ましい。アクリルオリゴマーのセグメントとしてはメチルメタクリレート、ブチルアクリレート、イソブチルアクリレート等が挙げられる。また、溶解性の観点から、その数平均分子量は10,000以下が望ましい(数平均分子量は、GPCで測定し標準ポリスチレン換算)。   Although it does not specifically limit as a polymerization reactive acrylic oligomer of the component (C) in this invention, It is preferable that it is an acrylic oligomer containing 1 or more of (meth) acryloyl groups, and the (meth) acryloyl group terminal acrylic oligomer ( More preferably, it is a macromonomer). Examples of the acrylic oligomer segment include methyl methacrylate, butyl acrylate, and isobutyl acrylate. From the viewpoint of solubility, the number average molecular weight is preferably 10,000 or less (the number average molecular weight is measured by GPC and converted to standard polystyrene).

本発明で用いるエポキシの硬化剤(D)としては、特に限定されないが、25℃で液状の酸無水物、例えば、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸等が挙げられ、中でも脂環式酸無水物が好ましく、メチルヘキサヒドロ無水フタル酸、水素化メチルナジック酸無水物が特に好ましい。   The epoxy curing agent (D) used in the present invention is not particularly limited, but is an acid anhydride which is liquid at 25 ° C., for example, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, hydrogen Methyl nadic acid anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, and the like. Among them, alicyclic acid anhydride is preferable, and methylhexahydrophthalic anhydride and hydrogenated methyl nadic acid anhydride are particularly preferable. .

本発明で用いるラジカル重合開始剤(E)としては、アゾ系開始剤、過酸化物開始剤等、通常のラジカル重合に使用できるものはいずれも使用することができる。アゾ系開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスシクロヘキサノン−1−カルボニトリル、アゾジベンゾイル等が挙げられ、過酸化物開始剤としては、過酸化ベンゾイル、過酸化ラウロイル、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、t−ブチルペルオキシイソプロピルカーボネート等が挙げられる。   As the radical polymerization initiator (E) used in the present invention, any one that can be used for normal radical polymerization, such as an azo initiator and a peroxide initiator, can be used. Examples of the azo initiator include azobisisobutyronitrile, azobis-4-methoxy-2,4-dimethylvaleronitrile, azobiscyclohexanone-1-carbonitrile, azodibenzoyl, and the like. Initiators include benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, t-butylperoxy-2-ethylhexanoate, 1,1-t-butylperoxy-3,3 , 5-trimethylcyclohexane, t-butylperoxyisopropyl carbonate, and the like.

また、ラジカル重合を光ラジカル重合により行う場合には、ラジカル重合開始剤(E)として、上記アゾ系開始剤や過酸化物開始剤等のラジカル熱重合開始剤の替わりに光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤としては工業的UV照射装置の紫外線を効率良く吸収して活性化し、硬化樹脂を黄変させないものであれば特に制限されるものではなく、例えば、1−ヒドロキシシクロヘキシルフェニルケトン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ヒドロキシ−メチル−1−フェニル−プロパン−1−オン、オリゴ(2−ヒドロキシ−2−メチル−1−(4−(1−メチルビニル)フェニル)プロパノン、オリゴ(2−ヒドロキシ−2−メチル−1−(4―(1−メチルビニル)フェニル)プロパノンとトリプロピレングリコールジアクリレートとの混合物、及びオキシ−フェニル−アセチックアシッド−2−(2−オキソ−2−フェニル−アセトキシ−エトキシ)−エチルエステルとオキシ−フェニル−アセチックアシッド−2−(2−ヒドロキシ−エトキシ)−エチルエステルの混合物等が挙げられる。   When radical polymerization is carried out by radical photopolymerization, a radical photopolymerization initiator (E) is used instead of radical thermal polymerization initiators such as the above-mentioned azo initiators and peroxide initiators. Can be used. The radical photopolymerization initiator is not particularly limited as long as it efficiently absorbs and activates ultraviolet rays of an industrial UV irradiation apparatus and does not yellow the cured resin. For example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-methyl-1-phenyl-propan-1-one, oligo (2-hydroxy-2-methyl-1- (4- (1 -Methylvinyl) phenyl) propanone, a mixture of oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone and tripropylene glycol diacrylate, and oxy-phenyl-acetic acid -2- (2-Oxo-2-phenyl-acetoxy-ethoxy) -ethyl ester and oxy-phenyl Acetate tic acid 2- (2-hydroxy - ethoxy) - mixture of ethyl esters.

本発明で用いるエポキシ硬化促進剤(F)としては、特に限定されないが、例えば、4級ホスホニウム塩系、4級アンモニウム塩系、イミダゾール系、DBU(1,8−ジアザ−ビシクロ−(5,4,0)−ウンデセン−7)脂肪酸塩系、金属塩系、トリフェニルフォスフィン系等が挙げられる。4級ホスホニウム塩系としては、例えば、テトラブチルホスホニウムジエチルホスホジチオネート、テトラフェニルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド等が、4級アンモニウム塩系としては、テトラエチルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド等が、イミダゾール系としては、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2,4−ジアミノ−6−[2−メチルイミダゾリル−(1)]エチル−s−トリアジン、2−フェニルイミダゾリン等が、DBU脂肪酸塩系としては、DBUの2−エチルヘキサン酸塩が、金属塩系としては、オクチル酸亜鉛、オクチル酸錫等が、好ましい。   Although it does not specifically limit as an epoxy hardening accelerator (F) used by this invention, For example, quaternary phosphonium salt type | system | group, quaternary ammonium salt type | system | group, imidazole type | system | group, DBU (1,8-diaza-bicyclo- (5,4) , 0) -undecene-7) fatty acid salt system, metal salt system, triphenylphosphine system and the like. Examples of the quaternary phosphonium salt system include tetrabutylphosphonium diethylphosphodithionate, tetraphenylphosphonium bromide, and tetrabutylphosphonium bromide. Examples of the quaternary ammonium salt system include tetraethylammonium bromide and tetrabutylammonium bromide are imidazole. Examples of the system include 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2,4-diamino-6- [2-methylimidazolyl- ( 1)] Ethyl-s-triazine, 2-phenylimidazoline, etc., DBU fatty acid salt system is DBU 2-ethylhexanoate, and metal salt system is zinc octylate, tin octylate, etc. .

硬化物の架橋構造は、用いるラジカル重合開始剤(E)の半減期温度及びエポキシ硬化促進剤(F)のゲル化温度の関係に依存する。一般的にラジカル重合開始剤の半減期温度の方が、エポキシ硬化促進剤のゲル化温度より低いので、先ず(メタ)アクリレートのラジカル重合が進み(メタ)アクリル主鎖及び(メタ)アクリル側鎖が形成され、引き続いてエポキシ基と酸無水物のイオン重合が進みアクリル主鎖内及び主鎖間に架橋構造が形成される。しかし、ラジカル重合開始剤の半減期温度とエポキシ硬化促進剤のゲル化温度が近い組み合わせを選択することによって、アクリル主鎖の立体的な拘束がなくより密な架橋構造を得ることができると考えられる。   The crosslinked structure of the cured product depends on the relationship between the half-life temperature of the radical polymerization initiator (E) used and the gelation temperature of the epoxy curing accelerator (F). Generally, since the half-life temperature of the radical polymerization initiator is lower than the gelation temperature of the epoxy curing accelerator, first, radical polymerization of (meth) acrylate proceeds and (meth) acryl main chain and (meth) acryl side chain Then, ionic polymerization of epoxy group and acid anhydride proceeds, and a crosslinked structure is formed in the acrylic main chain and between the main chains. However, by selecting a combination in which the half-life temperature of the radical polymerization initiator and the gelation temperature of the epoxy curing accelerator are close, it is considered that a denser cross-linked structure can be obtained without steric constraints on the acrylic main chain. It is done.

本発明における(A)成分と(B)成分の配合量は、重量比で(A):(B)=30:70〜95:5となるように配合することが好ましく、50:50〜90:10となるように配合することが特に好ましい。ここで(A)成分の比率が30未満では架橋密度が小さくなり過ぎるため耐熱性が低下する。一方、(A)成分の比率が95を超えて大きいと架橋密度が高くなり過ぎるため弾性率が大きく、脆くなる傾向がある。   It is preferable to mix | blend the compounding quantity of (A) component and (B) component in this invention so that it may become (A) :( B) = 30: 70-95: 5 by weight ratio, 50: 50-90 : It is particularly preferable to blend so as to be 10. Here, if the ratio of the component (A) is less than 30, the crosslink density becomes too small, and the heat resistance is lowered. On the other hand, when the ratio of the component (A) exceeds 95 and the crosslinking density becomes too high, the elastic modulus is large and the brittleness tends to be brittle.

本発明における(C)成分の配合量は、当該(C)成分と、(A)成分及び(B)成分との重量比で(C):(A)+(B)=10:90〜50:50となるように配合することが好ましく、20:80〜40:60となるように配合することが特に好ましい。ここで(C)成分の比率が10未満では硬化収縮低減の効果が少ない。一方、(C)成分の比率が50を超えて大きいと、(A)成分、(B)成分及び(D)成分への溶解が難くなる傾向がある。   The compounding quantity of (C) component in this invention is the weight ratio of the said (C) component, (A) component, and (B) component (C) :( A) + (B) = 10: 90-50 : It is preferable to mix | blend so that it may be set to 50, and it is especially preferable to mix | blend so that it may become 20: 80-40: 60. Here, if the ratio of the component (C) is less than 10, the effect of reducing curing shrinkage is small. On the other hand, when the ratio of the component (C) is greater than 50, dissolution in the component (A), the component (B), and the component (D) tends to be difficult.

本発明におけるエポキシの硬化剤(D)成分の配合量は、その酸無水物基と(A)成分のエポキシ基との当量比(酸無水物基/エポキシ基)で0.5〜1.2とすることが好ましい。この当量比が1.2を超えて大きいと、硬化物が熱や紫外線によって着色し易くなる。一方、当量比が0.5未満では、耐熱性が低下する傾向がある。   The compounding amount of the epoxy curing agent (D) component in the present invention is 0.5 to 1.2 in terms of an equivalent ratio (acid anhydride group / epoxy group) between the acid anhydride group and the epoxy group of the component (A). It is preferable that When this equivalent ratio is larger than 1.2, the cured product is easily colored by heat or ultraviolet rays. On the other hand, if the equivalent ratio is less than 0.5, the heat resistance tends to decrease.

本発明におけるラジカル重合開始剤(E)成分の配合量は、(A)成分、(B)成分、成分(C)及び(D)成分の総量100重量部に対して、0.01〜5重量部とすることが好ましく、0.1〜1重量部とすることが特に好ましい。この配合量が5重量部を超えると硬化物が熱や紫外線によって着色し易くなり、0.01重量部未満では硬化し難くなる傾向がある。   The blending amount of the radical polymerization initiator (E) component in the present invention is 0.01 to 5 weights with respect to 100 parts by weight of the total amount of the components (A), (B), components (C) and (D). Parts, preferably 0.1 to 1 part by weight. If this amount exceeds 5 parts by weight, the cured product tends to be colored by heat or ultraviolet rays, and if it is less than 0.01 part by weight, it tends to be difficult to cure.

本発明におけるエポキシ硬化促進剤(F)成分の配合量は、(A)成分、(B)成分、成分(C)及び(D)成分の総量100重量部に対して、0.01〜5重量部とすることが好ましく、0.1〜1重量部とすることが特に好ましい。この配合量が5重量部を超えると硬化物が熱や紫外線によって着色し易くなり、0.01重量部未満では硬化し難くなる傾向がある。   The compounding amount of the epoxy curing accelerator (F) component in the present invention is 0.01 to 5 weights with respect to 100 parts by weight of the total amount of component (A), component (B), component (C) and component (D). Parts, preferably 0.1 to 1 part by weight. If this amount exceeds 5 parts by weight, the cured product tends to be colored by heat or ultraviolet rays, and if it is less than 0.01 part by weight, it tends to be difficult to cure.

本発明の樹脂組成物には、上記の成分以外に、ヒンダードアミン系の光安定剤やフェノール系やリン系の酸化防止剤、紫外線吸収剤、無機充填剤、有機充填剤、カップリング剤、重合禁止剤等を添加することができる。また、成形性の観点から離型剤、可塑剤、帯電防止剤、難燃剤等を添加してもよい。これらは、樹脂硬化物の光透過性を確保する観点から液状であることが好ましいが、固形の場合には用いる波長以下の粒径を有するものとすることが望ましい。   In addition to the above components, the resin composition of the present invention includes hindered amine light stabilizers, phenolic and phosphorus antioxidants, ultraviolet absorbers, inorganic fillers, organic fillers, coupling agents, and polymerization inhibition. An agent or the like can be added. Moreover, a mold release agent, a plasticizer, an antistatic agent, a flame retardant, etc. may be added from the viewpoint of moldability. These are preferably liquid from the viewpoint of ensuring the light transmittance of the cured resin, but in the case of a solid, it is desirable to have a particle size equal to or smaller than the wavelength used.

本発明の樹脂組成物を用いた光学部材の製造方法は、モノマー成分(A)としてエポキ
シ基含有(メタ)アクリレート、モノマー成分(B)として(メタ)アクリレート、成分
(C)として重合反応性アクリルオリゴマー、及びエポキシの硬化剤(D)として酸無水
物を含み、任意にラジカル重合開始剤(E)及びエポキシ硬化促進剤(F)をさらに含みうる、25℃(室温)で液体である樹脂組成物を、加熱又は光照射によって(A)、(B)及び(C)のラジカル重合と、(A)成分及び(D)成分のイオン重合の両方を進行させ、硬化させる。樹脂組成物の形態としては、(A)成分、(B)成分、(C)成分及び(D)成分、必要に応じて添加される(E)成分及び(F)成分を混合調製した樹脂溶液でもよいが、(A)成分、(B)成分及び(C)成分を含有する第一液と、(D)成分、(E)成分及び(F)成分を含有する第二液とに分けておくことで、それぞれの保存安定性を向上させることができ、使用時には第一液と第二液を混合することにより本発明の樹脂組成物が得られる。
The method for producing an optical member using the resin composition of the present invention comprises an epoxy group-containing (meth) acrylate as the monomer component (A), (meth) acrylate as the monomer component (B), and a polymerization-reactive acrylic as the component (C). Resin composition that is liquid at 25 ° C. (room temperature), which contains an acid anhydride as an oligomer and an epoxy curing agent (D), and may further optionally include a radical polymerization initiator (E) and an epoxy curing accelerator (F) The product is cured by heating or light irradiation to cause both radical polymerization of (A), (B) and (C) and ionic polymerization of the components (A) and (D) to proceed. As the form of the resin composition, (A) component, (B) component, (C) component and (D) component, resin solution prepared by mixing (E) component and (F) component added as necessary However, it is divided into the first liquid containing the component (A), the component (B) and the component (C), and the second liquid containing the component (D), the component (E) and the component (F). Thus, the storage stability of each can be improved, and the resin composition of the present invention can be obtained by mixing the first liquid and the second liquid at the time of use.

本発明の樹脂組成物を用いた光学部材の製造方法は、樹脂溶液を所望の部分に注型、ポッティング、又は金型へ流し込み、加熱又は光によって硬化させる。また、硬化阻害や着色防止のため、予め窒素バブリングによって樹脂組成物中の酸素濃度を低減することが望ましい。   In the method for producing an optical member using the resin composition of the present invention, the resin solution is poured into a desired portion, cast, potted, or poured into a mold and cured by heating or light. Moreover, it is desirable to reduce the oxygen concentration in the resin composition in advance by nitrogen bubbling in order to inhibit curing and prevent coloring.

熱硬化の場合の硬化条件は、各成分の種類、組み合わせ、添加量にもよるが、最終的にラジカル重合とイオン重合の両方が完結する温度、時間であればよく、特に限定されないが、好ましくは、60〜150℃で、1〜5時間程度である。また、急激な硬化反応によって発生する内部応力を低減するために、硬化温度を段階的に昇温することが望ましい。さらに、より短時間で簡易に硬化物を得るために、まず光照射により(A)成分、(B)成分及び(C)成分の光ラジカル重合を行い、ついでこれを加熱することで(A)成分、及び(D)成分のイオン重合を行うことも可能である。   The curing conditions in the case of thermosetting depend on the type, combination, and amount of each component, but are not particularly limited as long as the temperature and time are finally completed for both radical polymerization and ionic polymerization. Is 60 to 150 ° C. and about 1 to 5 hours. Further, in order to reduce internal stress generated by a rapid curing reaction, it is desirable to raise the curing temperature stepwise. Further, in order to easily obtain a cured product in a shorter time, first, photoradical polymerization of the component (A), the component (B) and the component (C) is performed by light irradiation, and then heated (A) It is also possible to perform ion polymerization of the component and the component (D).

以上、説明した本発明の樹脂組成物は、その硬化物の光学的透明性が高く、耐熱性、耐
光性、機械特性に優れ、硬化収縮が小さい樹脂組成物であり、その硬化物は、透明基板、レンズ、接着剤、光導波路、発光ダイオード(LED)、フォトトランジスタ、フォトダイオード、固体撮像素子等の光半導体素子用途の光学部材として好適である。
The resin composition of the present invention described above is a resin composition having high optical transparency of the cured product, excellent heat resistance, light resistance, mechanical properties, and small curing shrinkage, and the cured product is transparent. It is suitable as an optical member for use in optical semiconductor elements such as substrates, lenses, adhesives, optical waveguides, light emitting diodes (LEDs), phototransistors, photodiodes, and solid-state imaging devices.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
モノマー成分(A)のエポキシ基含有(メタ)アクリレートとしてグリシジルメタクリレート(ライトエステルG,共栄社化学株式会社製)32重量部に、モノマー成分(B)の(メタ)アクリレートとしてメチルメタクリレート(和光純薬工業株式会社製)16重量部、成分(C)の重合反応性アクリルオリゴマーとして片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー(AA6,東亜合成株式会社製)16重量部、エポキシの硬化剤(D)の酸無水物としてメチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)36重量部、ラジカル重合開始剤(E)としてアゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部、エポキシ硬化促進剤(F)としてテトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を、3mm厚及び1mm厚のシリコーン製のスペーサーをガラス板で挟んだ型の中に流し入れ、オーブン中で80℃、100℃、125℃、150℃で、各1時間の条件で加熱し、3mm厚及び1mm厚の硬化物を得た。
Example 1
32 parts by weight of glycidyl methacrylate (light ester G, manufactured by Kyoeisha Chemical Co., Ltd.) as an epoxy group-containing (meth) acrylate of the monomer component (A), methyl methacrylate (Wako Pure Chemical Industries, Ltd.) as the (meth) acrylate of the monomer component (B) Acrylic reactive oligomer (AA6, Toa Gosei Co., Ltd.) having a number average molecular weight of 6,000, having 16 parts by weight, a component (C), a polymerization reactive acrylic oligomer having a methacryloyl group at one end and methyl methacrylate as the main chain segment 16 parts by weight), 36 parts by weight of methylhexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) as the acid anhydride of the epoxy curing agent (D), as the radical polymerization initiator (E) 0.2 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) Epoxy curing accelerator (F) as tetrabutylphosphonium diethyl phosphonate dithionate the (Hishicolin PX-4ET, manufactured by Nippon Chemical Industrial Co., Ltd.) 1 part by weight were mixed at room temperature (25 ° C.), to prepare a resin composition solution. This resin solution is poured into a mold in which a 3 mm thick and 1 mm thick silicone spacer is sandwiched between glass plates, and heated in an oven at 80 ° C., 100 ° C., 125 ° C. and 150 ° C. for 1 hour each. Then, cured products having thicknesses of 3 mm and 1 mm were obtained.

(実施例2)
グリシジルメタクリレート(ライトエステルG,共栄社化学株式会社製)32重量部に、1,9−ノナンジオールアクリレート(ライトアクリレート1,9−ND−A 共栄社化学株式会社製)16重量部、片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー(AA6,東亜合成株式会社製)16重量部、メチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)36重量部、アゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部、テトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を用いて、実施例1と同様に3mm厚及び1mm厚の硬化物を得た。
(Example 2)
To 32 parts by weight of glycidyl methacrylate (Light Ester G, manufactured by Kyoeisha Chemical Co., Ltd.), 16 parts by weight of 1,9-nonanediol acrylate (Light acrylate 1,9-ND-A manufactured by Kyoeisha Chemical Co., Ltd.), one end is a methacryloyl group 16 parts by weight of an acrylic reactive oligomer (AA6, manufactured by Toa Gosei Co., Ltd.) having a number average molecular weight of 6,000 whose main chain segment is methyl methacrylate, methylhexahydrophthalic anhydride (HN-5500, Hitachi Chemical Co., Ltd.) 36 parts by weight, Azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) 0.2 parts by weight, Tetrabutylphosphonium diethylphosphodithionate (Hishicolin PX-4ET, Nippon Chemical Industry Co., Ltd.) 1 part by weight Were mixed at room temperature (25 ° C.) to prepare a resin composition solution. Using this resin solution, cured products having thicknesses of 3 mm and 1 mm were obtained in the same manner as in Example 1.

(実施例3)
グリシジルメタクリレート(ライトエステルG,共栄社化学株式会社製)32重量部に、エトキシ化イソシアヌル酸トリアクリレート(NKエステルA−9300,新中村化学工業株式会社製)16重量部、片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー(AA6,東亜合成株式会社製)16重量部、メチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)36重量部、アゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部、テトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を用いて、実施例1と同様に3mm及び1mm厚の硬化物を得た。
(Example 3)
Glycidyl methacrylate (light ester G, manufactured by Kyoeisha Chemical Co., Ltd.) 32 parts by weight, ethoxylated isocyanuric acid triacrylate (NK ester A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) 16 parts by weight, one end is mainly methacryloyl group Acrylic-reactive oligomer (AA6, manufactured by Toa Gosei Co., Ltd.) having a number average molecular weight of 6,000 whose chain segment is methyl methacrylate, 16 parts by weight, methylhexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) 36 parts by weight, 0.2 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.), 1 part by weight of tetrabutylphosphonium diethylphosphodithionate (Hishicolin PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.) at room temperature (25 ° C.) to prepare a resin composition solution. Using this resin solution, cured products having a thickness of 3 mm and 1 mm were obtained in the same manner as in Example 1.

(実施例4)
3,4−エポキシシクロヘキシルメチルメタクリレート(サイクロマーM100,ダイセル化学株式会社製)35重量部に、メチルメタクリレート(和光純薬工業株式会社製)25重量部、片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー(AA6,東亜合成株式会社製)11重量部、メチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)29重量部、アゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部、テトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を用いて、実施例1と同様に3mm及び1mm厚の硬化物を得た。
Example 4
35 parts by weight of 3,4-epoxycyclohexylmethyl methacrylate (Cyclomer M100, manufactured by Daicel Chemical Industries), 25 parts by weight of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), one end is a methacryloyl group and the main chain segment is methyl 11 parts by weight of an acrylic reactive oligomer having a number average molecular weight of 6,000 (AA6, manufactured by Toa Gosei Co., Ltd.), 29 parts by weight of methylhexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.), 0.2 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) and 1 part by weight of tetrabutylphosphonium diethylphosphodithionate (Hishicolin PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.) at room temperature (25 ° C.) To prepare a resin composition solution. Using this resin solution, cured products having a thickness of 3 mm and 1 mm were obtained in the same manner as in Example 1.

(実施例5)
グリシジルメタクリレート(ライトエステルG,共栄社化学株式会社製)32重量部にメチルメタクリレート(和光純薬工業株式会社製)22重量部、片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー(AA6,東亜合成株式会社製)9重量部、メチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)36重量部、光ラジカル重合開始剤として1−ヒドロキシシクロヘキシルフェニルケトン(イルガキュア184,チバ・スペシャルティ・ケミカルズ株式会社製)1重量部、テトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を、3mm厚及び1mm厚のシリコーン製のスペーサーをガラス板で挟んだ型の中に流し入れ、超高圧水銀ランプを用い照度11.6mW/cmで積算露光量3000mJ/cmでラジカル重合させた。さらにオーブン中で100℃、125℃、150℃で、各1時間の条件で加熱し、3mm厚及び1mm厚の硬化物を得た。
(Example 5)
The number average molecular weight of glycidyl methacrylate (light ester G, manufactured by Kyoeisha Chemical Co., Ltd.) 32 parts by weight and methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 22 parts by weight, one end having a methacryloyl group and the main chain segment being methyl methacrylate 9 parts by weight of 6,000 acrylic reactive oligomer (AA6, manufactured by Toa Gosei Co., Ltd.), 36 parts by weight of methylhexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.), 1 as a radical photopolymerization initiator -1 part by weight of hydroxycyclohexyl phenyl ketone (Irgacure 184, manufactured by Ciba Specialty Chemicals), 1 part by weight of tetrabutylphosphonium diethylphosphodithionate (Hishicolin PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.) at room temperature (25 ° C) ) Things solution was adjusted. The resin solution, poured a 3mm Atsuoyobi 1mm thick silicone spacer in a mold sandwiched by glass plates, radicals integrated exposure amount 3000 mJ / cm 2 illuminance 11.6 mW / cm 2 using an extra-high pressure mercury lamp Polymerized. Furthermore, it heated on 100 degreeC, 125 degreeC, and 150 degreeC on the conditions for 1 hour each, and the hardened | cured material of 3 mm thickness and 1 mm thickness was obtained.

(比較例1)
メチルメタクリレート(和光純薬工業株式会社製)100重量部及びアゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を、3mm及び1mm厚のシリコーン製のスペーサーをガラス板で挟んだ型の中に流し入れ、オーブン中で、60℃で6時間、110℃で1時間加熱し、3mm及び1mm厚の硬化物を得た。
(Comparative Example 1)
100 parts by weight of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.2 part by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed at room temperature (25 ° C.) to obtain a resin composition solution. Adjusted. This resin solution is poured into a mold in which 3 mm and 1 mm thick silicone spacers are sandwiched between glass plates, and heated in an oven at 60 ° C. for 6 hours and 110 ° C. for 1 hour to cure to 3 mm and 1 mm thickness. I got a thing.

(比較例2)
グリシジルメタクリレート(ライトエステルG,共栄社化学株式会社製)42重量部に、メチルメタクリレート(和光純薬工業株式会社製)10重量部、メチルヘキサヒドロ無水フタル酸(HN−5500,日立化成工業株式会社製)48重量部、アゾビスイソブチロニトリル(和光純薬工業株式会社製)0.2重量部、テトラブチルホスホニウムジエチルホスホジチオネート(ヒシコーリンPX−4ET,日本化学工業株式会社製)1重量部を室温(25℃)にて混合し、樹脂組成物溶液を調整した。この樹脂溶液を用いて、実施例1と同様に3mm及び1mm厚の硬化物を得た。
(Comparative Example 2)
42 parts by weight of glycidyl methacrylate (light ester G, manufactured by Kyoeisha Chemical Co., Ltd.), 10 parts by weight of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), methyl hexahydrophthalic anhydride (HN-5500, manufactured by Hitachi Chemical Co., Ltd.) ) 48 parts by weight, 0.2 parts by weight of azobisisobutyronitrile (manufactured by Wako Pure Chemical Industries, Ltd.), 1 part by weight of tetrabutylphosphonium diethylphosphodithionate (Hishicolin PX-4ET, manufactured by Nippon Chemical Industry Co., Ltd.) The mixture was mixed at room temperature (25 ° C.) to prepare a resin composition solution. Using this resin solution, cured products having a thickness of 3 mm and 1 mm were obtained in the same manner as in Example 1.

上記実施例1〜5、比較例1、2の配合を表1に示した。   The formulations of Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2006131868
Figure 2006131868

ここで、表1中の数字は重量部、A1:グリシジルメタクリレート、A2:3,4−エポキシシクロヘキシルメチルメタアクリレート、B1:メチルメタクリレート、B2:1,9−ノナンジオールジアクリレート、B3:エトキシ化イソシアヌル酸トリアクリレート、C1:片末端がメタクリロイル基で主鎖セグメントがメチルメタクリレートである数平均分子量が6,000のアクリル反応性オリゴマー、D1:メチルヘキサヒドロ無水フタル酸、E1:アゾビスイソブチロニトリル、F1:テトラブチルホスホニウムジエチルホスホジチオネート、G1:1−ヒドロキシシクロヘキシルフェニルケトンを示す。   Here, the numbers in Table 1 are parts by weight, A1: glycidyl methacrylate, A2: 3,4-epoxycyclohexylmethyl methacrylate, B1: methyl methacrylate, B2: 1,9-nonanediol diacrylate, B3: ethoxylated isocyanur. Acid triacrylate, C1: Acrylic reactive oligomer having a number average molecular weight of 6,000 having a methacryloyl group at one end and a main chain segment of methyl methacrylate, D1: methylhexahydrophthalic anhydride, E1: azobisisobutyronitrile , F1: tetrabutylphosphonium diethylphosphodithionate, G1: 1-hydroxycyclohexyl phenyl ketone.

上記実施例1〜5、比較例1、2で得られた硬化物について、硬化収縮率、ガラス転移温度、曲げ強度、光透過率、及び黄変度を下記に示す方法により測定した。   About the hardened | cured material obtained in the said Examples 1-5 and the comparative examples 1 and 2, hardening shrinkage rate, glass transition temperature, bending strength, light transmittance, and yellowing degree were measured by the method shown below.

硬化収縮率(ΔV)は樹脂組成物の比重(ρm)とその硬化物の比重(ρp)から下記式(1)を用いて算出した。   The cure shrinkage (ΔV) was calculated from the specific gravity (ρm) of the resin composition and the specific gravity (ρp) of the cured product using the following formula (1).

Figure 2006131868
Figure 2006131868

ガラス転移温度(Tg)は、3mm厚の硬化物から3×3×20mmの試験片を切り出し、示差型熱機械分析装置(Rigak製TAS100型)を用い測定した。昇温速度5℃/分の条件で試料の熱膨張を測定し、熱膨張曲線の屈曲点からTgを求めた。   The glass transition temperature (Tg) was measured using a differential thermomechanical analyzer (TAS100 model manufactured by Rigak) by cutting a 3 × 3 × 20 mm test piece from a cured product having a thickness of 3 mm. The thermal expansion of the sample was measured at a temperature elevation rate of 5 ° C./min, and Tg was determined from the inflection point of the thermal expansion curve.

曲げ強度は、3×20×50mmの試験片を切り出し、三点曲げ試験装置(インストロン製5548型)を用いてJIS−K−6911に準拠した3点支持による曲げ試験を行い、下記式(2)から曲げ強さを算出した。支点間距離は、24mm、クロスヘッド移動速度は0.5mm/分、測定温度は25℃(室温)及び半導体パッケージ実装時のリフロー温度に近い250℃で行った。   The bending strength was determined by cutting a 3 × 20 × 50 mm test piece and performing a bending test with a three-point support according to JIS-K-6911 using a three-point bending test apparatus (Instron 5548 type). The bending strength was calculated from 2). The distance between fulcrums was 24 mm, the crosshead moving speed was 0.5 mm / min, the measurement temperature was 25 ° C. (room temperature), and 250 ° C., which is close to the reflow temperature when mounting a semiconductor package.

Figure 2006131868

(式(2)中、σfB:曲げ強さ(MPa)、P’:試験片が折れた時の加重(N)であり、L:支点間距離、W:試験片の幅、h:試験片の厚さである。)
Figure 2006131868

(In formula (2), σfB: bending strength (MPa), P ′: weight (N) when the test piece is bent, L: distance between fulcrums, W: width of test piece, h: test piece Is the thickness of.)

光透過率と黄変度は、分光光度計(日立分光光度計V−3310)を用い、1mm厚の試験片で測定した。光透過率は硬化後(初期)及び耐熱変色性の評価として150℃で72時間の高温放置した後に測定した。黄色味を示す黄変度(YI)は測定した透過スペクトルを用い、標準光Cの場合の三刺激値XYZを求め、下記式(3)から求めた。   The light transmittance and the yellowing degree were measured with a 1 mm-thick test piece using a spectrophotometer (Hitachi spectrophotometer V-3310). The light transmittance was measured after curing (initial stage) and after standing at high temperature for 72 hours at 150 ° C. as an evaluation of heat discoloration. The yellowing degree (YI) indicating yellowishness was determined from the following equation (3) by determining the tristimulus value XYZ in the case of the standard light C using the measured transmission spectrum.

Figure 2006131868
Figure 2006131868

上記実施例1〜5、比較例1、2の機械特性、すなわち硬化収縮、ガラス転移温度、室温(25℃)と250℃での曲げ強度と、光学特性、すなわち硬化後(初期)と高温放置後での400nmでの光透過率及び黄変度を表2に示した。   Mechanical properties of Examples 1 to 5 and Comparative Examples 1 and 2, that is, curing shrinkage, glass transition temperature, room temperature (25 ° C.) and bending strength at 250 ° C., optical properties, that is, after curing (initial) and left at high temperature The light transmittance and yellowing degree at 400 nm later are shown in Table 2.

Figure 2006131868
Figure 2006131868

実施例1〜5では、いずれも硬化収縮率が10%以下と比較例1、2よりも小さく、また高温での曲げ強度も3MPa以上と大きい。更に、光学特性についても初期の透過率が高く、黄変度が小さく、高温放置後での透過率の低下が少なく、黄変度の変化量も小さいことが分かる。一方、比較例1、2のようにアクリレートモノマ含有率が大きいと硬化収縮率が大きい。
In each of Examples 1 to 5, the curing shrinkage rate is 10% or less, which is smaller than those of Comparative Examples 1 and 2, and the bending strength at high temperature is as large as 3 MPa or more. Furthermore, it can be seen that the optical characteristics have high initial transmittance, small yellowing, little decrease in transmittance after standing at high temperature, and small change in yellowing. On the other hand, when the acrylate monomer content is large as in Comparative Examples 1 and 2, the curing shrinkage is large.

Claims (7)

モノマー成分(A)としてエポキシ基含有(メタ)アクリレート、モノマー成分(B)として(メタ)アクリレート、成分(C)として重合反応性アクリルオリゴマー、及びエポキシの硬化剤(D)として酸無水物を含有してなり、25℃で液体であり、加熱又は光照射によって硬化する樹脂組成物。   Contains epoxy group-containing (meth) acrylate as monomer component (A), (meth) acrylate as monomer component (B), polymerization-reactive acrylic oligomer as component (C), and acid anhydride as epoxy curing agent (D) A resin composition that is liquid at 25 ° C. and is cured by heating or light irradiation. さらに、ラジカル重合開始剤(E)と、エポキシ硬化促進剤(F)と、を含有してなる請求項1に記載の樹脂組成物。   The resin composition according to claim 1, further comprising a radical polymerization initiator (E) and an epoxy curing accelerator (F). 前記成分(C)の重合反応性アクリルオリゴマーが、(メタ)アクリロイル基末端のアクリルオリゴマー(マクロモノマー)である請求項1または2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, wherein the polymerization reactive acrylic oligomer of the component (C) is an acrylic oligomer (macromonomer) having a (meth) acryloyl group terminal. 前記モノマー成分(A)、前記モノマー成分(B)及び前記成分(C)のラジカル重合と、前記モノマー成分(A)及び前記エポキシの硬化剤(D)のイオン重合とが加熱又は光照射によって進行する請求項1〜3のいずれかに記載の樹脂組成物。   Radical polymerization of the monomer component (A), the monomer component (B) and the component (C) and ionic polymerization of the monomer component (A) and the epoxy curing agent (D) proceed by heating or light irradiation. The resin composition according to any one of claims 1 to 3. 前記モノマー成分(A)、前記モノマー成分(B)及び前記成分(C)を含有する第一液と、前記エポキシの硬化剤(D)、前記ラジカル重合開始剤(E)及び前記エポキシ硬化促進剤(F)を含有する第二液とを混合してなり、加熱又は光照射によって硬化する請求項2〜4のいずれかに記載の樹脂組成物。   The monomer component (A), the first component containing the monomer component (B) and the component (C), the epoxy curing agent (D), the radical polymerization initiator (E) and the epoxy curing accelerator. The resin composition according to any one of claims 2 to 4, which is obtained by mixing a second liquid containing (F) and cured by heating or light irradiation. 請求項1〜5のいずれかに記載の樹脂組成物を硬化して作製した光学部材。   The optical member produced by hardening | curing the resin composition in any one of Claims 1-5. 請求項1〜5のいずれかに記載の樹脂組成物を用い、モノマー成分(A)、モノマー成分(B)及び成分(C)のラジカル重合を光照射によって行い、モノマー成分(A)とエポキシの硬化剤(D)のイオン重合をその後の加熱によって行う光学部材の製造方法。
Using the resin composition according to any one of claims 1 to 5, radical polymerization of the monomer component (A), the monomer component (B) and the component (C) is performed by light irradiation, and the monomer component (A) and the epoxy The manufacturing method of the optical member which performs ion polymerization of a hardening | curing agent (D) by subsequent heating.
JP2005008196A 2004-10-08 2005-01-14 Resin composition, optical member using the same composition and method for producing the same optical member Pending JP2006131868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008196A JP2006131868A (en) 2004-10-08 2005-01-14 Resin composition, optical member using the same composition and method for producing the same optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004296072 2004-10-08
JP2005008196A JP2006131868A (en) 2004-10-08 2005-01-14 Resin composition, optical member using the same composition and method for producing the same optical member

Publications (1)

Publication Number Publication Date
JP2006131868A true JP2006131868A (en) 2006-05-25

Family

ID=36725699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008196A Pending JP2006131868A (en) 2004-10-08 2005-01-14 Resin composition, optical member using the same composition and method for producing the same optical member

Country Status (1)

Country Link
JP (1) JP2006131868A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070614A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Material for forming micropattern, micropattern composite material, method for producing the composite material, and method for manufacturing three-dimensional microstructural substrate
WO2011019067A1 (en) 2009-08-13 2011-02-17 富士フイルム株式会社 Wafer-level lens, wafer-level lens production method, and imaging unit
EP2296018A1 (en) 2009-09-14 2011-03-16 Fujifilm Corporation Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit
EP2298543A2 (en) 2009-09-17 2011-03-23 FUJIFILM Corporation Master model of lens array and method of manufacturing the same
EP2298544A2 (en) 2009-09-16 2011-03-23 FUJIFILM Corporation Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit
WO2011040103A1 (en) 2009-09-30 2011-04-07 富士フイルム株式会社 Element array and element array laminated body
EP2319672A1 (en) 2009-11-05 2011-05-11 FUJIFILM Corporation Lens array press mold and lens array molded by the same
EP2353828A1 (en) 2010-02-08 2011-08-10 FUJIFILM Corporation Molding die for optical molding product, method of molding optical molding product and lens array
EP2361754A2 (en) 2010-02-26 2011-08-31 FUJIFILM Corporation Lens array
EP2361755A2 (en) 2010-02-26 2011-08-31 FUJIFILM Corporation Lens array
EP2366535A2 (en) 2010-03-19 2011-09-21 Fujifilm Corporation Lens and lens array and manufacturing method thereof
EP2366534A2 (en) 2010-03-19 2011-09-21 Fujifilm Corporation Die, molding method and lens array
EP2372406A1 (en) 2010-03-19 2011-10-05 Fujifilm Corporation Lens array and lens array manufacturing method
EP2380721A1 (en) 2010-03-30 2011-10-26 Fujifilm Corporation Method for fabricating a master
JP2017507234A (en) * 2014-03-06 2017-03-16 ユニベルシテ ドゥ オート アルザスUniversite De Haute Alsace Photoinduced free radical and / or cationic photopolymerization
US11155730B2 (en) 2015-10-08 2021-10-26 Mitsubishi Electric Corporation Solvent-free varnish composition, insulated coil, process for producing same, rotating machine, and closed electric compressor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070614A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Material for forming micropattern, micropattern composite material, method for producing the composite material, and method for manufacturing three-dimensional microstructural substrate
WO2011019067A1 (en) 2009-08-13 2011-02-17 富士フイルム株式会社 Wafer-level lens, wafer-level lens production method, and imaging unit
EP2296018A1 (en) 2009-09-14 2011-03-16 Fujifilm Corporation Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit
EP2298544A2 (en) 2009-09-16 2011-03-23 FUJIFILM Corporation Wafer-level lens array, method of manufacturing wafer-level lens array, lens module and imaging unit
EP2298543A2 (en) 2009-09-17 2011-03-23 FUJIFILM Corporation Master model of lens array and method of manufacturing the same
WO2011040103A1 (en) 2009-09-30 2011-04-07 富士フイルム株式会社 Element array and element array laminated body
EP2319672A1 (en) 2009-11-05 2011-05-11 FUJIFILM Corporation Lens array press mold and lens array molded by the same
EP2353828A1 (en) 2010-02-08 2011-08-10 FUJIFILM Corporation Molding die for optical molding product, method of molding optical molding product and lens array
EP2361754A2 (en) 2010-02-26 2011-08-31 FUJIFILM Corporation Lens array
EP2361755A2 (en) 2010-02-26 2011-08-31 FUJIFILM Corporation Lens array
EP2366535A2 (en) 2010-03-19 2011-09-21 Fujifilm Corporation Lens and lens array and manufacturing method thereof
EP2366534A2 (en) 2010-03-19 2011-09-21 Fujifilm Corporation Die, molding method and lens array
EP2372406A1 (en) 2010-03-19 2011-10-05 Fujifilm Corporation Lens array and lens array manufacturing method
EP2380721A1 (en) 2010-03-30 2011-10-26 Fujifilm Corporation Method for fabricating a master
JP2017507234A (en) * 2014-03-06 2017-03-16 ユニベルシテ ドゥ オート アルザスUniversite De Haute Alsace Photoinduced free radical and / or cationic photopolymerization
US11155730B2 (en) 2015-10-08 2021-10-26 Mitsubishi Electric Corporation Solvent-free varnish composition, insulated coil, process for producing same, rotating machine, and closed electric compressor

Similar Documents

Publication Publication Date Title
JP2006131868A (en) Resin composition, optical member using the same composition and method for producing the same optical member
KR101365834B1 (en) Optical semiconductor encapsulating material
JP2013076097A (en) Curable resin composition and optical member
JP2006131867A (en) Resin composition, optical part produced by using the same and method for producing the part
JP5239169B2 (en) Optical member
JP4872358B2 (en) Resin composition, optical member using the same, and method for producing the same
KR101269341B1 (en) Resin composition and optical member using cured product of such resin composition
JP5526511B2 (en) Epoxy resin composition, cured product thereof, method for producing cured product, resin composition for sealing optical semiconductor, and optical semiconductor device
JP4678560B2 (en) Epoxy resin composition, cured product thereof, method for producing cured product, optical semiconductor sealing material, and optical semiconductor device
JP2007327031A (en) Resin composition and optical member using cured product
JP2006193660A (en) Resin composition and optical part using the same
JP4947905B2 (en) Resin composition for optical semiconductor encapsulation
JP2010121105A (en) Curable resin composition and optical member
JP5330633B2 (en) Resin composition, optical member using the same, and method for producing the same
JP2006131866A (en) Resin composition, optical member using the same composition and method for producing the same optical member
JP2011153187A (en) Resin composition and photocoupler device
KR102155180B1 (en) Dual cure adhesive composition
JP5330632B2 (en) Resin composition, optical member using the same, and method for producing the same
JP2008075081A (en) Resin composition and optical member using cured product thereof
JP2011225779A (en) Transparent resin composition and optical semiconductor device
JP5447458B2 (en) Resin composition, optical member using the same, and method for producing the same
JP5672661B2 (en) Resin composition and optical member using cured product thereof
JP2011122075A (en) Resin composition and optical member using cured product thereof
KR20220016018A (en) Adhesive composition, optical component, electronic component, and electronic module
JP2007327030A (en) Curable resin composition and optical member