JP2006131606A - Tert-amylimido-tris(dimethylamido)-niobium, method for producing the same, raw material solution for ald using the same and method for forming niobium nitride film or niobium oxide film by using the same - Google Patents

Tert-amylimido-tris(dimethylamido)-niobium, method for producing the same, raw material solution for ald using the same and method for forming niobium nitride film or niobium oxide film by using the same Download PDF

Info

Publication number
JP2006131606A
JP2006131606A JP2004353346A JP2004353346A JP2006131606A JP 2006131606 A JP2006131606 A JP 2006131606A JP 2004353346 A JP2004353346 A JP 2004353346A JP 2004353346 A JP2004353346 A JP 2004353346A JP 2006131606 A JP2006131606 A JP 2006131606A
Authority
JP
Japan
Prior art keywords
niobium
same
ald
compound
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353346A
Other languages
Japanese (ja)
Other versions
JP4326005B2 (en
Inventor
Mikiko Yasuhara
三紀子 安原
Hidekimi Kadokura
秀公 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2004353346A priority Critical patent/JP4326005B2/en
Publication of JP2006131606A publication Critical patent/JP2006131606A/en
Application granted granted Critical
Publication of JP4326005B2 publication Critical patent/JP4326005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a stable compound having a vapor pressure higher than that of Nb(NtBu)(NEt<SB>2</SB>)<SB>3</SB>by one order of magnitude as a raw material for forming a niobium nitride film or a niobium oxide film by an ALD (alternately leading a plurality of gases) method; to provide a method for producing the compound; and to provide a method for forming the niobium nitride film or the niobium oxide film by using the compound. <P>SOLUTION: A new compound, tert-amylimido-tris(dimethylamido)-niobium represented by Nb(NtAm)(NMe<SB>2</SB>)<SB>3</SB>has 1 Torr/100°C vapor pressure and 47°C melting point. The compound is obtained by reacting 1 mol NbCl<SB>5</SB>with 4 mol LiNMe<SB>2</SB>and 1 mol LiNHtAm in an organic solvent at about room temperature, subjecting the product to filter separation, distilling off the solvent from the filtrate, and subjecting the remained product to vacuum distillation. The niobium nitride film or the niobium oxide film is obtained in good quality by using the compound as a raw material by the ALD method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超電導膜やキャパシタ用高誘電率材料に適した窒化ニオブ膜もしくは酸化ニオブ膜をALD法にて形成するのに好適なニオブ化合物、その製造方法およびこれを用いた窒化ニオブ膜もしくは酸化ニオブ膜の形成方法に関する。  The present invention relates to a niobium compound suitable for forming a niobium nitride film or a niobium oxide film suitable for a superconducting film or a high dielectric constant material for a capacitor by an ALD method, a manufacturing method thereof, a niobium nitride film or an oxide using the same. The present invention relates to a method for forming a niobium film.

ニオブ元素を有する薄膜材料は、その特性により様々な用途に用いられている。例えば窒化ニオブ膜は超電導材料でありSISミキサー素子の電極材として検討されている。酸化ニオブ膜は誘電率が高く、キャパシタ用の高誘電率材料として検討されている。さらには光学素子としても検討されている。
これらの薄膜の成膜方法としてはスパッタリング法や塗布法、MOCVD法が挙げられるが、加工寸法が微細になるにつれ薄膜化が要求されており、これらの方法はさらなる薄膜化に応えられるものではない。
Thin film materials containing niobium elements are used in various applications due to their characteristics. For example, a niobium nitride film is a superconducting material and has been studied as an electrode material for SIS mixer elements. A niobium oxide film has a high dielectric constant, and has been studied as a high dielectric constant material for capacitors. Furthermore, it is also examined as an optical element.
As a method for forming these thin films, a sputtering method, a coating method, and an MOCVD method can be mentioned. However, as processing dimensions become finer, thinning is required, and these methods cannot be used for further thinning. .

この薄膜化に応える手段として、原子及び分子レベルの膜厚を制御できるALD法が有望視されている。ALD法は、各原料ガスを同時ではなく交互に供給することで、MOCVDの素過程である各原料ガスの表面吸着と表面反応を単分子層レベルで制御して、原子層あるいは分子層を一層毎に成長させる方法である。
ALD法用の原料として特に求められることは、蒸気圧が高く、酸素供給源や窒素供給源と反応しやすいことが挙げられる。
As a means for responding to this thinning, the ALD method capable of controlling the film thickness at the atomic and molecular level is promising. In the ALD method, by supplying each source gas alternately instead of simultaneously, the surface adsorption and surface reaction of each source gas, which is an elementary process of MOCVD, are controlled at the monomolecular layer level, so that one atomic layer or one molecular layer is formed. It is a method of growing every time.
What is particularly required as a raw material for the ALD method is that it has a high vapor pressure and easily reacts with an oxygen supply source or a nitrogen supply source.

酸化ニオブもしくは窒化ニオブ薄膜用ALD材料としては、塩化物、金属アルコキシド、金属アミドが挙げられる。酸素供給源としては、HOやH、O等が挙げられる。また窒素供給源としては、NHやNO等が挙げられる。Examples of ALD materials for niobium oxide or niobium nitride thin films include chlorides, metal alkoxides, and metal amides. Examples of the oxygen supply source include H 2 O, H 2 O 2 , and O 3 . As the nitrogen source, NH 3 and NO 2, and the like.

しかし塩化ニオブNbClは固体であり、蒸気圧が低く、また膜中に塩素が含まれるという問題がある。However, niobium chloride NbCl 5 has a problem that it is a solid, has a low vapor pressure, and contains chlorine in the film.

ペンタエトキシニオブNb(OCは蒸気圧が低く、0.1Torr/133℃である。
非特許文献1では、Nb(OCならびにNb(OCの類似化合物であるペンタエトキシタンタルTa(OCおよび水を用い、ALD法にて酸化ニオブ膜と酸化タンタル膜を形成している。しかしNb(OCならびにTa(OCは、ともに熱により自己反応が起こり、連鎖的に膜が堆積されることが明らかになっており、制御性に問題がある。
K.Kukli,M.Ritala,M.Leskel▲a▼,Chem.Mater.,2000,12,1914
Pentaethoxyniobium Nb (OC 2 H 5 ) 5 has a low vapor pressure and is 0.1 Torr / 133 ° C.
In Non-patent Document 1, Nb (OC 2 H 5 ) 5 and pentaethoxytantalum Ta (OC 2 H 5 ) 5 , which is a similar compound of Nb (OC 2 H 5 ) 5 , and water are used, and niobium oxide is oxidized by ALD. A film and a tantalum oxide film are formed. However, Nb (OC 2 H 5 ) 5 and Ta (OC 2 H 5 ) 5 both have self-reactions caused by heat, and it is clear that films are deposited in a chain, and there is a problem in controllability. .
K. Kukli, M .; Ritala, M .; Leskel A, Chem. Mater. 2000, 12, 1914

また、金属アルコキシドは分子中に酸素を含むため、膜中の酸素量の厳密な制御が難しい。特に窒化膜を形成する場合には、酸素を除くことが必要であるため適さない。従って金属アルコキシドは、各原料ガスの表面吸着と表面反応を単分子層レベルでの制御と、膜中の元素量の厳密な制御が求められるALD法に好適な原料であるとは言い難い。  In addition, since metal alkoxide contains oxygen in the molecule, it is difficult to strictly control the amount of oxygen in the film. In particular, when a nitride film is formed, it is not suitable because it is necessary to remove oxygen. Therefore, it is difficult to say that metal alkoxide is a suitable raw material for the ALD method that requires control of the surface adsorption and surface reaction of each raw material gas at the monomolecular layer level and strict control of the amount of elements in the film.

金属アミドとしては、非特許文献2にNb(NtC)[N(C(以下、Nb(NtBu)(NEtと表す)、Nb(NiC)[N(C(以下、Nb(NiPr)(NEtと表す)、Nb(NnC)[N(C(以下、Nb(NnPr)(NEtと表す)がMOCVD法用原料として報告されている。しかしその製法は、臭気が強いピリジンを用いたり、自然発火性で活性が高いリチウムジエチルアミドを取り出し、それを徐々に添加しなければならないなど、安全性、生産性に問題がある。
Hsin−Tien Chiu,Jyh−Cherng Lin,Shiow−Huey Chuang,Gene−Hsiang Lee and Shie−Ming Peng,Journal of the Chinese Chemical Society,1998,45,355
Examples of metal amides include Nb (NtC 4 H 9 ) [N (C 2 H 5 ) 2 ] 3 (hereinafter referred to as Nb (NtBu) (NEt 2 ) 3 ), Nb (NiC 3 H 7). ) [N (C 2 H 5 ) 2 ] 3 (hereinafter referred to as Nb (NiPr) (NEt 2 ) 3 ), Nb (NnC 3 H 7 ) [N (C 2 H 5 ) 2 ] 3 (hereinafter referred to as Nb) (NnPr) (NEt 2 ) 3 ) has been reported as a raw material for the MOCVD method. However, the production method has problems in safety and productivity, such as using pyridine having a strong odor, or taking out spontaneously ignitable and highly active lithium diethylamide and gradually adding it.
Hsin-Tien Chiu, Jyh-Chern Lin, Shiow-Huey Chuang, Gene-Hsiang Lee and Shie-Ming Peng, Journal of the Chinese Chemical Society, 1998

そこで、量産性に優れステップカバレジ能力の高いALD法用の窒化ニオブ薄膜もしくは酸化ニオブ薄膜形成材料、ならびに安全性および生産性が高い製法が必要となった。  Therefore, a niobium nitride thin film or a niobium oxide thin film forming material for ALD method having excellent mass productivity and high step coverage ability, and a manufacturing method with high safety and productivity are required.

本発明者らは特許文献1にて、Nb(NtBu)(NEtの類似化合物であるTa(NtC11)[N(CH(以下、Ta(NtAm)(NMeと表す)が、窒化タンタル膜をMOCVD法で成膜するのに好適な化合物であることを見出し、安全性、生産性が高い製法を発明した。
特開2002−193981号公報 この化合物はALD法にも好適な原料であることが、非特許文献3より分かっている。また酸化ニオブ膜にも好適な原料であることが分かっている。 J.W.Hong,K.I.Choi,Y.K.Lee,S.G.Park,S.W.Lee,J.M.Lee,S.B.Kang,G.H.Choi,S.T.Kim,U−In Chung and J.T.Moon,Proceedings of the 2004 IITC international interconnect technology conference,2004,pp 9
In Patent Document 1, the present inventors disclosed Ta (NtC 5 H 11 ) [N (CH 3 ) 2 ] 3 (hereinafter referred to as Ta (NtAm) (NMe), which is a similar compound of Nb (NtBu) (NEt 2 ) 3. 2 ) represented as 3 ) was found to be a suitable compound for forming a tantalum nitride film by MOCVD, and invented a process with high safety and productivity.
JP 2002-193981 A It is known from Non-Patent Document 3 that this compound is a material suitable for the ALD method. It has also been found to be a suitable raw material for niobium oxide films. J. et al. W. Hong, K .; I. Choi, Y .; K. Lee, S.M. G. Park, S.M. W. Lee, J .; M.M. Lee, S.M. B. Kang, G .; H. Choi, S .; T. T. et al. Kim, U-In Chung and J.M. T. T. et al. Moon, Proceedings of the 2004 IITC international interconnect technology conference, 2004, pp 9

一般に量産用ALDの原料化合物が持つべき供給時の好ましい性質としては、純品で高い蒸気圧を持ち、供給時に熱的に安定で、室温付近、少なくとも使用ソース温度で液体であることが挙げられる。これらの観点から非特許文献2のNb(NtBu)(NEtを見ると、分子量が大きいため蒸気圧が高くないという欠点がある。In general, preferable properties at the time of supply of a raw material compound for ALD for mass production include a pure product having high vapor pressure, being thermally stable at the time of supply, and being liquid at around room temperature, at least at the source temperature used. . From these points of view, Nb (NtBu) (NEt 2 ) 3 of Non-Patent Document 2 has a drawback that the vapor pressure is not high because the molecular weight is large.

本発明はNb(NtBu)(NEtよりも高い蒸気圧を持ち、かつ50℃以下の融点である、新規な化合物を提供することである。また安全性、生産性が高い製造方法を提供することである。さらには、それを用いてALD法で窒化ニオブ薄膜もしくは酸化ニオブ薄膜を形成する方法を提供することである。The present invention is to provide a novel compound having a vapor pressure higher than that of Nb (NtBu) (NEt 2 ) 3 and having a melting point of 50 ° C. or lower. Moreover, it is providing the manufacturing method with high safety | security and productivity. Furthermore, it is to provide a method of forming a niobium nitride thin film or a niobium oxide thin film by using the ALD method.

本発明は、新規化合物であるターシャリーアミルイミドトリス(ジメチルアミド)ニオブである。  The present invention is a novel compound, tertiary amylimide tris (dimethylamide) niobium.

本発明は、五塩化ニオブ1モルとリチウムジメチルアミド4モル、リチウムターシャリーアミルアミド1モルを有機溶媒中で反応させ、次いで副生塩化リチウムを濾過分離し、溶媒を留去し、次いで真空下で蒸留することよりなるターシャリーアミルイミドトリス(ジメチルアミド)ニオブの製造方法である。  In the present invention, 1 mol of niobium pentachloride, 4 mol of lithium dimethylamide and 1 mol of lithium tertiary amylamide are reacted in an organic solvent, then by-product lithium chloride is separated by filtration, the solvent is distilled off, and Is a method for producing tertiary amylimidotris (dimethylamido) niobium, which comprises distilling with bismuth.

本発明は、ターシャリーアミルイミドトリス(ジメチルアミド)ニオブに10wt%以上の有機溶媒を添加してなるALD用原料溶液である。  The present invention is an ALD raw material solution obtained by adding 10 wt% or more of an organic solvent to tertiary amylimide tris (dimethylamide) niobium.

本発明は、ターシャリーアミルイミドトリス(ジメチルアミド)ニオブを原料として用いることを特徴とするALD法による窒化ニオブ膜もしくは酸化ニオブ膜の形成方法である。  The present invention is a method for forming a niobium nitride film or a niobium oxide film by an ALD method characterized by using tertiary amylimide tris (dimethylamide) niobium as a raw material.

本発明のNb(NtAm)(NMeは、公知のNb(NtBu)(MEtと比較して、同じ温度で約10倍の高い蒸気圧を有する新規化合物である。
そのため、ALD法において容易に蒸気を供給することができる。本化合物は再結晶と蒸留により容易に高純度化できるので、半導体装置用ALD原料として好ましい。また本化合物は融点が47℃なので、わずかな加熱により液体化できるので、液体マスフローコントローラーにより定量安定供給ができる。
このNb(NtAm)(NMeと水によるALD法により、良質な酸化ニオブ膜あるいは窒化ニオブ膜を形成することができる。
Nb (NtAm) (NMe 2 ) 3 of the present invention is a novel compound having a vapor pressure about 10 times higher at the same temperature compared to the known Nb (NtBu) (MEt 2 ) 3 .
Therefore, steam can be easily supplied in the ALD method. Since this compound can be easily purified by recrystallization and distillation, it is preferable as an ALD raw material for semiconductor devices. Moreover, since this compound has a melting point of 47 ° C., it can be liquefied by slight heating, so that it can be quantitatively and stably supplied by a liquid mass flow controller.
A good quality niobium oxide film or niobium nitride film can be formed by the ALD method using Nb (NtAm) (NMe 2 ) 3 and water.

本発明のターシャリーアミルイミドトリス(ジメチルアミド)ニオブ(以下、Nb(NtAm)(NMeと表す)は新規化合物である。それは、特許文献1に記載のTa(NtAm)(NMeの製法をもとにして製造することができる。The tertiary amylimide tris (dimethylamide) niobium (hereinafter referred to as Nb (NtAm) (NMe 2 ) 3 ) of the present invention is a novel compound. It can be produced based on the Ta (NtAm) (NMe 2 ) 3 production method described in Patent Document 1.

4モルのリチウムジメチルアミドと1モルのリチウムターシャリーアミルアミドをヘキサン中に溶解懸濁させ、攪拌水冷しながら粉末状の五塩化ニオブを加えて2昼夜10〜40℃で反応させる。次いで副生した塩化リチウム結晶を濾過で取り除き、得られた黄色の液体から溶媒等、低沸点分を減圧で留去する。すると、オレンジ色の粘性液体が残るので、これを1Torrの減圧蒸留をすると、110℃付近で黄紅茶色液体が得られる。この液体をヘキサンから−30℃で再結晶し、得られた暗黄色結晶を1Torrの真空蒸留し、100℃付近で主留分の黄紅茶色液体を得る。この液体は室温で暗黄色の固体となる。五塩化ニオブに対する収率は58%である。  4 mol of lithium dimethylamide and 1 mol of lithium tertiary amylamide are dissolved and suspended in hexane, powdered niobium pentachloride is added with stirring and water cooling, and the mixture is reacted at 10 to 40 ° C. for 2 days and nights. Next, by-product lithium chloride crystals are removed by filtration, and low-boiling components such as a solvent are distilled off from the obtained yellow liquid under reduced pressure. Then, since an orange viscous liquid remains, if this is distilled under reduced pressure of 1 Torr, a yellow blackish liquid is obtained at around 110 ° C. This liquid is recrystallized from hexane at −30 ° C., and the dark yellow crystals obtained are vacuum distilled at 1 Torr to obtain a yellow tea black liquid of the main fraction at around 100 ° C. This liquid becomes a dark yellow solid at room temperature. The yield based on niobium pentachloride is 58%.

ここで原料とするリチウムジメチルアミドは、ノルマルブチルリチウムのヘキサン溶液とジメチルアミンガスを反応させることにより、白色ヨーグルト状として得られる。リチウムターシャリーアミルアミドはノルマルリチウムのヘキサン溶液とターシャリーアミルアミンとを反応させることにより、白色懸濁液として得られる。この二つの反応生成液をそのまま合わせて用いればよい。
反応溶媒としては、ヘキサンの他、ペプタン、オクタン、トルエン、ジエチルエーテルなどが使える。
使用する五塩化ニオブは、市販されている高純度のものを用いると最終生成物の金属元素不純物を少なくできる。当然のことながらその粒度により、反応速度、反応温度上昇に影響するので、添加速度を制御する。
The lithium dimethylamide used here is obtained as white yogurt by reacting a hexane solution of normal butyl lithium with dimethylamine gas. Lithium tertiary amylamide is obtained as a white suspension by reacting a hexane solution of normal lithium with tertiary amylamine. These two reaction product liquids may be used together as they are.
As a reaction solvent, in addition to hexane, peptane, octane, toluene, diethyl ether and the like can be used.
When niobium pentachloride used has a high purity commercially available, the metal element impurities of the final product can be reduced. As a matter of course, the particle size affects the reaction rate and the reaction temperature rise, so the addition rate is controlled.

反応時間は5〜50時間である。五塩化ニオブ1モルに対する仕込みリチウムジメチルアミドのモル数は4モル、リチウムターシャリーアミルアミドのモル数は1モルであるが、若干の過剰のリチウムジメチルアミド、リチウムターシャリーアミルアミドを加えてもよい。  The reaction time is 5 to 50 hours. The number of moles of charged lithium dimethylamide per mole of niobium pentachloride is 4 moles and the number of moles of lithium tertiary amylamide is 1 mole, but a slight excess of lithium dimethylamide and lithium tertiary amylamide may be added. .

実施例1で得られたNb(NtAm)(NMeについて、以下に同定結果と物性を述べる。
(1)組成分析
湿式分解し、生成した液のICP発光分光分析の結果
Nb分析値 28.6wt% (理論値 29.9wt%)
CHN分析の結果
C 41.9wt% (理論値 42.6wt%)
H 9.2wt% (理論値 9.4wt%)
N 17.4wt% (理論値 18.1wt%)
The identification results and physical properties of Nb (NtAm) (NMe 2 ) 3 obtained in Example 1 are described below.
(1) Composition analysis Result of ICP emission spectroscopic analysis of liquid obtained by wet decomposition Nb analysis value 28.6 wt% (theoretical value 29.9 wt%)
Results of CHN analysis C 41.9 wt% (theoretical value 42.6 wt%)
H 9.2wt% (theoretical value 9.4wt%)
N 17.4 wt% (theoretical value 18.1 wt%)

(2)不純物分析
ICP発光分光分析の結果(単位ppm)
Al<1、Ca<1、Fe<1、Mg<1、Ti<1、Li<1
であり高純度であった。
またCl分析の結果、Clは1ppmであった。
(2) Impurity analysis Results of ICP emission spectroscopic analysis (unit: ppm)
Al <1, Ca <1, Fe <1, Mg <1, Ti <1, Li <1
And high purity.
As a result of Cl analysis, Cl was 1 ppm.

(3)EI−MS
測定条件
装置;JEOL AX505W、イオン化法;EI、イオン源温度;230℃
イオン化エネルギー;70eV
測定結果を図1に示した。
主なm/zと強度(%)とそのイオン種を以下に列挙した。
m/z=
310(51%)Nb[NC(CH][N(CH分子イオン
295(21%)Nb[NC(CH)C][N(CH
281(100%)Nb[NC(CH][N(CH
44(26%)N(CH
(3) EI-MS
Measurement conditions Apparatus; JEOL AX505W, ionization method; EI, ion source temperature; 230 ° C
Ionization energy: 70 eV
The measurement results are shown in FIG.
The main m / z, strength (%) and ionic species are listed below.
m / z =
310 (51%) Nb [NC (CH 3) 2 C 2 H 5] [N (CH 3) 2] 3 molecular ion 295 (21%) Nb [NC (CH 3) C 2 H 5] [N (CH 3 ) 2 ] 3
281 (100%) Nb [NC (CH 3 ) 2 ] [N (CH 3 ) 2 ] 3
44 (26%) N (CH 3 ) 2

(4)H−NMR
測定条件
装置;JNM−ECA400(400MHz)、溶媒;C、方法;1D
測定結果を図2に示した。
δH(ppm)と(帰属)を以下に列挙する。
3.14 s (18H,N(C
2.20 d (6.5H,不明)
1.54 q (2.3H,CH C(CHN)
1.31 s (7.6H,CHCHC(C N)
1.11 t (3.4H,C CHC(CHN)
(4) 1 H-NMR
Measurement conditions Apparatus; JNM-ECA400 (400 MHz), solvent; C 6 D 6 , method; 1D
The measurement results are shown in FIG.
δH (ppm) and (assignment) are listed below.
3.14 s (18H, N (C H 3 ) 2 )
2.20 d (6.5H, unknown)
1.54 q (2.3H, CH 3 C H 2 C (CH 3) 2 N)
1.31 s (7.6 H , CH 3 CH 2 C (C H 3 ) 2 N)
1.11 t (3.4H, C H 3 CH 2 C (CH 3 ) 2 N)

(5)蒸気圧
蒸留のデータから、1Torr/100℃であった。
(6)性状と融点
淡黄色の結晶で、その融点は47℃であった。
(5) Vapor pressure It was 1 Torr / 100 degreeC from the data of distillation.
(6) Properties and melting point Pale yellow crystals having a melting point of 47 ° C.

(7)TG−DTA
測定条件
試料重量;22.8mg、雰囲気;Ar 1気圧、
昇温速度;10.0deg/min
測定結果を図3に示した。
(7) TG-DTA
Measurement conditions Sample weight; 22.8 mg, atmosphere; Ar 1 atm,
Temperature increase rate: 10.0 deg / min
The measurement results are shown in FIG.

(8)溶液化
Nb(NtAm)(NMeにヘキサンを10wt%添加した組成物は、20℃で完全に溶液となり析出物がなかった。トルエンでも同様であった。
(8) Solutionization The composition obtained by adding 10 wt% of hexane to Nb (NtAm) (NMe 2 ) 3 became a complete solution at 20 ° C. and had no precipitate. The same was true for toluene.

以上に述べたうちの主に組成分析、EI−MS、H−NMRから総合的に判断して、この化合物はNb(NtAm)(NMeと同定した。Of these, the compound was identified as Nb (NtAm) (NMe 2 ) 3 mainly judging from composition analysis, EI-MS, and 1 H-NMR.

次にNb(NtAm)(NMeと同じ手法で公知化合物のNb(NtBu)(NEtを合成し、融点、蒸気圧を測定し、本発明化合物のNb(NtAm)(NMeと比較した。融点と蒸気圧の結果を表1に示した。Next, Nb (NtBu) (NEt 2 ) 3 which is a known compound is synthesized by the same method as Nb (NtAm) (NMe 2 ) 3 , the melting point and vapor pressure are measured, and Nb (NtAm) (NMe 2 ) of the compound of the present invention is measured. ) Compared with 3 . The results of melting point and vapor pressure are shown in Table 1.

Figure 2006131606
Figure 2006131606

表1より本発明のNb(NtAm)(NMeが1Torrを与える温度は100℃で、Nb(NtBu)(NEtの150℃より約50℃低いことがわかる。またTa(NtBu)(NEtは80℃で0.1Torrしかないので、同じ温度で蒸気圧を比較すると、本発明のNb(NtAm)(NMeは約10倍の高い蒸気圧を与える。よって本発明のNb(NtAm)(NMeは、ALD原料化合物として蒸気圧の点で非常に好ましい性質を有していることが明らかである。蒸発させるためにソース温度や気化器温度を低くできることは、そこでの熱劣化を少なくすることができ、使用の安定がはかれ、パーティクル発生量を少なくできるという利点を有する。Table 1 shows that the temperature at which Nb (NtAm) (NMe 2 ) 3 of the present invention gives 1 Torr is 100 ° C., which is about 50 ° C. lower than 150 ° C. of Nb (NtBu) (NEt 2 ) 3 . Further, Ta (NtBu) (NEt 2 ) 3 has only 0.1 Torr at 80 ° C. Therefore, when comparing the vapor pressure at the same temperature, Nb (NtAm) (NMe 2 ) 3 of the present invention has a vapor pressure that is about 10 times higher. give. Therefore, it is clear that Nb (NtAm) (NMe 2 ) 3 of the present invention has a very favorable property in terms of vapor pressure as an ALD raw material compound. The ability to lower the source temperature and vaporizer temperature for evaporation has the advantage that thermal degradation there can be reduced, the use is stabilized, and the amount of particles generated can be reduced.

本発明のNb(NtAm)(NMeは金属元素不純物が各1ppm以下、Clが1ppmで高純度であった。蒸留精製により純度はさらに上げられる。Nb (NtAm) (NMe 2 ) 3 of the present invention was highly pure with 1 ppm or less of metal element impurities and 1 ppm of Cl. The purity is further increased by distillation purification.

本発明はNb(NtAm)(NMeを原料として用いることを特徴とするALD法による窒化ニオブ膜もしくは酸化ニオブ膜の形成方法でもある。
Nb(NtAm)(NMeの供給方法としては、
(1)50〜120℃にソース温度を保ち、発生する蒸気の自圧でベーパーソースマスフローコントローラーにより供給する
(2)融点の47℃以上、好ましくは50℃以上にソース温度を保ち、液体とし、キャリアーガスをバブリングすることによりNb(NtAm)(NMeを気化させる
(3)ソース温度を50℃以上に加熱し、液体として60℃程度に加熱された液体マスフローメーターで供給し、気化器で全量気化させる
(4)Nb(NtAm)(NMeに10wt%以上の有機溶媒を添加し、室温で溶液として液体マスフローコントローラーあるいは液体マスフローメーターで供給し、気化器で全量気化させる
等がある。
Nb(NtAm)(NMeは液体状態では約5cpの粘度であり、バブリングやマスフローコントローラー、マスフローメーターで使える。
また(4)の有機溶媒としては、ヘキサン、ヘプタン、オクタン、トルエン、シクロヘキサン等、CVD原料溶媒として通常使用されているものが使用できる。
The present invention is also a method for forming a niobium nitride film or a niobium oxide film by an ALD method characterized by using Nb (NtAm) (NMe 2 ) 3 as a raw material.
As a supply method of Nb (NtAm) (NMe 2 ) 3 ,
(1) Keep the source temperature at 50 to 120 ° C., and supply it with a vapor source mass flow controller with the self-pressure of the generated steam (2) Keep the source temperature at a melting point of 47 ° C. or higher, preferably 50 ° C. or higher, and make it a liquid, Nb (NtAm) (NMe 2 ) 3 is vaporized by bubbling the carrier gas. (3) The source temperature is heated to 50 ° C. or higher and supplied as a liquid by a liquid mass flow meter heated to about 60 ° C. (4) Add an organic solvent of 10 wt% or more to Nb (NtAm) (NMe 2 ) 3 , supply it as a solution at room temperature with a liquid mass flow controller or a liquid mass flow meter, and evaporate the entire amount with a vaporizer. is there.
Nb (NtAm) (NMe 2 ) 3 has a viscosity of about 5 cp in the liquid state and can be used in bubbling, a mass flow controller, and a mass flow meter.
Further, as the organic solvent (4), hexane, heptane, octane, toluene, cyclohexane and the like which are usually used as CVD raw material solvents can be used.

Nb(NtAm)(NMeの製造
温度計、攪拌子を備えた500mL三口フラスコを真空置換後、アルゴン雰囲気下とし、作りたてのLiNMeヘキサン懸濁液150mL(LiNMeとして20.4g,0.40mol)と作りたてのLiNHtAmヘキサン懸濁液50mL(LiNHtAmとして9.3g,0.10mol)を仕込み、1時間よく攪拌した。フラスコを水冷しながら粉末状の高純度NbCl(27.0g,0.10mol)を反応液温が20〜35℃になるように徐々に加えた。その後、室温にて48時間攪拌すると、沈降性のよいスラリーとなった。次いで副生したLiCl粒子を濾過分離すると、黄色透明液体が得られた。この液をオイルバス温度30℃で減圧にしてヘキサン溶媒や副生アミン類を留去すると、オレンジ色の粘性液体となった。この液体を110℃付近で1Torrで蒸留し、黄紅茶色の透明液体22.3gを得た。この液体をヘキサン30mLに溶解し、−30℃で再結晶した。得られた淡黄色結晶を1Torr下で蒸留し、留出温度100℃付近で黄紅茶色の液体主留分18.0gを得た。この液は室温で暗黄色の結晶に固化した。同定の結果は前述したようにNb(NtAm)(NMeであり(0.058mol)、収率はNbClに対して58%であった。
Manufacture of Nb (NtAm) (NMe 2 ) 3 A 500 mL three-necked flask equipped with a thermometer and a stirrer was replaced with a vacuum, and then placed in an argon atmosphere, and 150 mL of a fresh LiNMe 2 hexane suspension (20.4 g as LiNMe 2 , 0 .40 mol) and 50 mL of freshly prepared LiNHtAm hexane suspension (9.3 g, 0.10 mol as LiNHtAm) were added and stirred well for 1 hour. While cooling the flask with water, powdery high-purity NbCl 5 (27.0 g, 0.10 mol) was gradually added so that the reaction solution temperature was 20 to 35 ° C. Then, when it stirred at room temperature for 48 hours, it became a slurry with good sedimentation property. Subsequently, by-product LiCl particles were separated by filtration to obtain a yellow transparent liquid. When this solution was reduced in pressure at an oil bath temperature of 30 ° C. and the hexane solvent and by-product amines were distilled off, an orange viscous liquid was obtained. This liquid was distilled at around 110 ° C. and 1 Torr to obtain 22.3 g of a yellowish black transparent liquid. This liquid was dissolved in 30 mL of hexane and recrystallized at -30 ° C. The obtained pale yellow crystals were distilled under 1 Torr to obtain 18.0 g of a yellow tea black liquid main fraction at a distillation temperature of about 100 ° C. This solution solidified into dark yellow crystals at room temperature. As described above, the result of identification was Nb (NtAm) (NMe 2 ) 3 (0.058 mol), and the yield was 58% with respect to NbCl 5 .

Nb(NtAm)(NMeを用いたALD法による酸化ニオブ膜の形成
実施例1で得たNb(NtAm)(NMeを入れたシリンダーを80℃に加熱し、露点−110℃のキャリアーガスでバブリングして得たNb(NtAm)(NMeの蒸気と水、露点−110℃のパージガスを交互にALD室に導入した。基板温度350℃にて約20nmの膜を形成した。この膜は膜中の不純物が少ない良質の酸化ニオブ膜であった。
Nb (NtAm) (NMe 2) 3 was heated Nb obtained in forming the first embodiment of the niobium oxide film by the ALD method (NtAm) a cylinder containing the (NMe 2) 3 to 80 ° C. with a dew point -110 ° C. A vapor of Nb (NtAm) (NMe 2 ) 3 obtained by bubbling with a carrier gas and water and a purge gas having a dew point of −110 ° C. were alternately introduced into the ALD chamber. A film having a thickness of about 20 nm was formed at a substrate temperature of 350 ° C. This film was a good quality niobium oxide film with few impurities in the film.

Nb(NtAm)(NMeを用いたALD法による窒化ニオブ膜の形成
実施例1で得たNb(NtAm)(NMeを入れたシリンダーを80℃に加熱し、露点−110℃のキャリアーガスでバブリングして得たNb(NtAm)(NMeの蒸気とアンモニアガス、露点−110℃のパージガスを交互にALD室に導入した。基板温度300℃にて約20nmの膜を形成した。この膜は膜中の不純物が少ない良質の窒化ニオブ膜であった。
Nb (NtAm) (NMe 2) 3 was heated Nb obtained in forming the first embodiment of the niobium nitride layer by the ALD method (NtAm) a cylinder containing the (NMe 2) 3 to 80 ° C. with a dew point -110 ° C. A vapor of Nb (NtAm) (NMe 2 ) 3 obtained by bubbling with a carrier gas of 1 and a purge gas having a dew point of −110 ° C. were alternately introduced into the ALD chamber. A film having a thickness of about 20 nm was formed at a substrate temperature of 300 ° C. This film was a good quality niobium nitride film with few impurities in the film.

本発明は、高い蒸気圧を持ち、50℃以下の融点である、新規な化合物であり、この原料を用いるALD法による窒化ニオブ膜あるいは酸化ニオブ膜は、良質で極微細加工性に優れているので、産業上の利用可能性は極めて大きい。  The present invention is a novel compound having a high vapor pressure and a melting point of 50 ° C. or less. A niobium nitride film or niobium oxide film by this ALD method using this raw material is of high quality and excellent in ultrafine workability. Therefore, industrial applicability is extremely large.

Nb(NtAm)(NMeのEI−MSによる測定結果を示す図である。Is a diagram showing a Nb (NtAm) (NMe 2) Measurement results of the third EI-MS. Nb(NtAm)(NMeH−NMRによる測定結果を示す図である。Nb (NtAm) (NMe 2) is a view showing the measurement results by 1 H-NMR of 3. Nb(NtAm)(NMeの1気圧でのTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA at 1 atmosphere of Nb (NtAm) (NMe 2 ) 3 .

Claims (4)

ターシャリーアミルイミドトリス(ジメチルアミド)ニオブ。Tertiary amylimido tris (dimethylamide) niobium. 五塩化ニオブ1モルとリチウムジメチルアミド4モル、リチウムターシャリーアミルアミド1モルを有機溶媒中で反応させ、次いで副生塩化リチウムを濾過分離し、溶媒を留去し、次いで真空下で蒸留することよりなるターシャリーアミルイミドトリス(ジメチルアミド)ニオブの製造方法。Niobium pentachloride (1 mol), lithium dimethylamide (4 mol) and lithium tertiary amylamide (1 mol) are reacted in an organic solvent, then by-product lithium chloride is separated by filtration, the solvent is distilled off, and then distilled under vacuum. A process for producing tertiary amylimide tris (dimethylamide) niobium. ターシャリーアミルイミドトリス(ジメチルアミド)ニオブに10wt%以上の有機溶媒を添加してなることを特徴とするALD用原料溶液。A raw material solution for ALD, comprising 10% by weight or more of an organic solvent added to tertiary amylimide tris (dimethylamide) niobium. ターシャリーアミルイミドトリス(ジメチルアミド)ニオブを原料として用いることを特徴とするALD法による窒化ニオブ膜もしくは酸化ニオブ膜の形成方法。A method for forming a niobium nitride film or a niobium oxide film by an ALD method, wherein tertiary amylimide tris (dimethylamide) niobium is used as a raw material.
JP2004353346A 2004-11-08 2004-11-08 Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same. Active JP4326005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353346A JP4326005B2 (en) 2004-11-08 2004-11-08 Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353346A JP4326005B2 (en) 2004-11-08 2004-11-08 Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.

Publications (2)

Publication Number Publication Date
JP2006131606A true JP2006131606A (en) 2006-05-25
JP4326005B2 JP4326005B2 (en) 2009-09-02

Family

ID=36725462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353346A Active JP4326005B2 (en) 2004-11-08 2004-11-08 Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.

Country Status (1)

Country Link
JP (1) JP4326005B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026470A1 (en) 2006-08-28 2008-03-06 Tosoh Corporation Imide complex, method for producing the same, metal-containing thin film and method for producing the same
WO2013018366A1 (en) * 2011-08-02 2013-02-07 パナソニック株式会社 Nbon film, method for producing nbon film, hydrogen generation device, and energy system provided with same
JP2015144174A (en) * 2014-01-31 2015-08-06 国立研究開発法人物質・材料研究機構 Gate insulation film with fixed charge induced inside
US9695207B2 (en) 2012-11-19 2017-07-04 Adeka Corporation Method for producing thin film containing molybdenum

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511772B (en) * 2006-08-28 2013-04-24 东曹株式会社 Imide complex, method for producing the same, metal-containing thin film and method for producing the same
JP2008266280A (en) * 2006-08-28 2008-11-06 Tosoh Corp Imide complex, method for producing the same, metal-containing thin film and method for producing the same
CN101511772A (en) * 2006-08-28 2009-08-19 东曹株式会社 Imide complex, method for producing the same, metal-containing thin film and method for producing the same
US7906668B2 (en) 2006-08-28 2011-03-15 Tosoh Corporation Imide complex, method for producing the same, metal-containing thin film and method for producing the same
TWI380974B (en) * 2006-08-28 2013-01-01 Tosoh Corp Imide complex, method for producing the same, metal-containing thin film, and method for producing the same
WO2008026470A1 (en) 2006-08-28 2008-03-06 Tosoh Corporation Imide complex, method for producing the same, metal-containing thin film and method for producing the same
JPWO2013018366A1 (en) * 2011-08-02 2015-03-05 パナソニック株式会社 NbON film, NbON film manufacturing method, hydrogen generation device, and energy system including the same
CN103153868A (en) * 2011-08-02 2013-06-12 松下电器产业株式会社 Nbon film, method for producing nbon film, hydrogen generation device, and energy system provided with same
WO2013018366A1 (en) * 2011-08-02 2013-02-07 パナソニック株式会社 Nbon film, method for producing nbon film, hydrogen generation device, and energy system provided with same
CN103153868B (en) * 2011-08-02 2015-07-08 松下电器产业株式会社 Nbon film, method for producing nbon film, hydrogen generation device, and energy system provided with same
US9353449B2 (en) 2011-08-02 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Method for producing NbON film
US9695207B2 (en) 2012-11-19 2017-07-04 Adeka Corporation Method for producing thin film containing molybdenum
US9988411B2 (en) 2012-11-19 2018-06-05 Adeka Corporation Thin-film-forming material including a molybdenum imide compound
US10150789B2 (en) 2012-11-19 2018-12-11 Adeka Corporation Molybdenum imide compound
JP2015144174A (en) * 2014-01-31 2015-08-06 国立研究開発法人物質・材料研究機構 Gate insulation film with fixed charge induced inside

Also Published As

Publication number Publication date
JP4326005B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP3963078B2 (en) Tertiary amylimidotris (dimethylamido) tantalum, method for producing the same, raw material solution for MOCVD using the same, and method for forming a tantalum nitride film using the same
US7723493B2 (en) Metal complexes of tridentate BETA -ketoiminates
WO2012060428A1 (en) (amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
US7635441B2 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
JP2009542654A5 (en)
JP2017505858A (en) Method for producing inorganic thin film
JP4326005B2 (en) Tertiary amylimide tris (dimethylamide) niobium, a method for producing the same, a raw material solution for ALD using the same, and a method for forming a niobium nitride film or a niobium oxide film using the same.
JP5260148B2 (en) Method for forming strontium-containing thin film
JP2009081429A (en) High dielectric thin film capacitor and its production process
WO2008005490A1 (en) Organometallic compounds having sterically hindered amides
JP4133589B2 (en) Tetrakis (ethylmethylamino) vanadium, method for producing the same, and method for forming a vanadium nitride film using the same
JP2001151782A (en) Zirconium alkoxytris(beta-diketonate), method for its production and liquid composition for forming pzt film
KR101476016B1 (en) Metal alkoxide compound and process for production of metal-containing thin film using the compound
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JPH0940683A (en) Highly pure titanium complex, its production and liquid composition for forming bst membrane
WO2011080978A1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
CN111440210A (en) Preparation method, product and application of niobium or tantalum-containing organic compound
JP4225607B2 (en) Method for producing bismuth-containing composite metal oxide film
JP4211300B2 (en) ORGANIC TITANIUM COMPOUND, SOLUTION MATERIAL CONTAINING THE SAME, AND TITANIUM-CONTAINING DIELECTRIC THIN FILM PRODUCED THEREFROM
JP2013173716A (en) Mixture of cobalt compound and method of producing cobalt-containing thin film using mixture of the cobalt compound
KR102129055B1 (en) Zirconium aminoalkoxide precursors, preparation method thereof and process for thin film formation using the same
KR100584200B1 (en) Precursors of titanium oxide and preparation method thereof
JP4767158B2 (en) Method for producing bis (pentamethylcyclopentadienyl) strontium
JP4296756B2 (en) Method for producing titanium-containing dielectric thin film from organic titanium compound and solution raw material containing the same
JP3119128B2 (en) High purity Ti complex, method for producing the same, and liquid composition for forming BST film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4326005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150619

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250