JP2006128574A - Solar battery cell and its manufacturing method, solar battery module, and its manufacturing method - Google Patents

Solar battery cell and its manufacturing method, solar battery module, and its manufacturing method Download PDF

Info

Publication number
JP2006128574A
JP2006128574A JP2004318308A JP2004318308A JP2006128574A JP 2006128574 A JP2006128574 A JP 2006128574A JP 2004318308 A JP2004318308 A JP 2004318308A JP 2004318308 A JP2004318308 A JP 2004318308A JP 2006128574 A JP2006128574 A JP 2006128574A
Authority
JP
Japan
Prior art keywords
electrode film
substrate
semiconductor layer
type semiconductor
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004318308A
Other languages
Japanese (ja)
Other versions
JP4801895B2 (en
Inventor
Sumihiro Ichikawa
純廣 市川
Koji Takei
弘次 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2004318308A priority Critical patent/JP4801895B2/en
Publication of JP2006128574A publication Critical patent/JP2006128574A/en
Application granted granted Critical
Publication of JP4801895B2 publication Critical patent/JP4801895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery cell module using solar cells of which the solar cell module can be composed without performing patterning including scribing on the entire electrode film etc., formed over the entire surface of one surface side of a substrate. <P>SOLUTION: The solar battery cell module is constituted by electrically and serially connecting a plurality of solar battery cells 10, each formed by laminating an electrode film 14, a p-type semiconductor layer 16, an n-type semiconductor layer 18, and a transparent electrode 20 on one surface side of the substrate 12 in this order. The plurality of solar cells 10 are arranged in series; an extension electrode film 14a which is extended from the electrode film 14 and in an exposed state is formed on one of both flanks of the substrate 12, which face flanks of other solar cells 10 and 10 disposed adjacently to a solar battery cell 10 on both sides thereof; an extension transparent electrode 20a which is extended from the transparent electrode 20 without coming into contact with the electrode surface 14a is formed on the other flank; and the extension electrode film 14a of the solar cell 10 and extension transparent electrodes 20a of the adjacent solar battery cells 10 are electrically connected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は太陽電池セル及びその製造方法並びに太陽電池モジュール及びその製造方法に関し、更に詳細には基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が積層されて形成された太陽電池セル及びその製造方法、並びに複数個の太陽電池セルが電気的に直列に接続された太陽電池モジュール及びその製造方法に関する。   The present invention relates to a solar battery cell and a manufacturing method thereof, and a solar battery module and a manufacturing method thereof. More specifically, the present invention is formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode on one surface side of a substrate. The present invention relates to a solar cell and a manufacturing method thereof, a solar cell module in which a plurality of solar cells are electrically connected in series, and a manufacturing method thereof.

太陽電池に用いられている太陽電池セルとしては、基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が積層されて形成された太陽電池セル、いわゆる化合物半導体太陽電池セルが知られている。
かかる化合物半導体太陽電池セルは、結晶質シリコン等の薄膜を用いた結晶質太陽電池セルに比較して、低コストで生産可能であり、略同程度の起電力を得られることも可能であることが判明しつつある。
ところで、化合物半導体太陽電池セル単独の起電力では、実用に供し得る充分な電力を得ることができないため、通常、複数個の化合物半導体太陽電池セル(以下、単に太陽電池セルと称することがある)を電気的に直列に接続した太陽電池モジュールにして用いられる。
かかる太陽電池モジュールの製造方法としては、下記特許文献1に提案されている。
特開2000−252506号公報(図1及び図2、対応説明箇所)
As a solar cell used for a solar cell, a solar cell formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer and a transparent electrode on one side of a substrate, a so-called compound semiconductor solar cell It has been known.
Such a compound semiconductor solar battery cell can be produced at a lower cost than a crystalline solar battery cell using a thin film such as crystalline silicon, and an electromotive force of substantially the same level can be obtained. Is becoming clear.
By the way, in the electromotive force of a compound semiconductor solar cell alone, since sufficient electric power that can be practically used cannot be obtained, usually, a plurality of compound semiconductor solar cells (hereinafter sometimes simply referred to as solar cells). Are used as a solar cell module electrically connected in series.
As a manufacturing method of such a solar cell module, the following Patent Document 1 is proposed.
Japanese Unexamined Patent Publication No. 2000-252506 (FIGS. 1 and 2 and corresponding explanation points)

上記特許文献1に提案されている製造方法の概要を図9に示す。先ず、図9(a)に示す様に、ガラス基板200の一面側の全面にスパッタリング法で形成した全面電極膜をレーザによってスクライブして各太陽電池セル用の電極膜202,202・・を形成した後、電極膜202,202・・上に非晶質シリコンから成るn型半導体層と非晶質シリコンから成るp型半導体層とから構成される光電変換ユニット204を形成する。更に、この光電変換ユニット204上に、透明電電極としてのITO膜206をスパッタリング法で形成する。   An outline of the manufacturing method proposed in Patent Document 1 is shown in FIG. First, as shown in FIG. 9A, a full-surface electrode film formed by sputtering on the entire surface of one surface side of the glass substrate 200 is scribed by laser to form electrode films 202, 202,. Then, a photoelectric conversion unit 204 composed of an n-type semiconductor layer made of amorphous silicon and a p-type semiconductor layer made of amorphous silicon is formed on the electrode films 202, 202. Further, an ITO film 206 as a transparent electrode is formed on the photoelectric conversion unit 204 by a sputtering method.

次いで、図9(b)に示す様に、ITO膜206及びp型半導体層とをレーザによってスクライブして太陽電池セルの部分と電極膜202の取出部とに分離する分離溝208を形成した後、電極膜202の取出部に接続孔210を形成する。この接続孔210は、光電変換ユニット204を構成するp型半導体層を貫通し、n型半導体層に到達している。
その後、図9(c)に示す様に、ITO膜206、分離溝208及び接続孔210を含む全面に蒸着によって銀薄膜を形成した後、この銀薄膜にパターンニングを施して、ITO膜206上にグリッド電極212を形成すると共に、接続孔210内に銀層を被着する。
更に、加熱処理によって接続孔210内の銀を、非晶質シリコンから成るn型半導体層等内を拡散し、電極膜202に達する導電性領域214を形成する。かかる導電性領域214によって、ITO膜206と隣接する太陽電池セルの電極膜202とを電気的に接続できる。
Next, as shown in FIG. 9B, after the ITO film 206 and the p-type semiconductor layer are scribed by a laser to form a separation groove 208 that separates into a solar cell portion and an extraction portion of the electrode film 202. The connection hole 210 is formed in the extraction part of the electrode film 202. The connection hole 210 passes through the p-type semiconductor layer constituting the photoelectric conversion unit 204 and reaches the n-type semiconductor layer.
Thereafter, as shown in FIG. 9C, a silver thin film is formed on the entire surface including the ITO film 206, the separation groove 208, and the connection hole 210 by vapor deposition, and then the silver thin film is patterned to form a film on the ITO film 206. In addition, a grid electrode 212 is formed and a silver layer is deposited in the connection hole 210.
Further, the conductive region 214 reaching the electrode film 202 is formed by diffusing silver in the connection hole 210 in the n-type semiconductor layer or the like made of amorphous silicon by heat treatment. The conductive region 214 can electrically connect the ITO film 206 and the electrode film 202 of the adjacent solar battery cell.

図9に示す太陽電池モジュールの製造方法によれば、電気的に直列に接続された複数個の太陽電池セルを、一枚の基板200上に同時に形成できる。
しかし、ITO膜206と隣接する太陽電池セルの電極膜202との電気的に接続は、銀が非晶質シリコン中を拡散して形成した導電性領域214によってなされているため、確実性に欠ける。また、かかる導電性領域214を形成する形成時間が長く、太陽電池モジュールの生産性を低下する要因となるおそれがある。
一方、図9に示す太陽電池モジュールの製造方法と異なる太陽電池モジュールの製造方法も知られている。かかる太陽電池モジュールの製造方法を図8に示す。
According to the method for manufacturing a solar cell module shown in FIG. 9, a plurality of solar cells electrically connected in series can be simultaneously formed on one substrate 200.
However, the electrical connection between the ITO film 206 and the electrode film 202 of the adjacent solar battery cell is made by the conductive region 214 formed by diffusing silver in the amorphous silicon, and thus lacks certainty. . Moreover, the formation time for forming the conductive region 214 is long, which may cause a decrease in the productivity of the solar cell module.
On the other hand, a solar cell module manufacturing method different from the solar cell module manufacturing method shown in FIG. 9 is also known. A method for manufacturing such a solar cell module is shown in FIG.

図8に示す太陽電池モジュールの製造方法では、先ず、ガラス等から成る基板100の一面側の全面にモリブデン等から成る全面電極膜をスパッタリング法や蒸着法によって形成した後、全面電極膜にレーザ光照射やメカニカルスクライブによって溝104,104・・を形成し、各セル用の電極膜102,102・・にパターンニングを施す[図8(a)]。
この電極膜102,102・・の全面に亘って形成した全面p型半導体層105上に全面n型半導体層107を形成する[図8(b)]。
更に、形成した全面p型半導体層105及び全面n型半導体層107にレーザ光照射やメカニカルスクライブによって溝110,110・・を形成し、各セル用のp型半導体層106及びn型半導体層108をパターンニングする[図8(c)]。この溝110の底面には、隣接するセルの電極膜102が露出している。
次いで、n型半導体層108,108・・の全面に亘って、ZnO等から成る全面透明電極111をスパッタリング法や蒸着法によって形成する[図8(d)]。
その後、全面透明電極111、n型半導体層108及びp型半導体層106にメカニカルスクライブによって溝110,110・・を形成し、各セル用の透明電極112をパターンニングすることによって、一枚の基板100上に透明電極112、n型半導体層108、p型半導体層106及び電極膜106から太陽電池セル116,116・・を形成できる[図8(e)]。
形成された太陽電池セル116では、その透明電極112の一部が、p型半導体層106及び電極膜106を貫通し、隣接する太陽電池セル116の電極膜102が底面を形成する溝110に充填されて形成されている。このため、太陽電池セル116,116・・の各々は、その透明電極112の一部が隣接する太陽電池セル116の電極膜102に接続され、電気的に直列に接続されている。
In the method of manufacturing the solar cell module shown in FIG. 8, first, an entire surface electrode film made of molybdenum or the like is formed on the entire surface of one surface side of the substrate 100 made of glass or the like by sputtering or vapor deposition, and then laser light is applied to the entire surface electrode film. Grooves 104, 104,... Are formed by irradiation or mechanical scribing, and patterning is performed on the electrode films 102, 102,... For each cell [FIG.
An entire n-type semiconductor layer 107 is formed on the entire p-type semiconductor layer 105 formed over the entire surface of the electrode films 102, 102,... [FIG. 8B].
Further, grooves 110, 110,... Are formed in the formed whole surface p-type semiconductor layer 105 and whole surface n-type semiconductor layer 107 by laser light irradiation or mechanical scribing, and the p-type semiconductor layer 106 and the n-type semiconductor layer 108 for each cell are formed. Is patterned [FIG. 8C]. The electrode film 102 of the adjacent cell is exposed on the bottom surface of the groove 110.
Next, the entire transparent electrode 111 made of ZnO or the like is formed over the entire surface of the n-type semiconductor layers 108, 108,... By sputtering or vapor deposition [FIG.
Thereafter, grooves 110, 110,... Are formed by mechanical scribe in the entire transparent electrode 111, the n-type semiconductor layer 108, and the p-type semiconductor layer 106, and the transparent electrode 112 for each cell is patterned, so that one substrate is formed. .. Can be formed on the substrate 100 from the transparent electrode 112, the n-type semiconductor layer 108, the p-type semiconductor layer 106, and the electrode film 106 [FIG. 8 (e)].
In the formed solar battery cell 116, a part of the transparent electrode 112 penetrates the p-type semiconductor layer 106 and the electrode film 106, and the electrode film 102 of the adjacent solar battery cell 116 fills the groove 110 forming the bottom surface. Has been formed. Therefore, each of the solar cells 116, 116,... Is connected in series with an electrode film 102 of the adjacent solar cell 116 with a part of the transparent electrode 112.

図8に示す太陽電池モジュールの製造方法では、金属の拡散による導電性領域を形成することなく電気的に直列に接続された複数個の太陽電池セル116,116・・を、一枚の基板100上に同時に形成できる。このため、図8に示す太陽電池モジュールの製造方法によれば、図9に示す太陽電池モジュールの製造方法に比較して、太陽電池モジュールの生産性を向上し得る。
しかし、図8に示す太陽電池モジュールの製造方法では、基板100の一面側の全面に亘って形成した全面電極膜のスクライブ、各セル用の電極膜102,102・・の全面に亘って形成した全面p型半導体層105及び全面n型半導体層107のスクライブ、及び各セル用のn型半導体層108,108・・の全面に亘って形成した全面透明電極111のスクライブを必要とする。
かかるスクライブの際には、通常、レーザ光照射やメカニカルスクライブを用いて行うが、モリブデンから成る全面電極膜の様に、高硬度の全面電極膜のパターンニングは困難である。
更に、全面透明電極111、n型半導体層108及びp型半導体層106をスクライブして溝114,114・・を形成する際に、全面透明電極111の削り屑が溝114の壁面に露出するn型半導体層108及びp型半導体層106の露出面に付着し、溝114の底面に露出する隣接する太陽電池セル116の電極膜102と短絡するおそれがある。
また、基板100として、金属板の一面側にSiO2膜等の絶縁膜を形成した基板100を用いた場合には、全面電極膜のスクライブを施す際に、絶縁膜も同時にスクライブして絶縁性を損ない、隣接する太陽電池セル116との間に短絡を生ずるおそれもある。
そこで、発明の課題は、基板の一面側の全面に亘って形成した全面電極膜等にスクライブを含むパターンニングを施すことなく太陽電池モジュールを形成できる太陽電池セル及びその製造方法、並びに前記太陽電池セルを用いた太陽電気モジュール及びその製造方法を提供することにある。
In the method for manufacturing a solar cell module shown in FIG. 8, a plurality of solar cells 116, 116,... Electrically connected in series without forming a conductive region due to metal diffusion are combined into one substrate 100. Can be formed simultaneously on top. For this reason, according to the manufacturing method of the solar cell module shown in FIG. 8, the productivity of the solar cell module can be improved as compared with the manufacturing method of the solar cell module shown in FIG.
However, in the method of manufacturing the solar cell module shown in FIG. 8, the entire surface of the substrate 100 is scribed over the entire surface of one surface of the substrate 100, and the entire surface of the electrode films 102, 102,. It is necessary to scribe the entire surface p-type semiconductor layer 105 and the entire surface n-type semiconductor layer 107 and scribe the entire surface transparent electrode 111 formed over the entire surface of the n-type semiconductor layers 108, 108,.
Such scribing is usually performed using laser light irradiation or mechanical scribing, but it is difficult to pattern a high-hardness full-surface electrode film like a full-surface electrode film made of molybdenum.
Further, when the entire transparent electrode 111, the n-type semiconductor layer 108 and the p-type semiconductor layer 106 are scribed to form the grooves 114, 114. There is a risk of short circuit with the electrode film 102 of the adjacent solar battery cell 116 attached to the exposed surfaces of the p-type semiconductor layer 108 and the p-type semiconductor layer 106 and exposed on the bottom surface of the groove 114.
Further, when the substrate 100 having an insulating film such as a SiO 2 film formed on one surface side of the metal plate is used as the substrate 100, the insulating film is simultaneously scribed when the entire surface electrode film is scribed. May cause a short circuit between adjacent solar cells 116.
Accordingly, an object of the present invention is to provide a solar battery module capable of forming a solar battery module without performing patterning including scribing on the entire surface electrode film formed over the entire surface of one surface of the substrate, a manufacturing method thereof, and the solar battery. The object is to provide a solar electric module using a cell and a manufacturing method thereof.

本発明者等は、前記課題を解決すべく検討を重ねた結果、基板上に形成された電極膜の一部が側面の一部に延出されて延出電極膜が形成されていると共に、延出電極膜が形成された側面の反対側に位置する側面にn型半導体層上に形成された透明電極の一部が延出されて延出透明電極が形成されている複数個の太陽電池セルを用い、太陽電池セルの側面に延出されている電極膜と、他の太陽電池セルの側面に延出されている透明電極とを電気的に接続することによって太陽電池モジュールを容易に形成できることを知り、本発明に到達した。
すなわち、本発明は、基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された太陽電池セルにおいて、該基板を形成する側面の一部には、前記電極膜から延出された延出電極膜が露出状態で形成されていると共に、前記延出電極膜が形成された側面の反対面に位置する側面部分には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成されていることを特徴とする太陽電池セルにある。
更に、本発明は、基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された太陽電池セルを製造する際に、該電極膜を形成する電極膜用金属粒子が基板の電極膜形成面に飛来する物理蒸着法を用い、前記電極膜用金属粒子の飛来方向に対し、前記基板の一面側と前記基板を形成する側面の一部とが露出面となるように、前記基板を傾斜状態に載置して、前記基板の露出面に電極膜用金属粒子を堆積して電極膜を形成した後、前記基板の側面に形成した電極膜が露出した状態を保持しつつ、前記基板の一面側に形成した電極膜を覆うようにp型半導体層及びn型半導体層を形成し、次いで、前記透明電極を形成する透明電極用金属粒子が基板の透明電極形成面に飛来する物理蒸着法を用い、前記n型半導体層の上面及び前記電極膜を形成した側面の反対面が、前記透明電極用金属粒子の飛来方向に対して露出面となるように、前記p型半導体層及びn型半導体層を形成した基板を傾斜状態に載置して、前記露出面に透明電極用金属粒子を堆積して透明電極を形成することを特徴とする太陽電池セルの製造方法でもある。
As a result of repeated studies to solve the above problems, the present inventors have formed an extended electrode film by extending a part of the electrode film formed on the substrate to a part of the side surface, A plurality of solar cells in which an extended transparent electrode is formed by extending a part of a transparent electrode formed on an n-type semiconductor layer on a side surface opposite to the side surface on which the extended electrode film is formed Using a cell, a solar cell module can be easily formed by electrically connecting an electrode film extending to the side surface of a solar cell and a transparent electrode extending to the side surface of another solar cell Knowing what can be done, the present invention has been reached.
That is, the present invention provides a solar cell in which an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode are stacked in this order on one side of a substrate. In the portion, the extended electrode film extending from the electrode film is formed in an exposed state, and the electrode film is formed on the side surface portion opposite to the side surface on which the extended electrode film is formed. An extended transparent electrode extending from the transparent electrode without being in contact with the solar cell is formed.
Furthermore, the present invention provides an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode on one side of the substrate. A physical vapor deposition method in which the metal particles for electrode film to be formed fly to the electrode film formation surface of the substrate, and one side of the substrate and a part of the side surface forming the substrate with respect to the flying direction of the metal particles for electrode film The electrode is formed on the side surface of the substrate after the substrate is placed in an inclined state so as to be an exposed surface, and electrode film metal particles are deposited on the exposed surface of the substrate to form an electrode film. A transparent electrode metal particle for forming a transparent electrode by forming a p-type semiconductor layer and an n-type semiconductor layer so as to cover an electrode film formed on one side of the substrate while maintaining the exposed state of the film Using a physical vapor deposition method in which the material flies to the transparent electrode forming surface of the substrate, A substrate on which the p-type semiconductor layer and the n-type semiconductor layer are formed such that the upper surface of the semiconductor layer and the opposite surface to the side surface on which the electrode film is formed are exposed surfaces with respect to the flying direction of the metal particles for transparent electrodes. Is placed in an inclined state, and the transparent electrode is formed by depositing the transparent electrode metal particles on the exposed surface.

また、本発明は、基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された複数個の太陽電池セルが、電気的に直列に接続された太陽電池モジュールにおいて、該太陽電池セルの各々が直列に配設されており、前記太陽電池セルの両隣に位置する他の太陽電池セルの側面と対応する基板の両側面の一方には、前記電極膜から延出されて露出状態の延出電極膜が形成されていると共に、前記両側面の他方側の側面には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成され、前記太陽電池セルの延出電極膜と、隣接する太陽電池セルの延出透明電極とが電気的に接続されていることを特徴とする太陽電池モジュールにある。
更に、本発明は、基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された複数個の太陽電池セルが、電気的に直列に接続された太陽電池モジュールを製造する際に、該太陽電池セルとして、基板を形成する側面の一部には、前記電極膜から延出された延出電極膜が露出状態で形成されていると共に、前記延出電極膜の反対面となる側面部分には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成されている太陽電池セルを用い、複数個の前記太陽電池セルを直列に並べ、前記太陽電池セルの延出電極膜と、隣接する太陽電池セルの延出透明電極とを電気的に接続することを特徴とする太陽電池モジュールの製造方法でもある。
In the present invention, a plurality of solar cells formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode in this order on one side of a substrate are electrically connected in series. In the connected solar battery modules, each of the solar battery cells is arranged in series, and one of both side faces of the substrate corresponding to the side face of the other solar battery cell located on both sides of the solar battery cell. An extended electrode film that is exposed from the electrode film is formed, and the other side surface of the both side surfaces is extended from the transparent electrode without being in contact with the electrode film. A solar cell module is characterized in that a transparent electrode is formed, and the extended electrode film of the solar battery cell and the extended transparent electrode of an adjacent solar battery cell are electrically connected.
Further, according to the present invention, a plurality of solar cells formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode on one side of the substrate in this order are electrically connected in series. When manufacturing a connected solar cell module, as the solar cell, an extended electrode film extending from the electrode film is formed in an exposed state on a part of a side surface forming a substrate. The solar cell in which the extended transparent electrode extended from the transparent electrode without being in contact with the electrode film is formed on the side surface portion that is the opposite surface of the extended electrode film, It is also a method for producing a solar cell module, wherein the solar cells are arranged in series, and the extended electrode film of the solar cell is electrically connected to the extended transparent electrode of the adjacent solar cell.

かかる本発明において、太陽電池セルとして、基板と、モリブデン層から成る電極膜と、InCuS2又はCuInSe2から成るp型半導体層と、ZnS又はCdSから成るn型半導体層と、AlがドープされたZnOから成る透明電極とから構成される太陽電池セルを好適に用いることができる。
この基板として、矩形状の基板を用いることによって、基板の側面の一面に延出電極膜や延出透明電極を容易に形成できる。
更に、太陽電池モジュールにおいて、太陽電池セルの延出電極膜と、隣接する太陽電池セルの透明電極とを、導電性接着剤によって電気的に接続することによって、両者を確実に接続できる。
In the present invention, as a solar cell, a substrate, an electrode film made of a molybdenum layer, a p-type semiconductor layer made of InCuS 2 or CuInSe 2 , an n-type semiconductor layer made of ZnS or CdS, and Al doped A solar battery cell composed of a transparent electrode made of ZnO can be suitably used.
By using a rectangular substrate as this substrate, an extended electrode film and an extended transparent electrode can be easily formed on one side surface of the substrate.
Furthermore, in a solar cell module, the extension electrode film | membrane of a photovoltaic cell and the transparent electrode of an adjacent photovoltaic cell can be connected reliably by electrically connecting with a conductive adhesive.

本発明に係る太陽電池セルは、基板上に電極膜、p型半導体層、n型半導体層及び透明電極を、この順序で積層して形成したものであり、基板の一面側の全面に亘って形成した全面電極膜等にスクライブを含むパターンニングを施すことなく製造できる。
更に、かかる太陽電池セルを用いて形成した太陽電気モジュールは、個別に製造された複数個の太陽電池セルを、その側面側に形成された延出電極膜と、隣接する太陽電池セルの延出透明電極とを電気的に接続することによって、容易に複数個の太陽電池セルを直列に電気的に接続できる。
この様に、本発明に係る太陽電池モジュールでは、基板の一面側の全面に亘って形成した全面電極膜等にスクライブを含むパターンニングを施すことなく製造できる。このため、全面電極膜等にスクライブを含むパターンニングを施す際に発生する問題、例えば高硬度のモリブデンから成る全面電極膜にスクライブを含むパターンニングを施す困難性、或いは、このパターンニングの際に、基板を削り取ることによって生じる基板の削り屑に因る短絡のおそれ等を解消できる。
その結果、信頼性の高い太陽電池モジュールを容易に得ることができ、その製造コストの低減を図ることも可能である。
The solar battery cell according to the present invention is formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode on a substrate in this order, and covers the entire surface on one surface side of the substrate. The entire surface electrode film formed can be manufactured without patterning including scribe.
Further, a solar electric module formed using such a solar battery cell includes a plurality of individually manufactured solar battery cells, an extended electrode film formed on the side surface thereof, and an extension of adjacent solar battery cells. By electrically connecting the transparent electrode, a plurality of solar cells can be easily electrically connected in series.
As described above, the solar cell module according to the present invention can be manufactured without performing patterning including scribing on the entire surface electrode film or the like formed over the entire surface on the one surface side of the substrate. For this reason, problems that occur when patterning including scribing is performed on the entire surface electrode film, for example, difficulty in performing patterning including scribing on the entire surface electrode film made of high-hardness molybdenum, or during this patterning The possibility of a short circuit due to the shavings of the substrate caused by scraping the substrate can be solved.
As a result, a highly reliable solar cell module can be easily obtained, and the manufacturing cost can be reduced.

本発明に係る太陽電池モジュールの一例を図1及び図2に示す。図1は太陽電池モジュールの横断面図であり、図2は太陽電池モジュールの上面図である。図1及び図2に示す太陽電池モジュールは、複数個の太陽電池セル10,10・・が電気的に直列に接続されている。
かかる太陽電池セル10は、長方形状の基板12の一面側に電極膜14、p型半導体層16、n型半導体層18及び透明電極20が、この順序で積層されて形成されているものである。
この太陽電池セル10を構成する基板12の側面の一面には、電極膜14から延出された延出電極膜14aが形成されており、延出電極膜14aが形成された側面の反対面には、電極膜14と接触することなく透明電極20から延出された延出透明電極20aが形成されている。
かかる形状の複数個の太陽電池セル10,10・・から成る太陽電気モジュールでは、太陽電池セル10の延出電極膜14aと、隣接する太陽電池セル10の延出透明電極20aとが接続され、複数個の太陽電池セル10,10・・が電気的に直列に接続されている。
この延出電極膜14aと延出透明電極20aとの接続は、図1及び図2に示す様に、導電性接着剤22によって接続されている。
An example of the solar cell module according to the present invention is shown in FIGS. FIG. 1 is a cross-sectional view of the solar cell module, and FIG. 2 is a top view of the solar cell module. The solar cell module shown in FIGS. 1 and 2 has a plurality of solar cells 10, 10... Electrically connected in series.
Such a solar battery cell 10 is formed by laminating an electrode film 14, a p-type semiconductor layer 16, an n-type semiconductor layer 18 and a transparent electrode 20 in this order on one surface side of a rectangular substrate 12. .
An extended electrode film 14a extending from the electrode film 14 is formed on one side surface of the substrate 12 constituting the solar battery cell 10, and on the opposite surface of the side surface on which the extended electrode film 14a is formed. The extended transparent electrode 20a extended from the transparent electrode 20 without being in contact with the electrode film 14 is formed.
In the solar electric module composed of the plurality of solar cells 10, 10... Having such a shape, the extended electrode film 14 a of the solar cell 10 and the extended transparent electrode 20 a of the adjacent solar cell 10 are connected, A plurality of solar cells 10, 10,... Are electrically connected in series.
The extension electrode film 14a and the extension transparent electrode 20a are connected by a conductive adhesive 22 as shown in FIGS.

図1及び図2に示す太陽電池モジュールを構成する太陽電池セル10を製造する際には、先ず、図3に示す様に、ガラスやセラミック等の絶縁材料から成る長方形状の基板12の一面側に、モリブデン等の導電層から成る電極膜14と、電極膜14から基板12の側面に延出された延出電極膜14aとを物理蒸着法(PVD法)によって形成する。
かかる電極膜14と延出電極膜14aとをPVD法によって形成する際に、図4(a)(b)に矢印で示す電極膜14を形成する電極膜用金属粒子の飛来方向に対して、基板12の一面側と基板12の側面の一面とが露出面となるように、載置台24に基板12を傾斜して載置する。この様に、PVD法によって基板12に電極膜14等を形成する際に、基板12を傾斜することによって、電極膜用粒子の飛来方向に対して露出面となっている基板12の一面側に電極膜14を形成できると同時に、基板12の側面に電極膜14から延出された延出電極膜14aを形成できる。
かかる基板12の傾斜角は、10〜45°とすることが好ましく、特に20°程度とすることが好ましし。
ところで、図3に示す基板12の一面側のうち、延出電極膜14aを形成する側面の反対面側の端縁近傍は、基板12の一面側が露出する露出面(基板端まで0.1〜1.0mmほどの隙間)に形成されている。このため、この端縁近傍を露出面に保持して電極膜14を形成するには、図4(a)に示す様に、基板12の端縁近傍に隣接する他の基板12の端部(延出電極膜14aを形成する側面側)を載置した状態としてもよく、図4(b)に示す様に、基板12の端縁近傍を覆うマスク部材としての庇24aを載置台24から延出してもよい。
When manufacturing the solar battery cell 10 constituting the solar battery module shown in FIGS. 1 and 2, first, as shown in FIG. 3, one surface side of a rectangular substrate 12 made of an insulating material such as glass or ceramic. In addition, an electrode film 14 made of a conductive layer such as molybdenum and an extended electrode film 14 a extending from the electrode film 14 to the side surface of the substrate 12 are formed by a physical vapor deposition method (PVD method).
When the electrode film 14 and the extended electrode film 14a are formed by the PVD method, with respect to the flying direction of the electrode film metal particles forming the electrode film 14 indicated by arrows in FIGS. The substrate 12 is placed on the mounting table 24 so that one surface side of the substrate 12 and one surface of the side surface of the substrate 12 are exposed surfaces. In this way, when the electrode film 14 and the like are formed on the substrate 12 by the PVD method, by tilting the substrate 12, the surface of the substrate 12 that is exposed with respect to the flying direction of the electrode film particles is formed. At the same time that the electrode film 14 can be formed, an extended electrode film 14 a extending from the electrode film 14 can be formed on the side surface of the substrate 12.
The inclination angle of the substrate 12 is preferably 10 to 45 °, more preferably about 20 °.
By the way, among the one surface side of the substrate 12 shown in FIG. 3, the vicinity of the edge on the opposite surface side of the side surface on which the extended electrode film 14 a is formed is an exposed surface (0.1 to the substrate end) on which one surface side of the substrate 12 is exposed. (A gap of about 1.0 mm). For this reason, in order to form the electrode film 14 while maintaining the vicinity of the edge on the exposed surface, as shown in FIG. 4A, the edge of the other substrate 12 adjacent to the vicinity of the edge of the substrate 12 ( The side surface on which the extended electrode film 14a is formed may be placed, and a ridge 24a as a mask member covering the vicinity of the edge of the substrate 12 is extended from the placement table 24 as shown in FIG. May be issued.

この様にして形成した電極膜14上には、図5に示す様に、基板12の側面に形成した延出電極膜14aを露出した状態を保持しつつ、電極膜14を覆うようにp型半導体層16及びn型半導体層18を形成する。
p型半導体層16は、基板12の一面側に形成した電極膜14上に、インジウム層と銅層とを積層して成る金属膜を、電極膜14を覆うように形成した後、この金属膜に硫化処理又はセレン化処理を施すことによって、CuInS2又はCuInSe2から成るp型半導体層16を形成できる。
更に、形成したp型半導体層16をKCN溶液による洗浄によって、硫化銅やセレン化銅等の不純物を除去するKCN処理を施す。
かかるインジウム層と銅層とは、電極膜14を給電層とする電解めっきによって、電極膜14を覆うように形成できる。この電解めっきの際には、延出電極膜14aの端面にめっき金属が析出しない様に、延出電極膜14aにドライフィルム等のマスク部材を被着する。
尚、インジウム層と銅層との形成は、スパッタリング法又は蒸着法によっても形成できるが、基板12の一面側が露出する部分には、インジウムや銅の粒子が付着(堆積)しない様に、マスク部材を被着することが必要である。
On the electrode film 14 thus formed, as shown in FIG. 5, the p-type is formed so as to cover the electrode film 14 while maintaining the state in which the extended electrode film 14a formed on the side surface of the substrate 12 is exposed. A semiconductor layer 16 and an n-type semiconductor layer 18 are formed.
The p-type semiconductor layer 16 is formed by forming a metal film formed by laminating an indium layer and a copper layer on the electrode film 14 formed on the one surface side of the substrate 12 so as to cover the electrode film 14. The p-type semiconductor layer 16 made of CuInS 2 or CuInSe 2 can be formed by subjecting to sulfidation or selenization.
Further, the formed p-type semiconductor layer 16 is subjected to KCN treatment for removing impurities such as copper sulfide and copper selenide by washing with a KCN solution.
The indium layer and the copper layer can be formed so as to cover the electrode film 14 by electrolytic plating using the electrode film 14 as a power feeding layer. In this electrolytic plating, a mask member such as a dry film is attached to the extended electrode film 14a so that the plating metal does not deposit on the end face of the extended electrode film 14a.
The indium layer and the copper layer can be formed by a sputtering method or a vapor deposition method. However, a mask member is used so that indium or copper particles do not adhere (deposit) to a portion where one surface side of the substrate 12 is exposed. It is necessary to deposit.

形成したp型半導体層16上に、図5に示す様に、p型半導体層16を覆うようにn型半導体層18を形成する。このn型半導体層18は、化学的溶液析出法によって形成できる。
ZnSから成るn型半導体層18を形成するには、ZnSO4(0.1mol/リットル)、チオ尿素(0.6mol/リットル)及びNH3水溶液(3mol/リットル)が混合されて80℃に維持された混合液に、p型半導体層16を形成した基板12を約10分間程浸漬することによって形成できる。
また、CdSから成るn型半導体層18を形成するには、ヨウ化カドミウム(0.0015mol/リットル)、NH3水溶液(1.0mol/リットル)及びヨウ化アンモニウム(0.01mol/リットル)を混合した液に基板12を入れ、加温して約40℃になったところで、チオ尿素(0.15mol/リットル)を入れ、80℃で5分間浸漬することによって形成できる。
An n-type semiconductor layer 18 is formed on the formed p-type semiconductor layer 16 so as to cover the p-type semiconductor layer 16 as shown in FIG. The n-type semiconductor layer 18 can be formed by a chemical solution deposition method.
In order to form the n-type semiconductor layer 18 made of ZnS, ZnSO 4 (0.1 mol / liter), thiourea (0.6 mol / liter) and NH 3 aqueous solution (3 mol / liter) are mixed and maintained at 80 ° C. It can be formed by immersing the substrate 12 on which the p-type semiconductor layer 16 is formed in the mixed solution for about 10 minutes.
In order to form the n-type semiconductor layer 18 made of CdS, cadmium iodide (0.0015 mol / liter), NH 3 aqueous solution (1.0 mol / liter) and ammonium iodide (0.01 mol / liter) are mixed. The substrate 12 is put into the solution, and when heated to about 40 ° C., thiourea (0.15 mol / liter) is added and immersed at 80 ° C. for 5 minutes.

次いで、図6に示す様に、n型半導体層18の上面に透明電極20に形成すると共に、透明電極20から延出された延出透明電極20aを、延出電極膜14aを形成した側面の反対面に形成する。この透明電極20及び延出透明電極20aは、AlがドープされたZnOによって形成されている。
かかる透明電極20と延出透明電極20aとを物理蒸着法(PVD法)によって形成する。この透明電極20と延出透明電極20aとをPVD法によって形成する際に、図7(a)(b)に矢印で示す透明電極20を形成する透明電極用金属粒子の飛来方向に対して、n型半導体層18の上面と延出電極膜14aを形成した側面の反対面とが露出面となるように載置台26に基板12を傾斜して載置する。この様に、PVD法によってn型半導体層18の上面等に透明電極20を形成する際に、基板12を傾斜することによって、透明電極用粒子の飛来方向に対して露出面となっているn型半導体層18の上面に透明電極20を形成できると同時に、延出電極膜14aを形成した側面の反対面に延出透明電極20aを形成できる。
ところで、n型半導体層18の上面のうち、延出電極膜14a側の端縁近傍は、n型半導体層18の上面が露出する露出面(基板端まで0.1〜1.0mmほどの隙間)に形成されている。このため、この端縁近傍をn型半導体層18の上面が露出した状態で保持して透明電極20を形成するには、図7(a)に示す様に、n型半導体層18の上面の端縁近傍を覆うマスク部材としての庇26aを載置台26から延出してもよく、図7(b)に示す様に、n型半導体層18の上面の端縁近傍に隣接する他の基板12の端部(延出透明電極20aを形成する側面側)を載置した状態としてもよい。
かかる基板12の傾斜角は、10〜45°とすることが好ましく、特に20°程度とすることが好ましし。
Next, as shown in FIG. 6, the transparent electrode 20 is formed on the upper surface of the n-type semiconductor layer 18, and the extended transparent electrode 20 a extended from the transparent electrode 20 is formed on the side surface on which the extended electrode film 14 a is formed. Form on the opposite side. The transparent electrode 20 and the extended transparent electrode 20a are made of ZnO doped with Al.
The transparent electrode 20 and the extended transparent electrode 20a are formed by physical vapor deposition (PVD method). When the transparent electrode 20 and the extended transparent electrode 20a are formed by the PVD method, with respect to the flying direction of the transparent electrode metal particles forming the transparent electrode 20 indicated by arrows in FIGS. 7 (a) and 7 (b), The substrate 12 is mounted on the mounting table 26 so that the upper surface of the n-type semiconductor layer 18 and the surface opposite to the side surface on which the extended electrode film 14a is formed are exposed surfaces. In this way, when the transparent electrode 20 is formed on the upper surface of the n-type semiconductor layer 18 or the like by the PVD method, the substrate 12 is tilted so that the exposed surface is exposed to the flying direction of the transparent electrode particles. The transparent electrode 20 can be formed on the upper surface of the mold semiconductor layer 18, and at the same time, the extended transparent electrode 20a can be formed on the opposite side of the side surface on which the extended electrode film 14a is formed.
By the way, of the upper surface of the n-type semiconductor layer 18, the vicinity of the edge on the extended electrode film 14 a side is an exposed surface (a gap of about 0.1 to 1.0 mm to the substrate end) where the upper surface of the n-type semiconductor layer 18 is exposed. ). Therefore, in order to form the transparent electrode 20 while holding the vicinity of the edge with the upper surface of the n-type semiconductor layer 18 exposed, the upper surface of the n-type semiconductor layer 18 is formed as shown in FIG. A flange 26a as a mask member covering the vicinity of the edge may be extended from the mounting table 26, and as shown in FIG. 7B, another substrate 12 adjacent to the vicinity of the edge of the upper surface of the n-type semiconductor layer 18 is provided. It is good also as the state which mounted the edge part (side surface side which forms the extended transparent electrode 20a).
The inclination angle of the substrate 12 is preferably 10 to 45 °, more preferably about 20 °.

図6に示す複数個の太陽電池セル10,10・・を用いて太陽電池モジュールを製造する際には、複数個の太陽電池セル10,10・・を直列に並べ、太陽電池セル10の延出電極膜14aと、隣接する太陽電池セル10の延出透明電極20aとを電気的に接続することによって、複数個の太陽電池セル10,10・・を電気的に直列に接続できる。かかる接続の際に、導電性接着剤22によって隣接する太陽電池セル10と接続することによって、両太陽電池セル10,10を確実に接続できる。
尚、図1及び図2に示す太陽電池モジュールにおいて、各太陽電池セル10の透明電極20を露出した状態に保持して、太陽電池セル10,10・・を樹脂封止してもよい。
When a solar cell module is manufactured using the plurality of solar cells 10, 10,... Shown in FIG. 6, the plurality of solar cells 10, 10,. By electrically connecting the output electrode film 14a and the extended transparent electrode 20a of the adjacent solar battery cell 10, a plurality of solar battery cells 10, 10... Can be electrically connected in series. At the time of such connection, the solar cells 10 and 10 can be reliably connected by connecting to the adjacent solar cells 10 with the conductive adhesive 22.
In the solar cell module shown in FIGS. 1 and 2, the solar cells 10, 10... May be resin-sealed while holding the transparent electrode 20 of each solar cell 10 exposed.

図1〜図7に示す太陽電池セル10及び太陽電池モジュールは、基板の一面側の全面に亘って形成した全面電極膜等にスクライブを含むパターンニングを施すことなく製造できる。このため、全面電極膜等にスクライブを含むパターンニングを施す際に生じる問題点、例えば高硬度のモリブデンから成る全面電極膜にスクライブを含むパターンニングを施す困難性や全面電極膜にスクライブを含むパターンニングと同時に基板を削り取ることによって生じる基板の削り屑に因る短絡のおそれ等を解消でき、信頼性の高い太陽電池モジュールを得ることができる。
また、図1〜図7においては、基板12として、ガラスやセラミック等の絶縁材料から成る基板12を用いているが、全面電極膜等にスクライブを含むパターンニングを施すことなく太陽電池セル10を形成できるため、金属板の一面側にSiO2膜等の絶縁膜を形成した基板を用いることができる。
The solar battery cell 10 and the solar battery module shown in FIGS. 1 to 7 can be manufactured without performing patterning including scribing on the entire surface electrode film formed over the entire surface of one surface of the substrate. For this reason, problems that occur when patterning including scribe on the entire surface electrode film, for example, difficulty in applying patterning including scribe to the entire surface electrode film made of high-hardness molybdenum, and patterns including scribe on the entire surface electrode film The possibility of a short circuit due to the shavings of the substrate caused by scraping the substrate at the same time as the polishing can be eliminated, and a highly reliable solar cell module can be obtained.
1 to 7, the substrate 12 made of an insulating material such as glass or ceramic is used as the substrate 12. However, the solar battery cell 10 is formed without patterning including scribing on the entire surface electrode film or the like. Since it can be formed, a substrate in which an insulating film such as a SiO 2 film is formed on one side of the metal plate can be used.

本発明に係る太陽電池モジュールの一例を説明するための横断面図である。It is a cross-sectional view for demonstrating an example of the solar cell module which concerns on this invention. 図1に示す太陽電池モジュールの上面図である。It is a top view of the solar cell module shown in FIG. 太陽電池セルの一製造工程を説明するための横断面図である。It is a cross-sectional view for demonstrating one manufacturing process of a photovoltaic cell. 図3に示す電極膜の形成工程で用いられる載置台を説明する説明図である。It is explanatory drawing explaining the mounting base used at the formation process of the electrode film shown in FIG. 太陽電池セルの一製造工程を説明するための横断面図である。It is a cross-sectional view for demonstrating one manufacturing process of a photovoltaic cell. 完成した太陽電池セルの横断面図である。It is a cross-sectional view of a completed solar battery cell. 図6に示す透明電極の形成工程で用いられる載置台を説明する説明図である。It is explanatory drawing explaining the mounting base used at the formation process of the transparent electrode shown in FIG. 従来の太陽電池モジュールの製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the conventional solar cell module. 他の従来の太陽電池モジュールの製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the other conventional solar cell module.

符号の説明Explanation of symbols

10 太陽電池セル
12 基板
14a 延出電極膜
14 電極膜
16 p型半導体層
18 n型半導体層
20 透明電極
20a 延出透明電極
22 導電性接着剤
24,26 載置台
24a,26a 庇
DESCRIPTION OF SYMBOLS 10 Solar cell 12 Board | substrate 14a Extension electrode film | membrane 14 Electrode film | membrane 16 P-type semiconductor layer 18 N-type semiconductor layer 20 Transparent electrode 20a Extension transparent electrode 22 Conductive adhesives 24 and 26 Mounting bases 24a and 26a

Claims (11)

基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された太陽電池セルにおいて、
該基板を形成する側面の一部には、前記電極膜から延出された延出電極膜が露出状態で形成されていると共に、
前記延出電極膜が形成された側面の反対面に位置する側面部分には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成されていることを特徴とする太陽電池セル。
In a solar battery cell in which an electrode film, a p-type semiconductor layer, an n-type semiconductor layer and a transparent electrode are laminated in this order on one surface side of the substrate,
An extended electrode film extending from the electrode film is formed in an exposed state on a part of the side surface forming the substrate,
An extended transparent electrode extending from the transparent electrode without being in contact with the electrode film is formed on a side surface portion located opposite to the side surface on which the extended electrode film is formed. Solar cell.
太陽電池セルが、基板と、モリブデン層から成る電極膜と、InCuS2又はCuInSe2から成るp型半導体層と、ZnS又はCdSから成るn型半導体層と、AlがドープされたZnOから成る透明電極とから構成される太陽電池セルである請求項1記載の太陽電池セル。 A solar cell includes a substrate, an electrode film made of a molybdenum layer, a p-type semiconductor layer made of InCuS 2 or CuInSe 2 , an n-type semiconductor layer made of ZnS or CdS, and a transparent electrode made of ZnO doped with Al The solar cell according to claim 1, wherein the solar cell is composed of 基板が、矩形状の基板である請求項1又は請求項2記載の太陽電池セル。   The solar cell according to claim 1 or 2, wherein the substrate is a rectangular substrate. 基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された太陽電池セルを製造する際に、
該電極膜を形成する電極膜用金属粒子が基板の電極膜形成面に飛来する物理蒸着法を用い、前記電極膜用金属粒子の飛来方向に対し、前記基板の一面側と前記基板を形成する側面の一部とが露出面となるように、前記基板を傾斜状態に載置して、前記基板の露出面に電極膜用金属粒子を堆積して電極膜を形成した後、
前記基板の側面に形成した電極膜が露出した状態を保持しつつ、前記基板の一面側に形成した電極膜を覆うようにp型半導体層及びn型半導体層を形成し、
次いで、前記透明電極を形成する透明電極用金属粒子が基板の透明電極形成面に飛来する物理蒸着法を用い、前記n型半導体層の上面及び前記電極膜を形成した側面の反対面が、前記透明電極用金属粒子の飛来方向に対して露出面となるように、前記p型半導体層及びn型半導体層を形成した基板を傾斜状態に載置して、前記露出面に透明電極用金属粒子を堆積して透明電極を形成することを特徴とする太陽電池セルの製造方法。
When manufacturing a solar battery cell in which an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode are laminated in this order on one side of the substrate,
Using the physical vapor deposition method in which the electrode film metal particles forming the electrode film fly to the electrode film formation surface of the substrate, the one surface side of the substrate and the substrate are formed with respect to the flying direction of the electrode film metal particles. After placing the substrate in an inclined state so that a part of the side surface becomes an exposed surface, and depositing electrode film metal particles on the exposed surface of the substrate to form an electrode film,
Forming a p-type semiconductor layer and an n-type semiconductor layer so as to cover the electrode film formed on the one surface side of the substrate while maintaining the exposed state of the electrode film formed on the side surface of the substrate;
Next, using a physical vapor deposition method in which the transparent electrode metal particles forming the transparent electrode fly to the transparent electrode forming surface of the substrate, the upper surface of the n-type semiconductor layer and the opposite surface of the side surface on which the electrode film is formed are The substrate on which the p-type semiconductor layer and the n-type semiconductor layer are formed is placed in an inclined state so as to be an exposed surface with respect to the flying direction of the transparent electrode metal particles, and the transparent electrode metal particles are formed on the exposed surface. A method for manufacturing a solar battery cell, comprising depositing a transparent electrode to form a transparent electrode.
基板上にモリブデン層から成る電極膜を形成した後、InCuS2又はCuInSe2から成るp型半導体層を形成し、
次いで、前記p型半導体層上にZnS又はCdSから成るn型半導体層を形成した後、前記n型半導体層上にAlがドープされたZnOから成る透明電極を形成する請求項4記載の太陽電池セルの製造方法。
After forming an electrode film made of a molybdenum layer on the substrate, a p-type semiconductor layer made of InCuS 2 or CuInSe 2 is formed,
5. The solar cell according to claim 4, wherein after forming an n-type semiconductor layer made of ZnS or CdS on the p-type semiconductor layer, a transparent electrode made of ZnO doped with Al is formed on the n-type semiconductor layer. Cell manufacturing method.
基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された複数個の太陽電池セルが、電気的に直列に接続された太陽電池モジュールにおいて、
該太陽電池セルの各々が直列に配設されており、前記太陽電池セルの両隣に位置する他の太陽電池セルの側面と対応する基板の両側面の一方には、前記電極膜から延出されて露出状態の延出電極膜が形成されていると共に、前記両側面の他方側の側面には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成され、
前記太陽電池セルの延出電極膜と、隣接する太陽電池セルの延出透明電極とが電気的に接続されていることを特徴とする太陽電池モジュール。
A solar cell module in which a plurality of solar cells formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode in this order are electrically connected in series on one side of a substrate In
Each of the solar cells is arranged in series, and is extended from the electrode film to one of both side surfaces of the substrate corresponding to the side surfaces of other solar cells located on both sides of the solar cell. An extended electrode film in an exposed state is formed, and an extended transparent electrode extending from the transparent electrode without being in contact with the electrode film is formed on the other side surface of the both side surfaces,
The solar cell module, wherein the extended electrode film of the solar cell is electrically connected to the extended transparent electrode of the adjacent solar cell.
太陽電池セルが、基板と、モリブデン層から成る電極膜と、InCuS2又はCuInSe2から成るp型半導体層と、ZnS又はCdSから成るn型半導体層と、AlがドープされたZnOから成る透明電極とから構成される太陽電池セルである請求項6記載の太陽電池モジュール。 A solar cell includes a substrate, an electrode film made of a molybdenum layer, a p-type semiconductor layer made of InCuS 2 or CuInSe 2 , an n-type semiconductor layer made of ZnS or CdS, and a transparent electrode made of ZnO doped with Al The solar cell module according to claim 6, wherein the solar cell module is configured by: 太陽電池セルの延出電極膜と、隣接する太陽電池セルの透明電極とが、導電性接着剤によって電気的に接続されている請求項6又は請求項7記載の太陽電池モジュール。   The solar cell module according to claim 6 or 7, wherein the extended electrode film of the solar battery cell and the transparent electrode of the adjacent solar battery cell are electrically connected by a conductive adhesive. 基板の一面側に電極膜、p型半導体層、n型半導体層及び透明電極が、この順序で積層されて形成された複数個の太陽電池セルが、電気的に直列に接続された太陽電池モジュールを製造する際に、
該太陽電池セルとして、基板を形成する側面の一部には、前記電極膜から延出された延出電極膜が露出状態で形成されていると共に、前記延出電極膜の反対面となる側面部分には、前記電極膜と接触することなく透明電極から延出された延出透明電極が形成されている太陽電池セルを用い、
複数個の前記太陽電池セルを直列に並べ、前記太陽電池セルの延出電極膜と、隣接する太陽電池セルの延出透明電極とを電気的に接続することを特徴とする太陽電池モジュールの製造方法。
A solar cell module in which a plurality of solar cells formed by laminating an electrode film, a p-type semiconductor layer, an n-type semiconductor layer, and a transparent electrode in this order are electrically connected in series on one side of a substrate When manufacturing
As the solar battery cell, an extended electrode film extending from the electrode film is formed in an exposed state on a part of the side surface forming the substrate, and the side surface which is the opposite surface of the extended electrode film For the part, using a solar cell in which an extended transparent electrode extended from the transparent electrode without contacting the electrode film is formed,
A plurality of the solar cells are arranged in series, and the extended electrode film of the solar cell is electrically connected to the extended transparent electrode of the adjacent solar cell. Method.
太陽電池セルとして、基板と、モリブデン層から成る電極膜と、InCuS2又はCuInSe2から成るp型半導体層と、ZnS又はCdSから成るn型半導体層と、AlがドープされたZnOから成る透明電極とから構成される太陽電池セルを用いる請求項9記載の太陽電池モジュールの製造方法。 As a solar cell, a substrate, an electrode film made of a molybdenum layer, a p-type semiconductor layer made of InCuS 2 or CuInSe 2 , an n-type semiconductor layer made of ZnS or CdS, and a transparent electrode made of ZnO doped with Al The manufacturing method of the solar cell module of Claim 9 using the photovoltaic cell comprised from these. 太陽電池セルの延出電極膜と、隣接する太陽電池セルの透明電極とを、導電性接着剤によって電気的に接続する請求項9又は請求項10記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module of Claim 9 or Claim 10 which electrically connects the extended electrode film of a photovoltaic cell and the transparent electrode of an adjacent photovoltaic cell with a conductive adhesive.
JP2004318308A 2004-11-01 2004-11-01 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MODULE, AND ITS MANUFACTURING METHOD Expired - Fee Related JP4801895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318308A JP4801895B2 (en) 2004-11-01 2004-11-01 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MODULE, AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318308A JP4801895B2 (en) 2004-11-01 2004-11-01 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MODULE, AND ITS MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2006128574A true JP2006128574A (en) 2006-05-18
JP4801895B2 JP4801895B2 (en) 2011-10-26

Family

ID=36722904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318308A Expired - Fee Related JP4801895B2 (en) 2004-11-01 2004-11-01 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MODULE, AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP4801895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877101A (en) * 2012-10-09 2013-01-16 哈尔滨理工大学 Method for preparing solar cell buffer layer ZnS film through electro-deposition by taking CuInSe2 film as base
DE102016222130A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encapsulation foil for a photovoltaic module in shingle construction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163671A (en) * 1985-01-16 1986-07-24 Matsushita Electric Ind Co Ltd Thin-film solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163671A (en) * 1985-01-16 1986-07-24 Matsushita Electric Ind Co Ltd Thin-film solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877101A (en) * 2012-10-09 2013-01-16 哈尔滨理工大学 Method for preparing solar cell buffer layer ZnS film through electro-deposition by taking CuInSe2 film as base
CN102877101B (en) * 2012-10-09 2015-04-15 哈尔滨理工大学 Method for preparing solar cell buffer layer ZnS film through electro-deposition by taking CuInSe2 film as base
DE102016222130A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encapsulation foil for a photovoltaic module in shingle construction

Also Published As

Publication number Publication date
JP4801895B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US9299871B2 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
US20130000700A1 (en) Solar cell and manufacturing method of the same
EP2416377B1 (en) Solar cell and manufacturing method thereof
US8779282B2 (en) Solar cell apparatus and method for manufacturing the same
KR100999797B1 (en) Solar cell and method of fabricating the same
US20170077320A1 (en) Anti-corrosion protection of photovoltaic structures
US8581091B2 (en) Serial circuit of solar cells with integrated semiconductor bodies, corresponding method for production and module with serial connection
US20110011437A1 (en) Solar cell and method for manufacturing solar cell
JP2010282998A (en) Solar cell and method for manufacturing the same
KR101114018B1 (en) Solar cell and method of fabricating the same
KR101091379B1 (en) Solar cell and mehtod of fabricating the same
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
US9391215B2 (en) Device for generating photovoltaic power and method for manufacturing same
JP4801895B2 (en) SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MODULE, AND ITS MANUFACTURING METHOD
KR101091359B1 (en) Solar cell and mehtod of fabricating the same
JP2006202919A (en) Solar cell module and method of manufacturing same
JPWO2019054239A1 (en) How to manufacture photoelectric conversion module and photoelectric conversion module
JPH0864850A (en) Thin film solar battery and fabrication thereof
JP2014135486A (en) Manufacturing method of solar cell
US20130025650A1 (en) Photovoltaic power generation device and manufacturing method thereof
EP2450966A2 (en) Solar battery and a production method for same
KR20140142416A (en) Solar cell and method of manufacturing of the same
KR102084854B1 (en) solar cell string and manufacturing method thereof
US9954122B2 (en) Solar cell apparatus and method of fabricating the same
KR101103960B1 (en) Tip, the solar cell and methdo of fabricating the solar cell using the tip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4801895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees