JP2006128277A - Ptc element - Google Patents

Ptc element Download PDF

Info

Publication number
JP2006128277A
JP2006128277A JP2004312338A JP2004312338A JP2006128277A JP 2006128277 A JP2006128277 A JP 2006128277A JP 2004312338 A JP2004312338 A JP 2004312338A JP 2004312338 A JP2004312338 A JP 2004312338A JP 2006128277 A JP2006128277 A JP 2006128277A
Authority
JP
Japan
Prior art keywords
conductive polymer
ptc
conductive
temperature
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312338A
Other languages
Japanese (ja)
Other versions
JP4623415B2 (en
Inventor
Naofumi Miyasaka
直文 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tyco Electronics Raychem KK
Original Assignee
Tyco Electronics Raychem KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics Raychem KK filed Critical Tyco Electronics Raychem KK
Priority to JP2004312338A priority Critical patent/JP4623415B2/en
Publication of JP2006128277A publication Critical patent/JP2006128277A/en
Application granted granted Critical
Publication of JP4623415B2 publication Critical patent/JP4623415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer PTC element which can protect a circuit without using a fuse together even if a conductive polymer element is broken when a voltage higher than a rating voltage is applied to the polymer PTC element. <P>SOLUTION: The PTC element is provided with a conductive polymer element (3) having a PTC characteristic, two electrode foils (3a and 3b) pinching the conductive polymer element (3) and two terminals (1 and 2) arranged on the surface of the two electrode foils, respectively. In this case, conductive adhesive agents (4 and 5) whose electric resistance irreversibly increase as a temperature rises are used to join the terminals (1 and 2) with surfaces of the electrode foils (3a and 3b) so as to manufacture the PTC element. Metallic thin films (1a, 2a, 3c, and 3d) may be formed on the surfaces of the electrode foils and the terminals to improve the adhesive force of the conductive adhesive agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特にポリマーPTC素子として提供されるPTC素子、過電流保護素子および過熱保護素子等に関する。   The present invention particularly relates to a PTC element, an overcurrent protection element, an overheat protection element, and the like provided as a polymer PTC element.

「PTC素子」とは、電気/電子回路技術の分野において知られているように、正の温度係数(Positive Temperature Coefficient)を有するサーミスタを言う。PTC素子は、比較的低い温度条件下(例えば常温時)ではその電気抵抗(またはインピーダンス)は低いが、ある温度(以下、トリップ温度と言う)を超えると電気抵抗が急激に増加する。本明細書において、PTC素子の前者の状態をロー状態、後者の状態をハイ状態とも
言うものとする。さらに、PTCは、トリップしている状態で、さらに電圧を印加されて、ある温度(以下、熱暴走開始温度という)を超えると、熱暴走する。ここで、熱暴走とは、トリップ後、電気抵抗の上昇が飽和して電気抵抗の上昇率が低くなり、その結果、電圧上昇に伴う消費電力(P=V/R:ここで、Pは消費電力、Vは印加電圧、RはPTC素子の抵抗値)が著しく大きくなってPTC素子の温度が上昇する状態をいう。PTCは熱暴走すると破壊する。
The “PTC element” refers to a thermistor having a positive temperature coefficient as known in the field of electric / electronic circuit technology. A PTC element has a low electrical resistance (or impedance) under relatively low temperature conditions (for example, at room temperature), but when the temperature exceeds a certain temperature (hereinafter referred to as trip temperature), the electrical resistance increases rapidly. In the present specification, the former state of the PTC element is referred to as a low state, and the latter state is referred to as a high state. Further, when the PTC is in a tripped state and is further applied with a voltage and exceeds a certain temperature (hereinafter, referred to as a thermal runaway start temperature), the PTC is thermally runaway. Here, thermal runaway means that after the trip, the increase in electrical resistance is saturated and the rate of increase in electrical resistance is reduced. As a result, the power consumption accompanying the voltage increase (P = V 2 / R: where P is The power consumption, V is the applied voltage, and R is the resistance value of the PTC element), and the temperature of the PTC element rises. The PTC will be destroyed if it becomes hot.

PTC特性を有する導電性ポリマー(以下、このポリマーを「PPTC」と呼ぶ)からなる要素が2枚の電極箔に挟まれ、2つの端子が2枚の電極箔それぞれに半田付けされた構成のポリマーPTC素子(以下、「PPTC素子」とも呼ぶ)は広く知られており、様々の分野で使用されている。この素子は所定温度以上になると、その電気抵抗値が急激に増加し、電流の流れを実質的に遮断するという特性を有する。この特性を利用して、PPTC素子は、電気回路の保護を目的として電気回路において使用されている。PPTC素子を接続した回路に過電流が流れてPPTC素子の温度が上昇すると、PPTC素子の抵抗が大きくなって電流の流れを遮断し、それにより回路が保護されることとなる。   A polymer in which an element made of a conductive polymer having PTC characteristics (hereinafter, this polymer is referred to as “PPTC”) is sandwiched between two electrode foils, and two terminals are soldered to each of the two electrode foils. PTC elements (hereinafter also referred to as “PPTC elements”) are widely known and are used in various fields. This element has a characteristic that when its temperature exceeds a predetermined temperature, its electric resistance value increases abruptly and current flow is substantially cut off. Utilizing this characteristic, PPTC elements are used in electric circuits for the purpose of protecting electric circuits. When an overcurrent flows through the circuit to which the PPTC element is connected and the temperature of the PPTC element rises, the resistance of the PPTC element increases and the current flow is interrupted, thereby protecting the circuit.

従来のPPTC素子が過電流によって動作する(即ち、電気抵抗が高くなる)と、PTC素子に実質的に回路全体の電圧が印加されることになる。この時、PPTC素子に印加される電圧が定格電圧を超えた非常に大きい電圧である場合、PPTC素子の熱暴走により素子が破壊されて電極箔同士が接触し、短絡する可能性がある。かかる事態を避けるために、PPTC素子は、その最大定格電圧が回路(または系)の電圧よりも大きくなるように選択または設計される。しかし、PPTC素子の定格電圧を回路の最大電圧を考慮して選択したとしても、回路には予見できない大きな電圧が不可避的に印加されることがある。その場合、PPTC素子における2つの電極箔の短絡を防止することが、回路保護の観点からは望ましい。そのため、過充電、過熱または過電流から回路を保護するために、電池パック等においては、バックアップとしてヒューズを併用することが行われている。   When the conventional PPTC element operates due to an overcurrent (that is, the electric resistance increases), the voltage of the entire circuit is substantially applied to the PTC element. At this time, when the voltage applied to the PPTC element is a very large voltage exceeding the rated voltage, there is a possibility that the element is destroyed due to thermal runaway of the PPTC element and the electrode foils are brought into contact with each other and short-circuited. In order to avoid such a situation, the PPTC element is selected or designed such that its maximum rated voltage is larger than the voltage of the circuit (or system). However, even if the rated voltage of the PPTC element is selected in consideration of the maximum voltage of the circuit, a large voltage that cannot be predicted may be inevitably applied to the circuit. In that case, it is desirable from the viewpoint of circuit protection to prevent a short circuit between the two electrode foils in the PPTC element. For this reason, in order to protect the circuit from overcharge, overheat, or overcurrent, a fuse is used together as a backup in a battery pack or the like.

ヒューズはPPTC素子と直列に接続される。ヒューズは、一般には、熱により溶融して回路を切断する(オープンにする)ものであるが、熱により高抵抗化するものであってよい。例えば、特許文献1は、熱的変化に対応して導電率が変化する機能によりスイッチング機構を構成する硬化ペースト層を形成する導電性ペーストを提案し、これのヒューズ的使用に言及している。但し、特許文献1に記載の導電性ペーストは、本来的にスイッチング機能を有するものであり、不可逆的に電気抵抗値が上昇するものではないので、周囲温度が下がったときに短絡を防止することができない。
特開平6−163203号公報
The fuse is connected in series with the PPTC element. The fuse is generally one that melts by heat and cuts (opens) the circuit, but may be one that increases resistance by heat. For example, Patent Document 1 proposes a conductive paste that forms a hardened paste layer that constitutes a switching mechanism by a function of changing conductivity in response to a thermal change, and mentions the use of this as a fuse. However, since the conductive paste described in Patent Document 1 inherently has a switching function and does not irreversibly increase the electrical resistance value, it prevents a short circuit when the ambient temperature decreases. I can't.
JP-A-6-163203

前述のようにヒューズを併用した場合には、雷サージ等の大電流等によりヒューズが先に動作する、あるいは衝撃等によりヒューズが破壊される等の問題があった。本発明は、PTC特性を有する導電性ポリマー要素が極めて低い確率で熱暴走して破壊されるときでも、ヒューズを併用することなく、PPTC素子全体としての性能低下を抑制することが可能な構成のPPTC素子を提供することを課題とする。   As described above, when a fuse is used in combination, there is a problem that the fuse operates first due to a large current such as a lightning surge or the fuse is destroyed by an impact or the like. The present invention has a structure capable of suppressing the performance degradation of the PPTC element as a whole without using a fuse even when a conductive polymer element having PTC characteristics is destroyed due to thermal runaway with a very low probability. It is an object to provide a PPTC element.

上記課題を解決するため、本発明は、PTC特性を有する導電性ポリマー要素と、当該導電性ポリマー要素を挟んでいる2つの電極箔と、当該2つの電極箔表面にそれぞれ配置されている2つの端子とを備えるPTC素子において、当該端子が、温度上昇により不可逆的にその電気抵抗が高くなる特性を有する導電性接着剤を介して、当該電極箔の表面に接合されているPTC素子を提供する。   In order to solve the above problems, the present invention provides a conductive polymer element having PTC characteristics, two electrode foils sandwiching the conductive polymer element, and two electrode foils disposed on the surfaces of the two electrode foils, respectively. A PTC element including a terminal, wherein the terminal is bonded to the surface of the electrode foil via a conductive adhesive having a characteristic that its electrical resistance increases irreversibly with a temperature rise. .

本発明のPTC素子は、加熱等により温度が上昇すると、不可逆的に電気抵抗が高くなる導電性接着剤を、端子と電極箔とを電気的に接続するために使用していることを特徴とする。ここで、導電性接着剤の温度上昇は、その周囲の温度上昇により知ることができる。導電性接着剤の温度は、例えば、熱電対を使用して測定することができる。   The PTC element of the present invention is characterized by using a conductive adhesive that irreversibly increases in electrical resistance when the temperature rises due to heating or the like to electrically connect the terminal and the electrode foil. To do. Here, the temperature rise of the conductive adhesive can be known from the surrounding temperature rise. The temperature of the conductive adhesive can be measured using, for example, a thermocouple.

前述のとおり、本発明のPPTC素子は、そのPTC特性により、過電流が流れた時または周囲温度が上昇した時に動作して高抵抗となって、通過する電流量を急減させる。この時、PPTCには実質的には回路全体の電圧が印加されることになる。この電圧が過電圧、即ち、定格を超えた過大な電圧の場合、PPTCの表面温度が上昇していき熱暴走をして破壊に至る場合がある。PPTCが熱暴走している間の発熱または破壊時の発熱は、前記導電性接着剤を加熱して高温にし、その電気抵抗を不可逆的に高くする。その結果、PPTC素子が破壊された後でも、導電性接着剤が高抵抗体となるので、PPTC素子の電極箔同士が接触するような状態になっても、PPTC素子内の短絡を有効に防止して、回路を保護することが可能となる。換言すれば、高抵抗体になり得る導電性接着剤は、バックアップ・ヒューズ的な役割をする。したがって、本発明で使用する導電性接着剤は、PPTC素子に過電圧が印加されて破壊に至るまでの短時間で、十分に高い電気抵抗を有するようになるものであることが好ましい。導電性接着剤はまた、そのような短時間で、トリップしているPPTCの電気抵抗と同じ又はそれよりも高い電気抵抗を有するように、その電気抵抗が上昇する性質を有することが好ましい。   As described above, the PPTC element of the present invention operates due to its PTC characteristics when an overcurrent flows or when the ambient temperature rises, and becomes a high resistance, thereby rapidly reducing the amount of current passing therethrough. At this time, the voltage of the entire circuit is substantially applied to PPTC. When this voltage is an overvoltage, that is, an excessive voltage exceeding the rating, the surface temperature of the PPTC rises and thermal runaway may occur, leading to destruction. Heat generation during the PPTC thermal runaway or heat generation at the time of destruction heats the conductive adhesive to a high temperature and irreversibly increases its electrical resistance. As a result, even after the PPTC element is destroyed, the conductive adhesive becomes a high resistance body, so even if the electrode foils of the PPTC element come into contact with each other, a short circuit in the PPTC element is effectively prevented. Thus, the circuit can be protected. In other words, the conductive adhesive that can be a high-resistance element serves as a backup fuse. Therefore, it is preferable that the conductive adhesive used in the present invention has a sufficiently high electric resistance in a short time from when an overvoltage is applied to the PPTC element until destruction occurs. The conductive adhesive also preferably has the property of increasing its electrical resistance so that it has the same or higher electrical resistance than that of the tripping PPTC in such a short time.

導電性接着剤は、PPTCの熱暴走開始温度よりも低い温度領域では、小さい電気抵抗上昇率(Ω/℃)にて電気抵抗が高くなり、熱暴走開始温度以上の温度領域では、大きい電気抵抗上昇率(Ω/℃)にて電気抵抗が高くなることが好ましい。PPTC素子は、PPTCが熱暴走していない限り、低い電気抵抗を有する導電体として機能すべきところ、熱暴走開始温度未満で導電性接着剤の抵抗が高くなると、回路に好ましくない影響を及ぼすことがある。換言すれば、導電性接着剤の電気抵抗の上昇は、導電性接着剤の劣化を意味するから、PPTCが正常状態にある間またはトリップしている間には、できるだけ劣化しにくい特性を有することが好ましい。このことはまた、PPTC素子を繰り返し使用するためにも必要とされる。   The conductive adhesive has a high electrical resistance at a low rate of increase in electrical resistance (Ω / ° C) in the temperature range lower than the PPTC thermal runaway start temperature, and has a large electrical resistance in the temperature range above the thermal runaway start temperature. It is preferable that the electrical resistance increases at an increasing rate (Ω / ° C.). The PPTC element should function as a conductor having a low electrical resistance unless the PPTC is thermally runaway, and if the resistance of the conductive adhesive is increased below the thermal runaway start temperature, it may adversely affect the circuit. There is. In other words, since the increase in the electrical resistance of the conductive adhesive means the deterioration of the conductive adhesive, the PPTC has the property of being hardly deteriorated as long as the PPTC is in a normal state or tripped. Is preferred. This is also required for repeated use of PPTC elements.

本発明のPPTC素子を用いれば、PPTCが熱暴走して破壊する場合でも、導電性接着剤が高抵抗体となるため、PPTCの両面に配置される電極箔の間で短絡が生じることを実質的に防止できる。したがって、本発明のPPTC素子は、定格電圧以上の電圧が印加された場合でも、ヒューズを使用することなく、それ自体で回路を保護することができ、より高い回路保護機能を発揮する。また、ストレスがPTC素子に作用する等の理由により熱暴走が開始するときの抵抗(R)と常温時の抵抗(R)との比(R/R)が低下して耐圧が低くなった場合でも、本発明の構成のPPTC素子によれば、回路を良好に保護することができる。さらに、本発明のPPTC素子はヒューズを不要にするものであるから、これを使用することにより、回路の省スペース化、組み立てコストの削減および部品コストの削減を図ることができる。さらにまた、本発明のPPTC素子においては、電極箔と端子との間が導電性接着剤により接続され、半田付けが不要となるから、半田付けに必要とされるリフロー炉が必要なくなり、設備費用の削減ができる。また、半田付け時に使用される窒素が必要なくなり、窒素代の削減、および窒素を使用するための設備費用の削減も可能となる。さらにまた、製品および治具の洗浄工程も無くすことができるので、洗浄液及び洗浄設備費用の削減もできる。得られるPTC素子については、導電性接着剤を使用する場合には半田付けを使用する場合と比較して製造工程中での熱履歴が少なくなるので、PTC素子の低抵抗化が可能となる。 When the PPTC element of the present invention is used, even when PPTC breaks down due to thermal runaway, the conductive adhesive becomes a high resistance body, so that a short circuit occurs between the electrode foils disposed on both sides of the PPTC. Can be prevented. Therefore, the PPTC element of the present invention can protect a circuit by itself without using a fuse even when a voltage higher than the rated voltage is applied, and exhibits a higher circuit protection function. In addition, the ratio (R B / R A ) between the resistance (R B ) at the start of thermal runaway and the resistance (R A ) at room temperature due to the stress acting on the PTC element, etc., decreases the withstand voltage. Even when the voltage is lowered, the PPTC element having the configuration of the present invention can protect the circuit satisfactorily. Furthermore, since the PPTC element of the present invention eliminates the need for a fuse, the use of this makes it possible to save circuit space, reduce assembly costs, and reduce component costs. Furthermore, in the PPTC element of the present invention, the electrode foil and the terminal are connected by a conductive adhesive, and soldering is not required, so that the reflow furnace required for soldering is not necessary, and the equipment cost is reduced. Can be reduced. Further, nitrogen used at the time of soldering is not necessary, so that it is possible to reduce the cost of nitrogen and the equipment cost for using nitrogen. Furthermore, since the product and jig cleaning steps can be eliminated, the cost of cleaning liquid and cleaning equipment can be reduced. About the obtained PTC element, since the heat history in a manufacturing process decreases compared with the case where soldering is used when using a conductive adhesive, the resistance of the PTC element can be reduced.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の実施の形態を図1および図2を参照して説明する。
図1は、本発明のPPTC素子の一例の平面図であり、図2はその断面図である。本発明のPPTC素子10は、PTC特性を有する導電性ポリマー要素3およびその両面に配置された電極箔3aおよび3b、ならびに端子1および2を有する。端子1および2はそれぞれ導電性接着剤4および5によって、電極箔3aおよび3bに接合されている。図示したPPTC素子10においては、端子1および2の表面にそれぞれ金属薄膜1aおよび2aが形成され、電極箔3aおよび3bの表面にそれぞれ金属薄膜3cおよび3dが形成されている。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan view of an example of a PPTC element of the present invention, and FIG. 2 is a cross-sectional view thereof. The PPTC element 10 of the present invention includes a conductive polymer element 3 having PTC characteristics, electrode foils 3a and 3b disposed on both sides thereof, and terminals 1 and 2. Terminals 1 and 2 are joined to electrode foils 3a and 3b by conductive adhesives 4 and 5, respectively. In the illustrated PPTC element 10, metal thin films 1a and 2a are formed on the surfaces of terminals 1 and 2, respectively, and metal thin films 3c and 3d are formed on the surfaces of electrode foils 3a and 3b, respectively.

導電性ポリマー要素3は、例えば、ポリオレフィンまたはフッ素系樹脂とカーボンブラックとを混練した後、放射線を照射して架橋することにより構成された高分子樹脂体である。なお、図示した構成のPPTC素子の製造においては、一般的に、前記混練後、放射線を照射する前に、電極箔3aおよび3bが熱圧着されることにより一体化される。導電性ポリマー要素3の内部には、常温の環境下ではカーボンブラックの粒子が繋がって存在するために電流が流れる多数の導電パスが形成され、それにより導電性ポリマー要素3は良好な導電性を発揮する。この導電パスを流れる電流の超過によって導電性ポリマー要素3が熱膨張すると、カーボンブラックの粒子間距離が拡大して導電パスが切断され、抵抗値が急激に増大する(正の抵抗温度特性;PTC)。図示した形態では、導電性ポリマー要素は矩形の板状物である。その寸法は、例えば、タテが3〜10mm、ヨコが7〜15mm、厚さが0.2〜1mm程度である。導電性ポリマー要素は、常套的に採用されている他の形態、例えば、円盤形態としてもよい。   The conductive polymer element 3 is, for example, a polymer resin body configured by kneading polyolefin or a fluorine-based resin and carbon black and then crosslinking by irradiation with radiation. In the production of the PPTC element having the illustrated configuration, the electrode foils 3a and 3b are generally integrated by thermocompression bonding after the kneading and before irradiation with radiation. In the interior of the conductive polymer element 3, a large number of conductive paths through which current flows are formed because carbon black particles are connected in a normal temperature environment, whereby the conductive polymer element 3 has good conductivity. Demonstrate. When the conductive polymer element 3 is thermally expanded due to the excess of the current flowing through the conductive path, the inter-particle distance of the carbon black is expanded, the conductive path is cut, and the resistance value increases rapidly (positive resistance temperature characteristic; PTC ). In the illustrated form, the conductive polymer element is a rectangular plate. The dimensions are, for example, about 3 to 10 mm for vertical, 7 to 15 mm for horizontal, and about 0.2 to 1 mm for thickness. The conductive polymer element may have other forms conventionally employed, for example, a disk form.

導電性ポリマー要素3の対向する2つの表面に配置された電極箔3aおよび3bは、金属箔である。金属箔は、例えば、ニッケル箔もしくは銅箔またはニッケルメッキした銅箔である。金属箔の厚さは一般に0.025〜0.040mm程度である。金属箔1および2は、例えば、前述のように、導電性ポリマー要素の混練後架橋前に、プレスもしくはローラを用いた熱圧着により、導電性ポリマー要素3と一体化させる。   The electrode foils 3a and 3b disposed on the two opposing surfaces of the conductive polymer element 3 are metal foils. The metal foil is, for example, a nickel foil, a copper foil, or a nickel-plated copper foil. The thickness of the metal foil is generally about 0.025 to 0.040 mm. For example, as described above, the metal foils 1 and 2 are integrated with the conductive polymer element 3 by thermocompression using a press or a roller after the kneading of the conductive polymer element and before crosslinking.

端子1および2は、実装用のリードとして使用される。端子1および2は、例えば、ニッケル、真鍮、または表面に銅メッキした鉄もしくはニッケルメッキしたSUSから成る。図示した形態において、端子は矩形の帯状物であり、その寸法は、例えば、タテが2〜8mm、ヨコが16〜20mm、厚さが0.1〜0.3mm程度である。端子は他の形状であってよく、例えば、板状体としてよい。   Terminals 1 and 2 are used as mounting leads. The terminals 1 and 2 are made of, for example, nickel, brass, iron plated with copper or SUS plated with nickel. In the illustrated form, the terminal is a rectangular strip, and the dimensions thereof are, for example, 2-8 mm in length, 16-20 mm in width, and about 0.1-0.3 mm in thickness. The terminal may have other shapes, for example, a plate-like body.

導電性接着剤4および5は、合成樹脂と導電性粉末とを含み、必要に応じて粘度調整用等の添加剤を含む。合成樹脂としては、例えば、酢酸ビニル樹脂、ポリビニルアルコール樹脂、アクリル樹脂、およびビニルウレタン樹脂等の熱可塑性樹脂を使用できる。また、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、シリコーン樹脂、α−オレフィン無水マイレン酸樹脂、ポリアミド樹脂、およびポリイミド樹脂等の熱硬化性樹脂等が使用可能である。さらに、ここに列挙した樹脂から選択した二種以上の樹脂を混合して使用することも可能である。導電性粉末としては、例えば、金粉末、銀粉末、ニッケル粉末、カーボン粉末、パラジウム粉または少なくとも表面が導電性である粉末を使用できる。いずれの材料を選択する場合も、導電性接着剤は温度上昇により不可逆的にその電気抵抗が高くなるように構成することを要する。導電性接着剤4および5は、導電性ポリマー要素3が熱暴走したときに電流を遮蔽する高抵抗体として作用するような厚さの層を電極箔3aおよび3bと端子1および2との間で形成するような量で塗布する必要がある。具体的な厚さは、導電性ポリマー要素3の種類および寸法、ならびに導電性接着剤が塗布される面積等に応じて選択される。例えば、上記の寸法を有する導電性ポリマー要素および端子を使用する場合には、厚さ0.01〜0.1mm程度の層が形成されるように、導電性接着剤を塗布することが好ましい。   The conductive adhesives 4 and 5 include a synthetic resin and a conductive powder, and include additives for adjusting viscosity as necessary. Examples of the synthetic resin that can be used include thermoplastic resins such as vinyl acetate resin, polyvinyl alcohol resin, acrylic resin, and vinyl urethane resin. In addition, thermosetting resins such as urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, silicone resin, α-olefin maleic anhydride resin, polyamide resin, and polyimide resin can be used. Further, two or more kinds of resins selected from the resins listed here can be mixed and used. As the conductive powder, for example, a gold powder, a silver powder, a nickel powder, a carbon powder, a palladium powder, or a powder having at least a surface conductive can be used. When any material is selected, the conductive adhesive needs to be configured so that its electrical resistance increases irreversibly due to temperature rise. The conductive adhesives 4 and 5 are formed between the electrode foils 3a and 3b and the terminals 1 and 2 so that the conductive polymer elements 3 act as high resistances that shield current when the conductive polymer element 3 is thermally runaway. It is necessary to apply in such an amount that it is formed by. The specific thickness is selected according to the type and size of the conductive polymer element 3 and the area to which the conductive adhesive is applied. For example, when using a conductive polymer element and a terminal having the above dimensions, it is preferable to apply a conductive adhesive so that a layer having a thickness of about 0.01 to 0.1 mm is formed.

金属薄膜1a、2a、3cおよび3dは、各部材表面の酸化を防止するとともに、良好な導電性を確保しつつ接着剤4および5による接着をより強固にするためのものである。これらの金属薄膜は、例えば、金をメッキすることにより形成され、あるいはパラジウム銀、または銅等の適切な導電材料を用いて、メッキ等により形成される。金属薄膜は、必ずしも形成される必要はない。金属薄膜は、例えば、一方または両方の端子にのみ形成してよく、あるいは一方または両方の電極箔の表面にのみ形成してよい。   The metal thin films 1a, 2a, 3c and 3d are for preventing the oxidation of the surface of each member and further strengthening the adhesion by the adhesives 4 and 5 while ensuring good electrical conductivity. These metal thin films are formed, for example, by plating gold, or by plating using an appropriate conductive material such as palladium silver or copper. The metal thin film is not necessarily formed. For example, the metal thin film may be formed only on one or both terminals, or may be formed only on the surface of one or both electrode foils.

上記のポリマーPTC素子に過電圧が印加される等の理由により、導電性ポリマー要素3が熱暴走して破壊される場合でも、導電性ポリマー要素3が熱暴走している間に放出した熱および/または破壊時に導電性ポリマー要素3が放出した熱によって導電性接着剤4および5の温度が上昇して電気抵抗が高くなる。それにより、導電性ポリマー要素3が破壊したために電極箔3aおよび3bが互いに接触することになっても、導電性接着剤4および5が抵抗体となって、端子1と端子2との間を流れる電流量を好ましくはポリマーPTC素子が熱暴走する前と同じくらい小さい量に維持する。かかる導電性接着剤4および5の作用により、ポリマーPTC素子が置かれた回路、およびその回路を内蔵する機器の安全が保たれる。   Even when the conductive polymer element 3 is destroyed due to thermal runaway due to an overvoltage being applied to the polymer PTC element, the heat released during the thermal runaway of the conductive polymer element 3 and / or Alternatively, the temperature of the conductive adhesives 4 and 5 rises due to the heat released by the conductive polymer element 3 at the time of breakdown, and the electrical resistance increases. Thereby, even if the electrode foils 3a and 3b come into contact with each other because the conductive polymer element 3 is broken, the conductive adhesives 4 and 5 become resistors, and the gap between the terminals 1 and 2 is reduced. The amount of current flowing is preferably kept as small as before the polymer PTC element is thermally runaway. By the action of the conductive adhesives 4 and 5, the safety of the circuit in which the polymer PTC element is placed and the equipment incorporating the circuit are maintained.

本発明のPPTC素子は、導電性ポリマー要素の熱暴走による破壊に起因して電極箔の間で短絡が生じるような場合でも、導電性接着剤が高い電気抵抗を示して、電流量が減少した状態を維持することができるので、電池パックおよびその他の一般電子機器、通信機器およびコンピュータ等の種々の機器またはデバイスをより安全に保護するために使用することができる。   In the PPTC element of the present invention, even when a short circuit occurs between the electrode foils due to the breakage of the conductive polymer element due to thermal runaway, the conductive adhesive exhibits a high electric resistance and the amount of current is reduced. Since the state can be maintained, it can be used to more safely protect various devices or devices such as battery packs and other general electronic devices, communication devices and computers.

図1は、本発明のPTC素子の一例の平面図である。FIG. 1 is a plan view of an example of the PTC element of the present invention. 図2は、本発明のPTC素子の一例の断面図である。FIG. 2 is a cross-sectional view of an example of the PTC element of the present invention.

符号の説明Explanation of symbols

1,2...端子、1a,2a...金属薄膜、3...導電性ポリマー要素、3a,3b...電極箔、3c,3d...金属薄膜、4,5...導電性接着剤、10...PTC素子。

1, 2 ... Terminal, 1a, 2a ... Metal thin film, 3 ... Conductive polymer element, 3a, 3b ... Electrode foil, 3c, 3d ... Metal thin film, 4, 5 ... Conductive adhesive, 10 ... PTC element.

Claims (4)

PTC特性を有する導電性ポリマー要素と、当該導電性ポリマー要素を挟んでいる2つの電極箔と、当該2つの電極箔の表面にそれぞれ配置されている2つの端子とを備えるPTC素子において、当該端子が導電性接着剤を介して当該電極箔の表面に接合され、当該導電性接着剤が、温度上昇により不可逆的にその電気抵抗が高くなるものであることを特徴とするPTC素子。   In a PTC element comprising a conductive polymer element having PTC characteristics, two electrode foils sandwiching the conductive polymer element, and two terminals respectively disposed on the surfaces of the two electrode foils, the terminal Is bonded to the surface of the electrode foil via a conductive adhesive, and the conductive adhesive irreversibly increases its electrical resistance due to a temperature rise. 前記導電性接着剤は、導電性ポリマー要素の熱暴走時の発熱および/または導電性ポリマー要素の破壊時の発熱により温度上昇するものである、請求項1に記載のPTC素子。   2. The PTC element according to claim 1, wherein the temperature of the conductive adhesive is increased by heat generation during thermal runaway of the conductive polymer element and / or heat generation during breakdown of the conductive polymer element. 3. 前記導電性接着剤は、導電性ポリマー要素の熱暴走時の発熱および/または導電性ポリマー要素の破壊時の発熱により温度上昇して、その電気抵抗がPTC特性を有する導電性ポリマー要素のトリップ時の電気抵抗と同じまたはそれ以上となるものである、請求項2に記載のPTC素子。   The conductive adhesive increases in temperature due to heat generated during thermal runaway of the conductive polymer element and / or heat generated during breakdown of the conductive polymer element, and when the conductive polymer element having a PTC characteristic is tripped, the electrical resistance is increased. The PTC element according to claim 2, wherein the PTC element has the same or higher electrical resistance. 前記導電性接着剤は、導電性ポリマー要素の熱暴走開始温度よりも低い低温度領域における電気抵抗上昇率が、導電性ポリマー要素の熱暴走開始温度以上の高温度領域における電気抵抗上昇率よりも小さいものである、請求項1〜3のいずれか1項に記載のPTC素子。
The conductive adhesive has an electrical resistance increase rate in a low temperature region lower than the thermal runaway start temperature of the conductive polymer element than an electrical resistance increase rate in a high temperature region higher than the thermal runaway start temperature of the conductive polymer element. The PTC element according to any one of claims 1 to 3, wherein the PTC element is small.
JP2004312338A 2004-10-27 2004-10-27 PTC element Expired - Fee Related JP4623415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312338A JP4623415B2 (en) 2004-10-27 2004-10-27 PTC element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312338A JP4623415B2 (en) 2004-10-27 2004-10-27 PTC element

Publications (2)

Publication Number Publication Date
JP2006128277A true JP2006128277A (en) 2006-05-18
JP4623415B2 JP4623415B2 (en) 2011-02-02

Family

ID=36722680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312338A Expired - Fee Related JP4623415B2 (en) 2004-10-27 2004-10-27 PTC element

Country Status (1)

Country Link
JP (1) JP4623415B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908586A (en) * 2009-06-03 2010-12-08 亿光电子工业股份有限公司 Light-emitting diode packaging structure
US8552450B2 (en) 2009-05-27 2013-10-08 Everlight Electronics Co., Ltd. LED package structure with a fuse for protection from high current
EP3761325A1 (en) * 2019-07-01 2021-01-06 Littelfuse, Inc. Pptc device having resistive component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474702A (en) * 1987-09-17 1989-03-20 Toshiba Corp Arrestor
JPH0831470A (en) * 1994-07-12 1996-02-02 Kurabe Ind Co Ltd Connection structure of conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474702A (en) * 1987-09-17 1989-03-20 Toshiba Corp Arrestor
JPH0831470A (en) * 1994-07-12 1996-02-02 Kurabe Ind Co Ltd Connection structure of conductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552450B2 (en) 2009-05-27 2013-10-08 Everlight Electronics Co., Ltd. LED package structure with a fuse for protection from high current
CN101908586A (en) * 2009-06-03 2010-12-08 亿光电子工业股份有限公司 Light-emitting diode packaging structure
EP3761325A1 (en) * 2019-07-01 2021-01-06 Littelfuse, Inc. Pptc device having resistive component
US11037708B2 (en) 2019-07-01 2021-06-15 Littelfuse, Inc. PPTC device having resistive component

Also Published As

Publication number Publication date
JP4623415B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5264484B2 (en) Circuit protection device having thermally coupled MOV overvoltage element and PPTC overcurrent element
JP5259289B2 (en) Integrated thermistor, metal element device and method
KR100693057B1 (en) Battery pack and method of producing the same
KR102213303B1 (en) Fuse element and fuse device
JP6437262B2 (en) Mounting body manufacturing method, thermal fuse element mounting method, and thermal fuse element
US20110211284A1 (en) Protective element and method for producing the same
US8687336B2 (en) Over-current protection device and battery protection circuit assembly containing the same
TW201230116A (en) Compact transient voltage surge suppression device
EP1206781A2 (en) Improvements to circuit protection devices
JP2012138608A (en) Surface mount multi-layer electrical circuit protection device with active element between pptc layers
KR100890092B1 (en) Circuit protection arrangement
US8058966B2 (en) PTC thermistor and method for protecting circuit
TWI584308B (en) Over-current protection device
JP2001309551A (en) Battery protector
JP4623415B2 (en) PTC element
US10892130B2 (en) Protection device and circuit protection apparatus containing the same
KR101266807B1 (en) Micro chip fuse
US20200355736A1 (en) Circuit protection device with ptc element and secondary fuse
CN117672649A (en) Thermal protection metal oxide varistor with heat concentration electrode
JP2001135502A (en) Electronic component
KR20050090749A (en) Ptc-device including overvoltage protection means in a body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4623415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees