JP2006125713A - Adsorption heating/hot water supply device - Google Patents

Adsorption heating/hot water supply device Download PDF

Info

Publication number
JP2006125713A
JP2006125713A JP2004313707A JP2004313707A JP2006125713A JP 2006125713 A JP2006125713 A JP 2006125713A JP 2004313707 A JP2004313707 A JP 2004313707A JP 2004313707 A JP2004313707 A JP 2004313707A JP 2006125713 A JP2006125713 A JP 2006125713A
Authority
JP
Japan
Prior art keywords
heat exchanger
container
heat
refrigerant
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004313707A
Other languages
Japanese (ja)
Other versions
JP4276992B2 (en
Inventor
Yuji Ozawa
裕治 小沢
Atsuya Tajima
敦也 田島
Mitsuharu Matsubara
光治 松原
Hideo Kawaguchi
秀夫 河口
Masayoshi Terao
公良 寺尾
Yoshiaki Tanaka
攻明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toho Gas Co Ltd
Original Assignee
Denso Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toho Gas Co Ltd filed Critical Denso Corp
Priority to JP2004313707A priority Critical patent/JP4276992B2/en
Publication of JP2006125713A publication Critical patent/JP2006125713A/en
Application granted granted Critical
Publication of JP4276992B2 publication Critical patent/JP4276992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To retrieve intermediate temperature water with a high temperature, and at the same time, to contribute to energy saving. <P>SOLUTION: The adsorption heating/hot water supply device has a first heat exchanger 115 provided with an adsorbent 105 in a first container 103, a second heat exchanger 125 carrying out evaporation and condensation of a refrigerant 106, a third heat exchanger 110 provided with the adsorbent 105 in a second container 101, and a fourth heat exchanger 120 carrying out evaporation and condensation of the refrigerant 106. A first operation condition c1 to obtain heat of desorption by the first heat exchanger 115 and the third heat exchanger 110 and to provide heat of condensation in the intermediate temperature water 161 from the second heat exchanger 125 and the fourth heat exchanger 120, and a second operation condition c2 to obtain heat of evaporation by the second heat exchanger 125, to provide heat of adsorption in the first heat exchanger 115, to input circulation intermediate temperature water 163 having obtained heat from the first heat exchanger 115 into the fourth heat exchanger 120, and to provide heat of adsorption in the intermediate temperature water 161 having further obtained heat of evaporation and inputted in the third heat exchanger 110 are changed over at a certain time or at the same time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、温度の違いによる吸着剤の吸脱着作用と水等の冷媒の相変化を用いて加熱や冷却を行うためのものである。   The present invention is for heating and cooling using adsorption / desorption action of an adsorbent due to temperature difference and phase change of a refrigerant such as water.

従来から吸着式ヒートポンプを利用した熱サイクルシステムは、多岐にわたった分野で利用され、冷暖房装置や給湯器など、身近な機器にも応用されている一般的な技術である。しかしながら、近年において環境問題を踏まえた省エネルギー化の動きが活発になってきたことに伴い、吸着式ヒートポンプを利用した暖房装置、給湯装置等にも更なる効率化が求められている。   BACKGROUND ART Conventionally, a heat cycle system using an adsorption heat pump is a general technique that is used in a wide variety of fields and applied to familiar devices such as an air conditioner and a water heater. However, in recent years, with the movement of energy saving based on environmental problems becoming active, further efficiency is required for heating devices, hot water supply devices, and the like using adsorption heat pumps.

図5は、従来技術1の吸着式暖房・給湯装置の構成を示した図である。
第1容器201及び第2容器202は、冷媒として使用する水等の液体(以下、冷媒206と称する)が入れられており、冷媒206が蒸発しやすいように内部が真空に保たれた圧力容器である。
第1容器201内の上部には、シリカゲル等の吸着剤(以下、吸着剤205と称する)を備えた第1熱交換器210が設けられ、第1容器201内の下部には、第2熱交換器220が冷媒206に浸かった状態で設けられている。
第2容器202内の上部には、吸着剤205を備えた第3熱交換器230が設けられ、第2容器202の下部には、第4熱交換器240が冷媒206に浸かった状態で設けられている。
FIG. 5 is a diagram showing the configuration of the adsorption heating / hot water supply apparatus of the prior art 1.
The first container 201 and the second container 202 are filled with a liquid such as water (hereinafter referred to as a refrigerant 206) used as a refrigerant, and the pressure containers are maintained in a vacuum so that the refrigerant 206 is easily evaporated. It is.
A first heat exchanger 210 provided with an adsorbent such as silica gel (hereinafter referred to as adsorbent 205) is provided in the upper part of the first container 201, and a second heat is provided in the lower part of the first container 201. The exchanger 220 is provided in a state where it is immersed in the refrigerant 206.
A third heat exchanger 230 provided with an adsorbent 205 is provided in the upper part of the second container 202, and a fourth heat exchanger 240 is provided in a state of being immersed in the refrigerant 206 at the lower part of the second container 202. It has been.

次に、図5の第1運転条件a11における流路を説明する。
(1)高温熱源入口260aに接続される配管250は、流路切替弁207aを介して配管211に接続され、配管211は第1熱交換器210を介して配管212に接続され、配管212は流路切替弁207bを介して配管251に接続され、高温熱源出口260bに接続される。
(2)中温水入口261aに接続される配管252は、流路切替弁207cを介して配管221に接続され、配管221は第2熱交換器220を介して配管222に接続され、配管222は流路切替弁207dを介して配管253に接続され、中温水出口261bに接続される。
(3)中温水入口261aに接続される配管252は、配管254と流路切替弁207aを介して配管231に接続され、配管231は第3熱交換器230を介して配管232に接続され、配管232は流路切替弁207bと配管255を介して、配管253に接続され、中温水出口261bに接続される。
(4)低温熱源入口262aに接続される配管235は、流路切替弁207cを介して配管241に接続され、配管241は第4熱交換器240を介して配管242に接続され、配管242は流路切替弁207dを介して配管236に接続され、低温熱源出口262bに接続される。
Next, the flow path under the first operating condition a11 in FIG. 5 will be described.
(1) The pipe 250 connected to the high temperature heat source inlet 260a is connected to the pipe 211 via the flow path switching valve 207a, the pipe 211 is connected to the pipe 212 via the first heat exchanger 210, and the pipe 212 is It is connected to the pipe 251 via the flow path switching valve 207b and connected to the high temperature heat source outlet 260b.
(2) The pipe 252 connected to the intermediate temperature water inlet 261a is connected to the pipe 221 via the flow path switching valve 207c, the pipe 221 is connected to the pipe 222 via the second heat exchanger 220, and the pipe 222 is It is connected to the pipe 253 via the flow path switching valve 207d, and is connected to the intermediate hot water outlet 261b.
(3) The pipe 252 connected to the medium temperature water inlet 261a is connected to the pipe 231 via the pipe 254 and the flow path switching valve 207a, and the pipe 231 is connected to the pipe 232 via the third heat exchanger 230. The pipe 232 is connected to the pipe 253 via the flow path switching valve 207b and the pipe 255, and is connected to the intermediate temperature water outlet 261b.
(4) The pipe 235 connected to the low temperature heat source inlet 262a is connected to the pipe 241 via the flow path switching valve 207c, the pipe 241 is connected to the pipe 242 via the fourth heat exchanger 240, and the pipe 242 is It is connected to the pipe 236 via the flow path switching valve 207d and connected to the low-temperature heat source outlet 262b.

次に、図6の第2運転条件a12における流路を説明する。これは図5の流路切替弁207a乃至207dを切り替えたものである。
(1)高温熱源入口260aに接続される配管250は、流路切替弁207aを介して配管231に接続され、配管231は第3熱交換器230を介して配管232に接続され、配管232は流路切替弁207bを介して配管251に接続され、高温熱源出口260bに接続される。
(2)中温水入口261aに接続される配管252は、流路切替弁207cを介して配管241に接続され、配管241は第4熱交換器240を介して配管242に接続され、配管242は流路切替弁207dを介して配管253に接続され、中温水出口261bに接続される。
(3)中温水入口261aに接続される配管252は、配管254、流路切替弁207aを介して配管211に接続され、配管211は第1熱交換器210を介して配管212に接続され、配管212は流路切替弁207bを介して配管255、配管253に接続され、中温水出口261bに接続される。
(4)低温熱源入口262aに接続される配管235は、流路切替弁207cを介して配管221に接続され、配管221は第2熱交換器220を介して配管222に接続され、配管222は流路切替弁207dを介して配管236に接続され、低温熱源出口262bに接続される。
Next, the flow path in the second operating condition a12 in FIG. 6 will be described. This is obtained by switching the flow path switching valves 207a to 207d in FIG.
(1) The pipe 250 connected to the high temperature heat source inlet 260a is connected to the pipe 231 via the flow path switching valve 207a, the pipe 231 is connected to the pipe 232 via the third heat exchanger 230, and the pipe 232 is It is connected to the pipe 251 via the flow path switching valve 207b and connected to the high temperature heat source outlet 260b.
(2) The pipe 252 connected to the intermediate temperature water inlet 261a is connected to the pipe 241 via the flow path switching valve 207c, the pipe 241 is connected to the pipe 242 via the fourth heat exchanger 240, and the pipe 242 is It is connected to the pipe 253 via the flow path switching valve 207d, and is connected to the intermediate hot water outlet 261b.
(3) The pipe 252 connected to the medium temperature water inlet 261a is connected to the pipe 211 via the pipe 254 and the flow path switching valve 207a, and the pipe 211 is connected to the pipe 212 via the first heat exchanger 210. The pipe 212 is connected to the pipe 255 and the pipe 253 via the flow path switching valve 207b, and is connected to the intermediate hot water outlet 261b.
(4) The pipe 235 connected to the low-temperature heat source inlet 262a is connected to the pipe 221 via the flow path switching valve 207c, and the pipe 221 is connected to the pipe 222 via the second heat exchanger 220. It is connected to the pipe 236 via the flow path switching valve 207d and connected to the low-temperature heat source outlet 262b.

この構成における、冷媒206が吸着された状態の、第1熱交換器210及び第3熱交換器230に備えられた吸着剤205は、外部から高温の熱媒体を流すことで、吸着された冷媒206を脱離することができる。一方、それと同時に第2熱交換器220及び第4熱交換器240に外部から低温の熱媒体を流すことで、各容器内の冷媒206を凝縮させることができる。
また、冷媒206が脱離された状態の、第1熱交換器210及び第3熱交換器230に備えられた吸着剤205は、外部から低温の熱媒体を流すことで、冷媒206の吸着を行うことができる。一方、それと同時に第2熱交換器220及び第4熱交換器240に外部から低温の熱媒体を流すことで、各容器内の冷媒206を蒸発させることができる。
In this configuration, the adsorbent 205 provided in the first heat exchanger 210 and the third heat exchanger 230 in a state in which the refrigerant 206 is adsorbed is a refrigerant adsorbed by flowing a high-temperature heat medium from the outside. 206 can be detached. On the other hand, at the same time, by flowing a low-temperature heat medium from the outside to the second heat exchanger 220 and the fourth heat exchanger 240, the refrigerant 206 in each container can be condensed.
In addition, the adsorbent 205 provided in the first heat exchanger 210 and the third heat exchanger 230 in a state where the refrigerant 206 has been desorbed can adsorb the refrigerant 206 by flowing a low-temperature heat medium from the outside. It can be carried out. On the other hand, at the same time, by flowing a low-temperature heat medium from the outside to the second heat exchanger 220 and the fourth heat exchanger 240, the refrigerant 206 in each container can be evaporated.

次に、図5の構成における吸着式暖房・給湯装置の第1運転条件a11について説明する。
第1容器201において、第1熱交換器210に、85℃程度の高温熱源260を通じる。第1熱交換器210に85℃程度の高温熱源260を通じると、第1熱交換器210に備えられた冷媒206が吸着された状態の吸着剤205が、第1熱交換器210から熱を得る。それによって、吸着剤205に吸着されていた冷媒206が脱離する。
同時に、第2熱交換器220に、中温度の水(段階によって20℃〜50℃程度まで変化する。運転開始時には、水道水と同等の温度であるが、定常運転に入ると、ある程度まで温度が上昇して安定する。以下、定常時の中温水の温度を〜℃程度の中温水261と称する)を通じる。第2熱交換器220に30℃程度の中温水261を通じると、第1容器201内から第2熱交換器220が熱を奪い、冷媒206を凝縮させる。この過程を経た結果、第2熱交換器220より35℃程度の中温水261が得られる。
なお、第1容器201内に充填された冷媒量は有限なので、吸着剤205に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
第2容器202において、第3熱交換器230に30℃程度の中温水261を通じる。第3熱交換器230に備えられた冷媒206を脱離した状態の吸着剤205は、冷媒206を吸着して熱を発生する。その熱を、第3熱交換器230に30℃程度の中温水261を通じることで、第3熱交換器230を介して、中温水261が奪う。
同時に、第4熱交換器240に図示しない室外機より供給される10℃程度の低温熱源262を通じる。第4熱交換器240に10℃程度の低温熱源262を通じると、第2容器202内の冷媒206が、10℃程度の低温熱源262から熱を得て蒸発する。この過程を経た結果、第3熱交換器230より、35℃程度の中温水261が得られる。
なお、前記第2容器202内に充填された冷媒量は有限なので、吸着剤205に吸着された冷媒量は時間と共に増加し、これに伴い蒸発量が減少する。よって一定時間経過後はほとんど変化しない。
Next, the first operating condition a11 of the adsorption heating / hot water supply apparatus in the configuration of FIG. 5 will be described.
In the first container 201, the high temperature heat source 260 of about 85 ° C. is passed through the first heat exchanger 210. When the high-temperature heat source 260 of about 85 ° C. is passed through the first heat exchanger 210, the adsorbent 205 in the state in which the refrigerant 206 provided in the first heat exchanger 210 is adsorbed heats from the first heat exchanger 210. obtain. Thereby, the refrigerant 206 adsorbed by the adsorbent 205 is desorbed.
At the same time, the second heat exchanger 220 has medium temperature water (changes to about 20 ° C. to 50 ° C. depending on the stage. At the start of operation, the temperature is the same as tap water, In the following, the temperature of the medium-temperature water in a steady state is referred to as a medium-temperature water 261 of about ~ ° C.). When medium temperature water 261 of about 30 ° C. is passed through the second heat exchanger 220, the second heat exchanger 220 takes heat from the first container 201 and condenses the refrigerant 206. As a result of this process, intermediate temperature water 261 of about 35 ° C. is obtained from the second heat exchanger 220.
Since the amount of refrigerant filled in the first container 201 is finite, the amount of refrigerant adsorbed by the adsorbent 205 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time.
In the second container 202, medium temperature water 261 of about 30 ° C. is passed through the third heat exchanger 230. The adsorbent 205 in the state where the refrigerant 206 provided in the third heat exchanger 230 is desorbed adsorbs the refrigerant 206 and generates heat. By passing the heat through the third heat exchanger 230 through the warm water 261 at about 30 ° C., the warm water 261 takes away through the third heat exchanger 230.
At the same time, the fourth heat exchanger 240 is passed through a low temperature heat source 262 of about 10 ° C. supplied from an outdoor unit (not shown). When the low temperature heat source 262 of about 10 ° C. is passed through the fourth heat exchanger 240, the refrigerant 206 in the second container 202 obtains heat from the low temperature heat source 262 of about 10 ° C. and evaporates. As a result of this process, intermediate temperature water 261 of about 35 ° C. is obtained from the third heat exchanger 230.
Since the amount of refrigerant charged in the second container 202 is finite, the amount of refrigerant adsorbed by the adsorbent 205 increases with time, and the evaporation amount decreases accordingly. Therefore, it hardly changes after a certain period of time.

次に、前述の通り一定時間経過後は相変化が起こらなくなるため、上記で説明した第2運転条件a12に切り替え図6のように流路を変更する。
このように接続することで、今度は、第1容器201において、冷媒206が脱離した状態の吸着剤205を備えた第1熱交換器210側で吸着が起こり、第2熱交換器220側で蒸発が起こる。また、第2容器202において、冷媒206を吸着した状態の吸着剤205を備えた第3熱交換器230側で脱離が起こり、第4熱交換器240側で凝縮が起こる。こうして、再び熱交換が可能になる。ただし、やはり各容器内の冷媒量は有限なので、吸着剤205に吸着された冷媒量は時間と共に増加し、これに伴い蒸発量が減少する。よって一定時間経過後はほとんど変化しない。
第1運転条件a11、第2運転条件a12を一定時間で切り替えてやるサイクルを続けることで、安定的に35℃程度の中温水261を得ることができるようになる。こうして得られた35℃程度の中温水261を、更に追い焚き等をしたうえで暖房の熱源として使用したり、給湯に利用したりする。
Next, since a phase change does not occur after a certain time as described above, the flow path is changed as shown in FIG. 6 by switching to the second operating condition a12 described above.
By connecting in this way, this time, in the first container 201, adsorption occurs on the first heat exchanger 210 side including the adsorbent 205 in a state where the refrigerant 206 is desorbed, and the second heat exchanger 220 side Evaporation occurs. In the second container 202, desorption occurs on the side of the third heat exchanger 230 provided with the adsorbent 205 in the state where the refrigerant 206 is adsorbed, and condensation occurs on the side of the fourth heat exchanger 240. In this way, heat exchange becomes possible again. However, since the amount of refrigerant in each container is still finite, the amount of refrigerant adsorbed by the adsorbent 205 increases with time, and the evaporation amount decreases accordingly. Therefore, it hardly changes after a certain period of time.
By continuing the cycle in which the first operating condition a11 and the second operating condition a12 are switched over for a certain period of time, it is possible to stably obtain the medium temperature water 261 of about 35 ° C. The medium-temperature water 261 of about 35 ° C. obtained in this way is further reheated and used as a heat source for heating or hot water supply.

しかしながら、通常暖房や床暖房、給湯に利用できる温度は最低でも50℃程度であり、従来技術1で得られる35℃程度の中温水261では、直接利用するには温度が低い。従って、追い焚きにかなりの熱量を必要とし、結果的にはあまり効率が良くないことになる。そこで、その問題を解決するために従来技術2の図7のような方法も用いられている。   However, the temperature that can be used for normal heating, floor heating, and hot water supply is at least about 50 ° C., and the medium-temperature water 261 of about 35 ° C. obtained by the prior art 1 has a low temperature for direct use. Therefore, a considerable amount of heat is required for reheating, and as a result, it is not very efficient. Therefore, in order to solve the problem, a method as shown in FIG. 7 of the prior art 2 is also used.

図7は従来技術2の構成図である。構成は従来技術1とほぼ同じであり、流路の一部を異にするものである。なお、従来技術1と同様な構成については同一符号を付しその説明を省略する。
従来技術2では、最終的に高い温度の中温水を取り出すために、中温水261とは別の、温度の異なる中温水263を別流路に用意する必要がある。このため、従来技術1とは若干流路構成が異なる。
以下に図7の第1運転条件b11における、図5と異なる部分の流路構成を説明する。
(3)中温水入口263aに接続される配管254は、流路切替弁207aを介して配管231に接続され、配管231は第3熱交換器230を介して配管232に接続され、配管232は流路切替弁207bを介して、配管255に接続され、中温水出口263bに接続される。
FIG. 7 is a block diagram of prior art 2. The configuration is almost the same as that of the prior art 1, and a part of the flow path is different. In addition, about the structure similar to the prior art 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
In prior art 2, it is necessary to prepare intermediate warm water 263 having a different temperature different from intermediate warm water 261 in a separate flow path in order to finally extract high temperature intermediate warm water. For this reason, the flow path configuration is slightly different from the prior art 1.
Hereinafter, the flow path configuration of the portion different from FIG. 5 in the first operating condition b11 of FIG. 7 will be described.
(3) The pipe 254 connected to the medium temperature water inlet 263a is connected to the pipe 231 via the flow path switching valve 207a, the pipe 231 is connected to the pipe 232 via the third heat exchanger 230, and the pipe 232 is It is connected to the piping 255 via the flow path switching valve 207b, and is connected to the intermediate hot water outlet 263b.

次に、図8の第2運転条件b12における流路を説明する。これは図7の流路切替弁207a乃至207dを切り替えたものである。ただし、切り替えた後の流路は、図7とほぼ同様であるので、図7と異なる流路構成のみを説明する。
(3)中温水入口263aに接続される配管254は、流路切替弁207aを介して配管211に接続され、配管211は第1熱交換器210を介して配管212に接続され、配管212は流路切替弁207bを介して配管255に接続され、中温水出口263bに接続される。
Next, the flow path in the second operating condition b12 in FIG. 8 will be described. This is obtained by switching the flow path switching valves 207a to 207d in FIG. However, since the flow path after switching is substantially the same as in FIG. 7, only the flow path configuration different from that in FIG. 7 will be described.
(3) The pipe 254 connected to the intermediate temperature water inlet 263a is connected to the pipe 211 via the flow path switching valve 207a, the pipe 211 is connected to the pipe 212 via the first heat exchanger 210, and the pipe 212 is It is connected to the pipe 255 via the flow path switching valve 207b, and is connected to the intermediate warm water outlet 263b.

次に図7の構成における吸着式暖房・給湯装置の第1運転条件b11について説明する。
第1容器201において、第1熱交換器210に、85℃程度の高温熱源260を通じる。第1熱交換器210に85℃程度の高温熱源260を通じると、第1熱交換器210に備えられた冷媒206が吸着された状態の吸着剤205が、第1熱交換器210から熱を得る。それによって、吸着剤205に吸着されていた冷媒206が脱離する。
同時に、第2熱交換器220に、40℃程度の中温水261を通じる。第2熱交換器220に40℃程度の中温水261を通じると、第1容器201内から第2熱交換器220が熱を奪い、冷媒206を凝縮させる。この過程を経た結果、第2熱交換器220より45℃程度の中温水261が得られる。
なお、第1容器201内に充填された冷媒量は有限なので、吸着剤205に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
第2容器202において、第3熱交換器230に25℃程度の中温水263を通じる。第3熱交換器230に25℃程度の中温水263を通じると、第3熱交換器230に備えられた冷媒206を脱離した状態の吸着剤205は、冷媒206を吸着して熱を発生する。その熱を、第3熱交換器230に25℃程度の中温水263を通じることで、第3熱交換器230を介して中温水263が奪う。
同時に、第4熱交換器240に10℃程度の低温熱源262を通じる。第4熱交換器240に10℃程度の低温熱源262を通じると、第2容器202内の冷媒206が、10℃程度の低温熱源262から熱を得て蒸発する。この過程を経た結果、第3熱交換器230より、30℃程度の中温水263が得られる。
なお、前記第2容器202内に充填された冷媒量は有限なので、吸着剤205に吸着された冷媒量は時間と共に増加し吸着剤205は吸着してゆく、これに伴い、蒸発量が減少する。よって一定時間経過後はほとんど変化しない。
Next, the first operating condition b11 of the adsorption heating / hot water supply apparatus in the configuration of FIG. 7 will be described.
In the first container 201, the high temperature heat source 260 of about 85 ° C. is passed through the first heat exchanger 210. When the high-temperature heat source 260 of about 85 ° C. is passed through the first heat exchanger 210, the adsorbent 205 in the state in which the refrigerant 206 provided in the first heat exchanger 210 is adsorbed heats from the first heat exchanger 210. obtain. Thereby, the refrigerant 206 adsorbed by the adsorbent 205 is desorbed.
At the same time, the medium temperature water 261 of about 40 ° C. is passed through the second heat exchanger 220. When medium temperature water 261 of about 40 ° C. is passed through the second heat exchanger 220, the second heat exchanger 220 removes heat from the first container 201 and condenses the refrigerant 206. As a result of this process, intermediate temperature water 261 of about 45 ° C. is obtained from the second heat exchanger 220.
Since the amount of refrigerant filled in the first container 201 is finite, the amount of refrigerant adsorbed by the adsorbent 205 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time.
In the second container 202, medium temperature water 263 of about 25 ° C. is passed through the third heat exchanger 230. When medium temperature water 263 of about 25 ° C. is passed through the third heat exchanger 230, the adsorbent 205 in a state where the refrigerant 206 provided in the third heat exchanger 230 is desorbed absorbs the refrigerant 206 and generates heat. To do. By passing the heat through the third heat exchanger 230 through the intermediate temperature water 263 of about 25 ° C., the intermediate temperature water 263 takes away through the third heat exchanger 230.
At the same time, the low-temperature heat source 262 of about 10 ° C. is passed through the fourth heat exchanger 240. When the low temperature heat source 262 of about 10 ° C. is passed through the fourth heat exchanger 240, the refrigerant 206 in the second container 202 obtains heat from the low temperature heat source 262 of about 10 ° C. and evaporates. As a result of this process, intermediate temperature water 263 of about 30 ° C. is obtained from the third heat exchanger 230.
Since the amount of refrigerant filled in the second container 202 is finite, the amount of refrigerant adsorbed on the adsorbent 205 increases with time and adsorbent 205 is adsorbed, and the evaporation amount decreases accordingly. . Therefore, it hardly changes after a certain period of time.

次に、前述の通り一定時間経過後は相変化が起こらなくなるため、流路切替弁207a乃至207dを切り替えて、図8の様に流路を変更する。
このように接続することで第2運転条件b12として、第1容器201において、冷媒206が脱離した状態の吸着剤205を備えた第1熱交換器210側で吸着が起こり、第2熱交換器220側で蒸発が起こる。また、第2容器202において、冷媒206を吸着した状態の吸着剤205を備えた第3熱交換器230側で脱離が起こり、第4熱交換器240側で凝縮が起こる。こうして、再び熱交換が可能になる。
第1運転条件b11と第2運転条件b12を一定時間で切り替えてやるサイクルを続けることで、安定的に45℃程度の中温水261を得ることができるようになる。
特開2001−141328号公報 特開2002−295925号公報
Next, since a phase change does not occur after a certain time has passed as described above, the flow path switching valves 207a to 207d are switched to change the flow path as shown in FIG.
By connecting in this way, as the second operating condition b12, in the first container 201, adsorption occurs on the first heat exchanger 210 side including the adsorbent 205 in a state where the refrigerant 206 is desorbed, and the second heat exchange is performed. Evaporation occurs on the vessel 220 side. In the second container 202, desorption occurs on the side of the third heat exchanger 230 provided with the adsorbent 205 in the state where the refrigerant 206 is adsorbed, and condensation occurs on the side of the fourth heat exchanger 240. In this way, heat exchange becomes possible again.
By continuing the cycle in which the first operating condition b11 and the second operating condition b12 are switched over for a certain period of time, it is possible to stably obtain the medium temperature water 261 of about 45 ° C.
JP 2001-141328 A JP 2002-295925 A

この従来技術2によれば、従来技術1とは異なり、45℃程度の中温水を得ることが可能になる。従って、暖房や給湯に使用する際にも、追い焚きに必要な熱量が少なくて済む。
しかしながら、目的の温度の中温水を得るために、従来技術1は凝縮過程と吸着過程で同じ中温水を用いているのに対して、従来技術2では別の流路を用意して、凝縮過程では最終的に40℃程度の中温水を、吸着過程では25℃程度の中温水という2種類の温度の中温水を用いている。これは、吸着、蒸発過程の温度差を小さく、脱離、凝縮過程の温度差を大きくとってやる必要があるためで、45℃程度の中温水を取り出すためには、凝縮過程では最終的に40℃程度の中温水が必要であるが、吸着過程に40℃程度の中温水を用いると、吸着がほとんど起こらなくなってしまう。つまり、40℃程度の中温水を用いるために新たな流路を設けてやらなければならなくなり、設備の増大を招く。
また、結果的に吸着熱は捨てている形になるので、従来技術1の装置による熱効率(「出力熱量/入力熱量」)はCOP1.6〜1.7であったのに対し、装置の熱効率はCOP1.0以下と著しく低下してしまう。熱効率がCOP1.0以下である場合は、高温熱源をそのまま用いたほうが熱効率は良い。したがって省エネルギーには繋がらない。
すなわち、従来技術1の吸着式暖房・給湯装置では、熱源から熱効率よくエネルギーを取り出すことができるが、得られる温度の出力が35℃程度の中温水と低いために、暖房や給湯に利用するには相当量の追い焚きをする必要があった。一方、従来技術2の吸着式暖房・給湯装置では得られる中温水の温度が45℃程度と、高い温度の出力が得られるが、装置の熱効率が低下してしまい、省エネルギーに繋がらない。
According to this prior art 2, unlike the prior art 1, it becomes possible to obtain intermediate temperature water of about 45 ° C. Therefore, even when used for heating and hot water supply, the amount of heat required for reheating is small.
However, in order to obtain the intermediate temperature water of the target temperature, the conventional technique 1 uses the same intermediate temperature water in the condensation process and the adsorption process, whereas the conventional technique 2 prepares another flow path to provide the condensation process. Then, medium temperature water of about 40 ° C. is finally used, and medium temperature water of about two temperatures of about 25 ° C. is used in the adsorption process. This is because the temperature difference between the adsorption and evaporation processes needs to be small, and the temperature difference between the desorption and condensation processes needs to be large. Although medium temperature water of about 40 ° C. is required, if medium temperature water of about 40 ° C. is used for the adsorption process, adsorption hardly occurs. In other words, a new flow path must be provided in order to use medium-temperature water of about 40 ° C., resulting in an increase in equipment.
Further, as a result, the heat of adsorption is discarded, so the thermal efficiency (“output heat quantity / input heat quantity”) of the apparatus of the prior art 1 was COP 1.6 to 1.7, whereas the thermal efficiency of the apparatus. Significantly decreases to COP 1.0 or less. When the thermal efficiency is COP 1.0 or less, it is better to use the high-temperature heat source as it is. Therefore, it does not lead to energy saving.
That is, in the adsorption heating / hot water supply apparatus of the prior art 1, energy can be extracted from the heat source with high efficiency. However, since the output of the obtained temperature is as low as medium temperature water of about 35 ° C., it is used for heating and hot water supply. Needed to catch a significant amount. On the other hand, in the adsorption heating / hot water supply apparatus of the prior art 2, a high temperature output is obtained with the temperature of the intermediate warm water obtained being about 45 ° C., but the thermal efficiency of the apparatus is lowered, which does not lead to energy saving.

本発明は、上記問題点を解決するためになされたものであり、なるべく高い温度の中温水を取り出してやると同時に、省エネルギーに貢献することを目的としたものである。   The present invention has been made to solve the above-described problems, and aims to contribute to energy saving at the same time as taking out hot water at as high a temperature as possible.

上記の問題点を解決するために本発明の吸着式暖房・給湯装置は次の構成を有している。
(A)水等の冷媒が入れられ、前記冷媒が低温で蒸発するように、内部を真空に保った第1容器及び第2容器と、前記第1容器内に吸着剤を備えた状態で設けられた第1熱交換器と、前記第1容器内に冷媒の蒸発及び凝縮を行うために設けられた第2熱交換器と、前記第2容器内に吸着剤を備えた状態で設けられた第3熱交換器と、前記第2容器内に冷媒の蒸発及び凝縮を行うために設けられた第4熱交換器とを有する吸着式暖房・給湯装置において、
(1)前記第1熱交換器及び前記第3熱交換器に高温熱源を入力することで、脱離熱を得て前記冷媒を気化させ、前記第1容器、及び前記第2容器内の圧力を上昇させて、前記第1容器、及び第2容器内の気化した前記冷媒を凝縮させることで、前記第2熱交換器及び前記第4熱交換器に入力した中温水が凝縮熱を得る第1運転条件、
(2)前記第2熱交換器に低温熱源を入力することで、蒸発熱を得て、前記冷媒を気化させ、前記第1容器内の圧力を上昇させて、前記第1熱交換器に入力した循環中温水が吸着熱を得て、前記第1容器内の気化した前記冷媒を吸着し、前記第4熱交換器に前記第1熱交換器から熱を得た前記循環中温水を入力することで、さらに蒸発熱を得て前記冷媒を気化させ、前記第2容器内の圧力を上昇させて、前記第2容器内の気化した前記冷媒を吸着することで、前記第3熱交換器に入力した前記中温水が吸着熱を得る第2運転条件、
(3)前記第1容器及び前記第2容器に対して、前記第1運転条件と前記第2運転条件とを一定時間で切り替える運転制御手段を有することを特徴とする。
In order to solve the above problems, the adsorption heating / hot water supply apparatus of the present invention has the following configuration.
(A) A first container and a second container that are kept in a vacuum so that the refrigerant evaporates at a low temperature, and a refrigerant such as water is provided, and an adsorbent is provided in the first container. The first heat exchanger provided, the second heat exchanger provided for evaporating and condensing the refrigerant in the first container, and the adsorbent provided in the second container In an adsorption heating / hot water supply apparatus having a third heat exchanger and a fourth heat exchanger provided for evaporating and condensing the refrigerant in the second container,
(1) By inputting a high-temperature heat source to the first heat exchanger and the third heat exchanger, desorption heat is obtained to vaporize the refrigerant, and the pressure in the first container and the second container The medium temperature water input to the second heat exchanger and the fourth heat exchanger obtains heat of condensation by condensing the vaporized refrigerant in the first container and the second container. 1 operating condition,
(2) By inputting a low-temperature heat source to the second heat exchanger, the heat of evaporation is obtained, the refrigerant is vaporized, the pressure in the first container is increased, and input to the first heat exchanger. The circulating intermediate warm water obtains adsorption heat, adsorbs the vaporized refrigerant in the first container, and inputs the circulating intermediate warm water obtained heat from the first heat exchanger to the fourth heat exchanger. Thus, further evaporating heat is obtained, the refrigerant is vaporized, the pressure in the second container is increased, and the vaporized refrigerant in the second container is adsorbed to the third heat exchanger. A second operating condition in which the input medium temperature water obtains heat of adsorption;
(3) It has an operation control means for switching the first operation condition and the second operation condition at a predetermined time with respect to the first container and the second container.

(B)(A)の吸着式暖房・給湯装置において、
(1)水等の冷媒が入れられ、前記冷媒が低温で蒸発するように、内部を真空に保った第3容器及び第4容器と、第3容器内に吸着剤を備えた状態で設けられた第5熱交換器と、第3容器内に冷媒の蒸発及び凝縮を行うために設けられた第6熱交換器と、第4容器内に吸着剤を備えた状態で設けられた第7熱交換器と、第4容器内に冷媒の蒸発及び凝縮を行うために設けられた第8熱交換器とを有し、
(2)前記運転制御手段が、
(2−1)前記第1運転条件と同時に、前記第6熱交換器に低温熱源を入力することで、蒸発熱を得て、前記冷媒を気化させ、前記第3容器内の圧力を上昇させて、前記第5熱交換器に前記循環中温水が吸着熱を得て、前記第3容器内の気化した前記冷媒を吸着し、前記第8熱交換器に前記第5熱交換器から熱を得た前記循環中温水を入力することで、さらに蒸発熱を得て前記冷媒を気化させ、前記第4容器内の圧力を上昇させて、前記第4容器内の気化した前記冷媒を吸着する事で、前記第7熱交換器に入力した前記中温水が吸着熱を得る第3運転条件、
(2−2)前記第2運転条件と同時に、前記第5熱交換器及び前記第7熱交換器に高温熱源を入力することで、脱離熱を得て前記冷媒を気化させ、前記第3容器、及び前記第4容器内の圧力を上昇させて、前記第3容器、及び前記第4容器内の気化した前記冷媒を凝縮させることで、前記第6熱交換器及び前記第8熱交換器に入力した中温水が吸着熱を得る第4運転条件、
(2−3)前記第3容器、及び前記第4容器に対して前記第3運転条件と前記第4運転条件を一定時間で切り替える制御を行うことを特徴とする。
(B) In the adsorption heating / hot water supply apparatus of (A),
(1) It is provided with a third container and a fourth container in which the inside is kept in vacuum and an adsorbent in the third container so that a refrigerant such as water is put in and the refrigerant evaporates at a low temperature. The fifth heat exchanger, the sixth heat exchanger provided for evaporating and condensing the refrigerant in the third container, and the seventh heat provided with the adsorbent in the fourth container. An exchanger and an eighth heat exchanger provided to evaporate and condense the refrigerant in the fourth container,
(2) The operation control means is
(2-1) Simultaneously with the first operating condition, by inputting a low-temperature heat source to the sixth heat exchanger, the heat of evaporation is obtained, the refrigerant is vaporized, and the pressure in the third container is increased. The circulating hot water obtains adsorption heat in the fifth heat exchanger, adsorbs the vaporized refrigerant in the third container, and heats the eighth heat exchanger from the fifth heat exchanger. By inputting the obtained circulating hot water, further evaporating heat is obtained to vaporize the refrigerant, and the pressure in the fourth container is increased to adsorb the vaporized refrigerant in the fourth container. In the third operating condition, the medium temperature water input to the seventh heat exchanger obtains adsorption heat,
(2-2) Simultaneously with the second operating condition, by inputting a high-temperature heat source to the fifth heat exchanger and the seventh heat exchanger, desorption heat is obtained to vaporize the refrigerant, and the third By increasing the pressure in the container and the fourth container to condense the refrigerant vaporized in the third container and the fourth container, the sixth heat exchanger and the eighth heat exchanger The fourth operating condition in which the medium-temperature water input to obtain heat of adsorption,
(2-3) The third container and the fourth container are controlled so as to switch the third operating condition and the fourth operating condition at a predetermined time.

上記構成を有する吸着式暖房・給湯装置の作用効果について説明する。
本発明の(A)の吸着式暖房・給湯装置においては、高温熱源と低温熱源から汲み出した熱を熱源として、更に蒸発熱を得ることで、45℃〜50℃程度の比較的温度の高い中温水を作り出すことが可能である。従って、暖房や給湯に使用する際にも、追い焚きに必要な熱量が少なくて済む。
また、45℃〜50℃の程度の中温水を得るために、吸着過程で用いる中温水は、一方の容器の蒸発過程では従来と同様に低温熱源を用いるが、他方の容器の蒸発過程では一方の容器の吸着過程で作り出した中温水を再利用してやることによって確保できるため、新たな流路設備を必要としない。つまり、中温水を再利用することで、新たな熱源を用意しないで目的の45℃〜50℃程度の温度を作り出すことが出来る。
そして、45℃〜50℃比較的高い温度の中温水が得られるため、暖房、給湯に利用するために、追い焚きしてやるためのエネルギーが少なくてすむようになるので、システムの小型化が可能であり、理論効率はCOP1.3程度と従来技術1より多少劣るものの、高い温度の中温水が得られるという点において利便性が大幅に向上する。
The effect of the adsorption heating / hot water supply apparatus having the above-described configuration will be described.
In the adsorption heating / hot water supply apparatus (A) of the present invention, the heat pumped from the high-temperature heat source and the low-temperature heat source is used as the heat source, and further, the heat of evaporation is obtained. It is possible to create hot water. Therefore, even when used for heating and hot water supply, the amount of heat required for reheating is small.
Further, in order to obtain intermediate temperature water of about 45 ° C. to 50 ° C., the intermediate temperature water used in the adsorption process uses a low-temperature heat source in the evaporation process of one container as in the prior art, but in the evaporation process of the other container, This can be ensured by reusing the medium-temperature water produced during the adsorption process of the container, so no new flow path equipment is required. In other words, by reusing the medium temperature water, the target temperature of about 45 ° C. to 50 ° C. can be created without preparing a new heat source.
And since medium temperature water of a relatively high temperature of 45 ° C. to 50 ° C. is obtained, less energy is required to replenish it for use in heating and hot water supply, so the system can be miniaturized. Although the theoretical efficiency is about COP1.3, which is slightly inferior to that of the prior art 1, the convenience is greatly improved in that medium temperature water having a high temperature can be obtained.

さらに、(B)の吸着式暖房・給湯装置においては、高温熱源と低温熱源から汲み出した熱を熱源として、更に蒸発熱を得る為に、脱離過程と吸着過程を別々に設けてやり、前記過程を繰り返してやることで、流路切り替えにおいて高温熱源や低温熱源を使わない場面がなくなるため、常に高温熱源や低温熱源を受け入れてやることが出来る。また、常に同じ数の熱交換器から出力を得ているので、出力の安定化を図ることが可能となる。
そして同様に、蒸発熱から得た吸着熱により循環中温水の出力を得て、その循環中温水を再利用することで、さらに蒸発熱を得て、蒸発熱から得た吸着熱により中高温水を出力として得ることができ、上記過程を繰り返してやることで最終的に45℃〜50℃程度の比較的温度の高い中温水を作り出すことが可能である。また、前記過程を繰り返してやることで安定的に中温水を取り出すことが可能になる。
そして同様に、理論効率は従来技術1より多少劣るものの、高い温度の中温水が得られるという点で利便性が大幅に向上する。さらに、高温熱源を直接利用するよりも高い効率で運転できる範囲が広がるため、全体的に見れば省エネルギーを実現できる。
Furthermore, in the adsorption heating / hot water supply apparatus of (B), the heat pumped out from the high temperature heat source and the low temperature heat source is used as the heat source, and in order to obtain further evaporation heat, the desorption process and the adsorption process are provided separately, By repeating the process, there is no need to use a high-temperature heat source or a low-temperature heat source when switching the flow path, so that a high-temperature heat source or a low-temperature heat source can always be accepted. Moreover, since the output is always obtained from the same number of heat exchangers, the output can be stabilized.
Similarly, the output of circulating medium-temperature water is obtained by the adsorption heat obtained from the evaporation heat, and the circulation medium-temperature water is reused to further obtain the evaporation heat. Can be obtained as an output, and by repeating the above process, it is possible to finally produce medium-temperature water having a relatively high temperature of about 45 ° C. to 50 ° C. In addition, by repeating the above process, it is possible to stably take out the medium-temperature water.
Similarly, although the theoretical efficiency is somewhat inferior to that of the prior art 1, the convenience is greatly improved in that intermediate temperature water having a high temperature can be obtained. Furthermore, since the range in which the high-temperature heat source can be operated with higher efficiency than when directly using the high-temperature heat source is expanded, energy saving can be realized as a whole.

以下、本発明に係る吸着式暖房・給湯装置について、具体化した形態をあげ、図面に基づいて詳細に説明する。
図1は請求項1に係る発明の吸着式暖房・給湯装置の実施例である。
第1容器1、第2容器2は冷媒として使用する水等の液体(以下、冷媒6と称する)が入れられており、冷媒6が蒸発しやすいように内部が真空に保たれた圧力容器である。
第1容器1内の上部にはシリカゲル等の吸着剤(以下、吸着剤5と称する)を備えた第1熱交換器10が設けられ、第1容器1内の下部には第2熱交換器20が冷媒6に浸かった状態で設けられている。
第2容器2内の上部には吸着剤5を備えた第3熱交換器30が設けられ、第2容器2の下部には第4熱交換器40が冷媒6に浸かった状態で設けられている。
Hereinafter, the adsorption heating / hot water supply apparatus according to the present invention will be described in detail with reference to the drawings with specific embodiments.
FIG. 1 shows an embodiment of an adsorption heating / hot water supply apparatus according to the first aspect of the present invention.
The first container 1 and the second container 2 are pressure containers in which a liquid such as water (hereinafter referred to as a refrigerant 6) used as a refrigerant is placed, and the inside is kept in vacuum so that the refrigerant 6 is easily evaporated. is there.
A first heat exchanger 10 provided with an adsorbent such as silica gel (hereinafter referred to as adsorbent 5) is provided in the upper part of the first container 1, and a second heat exchanger is provided in the lower part of the first container 1. 20 is provided in a state of being immersed in the refrigerant 6.
A third heat exchanger 30 provided with the adsorbent 5 is provided in the upper part of the second container 2, and a fourth heat exchanger 40 is provided in the state of being immersed in the refrigerant 6 in the lower part of the second container 2. Yes.

次に、図1の第1運転条件a1における流路を説明する。
(1)高温熱源入口60aに接続される配管50は、開状態のバルブ79を介して配管33に接続され、配管33は配管31に接続される。配管31の片側は第3熱交換器30を介して配管32と、もう片側は開状態のバルブ71を介して配管11に接続され、配管11は第1熱交換器10を介して配管12に接続され、配管12は開状態のバルブ72を介して配管32に接続され、配管32は配管34に接続される。配管34はバルブ80を介して配管51に、そして、高温熱源出口60bに接続される。
(2)中温水入口61aに接続される配管52は、配管54に接続され、配管54は開状態のバルブ81を介して配管56に接続される。配管56は配管41に接続される。配管41の片側は第4熱交換器40を介して配管42に、もう片側は開状態のバルブ73を介して配管21に接続され、配管21は第2熱交換器20を介して配管22に接続される。配管22は開状態のバルブ74を介して配管42に接続される。配管42は配管57に接続される。配管57は開状態のバルブ82を介して配管55に接続し、配管55は配管53に、そして、中温水出口61bに接続される。
このように接続することで、第1熱交換器10と第3熱交換器30には85℃程度の高温熱源60を通じ、第2熱交換器20と第4熱交換器40には中温度の水(段階によって20℃〜50℃程度まで変化する。運転開始時には、水道水と同等の温度であるが、定常運転に入ると、ある程度まで温度が上昇して安定する。以下、定常時の中温水の温度を〜℃程度の中温水61と称する)を通じることが可能となる。
Next, the flow path in the first operating condition a1 in FIG. 1 will be described.
(1) The pipe 50 connected to the high temperature heat source inlet 60 a is connected to the pipe 33 through the open valve 79, and the pipe 33 is connected to the pipe 31. One side of the pipe 31 is connected to the pipe 32 via the third heat exchanger 30, and the other side is connected to the pipe 11 via the open valve 71, and the pipe 11 is connected to the pipe 12 via the first heat exchanger 10. The pipe 12 is connected to the pipe 32 via the valve 72 in the open state, and the pipe 32 is connected to the pipe 34. The pipe 34 is connected to the pipe 51 through the valve 80 and to the high-temperature heat source outlet 60b.
(2) The pipe 52 connected to the medium-temperature water inlet 61a is connected to the pipe 54, and the pipe 54 is connected to the pipe 56 via the valve 81 in the open state. The pipe 56 is connected to the pipe 41. One side of the pipe 41 is connected to the pipe 42 via the fourth heat exchanger 40, the other side is connected to the pipe 21 via the open valve 73, and the pipe 21 is connected to the pipe 22 via the second heat exchanger 20. Connected. The pipe 22 is connected to the pipe 42 via an open valve 74. The pipe 42 is connected to the pipe 57. The pipe 57 is connected to the pipe 55 via the valve 82 in the open state, and the pipe 55 is connected to the pipe 53 and to the intermediate temperature water outlet 61b.
By connecting in this way, the first heat exchanger 10 and the third heat exchanger 30 are passed through a high temperature heat source 60 of about 85 ° C., and the second heat exchanger 20 and the fourth heat exchanger 40 are medium temperature. Water (changes to about 20 ° C to 50 ° C depending on the stage. At the start of operation, the temperature is the same as that of tap water, but when entering the steady operation, the temperature rises to a certain extent and stabilizes. It is possible to pass the temperature of the warm water (referred to as the medium warm water 61 of about ~ ° C.).

次に、図2の第2運転条件a2における流路を説明する。これは図1のバルブ71乃至82を切り替えたものである。
(1)中温水入口61aに接続される配管52は、開状態のバルブ77を介して配管58に接続され、配管58は配管31に接続される。配管31は第3熱交換器30を介して配管32に接続され、配管32は配管59に接続される。配管59は開状態のバルブ78を介して配管53に接続され、中温水出口61bに接続される。
(2)低温熱源入口62aに接続される配管25は、開状態のバルブ83を介して配管23に接続され、配管23は配管21に接続される。配管21は第2熱交換器20を介して配管22に接続され、配管22は配管24に接続される。配管24は開状態のバルブ84を介して配管26に接続され、低温熱源出口62bに接続される。
(3)配管12は配管14、循環ポンプ70を介して配管15に接続される。この循環ポンプ70により、配管14から配管15へ流体を循環させることができる。配管15は開状態のバルブ75を介して配管43に接続され、配管43は配管41に、配管41は第4熱交換器40を介して配管42に接続される。配管42は配管44に接続され、配管44は開状態のバルブ76を介して配管13に接続される。配管13は配管11に、配管11は第1熱交換器10を介して配管12に接続される。
このように接続することで、第1熱交換器10と第4熱交換器40は閉じた回路となって接続され、循環中温水63を循環する。(ここで言う循環中温水63は基本的には中温水61と同じものであるが、一時的に閉鎖した回路内を循環させて使用するため、便宜上、循環中温水63と称する。)また、第2熱交換器20には10℃程度の低温熱源62を通じ、第3熱交換器30には中温水61を通じ、中温水出口61bより、中温水61を取り出すことができる。
Next, the flow path under the second operating condition a2 in FIG. 2 will be described. This is a switch of the valves 71 to 82 in FIG.
(1) The pipe 52 connected to the intermediate warm water inlet 61 a is connected to the pipe 58 via the open valve 77, and the pipe 58 is connected to the pipe 31. The pipe 31 is connected to the pipe 32 via the third heat exchanger 30, and the pipe 32 is connected to the pipe 59. The pipe 59 is connected to the pipe 53 via the valve 78 in the open state, and is connected to the intermediate temperature water outlet 61b.
(2) The pipe 25 connected to the low-temperature heat source inlet 62 a is connected to the pipe 23 via the open valve 83, and the pipe 23 is connected to the pipe 21. The pipe 21 is connected to the pipe 22 via the second heat exchanger 20, and the pipe 22 is connected to the pipe 24. The pipe 24 is connected to the pipe 26 through an open valve 84, and is connected to the low-temperature heat source outlet 62b.
(3) The pipe 12 is connected to the pipe 15 via the pipe 14 and the circulation pump 70. The circulation pump 70 can circulate fluid from the pipe 14 to the pipe 15. The pipe 15 is connected to the pipe 43 via an open valve 75, the pipe 43 is connected to the pipe 41, and the pipe 41 is connected to the pipe 42 via the fourth heat exchanger 40. The pipe 42 is connected to the pipe 44, and the pipe 44 is connected to the pipe 13 through an open valve 76. The pipe 13 is connected to the pipe 11, and the pipe 11 is connected to the pipe 12 via the first heat exchanger 10.
By connecting in this way, the first heat exchanger 10 and the fourth heat exchanger 40 are connected in a closed circuit, and the circulating hot water 63 is circulated. (The circulating intermediate warm water 63 referred to here is basically the same as the intermediate warm water 61, but is referred to as the circulating intermediate warm water 63 for convenience because it is used after being circulated in the temporarily closed circuit.) The intermediate heat water 61 can be taken out from the intermediate heat water outlet 61b through the second heat exchanger 20 through the low temperature heat source 62 at about 10 ° C., the third heat exchanger 30 through the intermediate temperature water 61, and the intermediate heat water outlet 61b.

上記構成における、冷媒6が吸着された状態の、第1熱交換器10及び第3熱交換器30に備えられた吸着剤5は、外部から高温の熱媒体を流すことで、吸着された冷媒6を脱離することができる。一方、それと同時に第2熱交換器20及び第4熱交換器40に低温の熱媒体を流すことで、各容器内の冷媒6を凝縮させることができる。
また、冷媒6が脱離された状態の、第1熱交換器10及び第3熱交換器30に備えられた吸着剤5は、外部から低温の熱媒体を流すことで、冷媒6の吸着を行うことができる。一方、それと同時に第2熱交換器20及び第4熱交換器40に外部から低温の熱媒体を流すことで、各容器内の冷媒6を蒸発させることができる。
なお、一般的に脱離−凝縮過程では脱離する熱交換器の温度と、凝縮する熱交換器の温度差が大きいほうが望ましく、蒸発−吸着過程では蒸発する熱交換器と、吸着する熱交換器の温度差が少ないほうが望ましい。
In the above configuration, the adsorbent 5 provided in the first heat exchanger 10 and the third heat exchanger 30 in the state in which the refrigerant 6 is adsorbed is a refrigerant adsorbed by flowing a high-temperature heat medium from the outside. 6 can be eliminated. On the other hand, by flowing a low-temperature heat medium through the second heat exchanger 20 and the fourth heat exchanger 40 at the same time, the refrigerant 6 in each container can be condensed.
In addition, the adsorbent 5 provided in the first heat exchanger 10 and the third heat exchanger 30 in a state where the refrigerant 6 has been desorbed can adsorb the refrigerant 6 by flowing a low-temperature heat medium from the outside. It can be carried out. On the other hand, at the same time, by flowing a low-temperature heat medium from the outside to the second heat exchanger 20 and the fourth heat exchanger 40, the refrigerant 6 in each container can be evaporated.
Generally, it is desirable that the temperature difference between the heat exchanger to be desorbed and the heat exchanger to be condensed is large in the desorption-condensation process, and the heat exchanger to be evaporated and the heat exchange to be adsorbed in the evaporation-adsorption process. It is desirable that the temperature difference of the vessel is small.

次に図1の第1運転条件a1について説明する。
第1容器1において、第1熱交換器10に85℃程度の高温熱源60を通じる。第1熱交換器10に85℃程度の高温熱源60を通じると、第1熱交換器10に備えられた冷媒6が吸着された状態の吸着剤5が、第1熱交換器10から熱を得る。それによって、吸着剤5に吸着されていた冷媒6が脱離する。
同時に、第2熱交換器20に、40℃程度の中温水61を通じる。第2熱交換器20に40℃程度の中温水61を通じると、第1容器1内から第2熱交換器20が熱を奪い、冷媒6を凝縮させる。結果、第2熱交換器20より45℃程度の中温水61が得られる。
なお、第1容器1内に充填された冷媒量は有限なので、吸着剤5に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
次に第2容器2においても、第3熱交換器30に85℃程度の高温熱源60を通じる。第3熱交換器30に85℃程度の高温熱源60を通じると、第3熱交換器30に備えられた冷媒6が吸着された状態の吸着剤5が、第3熱交換器30から熱を得る。それによって、吸着剤5に吸着されていた冷媒6が脱離する。
同時に、第4熱交換器40に、40℃程度の中温水61を通じる。第4熱交換器40に40℃程度の中温水61を通じると、第2容器2内から第4熱交換器40が熱を奪い、冷媒6を凝縮させる。結果、第4熱交換器40より45℃程度の中温水61が得られる。
なお、第2容器2内に充填された冷媒量は有限なので、吸着剤5に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
Next, the first operating condition a1 in FIG. 1 will be described.
In the first container 1, a high temperature heat source 60 of about 85 ° C. is passed through the first heat exchanger 10. When the high-temperature heat source 60 of about 85 ° C. is passed through the first heat exchanger 10, the adsorbent 5 in the state in which the refrigerant 6 provided in the first heat exchanger 10 is adsorbed receives heat from the first heat exchanger 10. obtain. Thereby, the refrigerant 6 adsorbed by the adsorbent 5 is desorbed.
At the same time, the warm water 61 of about 40 ° C. is passed through the second heat exchanger 20. When medium temperature water 61 of about 40 ° C. is passed through the second heat exchanger 20, the second heat exchanger 20 takes heat from the first container 1 and condenses the refrigerant 6. As a result, intermediate temperature water 61 of about 45 ° C. is obtained from the second heat exchanger 20.
In addition, since the refrigerant | coolant amount with which the 1st container 1 was filled is finite, the refrigerant | coolant amount adsorb | sucked by the adsorption agent 5 reduces with time, and the condensing amount also reduces with this. Therefore, it hardly changes after a certain period of time.
Next, also in the second container 2, the high temperature heat source 60 of about 85 ° C. is passed through the third heat exchanger 30. When the high temperature heat source 60 of about 85 ° C. is passed through the third heat exchanger 30, the adsorbent 5 in the state in which the refrigerant 6 provided in the third heat exchanger 30 is adsorbed heats from the third heat exchanger 30. obtain. Thereby, the refrigerant 6 adsorbed by the adsorbent 5 is desorbed.
At the same time, the warm water 61 of about 40 ° C. is passed through the fourth heat exchanger 40. When medium temperature water 61 of about 40 ° C. is passed through the fourth heat exchanger 40, the fourth heat exchanger 40 takes heat from the second container 2 and condenses the refrigerant 6. As a result, intermediate temperature water 61 of about 45 ° C. is obtained from the fourth heat exchanger 40.
Since the amount of refrigerant charged in the second container 2 is finite, the amount of refrigerant adsorbed on the adsorbent 5 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time.

次に図2の第2運転条件a2を説明する。これは前述の通り一定時間経過後は相変化が起こらなくなるため、バルブ71、72、73、74、79、80、81、82を閉じ、バルブ75、76、77、78を開けることによって流路を切り替えたものである。このように接続することで、流路切り替え後の第2運転条件a2は、以下のようになる。
第1容器1において、第1熱交換器10に25℃程度の循環中温水63を通じる。第1熱交換器10に循環中温水63を通じると、第1熱交換器10に備えられた冷媒6が脱離された状態の吸着剤5は、冷媒6を吸着する。同時に、第2熱交換器20に、10℃程度の低温熱源62を通じる。第2熱交換器20に10℃程度の低温熱源62を通じると、第2熱交換器20が冷媒6に熱を与えて、冷媒6を蒸発させる。この過程を経た結果、第1熱交換器10に通じる25℃程度の循環中温水63は温度を得て、第1熱交換器10を出る頃には30℃程度になる。なお、第1容器1内に充填された冷媒量は有限なので、吸着剤5に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
Next, the second operating condition a2 in FIG. 2 will be described. This is because the phase change does not occur after a lapse of a certain time as described above, so that the flow path is established by closing the valves 71, 72, 73, 74, 79, 80, 81, 82 and opening the valves 75, 76, 77, 78. Is switched. By connecting in this way, the second operating condition a2 after switching the flow path is as follows.
In the first container 1, the circulating hot water 63 at about 25 ° C. is passed through the first heat exchanger 10. When circulating hot water 63 is passed through the first heat exchanger 10, the adsorbent 5 in a state where the refrigerant 6 provided in the first heat exchanger 10 is desorbed adsorbs the refrigerant 6. At the same time, a low-temperature heat source 62 of about 10 ° C. is passed through the second heat exchanger 20. When the low temperature heat source 62 of about 10 ° C. is passed through the second heat exchanger 20, the second heat exchanger 20 gives heat to the refrigerant 6 to evaporate the refrigerant 6. As a result of this process, the circulating hot water 63 having a temperature of about 25 ° C. leading to the first heat exchanger 10 obtains a temperature and reaches about 30 ° C. when leaving the first heat exchanger 10. In addition, since the refrigerant | coolant amount with which the 1st container 1 was filled is finite, the refrigerant | coolant amount adsorb | sucked by the adsorption agent 5 reduces with time, and the amount of condensation also reduces with this. Therefore, it hardly changes after a certain period of time.

次に第2容器2において、第3熱交換器30に40℃程度の中温水61を通じる。第3熱交換器30に40℃程度の中温水61を通じると、第3熱交換器30に備えられた冷媒6が脱離した状態の吸着剤5は、冷媒6を吸着し、50℃程度となる。
同時に、第4熱交換器40に、第1熱交換器10から出た30℃程度の循環中温水63を通じる。第4熱交換器40に30℃程度の循環中温水63を通じると、第4熱交換器40が冷媒6に熱を与えて、冷媒6を蒸発させる。この過程を経た結果、第3熱交換器30へ熱が排出され続け、中温水61は熱を得ることになる。
なお、第2容器2内に充填された冷媒量は有限なので、吸着剤5に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。そして、第1運転条件a1と第2運転条件a2を一定の時間で切り替えてやるサイクルを続けることで、比較的高い温度である45℃〜50℃程度の中温水61が得られる。
Next, in the second container 2, the warm water 61 of about 40 ° C. is passed through the third heat exchanger 30. When medium temperature water 61 of about 40 ° C. is passed through the third heat exchanger 30, the adsorbent 5 in a state where the refrigerant 6 provided in the third heat exchanger 30 is desorbed adsorbs the refrigerant 6, and is about 50 ° C. It becomes.
At the same time, circulating hot water 63 of about 30 ° C. from the first heat exchanger 10 is passed through the fourth heat exchanger 40. When circulating medium hot water 63 at about 30 ° C. is passed through the fourth heat exchanger 40, the fourth heat exchanger 40 heats the refrigerant 6 to evaporate the refrigerant 6. As a result of this process, heat continues to be discharged to the third heat exchanger 30, and the intermediate temperature water 61 obtains heat.
Since the amount of refrigerant charged in the second container 2 is finite, the amount of refrigerant adsorbed on the adsorbent 5 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time. Then, by continuing a cycle in which the first operating condition a1 and the second operating condition a2 are switched over at a constant time, intermediate temperature water 61 of about 45 ° C. to 50 ° C., which is a relatively high temperature, is obtained.

従って、上記構成の吸着式暖房・給湯装置においては、冷媒6が入れられ、冷媒6が蒸発しやすいように内部が真空に保たれた第1容器1及び第2容器2と、第1容器1内に吸着剤5を備えた状態で設けられた第1熱交換器10と、第1容器1内に冷媒6の蒸発及び凝縮を行うために設けられた第2熱交換器20と、第2容器2内に吸着剤5を備えた状態で設けられた第3熱交換器30と、第2容器2内に冷媒6の蒸発及び凝縮を行うために設けられた第4熱交換器40とを有し、
(1)第1熱交換器10及び第3熱交換器30に85℃程度の高温熱源60を入力することで、脱離熱を得て、第2熱交換器20及び第4熱交換器40に中温水61を入力することで、吸着熱を得て中温水61が熱を得る第1運転条件a1、
(2)第2熱交換器20に10℃程度の低温熱源62を入力することで、蒸発熱を得て、第1熱交換器10に循環中温水63を入力することで、吸着熱を得て循環中温水63が熱を得て、第4熱交換器40に第1熱交換器10から熱を得た循環中温水63を入力することで、さらに蒸発熱を得て循環中温水63が熱を得て、第3熱交換器30に中温水61を入力することで、吸着熱を得て中温水61が熱を得る第2運転条件a2、
Therefore, in the adsorption heating / hot water supply apparatus having the above-described configuration, the first container 1 and the second container 2 in which the refrigerant 6 is put and the inside is kept in vacuum so that the refrigerant 6 is easily evaporated, and the first container 1 A first heat exchanger 10 provided with the adsorbent 5 therein, a second heat exchanger 20 provided for evaporating and condensing the refrigerant 6 in the first container 1, and a second A third heat exchanger 30 provided with the adsorbent 5 in the container 2 and a fourth heat exchanger 40 provided to evaporate and condense the refrigerant 6 in the second container 2. Have
(1) Desorption heat is obtained by inputting a high-temperature heat source 60 of about 85 ° C. to the first heat exchanger 10 and the third heat exchanger 30, and the second heat exchanger 20 and the fourth heat exchanger 40 are obtained. The first operating condition a1 for obtaining the heat of adsorption and the heat of the warm water 61 by inputting the warm water 61 to
(2) Evaporation heat is obtained by inputting a low temperature heat source 62 of about 10 ° C. to the second heat exchanger 20, and adsorption heat is obtained by inputting circulating hot water 63 to the first heat exchanger 10. Then, the circulating hot water 63 obtains heat, and the circulating hot water 63 obtained from the first heat exchanger 10 is input to the fourth heat exchanger 40, so that the evaporating heat is further obtained and the circulating hot water 63 is obtained. The second operating condition a2 in which heat is obtained and the intermediate temperature water 61 is input to the third heat exchanger 30 to obtain heat of adsorption and the intermediate temperature water 61 obtains heat.

(3)第1容器1及び第2容器2に対して、第1運転条件a1と第2運転条件a2とを一定時間で切り替える運転制御手段を有することを特徴とするので、45℃〜50℃程度の比較的温度の高い中温水61を作り出すことが可能である。
このことにより、暖房や給湯に使用する際にも、追い焚きに必要な熱量が少なくて済むという優れた効果を奏する。
また、従来技術2とは異なり、45℃〜50℃程度の中温水を得るために、吸着過程で用いる中温水は、一方の容器の蒸発過程では従来と同様に低温熱源を用いるが、他方の容器の蒸発過程では一方の容器の吸着過程で作り出した中温水を再利用してやることによって確保できるため、新たな熱源を必要としない。つまり、中温水を再利用することで、新たな熱源を用意せずに目的の45℃〜50℃程度の温度を作り出すことが出来る。
そして、45℃〜50℃比較的高い温度の中温水が得られるため、暖房、給湯に利用するために、追い焚きしてやるためのエネルギーが少なくてすむようになるので、システムの小型化が可能であり、理論効率はCOP1.3程度と従来技術1より多少劣るものの、高い温度の中温水が得られるという点において利便性が大幅に向上する。
(3) Since it has the operation control means which switches the 1st operation condition a1 and the 2nd operation condition a2 with a fixed time to the 1st container 1 and the 2nd container 2, it is 45 ° C-50 ° C It is possible to produce intermediate temperature water 61 having a relatively high temperature.
As a result, even when used for heating or hot water supply, there is an excellent effect that less heat is required for reheating.
Further, unlike the prior art 2, in order to obtain intermediate temperature water of about 45 ° C. to 50 ° C., the intermediate temperature water used in the adsorption process uses a low-temperature heat source in the evaporation process of one container as in the prior art. In the evaporation process of the container, since it can be ensured by reusing the medium temperature water produced in the adsorption process of one container, a new heat source is not required. That is, by reusing the medium temperature water, the target temperature of about 45 ° C. to 50 ° C. can be created without preparing a new heat source.
And since medium temperature water of a relatively high temperature of 45 ° C. to 50 ° C. is obtained, less energy is required to replenish it for use in heating and hot water supply, so the system can be miniaturized. Although the theoretical efficiency is about COP1.3, which is slightly inferior to that of the prior art 1, the convenience is greatly improved in that medium temperature water having a high temperature can be obtained.

ただし、上記装置においては、高温熱源と低温熱源を必要としない状態が出来てしまい、中温水を通じる熱交換器の数も、運転状態によって異なる。よって、システムとしては若干アンバランスな点をもっている。そこで次に、この点を改良した、請求項2に係る発明の吸着式暖房・給湯装置の実施例を説明する。
図3及び図4は第2の実施例の構成を表した概略図である。
第1容器103乃至第4容器102は冷媒として使用する水等の液体(以下、冷媒106と称する)が入れられており、冷媒106が蒸発しやすいように内部が真空に保たれた圧力容器である。
第1容器103内の上部にはシリカゲル等の吸着剤(以下、吸着剤105と称する)を備えた第1熱交換器115が設けられ、第1容器103内の下部には第2熱交換器125が冷媒106に浸かった状態で設けられている。
第2容器101内の上部には吸着剤105を備えた第3熱交換器110が設けられ、第2容器101内の下部には第4熱交換器120が冷媒106に浸かった状態で設けられている。
第3容器104内の上部には吸着剤105を備えた第5熱交換器135が設けられ、第3容器104の下部には第6熱交換器145が冷媒106に浸かった状態で設けられている。
第4容器102内の上部には吸着剤105を備えた第7熱交換器130が設けられ、第4容器102の下部には第8熱交換器140が冷媒106に浸かった状態で設けられている。
However, in the said apparatus, the state which does not require a high temperature heat source and a low temperature heat source is made, and the number of the heat exchangers which let medium temperature water pass also changes with operation states. Therefore, the system has a slightly unbalanced point. Then, the Example of the adsorption | suction type heating and hot-water supply apparatus of the invention which concerns on Claim 2 which improved this point next is described.
3 and 4 are schematic views showing the configuration of the second embodiment.
Each of the first container 103 to the fourth container 102 is a pressure container in which a liquid such as water (hereinafter referred to as a refrigerant 106) used as a refrigerant is placed, and the inside is kept in vacuum so that the refrigerant 106 is easily evaporated. is there.
A first heat exchanger 115 provided with an adsorbent such as silica gel (hereinafter referred to as adsorbent 105) is provided in the upper part of the first container 103, and a second heat exchanger is provided in the lower part of the first container 103. 125 is provided so as to be immersed in the refrigerant 106.
A third heat exchanger 110 having an adsorbent 105 is provided in the upper part of the second container 101, and a fourth heat exchanger 120 is provided in a state of being immersed in the refrigerant 106 in the lower part of the second container 101. ing.
A fifth heat exchanger 135 having an adsorbent 105 is provided in the upper part of the third container 104, and a sixth heat exchanger 145 is provided in the state of being immersed in the refrigerant 106 in the lower part of the third container 104. Yes.
A seventh heat exchanger 130 having an adsorbent 105 is provided in the upper part of the fourth container 102, and an eighth heat exchanger 140 is provided in the lower part of the fourth container 102 so as to be immersed in the refrigerant 106. Yes.

次に図3の第1運転条件c1及び第3運転条件c3における流路を説明する。
(1)高温熱源入口160aに接続される配管150は、流路切替弁107aを介して配管111に接続され、配管111は第3熱交換器110を介して配管112に接続され、配管112は流路切替弁107bを介して配管151に接続され、高温熱源出口160bに接続される。
(2)また、高温熱源入口160aに接続される配管150は、配管118に分岐して流路切替弁107eを介して配管116に接続され、配管116は第1熱交換器115を介して配管117に接続され、配管117は流路切替弁107fを介して配管119に接続され、配管119は配管151に合流して接続され、高温熱源出口160bに接続される。
(3)中温水入口161aに接続される配管152は、流路切替弁107aを介して配管131に接続され、配管131は第7熱交換器130を介して配管132に接続され、配管132は流路切替弁107bを介して配管153に接続され、中温水出口161bに接続される。
(4)中温水入口161aに接続される配管152は、配管123に分岐して流路切替弁107cを介して配管121に接続され、配管121は第4熱交換器120を介して配管122に接続され、配管122は流路切替弁107dを介して配管124に接続され、配管124は配管153に合流して接続され、中温水出口161bに接続される。
Next, the flow paths in the first operating condition c1 and the third operating condition c3 in FIG. 3 will be described.
(1) The pipe 150 connected to the high temperature heat source inlet 160a is connected to the pipe 111 via the flow path switching valve 107a, the pipe 111 is connected to the pipe 112 via the third heat exchanger 110, and the pipe 112 is It is connected to the pipe 151 via the flow path switching valve 107b and connected to the high temperature heat source outlet 160b.
(2) The pipe 150 connected to the high-temperature heat source inlet 160a branches to the pipe 118 and is connected to the pipe 116 via the flow path switching valve 107e. The pipe 116 is piped via the first heat exchanger 115. 117, the pipe 117 is connected to the pipe 119 via the flow path switching valve 107f, the pipe 119 joins and is connected to the pipe 151, and is connected to the high temperature heat source outlet 160b.
(3) The pipe 152 connected to the intermediate warm water inlet 161a is connected to the pipe 131 via the flow path switching valve 107a, the pipe 131 is connected to the pipe 132 via the seventh heat exchanger 130, and the pipe 132 is It is connected to the pipe 153 via the flow path switching valve 107b, and is connected to the intermediate warm water outlet 161b.
(4) The pipe 152 connected to the medium temperature water inlet 161a branches to the pipe 123 and is connected to the pipe 121 via the flow path switching valve 107c. The pipe 121 is connected to the pipe 122 via the fourth heat exchanger 120. The pipe 122 is connected to the pipe 124 via the flow path switching valve 107d, and the pipe 124 is connected to the pipe 153 and connected to the medium hot water outlet 161b.

(5)中温水入口161aに接続される配管152は、配管128に分岐して流路切替弁107gを介して配管126に接続され、配管126は第2熱交換器125を介して配管127に接続され、配管127は流路切替弁107hを介して配管129に接続され、配管129は配管153に合流して接続され、中温水出口161bに接続される。
(6)低温熱源入口162aに接続される配管154は、流路切替弁107gを介して配管146に接続され、配管146は第6熱交換器145を介して配管147に接続され、配管147は流路切替弁107hを介して配管155に接続され、低温熱源出口162bに接続される。
(7)配管137は流路切替弁107fを介して配管139に接続され、配管139は循環ポンプ170を介して配管143に接続される。この循環ポンプ170により、配管139から配管143へ流体を循環させることができる。配管143は流路切替弁107cを介して配管141に接続され、配管141は第8熱交換器140を介して配管142に接続される。配管142は流路切替弁107dを介して配管138に接続される。配管138は流路切替弁107eを介して配管136に接続され、配管136は第5熱交換器135を介して配管137に接続される。
このように接続することで、第5熱交換器135と第8熱交換器140は閉じた回路となって接続され、循環中温水163を循環する。また、第1熱交換器115及び第3熱交換器110には85℃程度の高温熱源160を通じ、第6熱交換器145には10℃程度の低温熱源162を通じ、第2熱交換器125、第4熱交換器120、及び第7熱交換器130には中温水161を通じ、中温水出口161bより、中温水161を取り出すことができる。
(5) The pipe 152 connected to the medium temperature water inlet 161a branches to the pipe 128 and is connected to the pipe 126 via the flow path switching valve 107g, and the pipe 126 is connected to the pipe 127 via the second heat exchanger 125. The pipe 127 is connected to the pipe 129 via the flow path switching valve 107h, and the pipe 129 is connected to the pipe 153 and connected to the intermediate hot water outlet 161b.
(6) The pipe 154 connected to the low-temperature heat source inlet 162a is connected to the pipe 146 via the flow path switching valve 107g, the pipe 146 is connected to the pipe 147 via the sixth heat exchanger 145, and the pipe 147 is It is connected to the pipe 155 via the flow path switching valve 107h and connected to the low temperature heat source outlet 162b.
(7) The pipe 137 is connected to the pipe 139 via the flow path switching valve 107f, and the pipe 139 is connected to the pipe 143 via the circulation pump 170. With this circulation pump 170, the fluid can be circulated from the pipe 139 to the pipe 143. The pipe 143 is connected to the pipe 141 via the flow path switching valve 107c, and the pipe 141 is connected to the pipe 142 via the eighth heat exchanger 140. The pipe 142 is connected to the pipe 138 via the flow path switching valve 107d. The pipe 138 is connected to the pipe 136 via the flow path switching valve 107e, and the pipe 136 is connected to the pipe 137 via the fifth heat exchanger 135.
By connecting in this way, the fifth heat exchanger 135 and the eighth heat exchanger 140 are connected in a closed circuit, and the circulating hot water 163 is circulated. The first heat exchanger 115 and the third heat exchanger 110 are passed through a high-temperature heat source 160 at about 85 ° C., the sixth heat exchanger 145 is passed through a low-temperature heat source 162 at about 10 ° C., the second heat exchanger 125, The intermediate heat water 161 can be taken out from the fourth heat exchanger 120 and the seventh heat exchanger 130 through the intermediate temperature water outlet 161b.

次に図4の第2運転条件c2及び第4運転条件c4における流路を説明する。これは図3の流路切替弁107a乃至107hを切り替えたものである。
(1)高温熱源入口160aに接続される配管150は、流路切替弁107aを介して配管131に接続され、配管131は第7熱交換器130を介して配管132に接続され、配管132は流路切替弁107bを介して配管151に接続され、高温熱源出口160bに接続される。
(2)また、高温熱源入口160aに接続される配管150は、配管118に分岐して流路切替弁107eを介して配管136に接続され、配管136は第5熱交換器135を介して配管137に接続され、配管137は流路切替弁107fを介して配管119に接続され、配管119は配管151に合流して接続され、高温熱源出口160bに接続される。
(3)中温水入口161aに接続される配管152は、流路切替弁107aを介して配管111に接続され、配管111は第3熱交換器110を介して配管112に接続され、配管112は流路切替弁107bを介して配管153に接続され、中温水出口161bに接続される。
(4)中温水入口161aに接続される配管152は、配管123に分岐して流路切替弁107cを介して配管141に接続され、配管141は第8熱交換器140を介して配管142に接続され、配管142は流路切替弁107dを介して配管124に接続され、配管124は配管153に合流して接続され、中温水出口161bに接続される。
Next, the flow paths in the second operating condition c2 and the fourth operating condition c4 in FIG. 4 will be described. This is obtained by switching the flow path switching valves 107a to 107h in FIG.
(1) The pipe 150 connected to the high-temperature heat source inlet 160a is connected to the pipe 131 via the flow path switching valve 107a, the pipe 131 is connected to the pipe 132 via the seventh heat exchanger 130, and the pipe 132 is It is connected to the pipe 151 via the flow path switching valve 107b and connected to the high temperature heat source outlet 160b.
(2) The pipe 150 connected to the high-temperature heat source inlet 160a branches to the pipe 118 and is connected to the pipe 136 via the flow path switching valve 107e, and the pipe 136 is piped via the fifth heat exchanger 135. 137, the pipe 137 is connected to the pipe 119 via the flow path switching valve 107f, the pipe 119 joins and is connected to the pipe 151, and is connected to the high-temperature heat source outlet 160b.
(3) The pipe 152 connected to the intermediate temperature water inlet 161a is connected to the pipe 111 via the flow path switching valve 107a, the pipe 111 is connected to the pipe 112 via the third heat exchanger 110, and the pipe 112 is It is connected to the pipe 153 via the flow path switching valve 107b, and is connected to the intermediate warm water outlet 161b.
(4) The pipe 152 connected to the intermediate temperature water inlet 161a branches to the pipe 123 and is connected to the pipe 141 via the flow path switching valve 107c. The pipe 141 is connected to the pipe 142 via the eighth heat exchanger 140. The pipe 142 is connected to the pipe 124 via the flow path switching valve 107d, and the pipe 124 is connected to the pipe 153 and connected to the intermediate hot water outlet 161b.

(5)中温水入口161aに接続される配管152は、配管128に分岐して流路切替弁107gを介して配管146に接続され、配管146は第6熱交換器145を介して配管147に接続され、配管147は流路切替弁107hを介して配管129に接続され、配管129は配管153に合流して接続され、中温水出口161bに接続される。
(6)低温熱源入口162aに接続される配管154は、流路切替弁107gを介して配管126に接続され、配管126は第2熱交換器125を介して配管127に接続され、配管127は流路切替弁107hを介して配管155に接続され、低温熱源出口162bに接続される。
(7)配管117は流路切替弁107fを介して配管139に接続され、配管139は循環ポンプ170を介して配管143に接続される。この循環ポンプ170により、配管139から配管143へ流体を循環させることができる。配管143は流路切替弁107cを介して配管121に接続され、配管121は第4熱交換器120を介して配管122に接続される。配管122は流路切替弁107dを介して配管138に接続される。配管138は流路切替弁107eを介して配管116に接続され、配管116は第1熱交換器115を介して配管117に接続される。
このように接続することで、第1熱交換器115と第4熱交換器120は閉じた回路となって接続され、循環中温水163を循環する。また、第5熱交換器135及び第7熱交換器130には85℃程度の高温熱源160を通じ、第2熱交換器125には10℃程度の低温熱源162を通じ、第3熱交換器110、第6熱交換器145、及び第8熱交換器140には中温水161を通じ、中温水出口161bより、中温水161を取り出すことができる。
(5) The pipe 152 connected to the intermediate temperature water inlet 161a branches to the pipe 128 and is connected to the pipe 146 via the flow path switching valve 107g, and the pipe 146 is connected to the pipe 147 via the sixth heat exchanger 145. The pipe 147 is connected to the pipe 129 via the flow path switching valve 107h. The pipe 129 is connected to the pipe 153 and connected to the medium-temperature water outlet 161b.
(6) The pipe 154 connected to the low temperature heat source inlet 162a is connected to the pipe 126 via the flow path switching valve 107g, the pipe 126 is connected to the pipe 127 via the second heat exchanger 125, and the pipe 127 is It is connected to the pipe 155 via the flow path switching valve 107h and connected to the low temperature heat source outlet 162b.
(7) The pipe 117 is connected to the pipe 139 via the flow path switching valve 107f, and the pipe 139 is connected to the pipe 143 via the circulation pump 170. With this circulation pump 170, the fluid can be circulated from the pipe 139 to the pipe 143. The pipe 143 is connected to the pipe 121 via the flow path switching valve 107 c, and the pipe 121 is connected to the pipe 122 via the fourth heat exchanger 120. The pipe 122 is connected to the pipe 138 via the flow path switching valve 107d. The pipe 138 is connected to the pipe 116 via the flow path switching valve 107e, and the pipe 116 is connected to the pipe 117 via the first heat exchanger 115.
By connecting in this way, the first heat exchanger 115 and the fourth heat exchanger 120 are connected as a closed circuit, and the circulating hot water 163 is circulated. Further, the fifth heat exchanger 135 and the seventh heat exchanger 130 are passed through a high temperature heat source 160 of about 85 ° C., the second heat exchanger 125 is passed through a low temperature heat source 162 of about 10 ° C., and the third heat exchanger 110, The middle temperature water 161 can be taken out from the sixth temperature heat exchanger 145 and the eighth heat exchanger 140 through the middle temperature water outlet 161b through the middle temperature water 161.

上記構成における、冷媒106が吸着された状態の、第1熱交換器115、第3熱交換器110、第5熱交換器135、及び第7熱交換器130に備えられた吸着剤105は、外部から高温の熱媒体を流すことで、吸着された冷媒106を脱離することができる。一方、それと同時に第2熱交換器125、第4熱交換器120、第6熱交換器145、及び第8熱交換器140に低温の熱媒体を流すことで、各容器内の冷媒106を凝縮させることができる。
また、冷媒106が脱離された状態の、第1熱交換器115、第3熱交換器110、第5熱交換器135、及び第7熱交換器130に備えられた吸着剤105は、外部から低温の熱媒体を流すことで、冷媒106の吸着を行うことができる。一方、その状態で第2熱交換器125、第4熱交換器120、第6熱交換器145、及び第8熱交換器140に外部から低温の熱媒体を流すことで、各容器内の冷媒106を蒸発させることができる。
なお、脱離、凝縮過程では脱離する熱交換器の温度と、凝縮する熱交換器の温度差が大きいほうが望ましく、蒸発、吸着過程では蒸発する熱交換器と、吸着する熱交換器の温度差が少ないほうが望ましい。
In the above configuration, the adsorbent 105 provided in the first heat exchanger 115, the third heat exchanger 110, the fifth heat exchanger 135, and the seventh heat exchanger 130 in a state where the refrigerant 106 is adsorbed, By flowing a high-temperature heat medium from the outside, the adsorbed refrigerant 106 can be desorbed. Meanwhile, at the same time, the refrigerant 106 in each container is condensed by flowing a low-temperature heat medium through the second heat exchanger 125, the fourth heat exchanger 120, the sixth heat exchanger 145, and the eighth heat exchanger 140. Can be made.
In addition, the adsorbent 105 provided in the first heat exchanger 115, the third heat exchanger 110, the fifth heat exchanger 135, and the seventh heat exchanger 130 in a state where the refrigerant 106 has been desorbed is The refrigerant 106 can be adsorbed by flowing a low-temperature heat medium from the bottom. On the other hand, a low-temperature heat medium is allowed to flow from the outside to the second heat exchanger 125, the fourth heat exchanger 120, the sixth heat exchanger 145, and the eighth heat exchanger 140 in that state, so that the refrigerant in each container 106 can be evaporated.
In addition, it is desirable that the temperature difference between the heat exchanger to be desorbed and the heat exchanger to be condensed is larger in the desorption and condensation processes, and the temperature of the heat exchanger to be evaporated and the heat exchanger to be adsorbed in the evaporation and adsorption processes The smaller the difference, the better.

次に図3の構成の吸着式暖房・給湯装置の第1運転条件c1及び第3運転条件c3について説明する。
第1運転条件c1では以下の流れで熱交換を行う。
まず、第1容器103において、第1熱交換器115に、85℃程度の高温熱源160を通じる。第1熱交換器115に85℃程度の高温熱源160を通じると、第1熱交換器115に備えられた冷媒106が吸着された状態の吸着剤105が、第1熱交換器115から熱を得る。それによって、吸着剤105に吸着されていた冷媒106が脱離する。
同時に、第2熱交換器125に、40℃程度の中温水161を通じる。第2熱交換器125に40℃程度の中温水161を通じると、第1容器103内から第2熱交換器125が熱を奪い、冷媒106を凝縮させる。この過程を経た結果、第2熱交換器125より45℃程度の中温水161が得られる。
なお、第1容器103内に充填された冷媒量は有限なので、吸着剤105に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
Next, the first operating condition c1 and the third operating condition c3 of the adsorption heating / hot water supply apparatus having the configuration shown in FIG. 3 will be described.
Under the first operating condition c1, heat exchange is performed according to the following flow.
First, in the first container 103, a high-temperature heat source 160 of about 85 ° C. is passed through the first heat exchanger 115. When the high-temperature heat source 160 of about 85 ° C. is passed through the first heat exchanger 115, the adsorbent 105 in the state in which the refrigerant 106 provided in the first heat exchanger 115 is adsorbed receives heat from the first heat exchanger 115. obtain. Thereby, the refrigerant 106 adsorbed by the adsorbent 105 is desorbed.
At the same time, the medium temperature water 161 of about 40 ° C. is passed through the second heat exchanger 125. When medium temperature water 161 of about 40 ° C. is passed through the second heat exchanger 125, the second heat exchanger 125 takes heat from the inside of the first container 103 and condenses the refrigerant 106. As a result of this process, intermediate temperature water 161 of about 45 ° C. is obtained from the second heat exchanger 125.
Since the amount of refrigerant filled in the first container 103 is finite, the amount of refrigerant adsorbed on the adsorbent 105 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time.

また、第3容器104において、第5熱交換器135に第8熱交換器140と循環する25℃程度の循環中温水163を通じる。第5熱交換器135に25℃程度の循環中温水163を通じると、第5熱交換器135に備えられた冷媒106が脱離された状態の吸着剤105が、冷媒106を吸着して熱を発生する。そして、第5熱交換器135に25℃程度の循環中温水163を通じる事で、第5熱交換器135を介して循環中温水163が発生した熱を奪う。
同時に、第6熱交換器145に10℃程度の低温熱源162を通じる。第6熱交換器145に10℃程度の低温熱源162を通じると、第3容器104内の冷媒106が、10℃程度の低温熱源162から熱を得て蒸発する。その過程を経た結果、第5熱交換器135より、30℃程度の循環中温水163が得られる。
なお、第3容器104内に充填された冷媒量は有限なので、吸着剤105に吸着できる冷媒量は時間と共に減少し、これに伴い蒸発量も減少する。よって一定時間経過後はほとんど変化しない。
In the third container 104, the circulating hot water 163 at about 25 ° C. that circulates with the eighth heat exchanger 140 is passed through the fifth heat exchanger 135. When circulating intermediate hot water 163 at about 25 ° C. is passed through the fifth heat exchanger 135, the adsorbent 105 in a state where the refrigerant 106 provided in the fifth heat exchanger 135 is desorbed adsorbs the refrigerant 106 and generates heat. Is generated. Then, by passing the circulating intermediate warm water 163 at about 25 ° C. through the fifth heat exchanger 135, the heat generated by the circulating intermediate warm water 163 is taken away via the fifth heat exchanger 135.
At the same time, the low-temperature heat source 162 of about 10 ° C. is passed through the sixth heat exchanger 145. When the low temperature heat source 162 at about 10 ° C. is passed through the sixth heat exchanger 145, the refrigerant 106 in the third container 104 obtains heat from the low temperature heat source 162 at about 10 ° C. and evaporates. As a result of the process, circulating hot water 163 of about 30 ° C. is obtained from the fifth heat exchanger 135.
Since the amount of refrigerant filled in the third container 104 is finite, the amount of refrigerant that can be adsorbed on the adsorbent 105 decreases with time, and the evaporation amount also decreases accordingly. Therefore, it hardly changes after a certain period of time.

第3運転条件c3では以下の流れで熱交換を行う。
まず、第2容器101において、第3熱交換器110に85℃程度の高温熱源160を通じる。第3熱交換器110に85℃程度の高温熱源160を通じると、第3熱交換器110に備えられた冷媒106が吸着された状態の吸着剤105が、第3熱交換器110から熱を得る。それによって、吸着剤105に吸着されていた冷媒106が脱離する。
同時に、第4熱交換器120に、40℃程度の中温水161を通じる。第4熱交換器120に40℃程度の中温水161を通じると、第2容器101内から第4熱交換器120が熱を奪い、冷媒106を凝縮させる。この過程を経た結果、第4熱交換器120より45℃程度の中温水161が得られる。
なお、第2容器101内に充填された冷媒量は有限なので、吸着剤105に吸着された冷媒量は時間と共に減少し、これに伴い凝縮量も減少する。よって一定時間経過後はほとんど変化しない。
Under the third operating condition c3, heat exchange is performed according to the following flow.
First, in the second container 101, the high temperature heat source 160 of about 85 ° C. is passed through the third heat exchanger 110. When the high-temperature heat source 160 of about 85 ° C. is passed through the third heat exchanger 110, the adsorbent 105 in a state where the refrigerant 106 provided in the third heat exchanger 110 is adsorbed heats from the third heat exchanger 110. obtain. Thereby, the refrigerant 106 adsorbed by the adsorbent 105 is desorbed.
At the same time, medium temperature water 161 of about 40 ° C. is passed through the fourth heat exchanger 120. When medium-temperature water 161 of about 40 ° C. is passed through the fourth heat exchanger 120, the fourth heat exchanger 120 removes heat from the second container 101 and condenses the refrigerant 106. As a result of this process, intermediate temperature water 161 of about 45 ° C. is obtained from the fourth heat exchanger 120.
Since the amount of refrigerant filled in the second container 101 is finite, the amount of refrigerant adsorbed on the adsorbent 105 decreases with time, and the amount of condensation also decreases accordingly. Therefore, it hardly changes after a certain period of time.

次に第4容器102において、第7熱交換器130に40℃程度の中温水161を通じる。第7熱交換器130に40℃程度の中温水161を通じると、第7熱交換器130に備えられた冷媒106を脱離した状態の吸着剤105は、冷媒106を吸着して熱を発生する。
同時に、第8熱交換器140に、第5熱交換器135で熱を得た30℃程度の循環中温水163を通じる。第8熱交換器140に30℃程度の循環中温水163を通じると、第4容器102内の冷媒106が、循環中温水163から熱を得て蒸発する。結果、第7熱交換器130より50℃程度の中温水161が得られ、第8熱交換器140より25℃程度の循環中温水163が得られる。
なお、第4容器102内に充填された冷媒量は有限なので、吸着剤105に吸着できる冷媒量は時間と共に減少し、これに伴い蒸発量も減少する。よって一定時間経過後はほとんど変化しない。
以上で説明した第1運転条件c1と第3運転条件c3は同時に行われ、順次、熱交換を行う。
Next, in the fourth container 102, the medium temperature water 161 of about 40 ° C. is passed through the seventh heat exchanger 130. When medium temperature water 161 of about 40 ° C. is passed through the seventh heat exchanger 130, the adsorbent 105 in a state where the refrigerant 106 provided in the seventh heat exchanger 130 is desorbed absorbs the refrigerant 106 and generates heat. To do.
At the same time, the circulating medium hot water 163 at about 30 ° C. obtained by the fifth heat exchanger 135 is passed through the eighth heat exchanger 140. When circulating medium hot water 163 at about 30 ° C. is passed through the eighth heat exchanger 140, the refrigerant 106 in the fourth container 102 gains heat from the circulating medium hot water 163 and evaporates. As a result, intermediate temperature water 161 of about 50 ° C. is obtained from the seventh heat exchanger 130, and circulating intermediate warm water 163 of about 25 ° C. is obtained from the eighth heat exchanger 140.
Since the amount of refrigerant charged in the fourth container 102 is finite, the amount of refrigerant that can be adsorbed on the adsorbent 105 decreases with time, and the evaporation amount also decreases accordingly. Therefore, it hardly changes after a certain period of time.
The first operating condition c1 and the third operating condition c3 described above are performed simultaneously, and heat exchange is sequentially performed.

次に、図4に示される流路切り替え後の第2運転条件c2及び第4運転条件c4を、以下に説明する。
第2運転条件c2では以下の流れで熱交換を行う。
まず、第1容器103において、第1熱交換器115に第4熱交換器120と循環する25℃程度の循環中温水163を通じると、第1熱交換器115に備えられた冷媒106が脱離された状態の吸着剤105が、冷媒106を吸着して熱を発生する。そして、第1熱交換器115に25℃程度の循環中温水163を通じる事で、第1熱交換器115を介して循環中温水163が発生した熱を奪う。
同時に、第2熱交換器125に10℃程度の低温熱源162を通じる。第2熱交換器125に10℃程度の低温熱源162を通じると、第1容器103内の冷媒106が、10℃程度の低温熱源162から熱を得て蒸発する。この過程を経た結果、第1熱交換器115より、30℃程度の循環中温水163が得られる。
なお、第1容器103に充填された冷媒量は有限なので、吸着剤105に吸着できる冷媒量は時間とともに減少し、これに伴い蒸発量も減少する。よって、一定時間経過後にはほとんど変化しない。
Next, the second operating condition c2 and the fourth operating condition c4 after the flow path switching shown in FIG. 4 will be described below.
Under the second operating condition c2, heat exchange is performed according to the following flow.
First, in the first vessel 103, when the circulating hot water 163 at about 25 ° C. circulating with the fourth heat exchanger 120 is passed through the first heat exchanger 115, the refrigerant 106 provided in the first heat exchanger 115 is removed. The separated adsorbent 105 adsorbs the refrigerant 106 and generates heat. Then, by passing the circulating intermediate hot water 163 at about 25 ° C. through the first heat exchanger 115, the heat generated by the circulating intermediate hot water 163 is taken away via the first heat exchanger 115.
At the same time, the low-temperature heat source 162 of about 10 ° C. is passed through the second heat exchanger 125. When the low-temperature heat source 162 at about 10 ° C. is passed through the second heat exchanger 125, the refrigerant 106 in the first container 103 obtains heat from the low-temperature heat source 162 at about 10 ° C. and evaporates. As a result of this process, circulating hot water 163 at about 30 ° C. is obtained from the first heat exchanger 115.
Since the amount of refrigerant filled in the first container 103 is finite, the amount of refrigerant that can be adsorbed by the adsorbent 105 decreases with time, and the evaporation amount also decreases accordingly. Therefore, it hardly changes after a certain period of time.

また、第3容器104において、第5熱交換器135に85℃程度の高温熱源160を通じる。第5熱交換器135に85℃程度の高温熱源160を通じると、第5熱交換器135に備えられた冷媒106が吸着された状態の吸着剤105が、第5熱交換器135から熱を得る。それによって、吸着剤105に吸着されていた冷媒106が脱離する。
同時に、第6熱交換器145に、40℃程度の中温水161を通じる。第6熱交換器145に40℃程度の中温水161を通じると、第3容器104内から第6熱交換器145が熱を奪い、冷媒106を凝縮させる。この過程を経た結果、第6熱交換器145より45℃程度の中温水161が得られる。
なお、第3容器104内に充填された冷媒量は有限なので、吸着剤105に吸着された冷媒量は時間とともに減少し、これに伴い凝縮量も減少する。よって一定時間後にはほとんど変化しない。
In the third container 104, the high temperature heat source 160 of about 85 ° C. is passed through the fifth heat exchanger 135. When the high-temperature heat source 160 of about 85 ° C. is passed through the fifth heat exchanger 135, the adsorbent 105 in the state in which the refrigerant 106 provided in the fifth heat exchanger 135 is adsorbed receives heat from the fifth heat exchanger 135. obtain. Thereby, the refrigerant 106 adsorbed by the adsorbent 105 is desorbed.
At the same time, medium temperature water 161 of about 40 ° C. is passed through the sixth heat exchanger 145. When medium temperature water 161 of about 40 ° C. is passed through the sixth heat exchanger 145, the sixth heat exchanger 145 takes heat from the inside of the third container 104 and condenses the refrigerant 106. As a result of this process, intermediate temperature water 161 of about 45 ° C. is obtained from the sixth heat exchanger 145.
Since the amount of refrigerant charged in the third container 104 is finite, the amount of refrigerant adsorbed on the adsorbent 105 decreases with time, and the amount of condensation decreases accordingly. Therefore, it hardly changes after a certain time.

第4運転条件c4では以下の流れで熱交換を行う。
まず、第2容器101において、第3熱交換器110に40℃程度の中温水161を通じる。第3熱交換器110に40℃程度の中温水161を通じると、第3熱交換器110に備えられた冷媒106を脱離した状態の吸着剤105は、冷媒106を吸着して熱を発生する。
同時に、第4熱交換器120に、第1熱交換器115で得た30℃程度の循環中温水163を通じる。第4熱交換器120に30℃程度の循環中温水163を通じると、第2容器101内の冷媒106が、循環中温水163から熱を得て蒸発する。この過程を経た結果、第3熱交換器110より、50℃程度の中温水161が得られ、第4熱交換器120より、25℃程度の循環中温水163が得られる。
なお、第2容器101内に充填された冷媒量は有限なので、吸着剤105に吸着できる冷媒量は時間とともに減少し、これに伴い蒸発量も減少する。よって一定時間経過後はほとんど変化しない。
Under the fourth operating condition c4, heat exchange is performed according to the following flow.
First, in the second container 101, medium-temperature water 161 of about 40 ° C. is passed through the third heat exchanger 110. When medium temperature water 161 of about 40 ° C. is passed through the third heat exchanger 110, the adsorbent 105 in a state where the refrigerant 106 provided in the third heat exchanger 110 is desorbed absorbs the refrigerant 106 and generates heat. To do.
At the same time, the circulating hot water 163 of about 30 ° C. obtained in the first heat exchanger 115 is passed through the fourth heat exchanger 120. When the circulating hot water 163 at about 30 ° C. is passed through the fourth heat exchanger 120, the refrigerant 106 in the second container 101 evaporates by obtaining heat from the circulating hot water 163. As a result of this process, the middle heat water 161 of about 50 ° C. is obtained from the third heat exchanger 110, and the circulating medium hot water 163 of about 25 ° C. is obtained from the fourth heat exchanger 120.
Since the amount of refrigerant charged in the second container 101 is finite, the amount of refrigerant that can be adsorbed on the adsorbent 105 decreases with time, and the evaporation amount also decreases accordingly. Therefore, it hardly changes after a certain period of time.

また、第4容器102において、第7熱交換器130に85℃程度の高温熱源160を通じる。第7熱交換器130に85℃程度の高温熱源160を通じると、第7熱交換器130に備えられた冷媒106が吸着された状態の吸着剤105が、第7熱交換器130から熱を得る。それによって、吸着剤105に吸着されていた冷媒106が脱離する。
同時に、第8熱交換器140に、40℃程度の中温水161を通じる。第8熱交換器140に40℃程度の中温水161を通じると、第4容器102内から第8熱交換器140が熱を奪い、冷媒106を凝縮させる。この過程を経た結果、第8熱交換器140より45℃程度の中温水161が得られる。
なお、第4容器102内に充填された冷媒量は有限なので、吸着剤105に吸着された冷媒量は時間とともに減少し、これに伴い凝縮量も減少する。よって、一定時間経過後はほとんど変化しない。
以上で説明した第2運転条件c2と第4運転条件c4は同時に行われ、順次、熱交換を行う。
そして、第1運転条件c1及び第3運転条件c3と、第2運転条件c2及び第4運転条件c4を一定の時間で切り替えてやるサイクルを続けることで、比較的高い温度である45℃〜50℃程度の中温水161が得られる。
In the fourth container 102, a high-temperature heat source 160 of about 85 ° C. is passed through the seventh heat exchanger 130. When the high-temperature heat source 160 of about 85 ° C. is passed through the seventh heat exchanger 130, the adsorbent 105 in the state in which the refrigerant 106 provided in the seventh heat exchanger 130 is adsorbed receives heat from the seventh heat exchanger 130. obtain. Thereby, the refrigerant 106 adsorbed by the adsorbent 105 is desorbed.
At the same time, the middle temperature water 161 of about 40 ° C. is passed through the eighth heat exchanger 140. When medium-temperature water 161 of about 40 ° C. is passed through the eighth heat exchanger 140, the eighth heat exchanger 140 takes heat from the fourth container 102 and condenses the refrigerant 106. As a result of this process, intermediate temperature water 161 of about 45 ° C. is obtained from the eighth heat exchanger 140.
Since the amount of refrigerant filled in the fourth container 102 is finite, the amount of refrigerant adsorbed on the adsorbent 105 decreases with time, and the amount of condensation decreases accordingly. Therefore, it hardly changes after a certain period of time.
The second operating condition c2 and the fourth operating condition c4 described above are performed simultaneously, and heat exchange is sequentially performed.
And by continuing the cycle which switches the 1st driving condition c1 and the 3rd driving condition c3, and the 2nd driving condition c2 and the 4th driving condition c4 at fixed time, it is 45 to 50 degrees C which is comparatively high temperature. Medium temperature water 161 of about 0 ° C. is obtained.

以上、本発明の吸着式暖房・給湯装置の実施例について説明したが、本発明は以上の実施例に限定されるものではなく、その趣旨を逸脱しない範囲でさまざまな変更が可能である。
例えば、上記実施例では、吸着剤にシリカゲルを使用しているが、本発明はこれに限定されるものではなく、活性炭、ゼオライト、酸化アルミナ等を用いても良い。
また、上記実施例では、内部が低圧に備えられた容器は、その容器内の上部に吸着剤を備えた一方の熱交換器と、その容器内の下部に他方の熱交換器を備えているが、本容器は特に一体型でなくとも、同じ系であれば良いので、従来見られるような分離型のタンクにそれぞれ熱交換器を設けるような方式である事を妨げない。
また、上記実施例では、高温熱源、低温熱源、中温水にそれぞれ温度を設定してあるが、これは説明の便宜上、通常用いられる形態から引用した代表的な数値を設定しただけに過ぎず、実際に使用条件及び環境によって左右される場合もある他、脱離−凝縮、蒸発−吸着が行われ得る他の温度に設定することを妨げない。
As mentioned above, although the Example of the adsorption | suction type heating and hot water supply apparatus of this invention was described, this invention is not limited to the above Example, A various change is possible in the range which does not deviate from the meaning.
For example, in the above embodiment, silica gel is used as the adsorbent, but the present invention is not limited to this, and activated carbon, zeolite, alumina oxide or the like may be used.
Moreover, in the said Example, the container by which the inside was equipped with the low pressure is equipped with one heat exchanger which equipped with the adsorbent in the upper part in the container, and the other heat exchanger in the lower part in the container. However, the present container is not particularly integrated, but may be of the same system, so that it does not preclude a system in which a heat exchanger is provided in each separate tank as seen in the past.
Further, in the above embodiment, the temperature is set for each of the high-temperature heat source, the low-temperature heat source, and the medium-temperature water, but this is merely a representative numerical value quoted from the form normally used for convenience of explanation, In addition to being actually affected by the use conditions and environment, it does not preclude setting other temperatures at which desorption-condensation and evaporation-adsorption can be performed.

このように、
(A)水等の冷媒106が入れられ、冷媒106が低温で蒸発するように、内部を真空に保った第1容器103及び第2容器101と、第1容器103内に吸着剤105を備えた状態で設けられた第1熱交換器115と、第1容器103内に冷媒106の蒸発及び凝縮を行うために設けられた第2熱交換器125と、第2容器101内に吸着剤105を備えた状態で設けられた第3熱交換器110と、第2容器101内に冷媒106の蒸発及び凝縮を行うために設けられた第4熱交換器120とを有する吸着式暖房・給湯装置において、
(1)第1熱交換器115及び第3熱交換器110に85℃程度の高温熱源160を入力することで、脱離熱を得て冷媒106を気化させ、第1容器103、及び第2容器101内の圧力を上昇させて、第1容器103、及び第2容器101内の気化した冷媒106を凝縮させることで、第2熱交換器125及び第4熱交換器120に入力した中温水161が凝縮熱を得る第1運転条件c1、
(2)第2熱交換器125に10℃程度の低温熱源162を入力することで、蒸発熱を得て、冷媒106を気化させ、第1容器103内の圧力を上昇させて、第1熱交換器115に入力した循環中温水163が吸着熱を得て、第1容器103内の気化した冷媒106を吸着し、第4熱交換器120に第1熱交換器115から熱を得た循環中温水163を入力することで、さらに蒸発熱を得て冷媒106を気化させ、第2容器101内の圧力を上昇させて、第2容器101内の気化した冷媒106を吸着することで、第3熱交換器110に入力した中温水161が吸着熱を得る第2運転条件c2、
(3)第1容器103及び第2容器101に対して、第1運転条件c1と第2運転条件c2とを一定時間で切り替える運転制御手段を有することを特徴とする吸着式暖房・給湯装置と、
in this way,
(A) A first container 103 and a second container 101 whose interiors are kept in a vacuum so that the refrigerant 106 evaporates at a low temperature is inserted, and an adsorbent 105 is provided in the first container 103. A first heat exchanger 115 provided in a heated state, a second heat exchanger 125 provided for evaporating and condensing the refrigerant 106 in the first container 103, and an adsorbent 105 in the second container 101. An adsorption heating / hot water supply apparatus having a third heat exchanger 110 provided in a state of being provided with a fourth heat exchanger 120 provided to evaporate and condense the refrigerant 106 in the second container 101. In
(1) By inputting a high-temperature heat source 160 of about 85 ° C. to the first heat exchanger 115 and the third heat exchanger 110, the desorption heat is obtained and the refrigerant 106 is vaporized. Medium temperature water input to the second heat exchanger 125 and the fourth heat exchanger 120 by increasing the pressure in the container 101 and condensing the vaporized refrigerant 106 in the first container 103 and the second container 101. A first operating condition c1 in which 161 obtains heat of condensation;
(2) By inputting a low temperature heat source 162 of about 10 ° C. to the second heat exchanger 125, the heat of evaporation is obtained, the refrigerant 106 is vaporized, the pressure in the first container 103 is increased, and the first heat The circulating hot water 163 input to the exchanger 115 obtains heat of adsorption, adsorbs the vaporized refrigerant 106 in the first container 103, and obtains heat from the first heat exchanger 115 in the fourth heat exchanger 120. By inputting the intermediate temperature water 163, the heat of evaporation is further obtained to vaporize the refrigerant 106, the pressure in the second container 101 is increased, and the vaporized refrigerant 106 in the second container 101 is adsorbed, thereby The second operating condition c2 in which the intermediate temperature water 161 input to the three heat exchanger 110 obtains the heat of adsorption;
(3) An adsorption heating / hot water supply device having operation control means for switching the first operation condition c1 and the second operation condition c2 for a first time with respect to the first container 103 and the second container 101; ,

(B)(A)請求項1の吸着式暖房・給湯装置において、
(1)水等の冷媒106が入れられ、冷媒106が低温で蒸発するように、内部を真空に保った第3容器104及び第4容器102と、第3容器104内に吸着剤105を備えた状態で設けられた第5熱交換器135と、第3容器104内に冷媒106の蒸発及び凝縮を行うために設けられた第6熱交換器145と、第4容器102内に吸着剤105を備えた状態で設けられた第7熱交換器130と、第4容器102内に冷媒106の蒸発及び凝縮を行うために設けられた第8熱交換器140とを有し、
(2)前記運転制御手段が、
(2−1)第1運転条件c1と同時に、第6熱交換器145に10℃程度の低温熱源162を入力することで、蒸発熱を得て、冷媒106を気化させ、第3容器104内の圧力を上昇させて、第5熱交換器135に循環中温水163が吸着熱を得て、第3容器104内の気化した冷媒106を吸着し、第8熱交換器140に第5熱交換器135から熱を得た循環中温水163を入力することで、さらに蒸発熱を得て冷媒106を気化させ、第4容器102内の圧力を上昇させて、第4容器102内の気化した冷媒106を吸着する事で、第7熱交換器130に入力した中温水161が吸着熱を得る第3運転条件c3、
(2−2)第2運転条件c2と同時に、第5熱交換器135及び第7熱交換器130に85℃程度の高温熱源160を入力することで、脱離熱を得て冷媒106を気化させ、第3容器104、及び第4容器102内の圧力を上昇させて、第3容器104、及び第4容器102内の気化した冷媒106を凝縮させることで、第6熱交換器145及び第8熱交換器140に入力した中温水161が吸着熱を得る第4運転条件c4、
(2−3)第3容器104、及び第4容器102に対して第3運転条件c3と第4運転条件c4を一定時間で切り替える制御を行うことを特徴とする吸着式暖房・給湯装置を用いれば、運転条件によって高温熱源や低温熱源を使わない場面がなくなるため、常に高温熱源や低温熱源を受け入れてやることが出来る。また、常に同じ数の熱交換器から出力を得ているので、出力の安定化を図ることが可能となる。
(B) (A) In the adsorption heating / hot water supply apparatus of claim 1,
(1) A third container 104 and a fourth container 102 in which the inside is kept in vacuum so that the refrigerant 106 such as water is put and the refrigerant 106 evaporates at a low temperature, and an adsorbent 105 is provided in the third container 104. A fifth heat exchanger 135 provided in a heated state, a sixth heat exchanger 145 provided for evaporating and condensing the refrigerant 106 in the third container 104, and an adsorbent 105 in the fourth container 102. A seventh heat exchanger 130 provided in a state provided with an eighth heat exchanger 140 provided for evaporating and condensing the refrigerant 106 in the fourth container 102,
(2) The operation control means is
(2-1) Simultaneously with the first operating condition c1, by inputting a low temperature heat source 162 of about 10 ° C. to the sixth heat exchanger 145, evaporation heat is obtained, the refrigerant 106 is vaporized, and the inside of the third container 104 The circulating hot water 163 obtains adsorption heat in the fifth heat exchanger 135, adsorbs the vaporized refrigerant 106 in the third container 104, and performs fifth heat exchange in the eighth heat exchanger 140. By inputting the circulating hot water 163 that has obtained heat from the vessel 135, the refrigerant 106 is vaporized by further obtaining evaporation heat, the pressure in the fourth container 102 is increased, and the vaporized refrigerant in the fourth container 102 is obtained. 106, the third operating condition c3 in which the intermediate temperature water 161 input to the seventh heat exchanger 130 obtains the heat of adsorption is obtained.
(2-2) Simultaneously with the second operating condition c2, by inputting the high-temperature heat source 160 at about 85 ° C. to the fifth heat exchanger 135 and the seventh heat exchanger 130, desorption heat is obtained and the refrigerant 106 is vaporized. Then, by increasing the pressure in the third container 104 and the fourth container 102 and condensing the vaporized refrigerant 106 in the third container 104 and the fourth container 102, the sixth heat exchanger 145 and the The fourth operating condition c4 in which the intermediate warm water 161 input to the 8 heat exchanger 140 obtains the heat of adsorption,
(2-3) An adsorption heating / hot water supply device that performs control to switch the third operation condition c3 and the fourth operation condition c4 for the third container 104 and the fourth container 102 at a constant time is used. For example, there are no scenes where a high-temperature heat source or a low-temperature heat source is not used depending on operating conditions. Moreover, since the output is always obtained from the same number of heat exchangers, the output can be stabilized.

そして、蒸発熱から得た吸着熱により中低温水の出力を得て、その中温水を再利用することで、さらに蒸発熱を得て、発熱から得た吸着熱により中高温水を出力として得ることができ、45℃〜50℃程度の比較的温度の高い中温水を作り出すことが可能である。また、前記過程を繰り返してやることで安定的に中温水を取り出すことが可能になる。
そして、理論熱効率はCOP1.3程度と従来技術1より多少劣るものの、高い温度の中温水が得られるという点で利便性が大幅に向上する。さらに、高温熱源を直接利用するよりも高い熱効率で運転できる範囲が広がるため、全体的に見れば省エネルギーを実現できる。
なお、請求項2に係る発明の実施形態で示される吸着式暖房・給湯装置においては、第3熱交換器110、及び第7熱交換器130の吸着性能は、第1熱交換器115及び第5熱交換器135の吸着剤105の吸着性能よりも高く設定する事が望ましい。これは、循環中温水163を蒸発熱源にすることよって、吸着側がより高いレベルでの吸着性能を要求されるためで、吸着剤105の量を増やしたり、吸着剤105の材質を例えばシリカゲルよりも吸着性能の高い活性炭などに変更したりする事で、対応する事が考えられる。こうする事で、より熱効率よく熱交換を行う事が可能となる。
Then, the output of medium / low temperature water is obtained by the heat of adsorption obtained from the heat of evaporation, and the medium temperature water is reused to further obtain the heat of evaporation, and the medium / high temperature water is obtained as the output by the heat of adsorption obtained from the heat generation. It is possible to produce medium-temperature water having a relatively high temperature of about 45 ° C to 50 ° C. In addition, by repeating the above process, it is possible to stably take out the medium-temperature water.
And although the theoretical thermal efficiency is about COP1.3, which is slightly inferior to the prior art 1, the convenience is greatly improved in that medium temperature water having a high temperature can be obtained. Furthermore, since the range in which operation can be performed with higher thermal efficiency than directly using a high-temperature heat source is expanded, energy saving can be realized as a whole.
In the adsorption heating / hot water supply apparatus shown in the embodiment of the invention according to claim 2, the adsorption performance of the third heat exchanger 110 and the seventh heat exchanger 130 is the same as that of the first heat exchanger 115 and the first heat exchanger. It is desirable to set higher than the adsorption performance of the adsorbent 105 of the five heat exchanger 135. This is because by using the circulating hot water 163 as an evaporation heat source, the adsorption side is required to have a higher level of adsorption performance. Therefore, the amount of the adsorbent 105 can be increased or the material of the adsorbent 105 can be made higher than that of silica gel, for example. It may be possible to respond by changing to activated carbon with high adsorption performance. By doing so, it is possible to perform heat exchange more efficiently.

吸着式暖房・給湯装置における請求項1に係る発明の構成図であり、第1運転状態を示している。It is a block diagram of the invention which concerns on Claim 1 in an adsorption | suction type heating and hot-water supply apparatus, and has shown the 1st driving | running state. 吸着式暖房・給湯装置における請求項1に係る発明の構成図であり、第2運転状態を示している。It is a block diagram of the invention which concerns on Claim 1 in an adsorption | suction type heating and hot-water supply apparatus, and has shown the 2nd driving | running state. 吸着式暖房・給湯装置における請求項2に係る発明の構成図であり、第1運転状態、及び第3運転状態を示している。It is a block diagram of the invention which concerns on Claim 2 in an adsorption | suction type heating and hot-water supply apparatus, and has shown the 1st driving | running state and the 3rd driving | running state. 吸着式暖房・給湯装置における請求項2に係る発明の構成図であり、図3の流路を切り替えた第2運転状態、及び第4運転状態を示している。It is a block diagram of the invention which concerns on Claim 2 in an adsorption | suction type heating and hot-water supply apparatus, and has shown the 2nd driving | running state and the 4th driving | running state which switched the flow path of FIG. 吸着式暖房・給湯装置における従来技術1の構成図である。It is a block diagram of the prior art 1 in an adsorption | suction type heating and hot water supply apparatus. 吸着式暖房・給湯装置における従来技術1の構成図であり、図5の流路を切り替えたものである。It is a block diagram of the prior art 1 in an adsorption | suction type heating and hot water supply apparatus, and switches the flow path of FIG. 吸着式暖房・給湯装置における従来技術2の構成図である。It is a block diagram of the prior art 2 in an adsorption | suction type heating and hot water supply apparatus. 吸着式暖房・給湯装置における従来技術2の構成図であり、図7の流路を切り替えたものである。It is a block diagram of the prior art 2 in an adsorption | suction type heating and hot-water supply apparatus, and switches the flow path of FIG.

符号の説明Explanation of symbols

1、2 容器
5 吸着剤
6 冷媒
10、20、30、40 熱交換器
11〜15 配管
21〜26 配管
31〜34 配管
41〜44 配管
50〜59 配管
60 高温熱源
60a 高温熱源入口
60b 高温熱源出口
61 中温水
61a 中温水入口
61b 中温水出口
62 低温熱源
62a 低温熱源入口
62b 低温熱源出口
63 循環中温水
70 循環ポンプ
71〜84 バルブ
1, 2 Container 5 Adsorbent 6 Refrigerant 10, 20, 30, 40 Heat exchangers 11-15 Pipe 21-26 Pipe 31-34 Pipe 41-44 Pipe 50-59 Pipe 60 High temperature heat source 60a High temperature heat source inlet 60b High temperature heat source outlet 61 Medium temperature water 61a Medium temperature water inlet 61b Medium temperature water outlet 62 Low temperature heat source 62a Low temperature heat source inlet 62b Low temperature heat source outlet 63 Circulating medium temperature water 70 Circulation pumps 71-84 Valves

Claims (2)

水等の冷媒が入れられ、前記冷媒が低温で蒸発するように、内部を真空に保った第1容器及び第2容器と、
前記第1容器内に吸着剤を備えた状態で設けられた第1熱交換器と、
前記第1容器内に冷媒の蒸発及び凝縮を行うために設けられた第2熱交換器と、
前記第2容器内に吸着剤を備えた状態で設けられた第3熱交換器と、
前記第2容器内に冷媒の蒸発及び凝縮を行うために設けられた第4熱交換器とを有する吸着式暖房・給湯装置において、
(1)前記第1熱交換器及び前記第3熱交換器に高温熱源を入力することで、脱離熱を得て前記冷媒を気化させ、前記第1容器、及び前記第2容器内の圧力を上昇させて、
前記第1容器、及び第2容器内の気化した前記冷媒を凝縮させることで、前記第2熱交換器及び前記第4熱交換器に入力した中温水が凝縮熱を得る第1運転条件、
(2)前記第2熱交換器に低温熱源を入力することで、蒸発熱を得て、前記冷媒を気化させ、前記第1容器内の圧力を上昇させて、
前記第1熱交換器に入力した循環中温水が吸着熱を得て、前記第1容器内の気化した前記冷媒を吸着し、
前記第4熱交換器に前記第1熱交換器から熱を得た前記循環中温水を入力することで、さらに蒸発熱を得て前記冷媒を気化させ、前記第2容器内の圧力を上昇させて、
前記第2容器内の気化した前記冷媒を吸着することで、前記第3熱交換器に入力した前記中温水が吸着熱を得る第2運転条件、
(3)前記第1容器及び前記第2容器に対して、前記第1運転条件と前記第2運転条件とを一定時間で切り替える運転制御手段を有することを特徴とする吸着式暖房・給湯装置。
A first container and a second container, which are filled with a refrigerant such as water and whose interior is kept in vacuum so that the refrigerant evaporates at a low temperature;
A first heat exchanger provided with an adsorbent in the first container;
A second heat exchanger provided to evaporate and condense the refrigerant in the first container;
A third heat exchanger provided with an adsorbent in the second container;
In the adsorption heating / hot water supply apparatus having a fourth heat exchanger provided for evaporating and condensing the refrigerant in the second container,
(1) By inputting a high-temperature heat source to the first heat exchanger and the third heat exchanger, desorption heat is obtained to vaporize the refrigerant, and the pressure in the first container and the second container Raise the
A first operating condition in which the intermediate temperature water input to the second heat exchanger and the fourth heat exchanger obtains heat of condensation by condensing the vaporized refrigerant in the first container and the second container;
(2) By inputting a low-temperature heat source to the second heat exchanger, heat of evaporation is obtained, the refrigerant is vaporized, and the pressure in the first container is increased,
The circulating hot water input to the first heat exchanger obtains heat of adsorption and adsorbs the vaporized refrigerant in the first container,
By inputting the circulating hot water obtained from the first heat exchanger to the fourth heat exchanger, further evaporating heat is obtained to vaporize the refrigerant, and the pressure in the second container is increased. And
A second operating condition in which the intermediate temperature water input to the third heat exchanger obtains heat of adsorption by adsorbing the vaporized refrigerant in the second container;
(3) An adsorption heating / hot water supply device characterized by having operation control means for switching the first operation condition and the second operation condition at a predetermined time with respect to the first container and the second container.
請求項1の吸着式暖房・給湯装置において、
(1)水等の冷媒が入れられ、前記冷媒が低温で蒸発するように、内部を真空に保った第3容器及び第4容器と、
第3容器内に吸着剤を備えた状態で設けられた第5熱交換器と、
第3容器内に冷媒の蒸発及び凝縮を行うために設けられた第6熱交換器と、
第4容器内に吸着剤を備えた状態で設けられた第7熱交換器と、
第4容器内に冷媒の蒸発及び凝縮を行うために設けられた第8熱交換器とを有し、
(2)前記運転制御手段が、
(2−1)前記第1運転条件と同時に、
前記第6熱交換器に低温熱源を入力することで、蒸発熱を得て、前記冷媒を気化させ、前記第3容器内の圧力を上昇させて、
前記第5熱交換器に前記循環中温水が吸着熱を得て、前記第3容器内の気化した前記冷媒を吸着し、
前記第8熱交換器に前記第5熱交換器から熱を得た前記循環中温水を入力することで、さらに蒸発熱を得て前記冷媒を気化させ、前記第4容器内の圧力を上昇させて、
前記第4容器内の気化した前記冷媒を吸着する事で、前記第7熱交換器に入力した前記中温水が吸着熱を得る第3運転条件、
(2−2)前記第2運転条件と同時に、
前記第5熱交換器及び前記第7熱交換器に高温熱源を入力することで、脱離熱を得て前記冷媒を気化させ、前記第3容器、及び前記第4容器内の圧力を上昇させて、
前記第3容器、及び前記第4容器内の気化した前記冷媒を凝縮させることで、前記第6熱交換器及び前記第8熱交換器に入力した中温水が吸着熱を得る第4運転条件、
(2−3)前記第3容器、及び前記第4容器に対して前記第3運転条件と前記第4運転条件を一定時間で切り替える制御を行うことを特徴とする吸着式暖房・給湯装置。
The adsorption heating / hot water supply apparatus according to claim 1,
(1) a third container and a fourth container in which a refrigerant such as water is put and the inside is kept in vacuum so that the refrigerant evaporates at a low temperature;
A fifth heat exchanger provided with an adsorbent in the third container;
A sixth heat exchanger provided to evaporate and condense the refrigerant in the third container;
A seventh heat exchanger provided with an adsorbent in the fourth container;
An eighth heat exchanger provided for evaporating and condensing the refrigerant in the fourth container;
(2) The operation control means is
(2-1) Simultaneously with the first operating condition,
By inputting a low-temperature heat source to the sixth heat exchanger, the heat of evaporation is obtained, the refrigerant is vaporized, and the pressure in the third container is increased,
The circulating hot water obtains heat of adsorption in the fifth heat exchanger, adsorbs the vaporized refrigerant in the third container,
By inputting the circulating hot water obtained from the fifth heat exchanger to the eighth heat exchanger, further evaporating heat is obtained to vaporize the refrigerant, and the pressure in the fourth container is increased. And
A third operating condition in which the medium-temperature water input to the seventh heat exchanger obtains heat of adsorption by adsorbing the vaporized refrigerant in the fourth container;
(2-2) Simultaneously with the second operating condition
By inputting a high-temperature heat source to the fifth heat exchanger and the seventh heat exchanger, desorption heat is obtained to vaporize the refrigerant, and the pressure in the third container and the fourth container is increased. And
A fourth operating condition in which the intermediate temperature water input to the sixth heat exchanger and the eighth heat exchanger obtains heat of adsorption by condensing the vaporized refrigerant in the third container and the fourth container;
(2-3) An adsorption heating / hot water supply apparatus that performs control for switching the third operation condition and the fourth operation condition at a predetermined time for the third container and the fourth container.
JP2004313707A 2004-10-28 2004-10-28 Adsorption heating and hot water supply equipment Expired - Fee Related JP4276992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313707A JP4276992B2 (en) 2004-10-28 2004-10-28 Adsorption heating and hot water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313707A JP4276992B2 (en) 2004-10-28 2004-10-28 Adsorption heating and hot water supply equipment

Publications (2)

Publication Number Publication Date
JP2006125713A true JP2006125713A (en) 2006-05-18
JP4276992B2 JP4276992B2 (en) 2009-06-10

Family

ID=36720626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313707A Expired - Fee Related JP4276992B2 (en) 2004-10-28 2004-10-28 Adsorption heating and hot water supply equipment

Country Status (1)

Country Link
JP (1) JP4276992B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008249276A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Heat pump unit and hot water supply system
DE102006055280B4 (en) * 2005-11-28 2013-09-19 Industrial Technology Research Institute Solid adsorption cooling unit
DE102013013835A1 (en) 2012-08-22 2014-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
JP2015183931A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Adsorption type heat pump
JP2017094864A (en) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 Vehicular adsorption type air conditioner
JP2017116240A (en) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 Heat pump and cold heat generation method
JP2017116239A (en) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 Heat pump and cold heat generation method
RU2626525C1 (en) * 2016-07-26 2017-07-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Device for realisation of adsorption cycle for increasing temperature potential of heat source

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006055280B4 (en) * 2005-11-28 2013-09-19 Industrial Technology Research Institute Solid adsorption cooling unit
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008249276A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Heat pump unit and hot water supply system
DE102013013835B4 (en) * 2012-08-22 2017-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
DE102013013835A1 (en) 2012-08-22 2014-02-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method for generating cooling power
US9863673B2 (en) 2012-08-22 2018-01-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorption heat pump system and method of generating cooling power
JP2015183931A (en) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 Adsorption type heat pump
JP2017094864A (en) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 Vehicular adsorption type air conditioner
US10137762B2 (en) 2015-11-20 2018-11-27 Toyota Jidosha Kabushiki Kaisha Vehicular adsorption type air conditioning device
DE102016219905B4 (en) 2015-11-20 2020-07-09 Toyota Jidosha Kabushiki Kaisha Vehicle adsorption air conditioning system
JP2017116240A (en) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 Heat pump and cold heat generation method
JP2017116239A (en) * 2015-12-25 2017-06-29 株式会社豊田中央研究所 Heat pump and cold heat generation method
RU2626525C1 (en) * 2016-07-26 2017-07-28 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Device for realisation of adsorption cycle for increasing temperature potential of heat source

Also Published As

Publication number Publication date
JP4276992B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4276992B2 (en) Adsorption heating and hot water supply equipment
JP5254440B2 (en) Method and apparatus for performing heat transfer between adsorbers operating alternately
CN208454788U (en) A kind of low temperature drying equipment handling sludge
JP4287705B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP2006017426A (en) Heat pump type steam/hot water generator
KR101370871B1 (en) Thermohygrostat with enhanced humidifier
KR101347582B1 (en) Low temperature water two-stage absorbtion type refrigerator and heater which can heating water
KR20030091755A (en) Absorption Water Chiller/Heater
JP2008224148A (en) Steam supply system
JP2009121740A (en) Adsorption type heat pump and its operation control method
US7827821B2 (en) Absorption refrigerating machine
JP2009281631A (en) Heat pump unit
CN108507219A (en) A kind of compound two-stage type lithium bromide absorption type heat pump and working method
KR100526084B1 (en) Absorption Refrigerator
JP6364238B2 (en) Absorption type water heater
KR100493598B1 (en) Absorption Type Refrigerator
JP4107582B2 (en) Single double effect absorption refrigerator and operation control method thereof
JP5318407B2 (en) Evaporative cooling device
KR20100086591A (en) Hot water supplier using heat pump
JP3348615B2 (en) Adsorption refrigeration equipment
JP2012091131A (en) Compressed air dehumidification system and method for dehumidifying compressed air
JP4596683B2 (en) Absorption refrigerator
JP2007120845A (en) Absorption heat pump
KR101076923B1 (en) An absorption type chiller-heater respondable to the heating load conditions
JP2005164207A (en) Heat pump water-heater air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees