JP2006125378A5 - - Google Patents

Download PDF

Info

Publication number
JP2006125378A5
JP2006125378A5 JP2004343057A JP2004343057A JP2006125378A5 JP 2006125378 A5 JP2006125378 A5 JP 2006125378A5 JP 2004343057 A JP2004343057 A JP 2004343057A JP 2004343057 A JP2004343057 A JP 2004343057A JP 2006125378 A5 JP2006125378 A5 JP 2006125378A5
Authority
JP
Japan
Prior art keywords
blade
wind
vertical axis
cascade
rotation shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004343057A
Other languages
Japanese (ja)
Other versions
JP2006125378A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004343057A priority Critical patent/JP2006125378A/en
Priority claimed from JP2004343057A external-priority patent/JP2006125378A/en
Publication of JP2006125378A publication Critical patent/JP2006125378A/en
Publication of JP2006125378A5 publication Critical patent/JP2006125378A5/ja
Pending legal-status Critical Current

Links

Description

垂直軸型翼列翼車装置Vertical axis cascade blade wheel device

本発明は、風力エネルギーの流体エネルギーを利用した装置に用いられる垂直軸型翼列翼車装置であって、特に低風速タイプとして知られているサボニウス型の一種である複数の翼を有したクロスフロー形風車に似た外見の翼車である垂直軸型翼列翼車装置に関するものである。  The present invention relates to a vertical axis cascade cascade device used in a device using fluid energy of wind energy, and in particular, a cross having a plurality of blades which are a kind of Savonius type known as a low wind speed type The present invention relates to a vertical axis cascade blade wheel device that is an impeller similar in appearance to a flow type wind turbine.

翼車である風車には、「翼・羽・ブレード・プロペラ」等と呼び名は異なっても、風力エネルギーを受ける主要部分と、そのエネルギーを伝達するための回転軸とがある。
更に、その回転軸が、風向きに対して平行なプロペラ型で代表される水平軸型と垂直方向に直立した垂直軸型とに分けられる。
A windmill, which is an impeller, has a main part that receives wind energy and a rotating shaft that transmits the energy, even though they are called “wings, feathers, blades, and propellers”.
Further, the rotation axis is divided into a horizontal axis type represented by a propeller type parallel to the wind direction and a vertical axis type upright in the vertical direction.

前者は翼に生ずる揚力の回転方向成分によって回転する風車で揚力型と呼ばれるが、低風速域では起動が非常に困難という欠点がある。
その点、垂直軸型は抗力形と呼ばれ、翼に風が当ると抗力によって回転方向成分の力、起動するトルクが発生する上、風の方向に関係なく回転する利点がある。すなわち、低速風域用として大変有利な風車であるといえる。
The former is a wind turbine that rotates by the rotational direction component of lift generated on the blades and is called a lift type, but has a drawback that it is very difficult to start in a low wind speed region.
In this respect, the vertical axis type is called a drag type, and when the wind hits the wing, a force of the rotational direction component and a starting torque are generated by the drag, and there is an advantage of rotating regardless of the direction of the wind. That is, it can be said that it is a very advantageous windmill for low-speed wind regions.

したがって、従来の垂直軸型翼車を、その装置としての活用先をみると、主として風力発電用として開発されていることが分かる。また、事実、風力利用の方がより早く開発を求められていると言えよう。
それ故、本発明における諸説明は、主として風力利用の風車用として説明を進めることにする。すなわち、当分の間は垂直軸型翼列翼車を垂直型風車と称して説明する。
なお、垂直軸型風車の風を受ける部分の呼称に、翼・羽・ブレード等が用いられているが、本文においては従来技術の説明を含めて全てを「翼」として表現することにする。
Therefore, it can be seen that the conventional vertical shaft type impeller has been developed mainly for wind power generation when it is used as a device. In fact, it can be said that the development of wind power is required more quickly.
Therefore, explanations in the present invention will be mainly explained for wind turbines using wind power. That is, for the time being, the vertical axis cascade wheel will be referred to as a vertical wind turbine.
Note that wings, wings, blades, and the like are used as the names of the portions that receive the wind of the vertical axis type wind turbine.

垂直軸型風車には、バトル型、サボニウス型、ジャイロミル型、ダリウス型等がある。
従来、これらの風車には夫々について数多くの種類が提案されているが、いずれのものもその翼は、回転軸に固定されていたり、翼を可動又は回動する構造であり、本発明に近いものを幾つかの従来例を紹介する。
Vertical axis type wind turbines include a battle type, a Savonius type, a gyromill type, and a Darius type.
Conventionally, many types of these wind turbines have been proposed. However, in any of these wind turbines, the blades are fixed to the rotating shaft, or the blades are movable or pivoted, which is close to the present invention. Some conventional examples are introduced.

従来例の、垂直軸型風車であり、回転羽根を多段式のカーテン状受風羽体で構成し、回転を発生する側では揚力翼形成し、風を逃がす側ではカーテン状受風羽根体の裾が翻って風が回転羽根面を素通りして逆回転力が発生しない構造としてある。「垂直軸型風車」(例えば、特許文献1参照。)。  It is a vertical axis type windmill of a conventional example, and the rotating blade is composed of a multi-stage curtain-shaped wind receiving blade, the lift blade is formed on the side where the rotation is generated, and the curtain-shaped wind receiving blade body is formed on the side where the wind is released. The structure is such that the skirt turns and the wind passes through the rotating blade surface and no reverse rotational force is generated. "Vertical axis type windmill" (for example, refer to Patent Document 1).

また、回転軸に放射状の一体型の格子状枠に兆番付き分割風受け板を設けた構造であり、風を受ける時は分割受け風板が全体を覆う様寄りかかり、風に逆らって回転する時は分割風受け板が風見鳥の如く風に庫いて風の抵抗を少なくして風力を有効に利用するとした。「風力発電用風車」(例えば、特許文献2参照。)  In addition, it has a structure in which a trough-numbered divided wind receiving plate is provided on a rotating grid with a radial integrated lattice frame. When receiving wind, the divided receiving wind plate leans over to cover the whole and rotates against the wind. At times, it was decided that the divided wind receiving plate would be stored in the wind like a weather vane and the wind resistance would be reduced to effectively use the wind power. “Windmill for wind power generation” (see, for example, Patent Document 2)

また更に、複数枚の板状の羽根を有する水平回転形の風車で、羽根の開口部シャッタを備えた構造で、風下方向に回転する時は開口部を閉じ、風上に回転する時は開口部を開くことを特徴とする「風力発電装置」(例えば、特許文献3参照。)。  Furthermore, it is a horizontal rotation type windmill having a plurality of plate-like blades, and has a blade opening shutter. When rotating in the leeward direction, the opening is closed, and when rotating upwind, it is opened. A “wind power generator” characterized by opening a part (see, for example, Patent Document 3).

特開平10−339258JP 10-339258 A 特許公開2000−320445Patent Publication 2000-320445 特開平9−60573JP 9-60573

しかしながら、特許文献1の垂直軸型風車においては、カーテン状の受風羽根々回転羽根に構造上の難点があり、カーテン状の受風羽根と回転羽根が風下へ位置したときに羽根の裏側が希薄な空気層ができても、満足するものとは思われない。  However, in the vertical axis type windmill of Patent Document 1, there are structural difficulties in the curtain-shaped wind receiving blades and the rotating blades. Even if a thin air layer is formed, it does not seem satisfactory.

また、特許文献2の風力発電用風車で、回転軸に格子状で分割した風受け板を設けた構造であり、風受け板が風の抗力のみの利用である為に、風が外側に逃げて十分な回転が得られるとおもわれない。  In addition, the wind turbine for wind power generation of Patent Document 2 has a structure in which a wind receiving plate divided in a lattice shape is provided on the rotation shaft, and the wind receiving plate uses only wind drag, so that the wind escapes to the outside. It is not expected that sufficient rotation will be obtained.

なお、特許文献3の風力発電装置においても、前記の文献と同様である。  The wind power generator disclosed in Patent Document 3 is the same as that described above.

本発明の目的は比較的簡単な構造で安価に提供でき、風車はどの方向の微風でも強風でも回転し有効な回転エネルギーが得られる垂直軸型翼列翼車装置を提供するものである。  An object of the present invention is to provide a vertical axis cascade blade wheel device which can be provided at a low cost with a relatively simple structure, and the wind turbine can rotate even in light winds or strong winds in any direction to obtain effective rotational energy.

本発明の垂直軸型翼列翼車装置の基本的な構成を、分かり易いように一実施例である図1に基ずいて説明する。なお、図1と図6と図7と図10と図11を除く他の平面図には、本発明の構成を理解しやすいように、中心線や同心円を細い点線で描いてある。
垂直軸型翼列翼車装置において、垂直な回転軸1を中心として、その回転軸1に直交するように上方と下方に翼回転軸支持体2を互いに間隔を有して平行に設ける。
さらに、翼回転軸支持体2を、回転軸1から放射状に延びたアームとしてもよいが、円盤状として取り入れた流体が上下方向には流出しないようにする方がベターである。
The basic configuration of the vertical axis cascade gear wheel device of the present invention will be described with reference to FIG. 1 as an example for easy understanding. 1, 6, 7, 10, and 11, center lines and concentric circles are drawn with thin dotted lines so that the configuration of the present invention can be easily understood.
In the vertical shaft type cascade wheel device, a blade rotation shaft support 2 is provided in parallel with an interval between and above and below the rotation shaft 1 around the vertical rotation shaft 1 so as to be orthogonal to the rotation shaft 1.
Further, the blade rotating shaft support 2 may be an arm extending radially from the rotating shaft 1, but it is better to prevent the fluid taken in a disk shape from flowing out in the vertical direction.

この上下の翼回転軸支持体2の間で、かつ、その周禄辺部に、回転軸1と平行な翼回転軸3と翼衝止棒体4を立設する。なお、この翼回転軸3を芯として自在に回動し、少なくとも一部分が回動して翼衝止棒体4に衝止する翼5と、燐設する翼回転軸3に衝止する翼5で、しかも高さを翼回転軸3の長さに近いものとする長方形の翼5を設けたものとする。
そして、これら翼5を等間隔で、しかも複数を直線に並べた翼列6として、翼列6の左右両端に翼衝止棒体4とで翼車1組の基本単位を構成するものとした。この基本単位と隣に設置する基本単位との間は、全て等間隔となるように複数組を夫々配設して全体を構成することを特徴とする垂直軸型翼列翼車装置としたのである。
Between the upper and lower blade rotating shaft supports 2 and on the peripheral edge thereof, a blade rotating shaft 3 and a blade stopper rod 4 parallel to the rotating shaft 1 are provided upright. The blade rotating shaft 3 is freely rotated around the blade, and at least a portion of the blade rotates to stop against the blade stopping rod body 4, and the blade 5 stops against the blade rotating shaft 3 to be connected. In addition, it is assumed that the rectangular blade 5 whose height is close to the length of the blade rotating shaft 3 is provided.
The blades 5 are arranged at equal intervals and a plurality of blades 6 are arranged in a straight line, and a basic unit of one set of impellers is configured with blade stopper rods 4 at both left and right ends of the blade row 6. . Since the basic unit and the basic unit to be installed next to each other are arranged at equal intervals, a plurality of sets are respectively arranged to constitute the entire vertical shaft type cascade wheel device. is there.

上記の翼5の形状は、全体として長方形状だから、その短辺を上下側とする。また、短辺の断面形状は、図6のように飛行機の主翼の断面に似た流線型とするものと、図7のように鳥の風切羽根に似た構造のものとした。
なお回動する翼5の翼回転軸3が翼5の短辺にて一端または適宜ずれた位置にあって基本単位を構成するようにした垂直軸型翼列翼車装置とする。
Since the shape of the wing 5 is rectangular as a whole, the short side is the upper and lower sides. Also, the cross-sectional shape of the short side is assumed to be a streamline type similar to the cross section of the main wing of the airplane as shown in FIG. 6, and a structure similar to the wind blade of a bird as shown in FIG.
In addition, it is set as the vertical axis | shaft cascade wheel apparatus which comprised the blade rotating shaft 3 of the rotating blade 5 in the short side of the blade 5, or the position shifted | deviated suitably, and comprised a basic unit.

また、翼回転軸3に翼衝止棒体4の回動衝止成分を付加することで、翼衝止棒体4を立設する必要を無くしても、その効果を発揮することができる。
その回動衝止成分を付加する位置は、翼回転軸3と翼回転軸支持体2の両方に、翼5の回動する角度に見合う位置とする。
なお、常識的な衝止体としては、例えばショックアブソバ−等を設ければよい。
In addition, by adding the rotation stopping component of the blade stopper rod body 4 to the blade rotating shaft 3, the effect can be exhibited even if it is not necessary to stand the blade stopper rod body 4.
The position where the rotation stopping component is added is a position corresponding to the rotation angle of the blade 5 on both the blade rotation shaft 3 and the blade rotation shaft support 2.
In addition, what is necessary is just to provide a shock absorber etc. as a common sense stopper, for example.

そして、前記の翼列6の配列は翼回転軸3と衝止棒体4が等間隔であり、その間隔は翼5の短辺よりやや短い間隔とする。
なお、翼列6の列は翼回転軸3と衝止棒体4とが直線になるよう設ける。
しかも翼列6は列の左右両端に衝止棒体4を配設し、その、内側に複数の翼回転軸3に接合する翼5を配設する。
In the arrangement of the blade row 6, the blade rotation shaft 3 and the stopper rod body 4 are equally spaced, and the distance is slightly shorter than the short side of the blade 5.
The blade row 6 is provided so that the blade rotation shaft 3 and the stopper rod body 4 are straight.
Moreover, the blade row 6 is provided with the stopper rods 4 at the left and right ends of the row, and the blades 5 that are joined to the plurality of blade rotation shafts 3 are provided inside thereof.

これら上述の各例で翼列6の配設する位置は、本発明に重要な意味を持つものである。すなわち、回転軸1が回転した際に、翼列6の翼5が最も効率がよく風のエネルギーを受け止められるように、流体エネルギーの到来方向に向けて翼5の短辺が直交するような位置であること。同時に、流体エネルギーの損失が最小となるように流体の流れる向きに翼5の短辺が平行状態となる位置とする。この両者を満足する位置に設けなければ成らないのである。  The position where the blade row 6 is disposed in each of the above examples has an important meaning in the present invention. That is, when the rotary shaft 1 rotates, the blade 5 of the blade row 6 is positioned so that the short sides of the blade 5 are orthogonal to the direction of arrival of fluid energy so that the wind energy can be received most efficiently. Be. At the same time, the position where the short side of the blade 5 is parallel to the direction of fluid flow is set so that the loss of fluid energy is minimized. It must be provided in a position that satisfies both.

そして、図2に示すように、翼列6を回転軸1から外周に向けて放射状に設けてあるが、本発明では、図3に示すように、翼列6の一端を周禄辺部に設け、そして他端を周禄辺部より内側である回転軸1側に角度を有して設けたことである。
なお、翼列6の角度とは、翼列6の巾にもよるが、風の成分を十分利用できる角度とする。
As shown in FIG. 2, the blade row 6 is provided radially from the rotating shaft 1 toward the outer periphery. In the present invention, as shown in FIG. And the other end is provided with an angle on the rotating shaft 1 side which is inside the peripheral side.
The angle of the blade row 6 depends on the width of the blade row 6 but is an angle at which the wind component can be sufficiently utilized.

しかしながら、前記のことだけでは本発明の効果を満足に引き出すことはできないのである。その理由は図3と図4にて説明する。
なお、両図とも翼列6の基本単位を4組のもので示したし、流体としては風にて説明する。
両図の下方にある矢印は風向きを表している。そしていずれの図においても、回転軸1の回転方向は時計と反対方向すなわち左回りになるものとした。
However, the effects of the present invention cannot be satisfactorily brought out only by the above. The reason will be described with reference to FIGS.
In both figures, the basic unit of the blade row 6 is shown as four sets, and the fluid will be described as wind.
The arrows at the bottom of both figures represent the wind direction. In any of the drawings, the rotation direction of the rotary shaft 1 is assumed to be opposite to the clockwise direction, that is, counterclockwise.

なお、図2の鎖線で示した、左上方の翼5は反転した状態である。このように、反転しても夫々の翼5が風の成分を効率よく利用するものである。
なお、図2において、上方の翼5が翼回転軸3を芯に反転した状態で示してあるが、実際には、この位置で反転するのではなく、翼列6の配設角度にもよるが上方よりかなり左に位置して反転する。
The upper left wing 5 shown by the chain line in FIG. 2 is in an inverted state. In this way, each blade 5 efficiently uses the wind component even if it is reversed.
In FIG. 2, the upper blade 5 is shown in a state of being reversed with the blade rotation shaft 3 as a core, but actually, it is not reversed at this position, but depends on the arrangement angle of the blade row 6. Is positioned far left from above and flips.

図3において、回転軸1の右方の翼5と上方の翼5が風向きに交叉するようになって風を受け止め、左方の翼5と下方の翼5は風向きに平行となるから風の抵抗が最小となり、最も効率がよいように考えられるが実際には多少の相違がある。  In FIG. 3, the right wing 5 and the upper wing 5 of the rotating shaft 1 cross in the wind direction to catch the wind, and the left wing 5 and the lower wing 5 are parallel to the wind direction. The resistance is minimized and seems to be the most efficient, but in practice there are some differences.

すなはち、図4において、細線で風の流れと風の等圧線を示したし、これで分かるように空気の高圧部分と空気の希薄部分が見えてくるのである。
すなはち、翼車内に入った空気は必ず出ようとする、それゆへ、下方の矢印より翼車内に入った空気は右方と上方の翼5で圧縮空気の成分ができて翼5に抗力が生れる。また、翼車内から放出された空気は圧縮から開放され右方と上方の翼5の裏側には希薄な空気の成分ができて翼5に揚力が生れることになる。この、両者の抗力と揚力とにより翼車は回転軸1を芯に回転力が発生するのである。
That is, in FIG. 4, the flow of wind and the isobar of wind are shown by thin lines, and as can be seen, the high-pressure portion of air and the lean portion of air can be seen.
That is, the air that has entered the impeller is always going to come out, and the air that has entered the impeller from the lower arrow is formed into a compressed air component on the right and upper wings 5 to the wing 5. Drag is born. Further, the air released from the inside of the impeller is released from the compression, and a lean air component is formed on the right side and the back side of the upper wing 5, and lift force is generated in the wing 5. Due to the drag and lift of both, the impeller generates a rotational force around the rotating shaft 1.

次に、図5に示した翼列6を6列にしたものは、前述の4列のものより風の流れが複雑になるが、これは、右方の翼5に当った風は右上方の翼5に当り、更に回転軸1より右側の翼5に当った風の成分が上方の翼5に当る角度で配設することにより、翼車の回転が強力になる。なお、左方と下方の翼5は風の流れと平行になるので、翼車の回転に支障は生じない。  Next, in the case where the blade rows 6 shown in FIG. 5 are arranged in six rows, the flow of wind is more complicated than that in the above-described four rows, but this is because the wind hitting the right blade 5 is on the upper right side. When the wind component hitting the right wing 5 and hitting the right wing 5 from the rotation shaft 1 is arranged at an angle where it hits the upper wing 5, the rotation of the impeller becomes strong. Since the left and lower blades 5 are parallel to the wind flow, there is no problem with the rotation of the impeller.

これで、本発明の垂直軸型翼列翼車装置は上述したように風力エネルギーを動力源とする翼車として、また、水力エネルギーを動力源とする水車として活用させるなど、流体のあるところに適用できるももである。更に、それらのエネルギーを動力源として直接利用する機構等へ連結するものと、発電機等に連結して電力をとりだし、利用することができる。  Thus, as described above, the vertical axis type cascade wheel device according to the present invention is used as an impeller using wind energy as a power source, or as a turbine using hydraulic energy as a power source. Applicable stuff. Furthermore, it is possible to take out and use electric power connected to a mechanism that directly uses these energies as a power source, or to a generator or the like.

このような本発明の垂直軸型翼列翼車装置によると次のような効果が得られる。
翼回転軸3を芯にして自由に回動し、かつ、一端が翼回転軸3と翼衝止棒体4に衝止する翼5であり、その翼回転軸3と翼衝止棒体4を直線に配設した翼列6であるとして翼車1組の基本単位を構成したから、翼列6の位置を最適な所に選定することにより、回転軸1に対する翼列6の配置に伴う風流の軌跡を考慮し、翼5が流体エネルギーを受けて最も効率よくエネルギー交換ができ得て、回転軸1がスムーズに回転するようになったのである。
According to such a vertical axis type cascade wheel device of the present invention, the following effects can be obtained.
The wing rotation shaft 3 is a wing 5 that freely rotates around the wing rotation shaft and that has one end that stops against the wing rotation shaft 3 and the wing stop rod body 4. The wing rotation shaft 3 and the wing stop rod body 4 Since the basic unit of one set of impellers is constructed assuming that the blade row 6 is arranged in a straight line, the position of the blade row 6 is selected at an optimum position, thereby accompanying the arrangement of the blade row 6 with respect to the rotary shaft 1 Considering the trajectory of the wind flow, the blade 5 receives fluid energy and can exchange energy most efficiently, and the rotating shaft 1 rotates smoothly.

翼列6において翼衝止棒体4を複数の翼回転軸3の左右両側に設けたものは、翼5の翼回転軸3に対する回動範囲が制限されることにより、遠心力等による振り回しを抑える。  In the blade row 6, the blade stopper rods 4 provided on the left and right sides of the plurality of blade rotation shafts 3 are restricted by the rotation range of the blades 5 with respect to the blade rotation shafts 3, so suppress.

翼5を大きな1枚の翼とするよりも、大きな翼を分割した構造の翼5とすることで翼衝止棒体4に翼5の一部分が当る衝撃音を小さくすることができる。
さらに、強風に対しても安定した構造となる。
Rather than making the wing 5 a single large wing, by making the wing 5 having a structure in which a large wing is divided, it is possible to reduce the impact sound that a part of the wing 5 hits against the wing stop rod body 4.
Furthermore, the structure is stable against strong winds.

上述のことから、風水力両用ではあるが、比較的簡単な構造にて安価に製造でき、翼5が流体の到来側より流体の流出側に回転する際は多くの流体エネルギー圧を受け得て、翼5が流体の流出側より流体の到来側に回転するときは、翼5に受ける流体エネルギー圧抵抗を極力少なくすることができるから、流体として風ならどの方向からの微風でも回転し始め、低風域でも有効な回転をすることができるようになり得たのである。  From the above, although it is used for both wind and hydraulic power, it can be manufactured inexpensively with a relatively simple structure, and when the blade 5 rotates from the fluid arrival side to the fluid outflow side, it can receive a lot of fluid energy pressure. When the blade 5 rotates from the fluid outflow side to the fluid arrival side, the fluid energy pressure resistance received by the blade 5 can be reduced as much as possible. It has become possible to rotate effectively even in a low wind region.

本発明を風力利用に最適なものとして考慮すれば、水平回転方式の翼車装置で、中心に回転動力を取り出すための回転軸1があり、この回転軸1に直交するよう上部と下部に設ける翼回転軸支持体2は単純に円盤とする。この円盤である翼回転軸支持体2の外周近傍で回転軸1と平行に、細長い複数の翼回転軸3と、それに近接して同様に細長い丸棒の翼衝止棒体4を設け、この翼回転軸3を芯に容易に回動し、かつ、一端が翼衝止棒体4と翼回転軸3に衝止する長方形の翼5を有し、複数の翼回転軸3と、その左右両端に翼衝止棒体4を直線に配設して翼列6とした1組の翼車を基本単位とする。  Considering that the present invention is optimal for wind power use, there is a rotary shaft 1 for taking out rotational power in the center of a horizontal rotation type impeller device, and it is provided at the upper and lower portions so as to be orthogonal to the rotation shaft 1. The blade rotating shaft support 2 is simply a disk. In the vicinity of the outer periphery of the wing rotary shaft support 2 which is this disk, a plurality of elongated wing rotary shafts 3 are provided in parallel with the rotary shaft 1 and in the vicinity thereof, similarly, a long and narrow round blade wing stopper rod body 4 is provided. The blade rotation shaft 3 is easily rotated around the core, and one end thereof has a blade blade 4 and a rectangular blade 5 that stops against the blade rotation shaft 3. A set of impellers in which blade impellers 4 are arranged in a straight line at both ends to form a blade row 6 is a basic unit.

この翼車の基本単位を、円盤である翼回転軸支持体2の外周辺に沿った近傍に等間隔に配置する構造とするのであるが、配置する翼車の基本単位の数は図1乃至図4のように最低でも4組は必要であり、期待する出力は5組か、図5に示す6組がよいと思われる。  The basic units of the impeller are arranged at equal intervals in the vicinity along the outer periphery of the blade rotating shaft support 2 that is a disk. As shown in FIG. 4, at least 4 sets are necessary, and the expected output is 5 sets or 6 sets shown in FIG.

ここで翼5の形状について考察すると、長さ方向では長方形とするが、その短辺での断面形状は、流体の中で用いるから好ましくは図6に示すような飛行機の翼のように流線型とし、翼回転軸3は翼5の中に隠される方が好ましいといえる。
図6では、翼5中の翼回転軸3のある位置が翼頭7側に近い位置であり、その間隔は実験の結果、翼頭7端と翼尾8端を10等分した場合の翼頭より3の位置が最良と思われる。
図7における翼回転軸3が翼頭に位置しているのは、この形状が鳥の風切り羽の構造と同様な形状であり、できればこのような翼5が理想であるからである。
Considering the shape of the wing 5 here, it is rectangular in the length direction, but the cross-sectional shape at the short side is preferably streamlined like an airplane wing as shown in FIG. It can be said that the blade rotation shaft 3 is preferably hidden in the blade 5.
In FIG. 6, the position of the blade rotation shaft 3 in the blade 5 is a position close to the blade head 7 side, and the distance between the blade blade 7 and the blade tail 8 is divided into 10 parts as a result of the experiment. Position 3 from the head seems to be the best.
The blade rotation shaft 3 in FIG. 7 is located at the blade head because this shape is similar to the structure of a bird's wind feather, and if possible, such a blade 5 is ideal.

次に、本発明の作動について図4を用いて説明する。先ず風の吹き始めにおいて、風向き(下方の矢印)に対して下方と左方の翼5は、翼回転軸3と翼衝止棒体4に触れない位置にあるから風向きに平行のまま翼尾8は風下に向いている。右方と上方の翼5は風圧で押されて翼5の一部が翼回転軸3と翼衝止棒体4に衝止されて図示のように翼尾8が方向を変えて、右方の翼5は風を受けとめる姿勢となり風力を蓄える。  Next, the operation of the present invention will be described with reference to FIG. First, at the beginning of the wind, the lower and left wings 5 with respect to the wind direction (downward arrow) are in a position where they do not touch the wing rotation shaft 3 and the wing stop rod body 4, so that the wing tail remains parallel to the wind direction. 8 is facing downwind. The right and upper blades 5 are pushed by the wind pressure, and a part of the blade 5 is blocked by the blade rotating shaft 3 and the blade stop rod 4 so that the blade tail 8 changes its direction as shown in the figure. The wing 5 takes an attitude of receiving wind and accumulates wind power.

この風力エネルギーは、図5において、回転トルクを発生しようと翼5が翼衝止棒体4と翼回転軸3を介して翼回転軸支持体2と共に回転軸1を反時計方向へ回し、回転軸1から回転エネルギーとして動力を取り出せるのである。更に、右方の翼5に当った風の流れは、上方の翼5に当たる角度になり、ここでも回転トルクを発生させて、風は右上方向へ抜け去るのである。
実際には上記した間に、翼車は風力で回転しているから風流は上方よりやや左方にずれることになる。
In FIG. 5, this wind energy is rotated by rotating the rotating shaft 1 counterclockwise together with the blade rotating shaft support 2 through the blade stopper rod 4 and the blade rotating shaft 3 in order to generate rotational torque. Power can be extracted from the shaft 1 as rotational energy. Furthermore, the flow of the wind that hits the right wing 5 has an angle that hits the upper wing 5, and again generates rotational torque, so that the wind escapes in the upper right direction.
In fact, during the period described above, since the impeller is rotating with wind power, the wind flow is shifted slightly to the left from above.

回転軸1の回転速度が高まってくると、遠心力の発生によって、全ての翼5が翼回転軸3を芯として回転し、その翼尾8を外周方へ飛び出させようとする。
しかし、遠心力は風力より生ずる翼5の回動によって発生するものであるから、風力が無ければ遠心力は生じない。したがって、通常の場合、この遠心力は風力エネルギーには及ばないから、風の強い風上、すなはち、左方と下方の位置に回って来た時の翼5の向きは、遠心力より風力の方が勝って、常に始動時と同じ向きのまま、すなわち、風向きに平行のまま翼尾8は風下に向いていることになる。
When the rotational speed of the rotary shaft 1 increases, the generation of centrifugal force causes all the blades 5 to rotate about the blade rotary shaft 3 and to cause the blade tails 8 to jump outward.
However, since the centrifugal force is generated by the rotation of the blade 5 generated by the wind force, the centrifugal force is not generated if there is no wind force. Therefore, in the normal case, this centrifugal force does not reach the wind energy, so the direction of the blade 5 when it comes to the windy windward, that is, the left and lower positions is more than the centrifugal force. The wind power wins and always stays in the same direction as at the time of starting, that is, the wing tail 8 faces leeward in parallel with the wind direction.

風下に位置した左上方の翼5は、風の真下(図3左上方)を過ぎた辺りから、翼列6の角度が風の流る角度と平行状態となり、さらに、風の真下よりさらに過ぎると、翼5は遠心力と風の流れも加担するから、急に翼尾8は翼回転軸3と翼衝止棒体から離れて180度反転する。図2の左上の鎖線で示めした位置で反転が起きていることを示している。
その後動作は、前述のように左方と下方の翼5の姿勢となって、風の流れに平行になり風圧抵抗が極力小さくなって回転エネルギーの損失を少なくして、この装置は支障無く回転できるのである。
The upper left wing 5 located on the leeward side is in a state where the angle of the blade row 6 is parallel to the angle of the wind flow from just behind the lower wind (upper left corner in FIG. 3), and further more than just below the wind. Then, since the blade 5 also takes into account the centrifugal force and the flow of wind, the blade tail 8 suddenly moves away from the blade rotation shaft 3 and the blade stopper rod body and reverses 180 degrees. It shows that inversion occurs at the position indicated by the chain line in the upper left of FIG.
After that, as described above, the left and lower wings 5 are in the posture, parallel to the wind flow, and the wind pressure resistance is reduced as much as possible to reduce the loss of rotational energy. It can be done.

ところで、翼車の基本単位は、図5のように6組とするが最良だと前述した。すなわち、翼列6自体の大きさは相対的に4組のものより小さくなるが、下方からの風向に対して図5に示したような姿勢に夫々の翼5とその翼尾8の向きがなるように、すなわち、翼列6は回転軸1に近い方が右隣の翼列6に対して斜めに指すように配設する。このことにより、翼車の中心より右側の風は、右方の翼列6に当って、さらに、その風が右上方の翼列6に当り翼車の上方すなわち、風下方向に流れ去るのである。なお、翼車の中心より左側の風は左上方の翼列6に当り、翼車の上方すなわち、風下方向に流れ去るのである。  By the way, the basic unit of the impeller is 6 sets as shown in FIG. That is, the size of the blade row 6 itself is relatively smaller than that of the four pairs, but the orientation of each blade 5 and its tail 8 is in the posture shown in FIG. 5 with respect to the wind direction from below. In other words, the blade row 6 is arranged so that the side closer to the rotation shaft 1 is pointed obliquely with respect to the blade row 6 on the right side. As a result, the wind on the right side from the center of the impeller hits the right cascade 6 and the wind hits the upper cascade 6 and flows away above the impeller, that is, in the leeward direction. . The wind on the left side from the center of the impeller hits the upper left cascade 6 and flows away above the impeller, that is, in the leeward direction.

上述のように図5の翼車内に入った空気は、右方の翼列6と右上方の翼列6と左上方の翼列6によって収束され圧縮気流となる。  As described above, the air that has entered the impeller of FIG. 5 is converged by the right cascade 6, the upper right cascade 6, and the upper left cascade 6 to become a compressed airflow.

そして次に、翼車内から出た空気は、開放され拡散するので、右方と右上方と左上方の翼列6を通過した風の拡散気流は、翼列6の裏側に空気の希薄なところが出来て、この希薄なところに翼列6が引き込まれる状態となるのである。  Then, since the air that has exited the inside of the impeller is released and diffused, the diffused airflow of the wind that has passed through the right, upper right, and upper left blade rows 6 has a lean air on the back side of the blade rows 6. As a result, the blade row 6 is drawn into this sparse place.

このこよにより、翼車の翼列6に風が当る側には抗力が生み出され、風の当らない翼列6の裏側には揚力が生れるのである。  As a result, drag is generated on the side of the blade wheel 6 where the wind strikes and lift is generated on the back side of the blade row 6 where the wind does not hit.

さすれば、基本単位が4組のものよりも翼列6が多い故に、風の流れもスムーズとなり、全体として回転バランスも良くなって効率が向上する。  In this case, since there are more blade rows 6 than those having four basic units, the flow of wind is smooth, and the overall rotation balance is improved, thereby improving the efficiency.

したがって、本発明の装置における翼車の基本単位の組数は6組前後が好ましい。敢えて限定するならば、4組〜8組で構成することが良いと思われる。
それ以下では、回転力が不足して出力が少な過ぎるし、それ以上では、翼列6を小さく構成したとしても、翼列6がお互い干渉しあって、風の通りを妨げ、風の流れを乱れさせて、効率を減少させてしまうことになる。
Therefore, the number of basic units of the impeller in the apparatus of the present invention is preferably around six. If it dares to limit, it seems that it is good to comprise with 4-8 sets.
Below that, the rotational force is insufficient and the output is too low. Above that, even if the blade row 6 is made smaller, the blade rows 6 interfere with each other, obstructing the passage of the wind, It will be confused and reduce efficiency.

以下、本発明の実施例について図1〜図11を参照しながら説明する。ここで、各実施例中、同一機能を有する構成要素は同一符号を付して説明を省略若しくは簡略する。
先ず、図1は本発明の翼車の基本単位を4組とした代表的な垂直軸型翼列翼車装置で、自然界の風力を利用するものとした。大きさは目的とする出力によって定めれば良いので、寸法記載は全て省略したが、図から各部分の大きさを相対的に十分判断できると信ずる。
Embodiments of the present invention will be described below with reference to FIGS. Here, in each Example, the component which has the same function attaches | subjects the same code | symbol, and abbreviate | omits or simplifies description.
First, FIG. 1 shows a typical vertical axis cascade blade wheel device in which four basic units of the blade wheel of the present invention are used, and it uses natural wind power. Since the size may be determined according to the target output, all dimensions are omitted, but it is believed that the size of each part can be determined relatively sufficiently from the figure.

上下の、翼回転軸支持体2は円盤とし、翼5は長方形とするが、材質は使用環境にしたがって選択すればよく、耐久性ではチタン製で、軽量ではアルミ製、コストは鉄製や木製、海に近いところでは耐食性に優れるプラスチック等通常用いられるものでよい。また、翼衝止棒体4と翼回転軸3は細長い鋼棒となるだろうが、適合する炭素繊維や合成樹脂製でも構わない。回転軸3は翼5が極力回転しやすいようにさえすれば、その両端は上下の翼回転3へ固着させても回転自在に軸着させてもどちらでも構わない。  The upper and lower blade rotating shaft support 2 is a disk, and the blade 5 is rectangular, but the material may be selected according to the usage environment, it is made of titanium for durability, made of aluminum for light weight, made of iron or wooden, In the vicinity of the sea, a plastic such as plastic having excellent corrosion resistance may be used. The blade stopper rod body 4 and the blade rotating shaft 3 will be elongated steel rods, but may be made of compatible carbon fiber or synthetic resin. The rotating shaft 3 may be either fixed to the upper and lower blade rotations 3 or may be pivotally attached to the upper and lower blade rotations 3 as long as the blades 5 can be rotated as easily as possible.

図1では、翼回転軸3の上下で翼回転軸支持体2と回転自在に軸着させ、ほぼ全長は翼5の一面に接着なり溶着させたものとして示している。
なお、翼衝止棒体4は複数の翼回転軸3が直線に並んだ両端で左右に各1本設けてある。
なお、翼列6は、複数の翼回転軸3を直線に並べ、その両端に翼衝止棒体4を各1本ずつ設けた形状をいう。
In FIG. 1, the blade rotation shaft support 2 is rotatably attached to the upper and lower sides of the blade rotation shaft 3, and the entire length is shown as being bonded and welded to one surface of the blade 5.
The blade stopper rod 4 is provided on the left and right at both ends where a plurality of blade rotation shafts 3 are arranged in a straight line.
The blade row 6 has a shape in which a plurality of blade rotation shafts 3 are arranged in a straight line, and one blade stopper rod body 4 is provided at each end thereof.

実施例2として、図3と図5にて説明すると、翼5が図6のような断面としたものであって、翼回転軸3が翼5の中に入っているために、翼5の流線型がそのまま外周に表れるから風流を乱すことが小さくなり好ましい実施例である。  3 and 5, the blade 5 has a cross section as shown in FIG. 6, and the blade rotation shaft 3 is in the blade 5. Since the streamline type appears on the outer periphery as it is, the disturbance of the wind flow is reduced, which is a preferred embodiment.

実施例3、水車として用いる場合は、図2に示すように、翼列を十字配列としてもよい。
なお、本発明の垂直軸型翼列翼車を、水車として利用すり時は垂直に設置するよりも、水平に設置する方が一般的である。
In the case where the third embodiment is used as a water wheel, as shown in FIG.
In addition, when the vertical axis type cascade wheel of the present invention is used as a water turbine, it is generally installed horizontally rather than vertically.

実施例4として、図8と図9にて説明すると、各翼5が回転軸1の円周上に位置している。これは、強風時の対策として示している。
このような位置に、翼5を固定する方法として、翼回転軸支持体2の任意の位置で、翼5又は、翼回転軸3を固定するためのストッパーを設ける。
そのストッパーを自動的に可動と制止する方法として、その駆動装置は、遠心力、または、電磁式・モーター・アクチュエーター等とマイコンを併用利用するか、それとも手動で行ってもよい。
The fourth embodiment will be described with reference to FIGS. 8 and 9. Each blade 5 is located on the circumference of the rotary shaft 1. This is shown as a measure against strong winds.
As a method of fixing the blade 5 at such a position, a stopper for fixing the blade 5 or the blade rotation shaft 3 is provided at an arbitrary position of the blade rotation shaft support 2.
As a method of automatically stopping and stopping the stopper, the driving device may use centrifugal force, electromagnetic type, motor, actuator, etc. in combination with a microcomputer, or manually.

実施例5として、図10と図11にて説明する、大きな風力を得ようとすると、翼車1組のものを大型にすることも出来るが、翼車を数段重ねることでも大きな風力をうることができる。
その形状として、自然界の樹木のように鉛直形状や円錐形状に翼車を重ねてもよい。
As Example 5, when trying to obtain a large wind force as described in FIGS. 10 and 11, it is possible to increase the size of a set of impellers. be able to.
As the shape, the impeller may be stacked in a vertical shape or a conical shape like a natural tree.

上述の諸実施例において、流体が上下方向に逃げても構わないなら、図示省略したが、翼回転軸支持体2を円盤代えて、回転軸1部から周囲へ放射状に延びたアームとし、そのアームの先端辺りに翼車の基本単位を設けたものとしてもよいだろう。
また、翼5を翼回転軸3に固着したものは、上下の翼回転軸支持体2間の取り付け手段として、翼回転軸3自体の、心棒を回転自在に貫通するパイプとして、パイプを翼5に固着させ、その心棒の両端を上下の翼回転軸支持体2に固定するなど、種々な慣用手段を用いればよいのであり、それら均等手段によって本発明が限定されるものではない。
In the above-described embodiments, if the fluid may escape in the vertical direction, the illustration is omitted, but the blade rotating shaft support 2 is replaced with a disk, and an arm that extends radially from the rotating shaft 1 part to the periphery, The basic unit of the impeller may be provided around the tip of the arm.
Further, the blade 5 fixed to the blade rotation shaft 3 is used as an attachment means between the upper and lower blade rotation shaft supports 2, and the pipe is used as a pipe of the blade rotation shaft 3 itself that rotatably penetrates the mandrel. Various conventional means may be used, such as fixing both ends of the mandrel to the upper and lower blade rotating shaft supports 2, and the present invention is not limited by these equivalent means.

本発明の、垂直軸型翼列翼車装置で、流体エネルギーを回転運動エネルギーとして取り出すことで、回転運動を活用するあらゆる装置に利用できるものである。  The vertical-axis cascade wheel device according to the present invention can be used for any device that utilizes rotational motion by extracting fluid energy as rotational kinetic energy.

この発明の実施例を示す斜視図である。(実施例1)  It is a perspective view which shows the Example of this invention. (Example 1) この発明の動作の良否を説明するための説明用の平面図である。  It is a top view for description for demonstrating the quality of operation | movement of this invention. この発明の配設と動作の実施例を示す配設と動作の説明用の平面図である。  It is a top view for explanation of arrangement and operation showing an example of arrangement and operation of this invention. この発明の空気の流れと、空気の気密と希薄部分を表わした平面図である。  It is a top view showing the air flow of this invention, the airtightness of air, and a lean part. この発明の翼列が6組で構成した平面図である。  It is the top view which the blade row of this invention comprised with 6 sets. この発明の翼回転軸が翼の翼頭より3の位置にある断面図である  It is sectional drawing in which the wing | blade rotating shaft of this invention exists in the position of 3 from the wing | wing head. この発明の翼回転軸が翼の翼頭に位置した断面図である。  It is sectional drawing in which the blade rotating shaft of this invention was located in the blade head of the blade. この発明の4組の翼を固定した状態を示す平面図である。  It is a top view which shows the state which fixed 4 sets of wing | blade of this invention. この発明の6組の翼を固定した状態を示す平面図である。  It is a top view which shows the state which fixed 6 sets of wing | blade of this invention. この発明の翼車を鉛直状に重ねた外観図である。  It is the external view which piled up the impeller of this invention vertically. この発明の翼車を円錐状に重ねた外観図である。  It is the external view which piled up the impeller of this invention in cone shape.

符号の説明Explanation of symbols

1 回転軸
2 翼回転軸支持体
3 翼回転軸
4 翼衝止棒体
5 翼
6 翼列
7 翼頭
8 翼尾
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Wing rotating shaft support body 3 Wing rotating shaft 4 Wing stop rod body 5 Wing 6 Blade row 7 Wing head 8 Wing tail

Claims (5)

垂直軸型翼列翼車装置において、回転軸(1)を中心として、該回転軸(1)に直交するよう上方と下方に翼回転軸支持体(2)を互いに間隔を有して平行に設け、上記両翼回転軸支持体(2)間隔の周縁辺部には、上記回転軸(1)に平行な翼回転軸(3)と翼衝止棒体(4)とを設立し、該翼回転軸(3)を芯として自在に回動し、かつ、少なくとも一部分が回動して上記翼回転軸(3)と翼衝止棒体(4)に衝止し、しかも高さを上記回転軸(1)の長さに近いものとする長方形状の翼(5)を設けた構造において、翼(5)翼回転軸翼(3)翼衝止棒体(4)とを直線に複数配設した翼列(6)にて翼車一組の基本単位を構成された公知の技術において、この一組の基本単位と隣の基本単位との間が全て角度を有して等間隔になるよう複数組を夫々配設したことで、垂直軸型翼列翼車内を通過する流体が垂直軸型翼列翼車の出口付近で回転力が出力されることを特徴とする垂直軸型翼列翼車装置。  In the vertical shaft type cascade wheel device, the blade rotation shaft support (2) is arranged in parallel with a space between each other, with the rotation shaft (1) as a center, and upward and downward so as to be orthogonal to the rotation shaft (1). A blade rotation shaft (3) parallel to the rotation shaft (1) and a blade stopper rod (4) are established on the peripheral edge of the space between the two blade rotation shaft supports (2). The rotary shaft (3) rotates freely, and at least a part of the rotary shaft rotates to stop against the blade rotating shaft (3) and the blade stopper rod (4), and the height is rotated as described above. In a structure provided with a rectangular blade (5) that is close to the length of the shaft (1), a plurality of blades (5) blade rotating shaft blades (3) blade stopper rods (4) are arranged in a straight line. In the known technique in which a basic unit of a set of impellers is constituted by a set of blade cascades (6), the interval between the set of basic units and the adjacent basic unit is all equidistant from each other. Yo A vertical axis cascade blade characterized in that a plurality of sets are arranged so that the fluid passing through the vertical axis cascade blade wheel outputs rotational force in the vicinity of the outlet of the vertical axis cascade blade wheel. Car equipment. 垂直軸型翼列翼車内を通過する空気は、右方(又は左方)と上方の翼列で圧縮空気の成分ができて抗力が生まれることを特徴とする垂直軸型翼列翼車装置。  A vertical axis cascade wheel device characterized in that the air passing through the vertical axis cascade wheel is formed with a component of compressed air in the right (or left) and upper blade rows, and drag is generated. 垂直軸型翼列翼車内を通過した空気は、垂直軸型翼列翼車外において圧縮から開放され、右方(又は左方)と上方の翼列の裏側には空気の希薄部分ができて揚力が生まれることを特徴とする垂直軸型翼列翼車装置。  The air that has passed through the vertical axis cascade blades is released from compression outside the vertical axis cascade wheel, and there is a lean portion of the air on the back side of the right (or left) and upper cascades, causing lift. A vertical axis cascade blade wheel device characterized in that 風力エネルギーを原動力とし風車として活用する垂直軸型翼列翼車装置。  A vertical-axis cascade wheel device that uses wind energy as a driving force and is used as a wind turbine. 水力エネルギーを原動力とし水車として活用する垂直軸型翼列翼車装置。  A vertical-axis cascade wheel device that uses hydraulic energy as a driving force and is used as a turbine.
JP2004343057A 2004-10-28 2004-10-28 Vertical shaft type blade row impeller device Pending JP2006125378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343057A JP2006125378A (en) 2004-10-28 2004-10-28 Vertical shaft type blade row impeller device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343057A JP2006125378A (en) 2004-10-28 2004-10-28 Vertical shaft type blade row impeller device

Publications (2)

Publication Number Publication Date
JP2006125378A JP2006125378A (en) 2006-05-18
JP2006125378A5 true JP2006125378A5 (en) 2007-11-01

Family

ID=36720342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343057A Pending JP2006125378A (en) 2004-10-28 2004-10-28 Vertical shaft type blade row impeller device

Country Status (1)

Country Link
JP (1) JP2006125378A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0619498D0 (en) * 2006-10-02 2006-11-08 Strevens Christopher Vertical wind turbine
WO2010111259A2 (en) * 2009-03-23 2010-09-30 Hydrovolts, Inc. Hinged-blade cross-axis turbine for hydroelectric power generation
JP4753399B1 (en) 2010-06-09 2011-08-24 吉二 玉津 Water turbine with reduced rotational resistance by wind blades
KR101353375B1 (en) * 2012-05-08 2014-01-27 한국해양대학교 산학협력단 Vertical Axis Tidal Stream Turbine with the blockage effect plates
CN105209748A (en) * 2013-04-11 2015-12-30 奥荣咨询与发展公司 Watermill device and method of generating electrical energy by means of such a device
ES2661060B2 (en) * 2016-09-27 2018-09-21 Aida Maria MANZANO KHARMAN VERTICAL SHAFT FRACTAL WIND TURBINE
CN107587974A (en) * 2017-10-26 2018-01-16 中能金瀚能源技术有限公司 The anti-arch fan blade array structure of vertical axis aerogenerator and wind-driven generator
KR102031614B1 (en) * 2017-12-29 2019-10-14 한국기계연구원 Turbine in water pipe line with reinforced airfoil blade
CN113550863A (en) * 2020-04-26 2021-10-26 钟世锋 Renewable energy vertical shaft type turning plate lean against beam blade conversion wheel
CN111749851A (en) * 2020-07-29 2020-10-09 陕西嘉阳电力股份有限公司 Wind power generation device capable of adjusting wind area of fan blade

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139874U (en) * 1980-03-24 1981-10-22
JPH04119362U (en) * 1991-04-09 1992-10-26 朝賢 渡久山 prime mover

Similar Documents

Publication Publication Date Title
CN104471239B (en) Vertical-shaft wind with flow control and hydraulic turbo machine
US7976267B2 (en) Helix turbine system and energy production means
JP4753399B1 (en) Water turbine with reduced rotational resistance by wind blades
US20080159873A1 (en) Cross fluid-flow axis turbine
US8038384B2 (en) Omni-directional turbine and method
US8033794B2 (en) Wind turbine
JP2007146851A (en) Windmill for wind power generation and wind power generator
US10233901B2 (en) Turbine for capturing energy from a fluid flow
TWI668368B (en) Vertical axis wind turbine with automatic adjustment of blade angle
WO2006119648A1 (en) Helical wind turbine
JPH03501639A (en) wind rotor
US8585364B2 (en) Vertical axis wind turbine
US8137052B1 (en) Wind turbine generator
JP5703397B2 (en) Wind power generation equipment
JP2006125378A5 (en)
JP2006125378A (en) Vertical shaft type blade row impeller device
JP2011007147A (en) Exhaust gas flow power plant
EP2258941A1 (en) Wind turbine
JP4154715B2 (en) Vertical shaft type impeller device
JP2005188494A5 (en)
JP5409969B1 (en) Sale type wind power and hydro power generator
US20100295314A1 (en) Floating wind turbine
JP2015166562A (en) Vertical axis drag type wind turbine capable of preventing its overspeed under strong wind and wind power generator
KR101173463B1 (en) Apparatus Of Wind Power System For Wind Turbine
KR101503358B1 (en) Horizontal wind power generator