JP2006124787A - High crystallinity nano-silver particle slurry and its production method - Google Patents

High crystallinity nano-silver particle slurry and its production method Download PDF

Info

Publication number
JP2006124787A
JP2006124787A JP2004315775A JP2004315775A JP2006124787A JP 2006124787 A JP2006124787 A JP 2006124787A JP 2004315775 A JP2004315775 A JP 2004315775A JP 2004315775 A JP2004315775 A JP 2004315775A JP 2006124787 A JP2006124787 A JP 2006124787A
Authority
JP
Japan
Prior art keywords
highly crystalline
silver
particle slurry
nano silver
high crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004315775A
Other languages
Japanese (ja)
Inventor
Hideaki Maeda
英明 前田
Takuya Sasaki
卓也 佐々木
Katsuhiko Yoshimaru
克彦 吉丸
Hiroyuki Shimamura
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004315775A priority Critical patent/JP2006124787A/en
Publication of JP2006124787A publication Critical patent/JP2006124787A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high crystallinity nano-silver particle slurry of fine particles having a sharp particle size distribution and high crystallinity, and to provide its production method. <P>SOLUTION: The high crystallinity nano-silver particle slurry comprises high crystallinity nano-silver particles, and does not comprise water. In the high crystallinity nano-silver particles, the average particle diameter D<SB>TEM</SB>according to TEM (transmission electron microscope) observation is <100 nm, and the coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the average particle diameter D<SB>TEM</SB>according to TEM observation is ≤0.25. In the method for producing high crystallinity nano-silver particle slurry, a silver salt is dissolved in a nonaqueous reducing solvent, so as to produce a reaction liquid, and thereafter, silver ions in the reaction liquid are reduced in a microreactor, thus the high crystallinity nano-silver particle slurry which comprises high crystallinity nano-silver particles and does not comprise water is produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高結晶性銀粉の製造原料として用いられる高結晶性ナノ銀粒子スラリー及びその製造方法に関し、詳しくは、例えば、チップ部品、プラズマディスプレイパネル等の電極や回路を、大幅にファイン化し、高密度及び高精度で且つ高信頼性をもって形成することができる導電性ペースト、特に微細な配線又は薄層で平滑な塗膜等を高密度及び高精度で且つ高信頼性をもって形成することができる導電性ペーストの製造に好ましい、高結晶性ナノ銀粒子スラリー及びその製造方法に関するものである。 The present invention relates to a highly crystalline nano silver particle slurry used as a raw material for producing highly crystalline silver powder and a method for producing the same, and more specifically, for example, chip parts, plasma display panels and other electrodes and circuits are greatly refined, A conductive paste that can be formed with high density, high accuracy, and high reliability, in particular, fine wiring or a thin and smooth coating film can be formed with high density, high accuracy, and high reliability. The present invention relates to a highly crystalline nano silver particle slurry preferable for the production of a conductive paste and a method for producing the same.

従来、電子部品等の電極や回路を形成する方法として、導電性材料である銀粉をペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキュアリングし硬化させて回路を形成する方法が知られている。しかし、近年、電子機器の高機能化により電子デバイスの小型高密度化が求められており、このため、導電性ペーストの材料である銀粉にも、導電性ペーストとしたときに充填性が良いようにより微細であり、且つ導電性ペーストとしたときに分散性が良いように粒度分布がよりシャープであることが望まれるようになってきている。 Conventionally, as a method of forming an electrode or a circuit of an electronic component or the like, after a conductive paste in which silver powder as a conductive material is dispersed in a paste is printed on a substrate, the paste is baked or cured to be cured. Methods of forming are known. However, in recent years, electronic devices have been demanded to reduce the size and density of electronic devices due to higher functionality. Therefore, the silver powder, which is a material of the conductive paste, also has good filling properties when used as a conductive paste. Therefore, it has been desired that the particle size distribution is sharper so that it is finer and has good dispersibility when made into a conductive paste.

一方、導電性ペーストが印刷される基板としては、セラミック基板が挙げられるが、ICのパッケージ等の発熱が大きい部分等に問題が生じ易い。具体的には、セラミック基板に導電性ペーストを印刷する場合には、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銀厚膜の熱収縮率とが一般的に異なるため、焼成時においてセラミック基板と銀厚膜とが剥離したり基板自体が変形したりするおそれがある。このため、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銀厚膜の熱収縮率とは、なるべく近い値を採るものであることが好ましい。 On the other hand, the substrate on which the conductive paste is printed includes a ceramic substrate, but problems are likely to occur in a portion where heat generation is large such as an IC package. Specifically, when printing a conductive paste on a ceramic substrate, the thermal contraction rate of the ceramic substrate and the thermal contraction rate of the silver thick film generated from the printed conductive paste are generally different, so firing At times, the ceramic substrate and the silver thick film may be peeled off or the substrate itself may be deformed. For this reason, it is preferable that the thermal contraction rate of the ceramic substrate and the thermal contraction rate of the thick silver film produced from the printed conductive paste are as close as possible.

このような焼成時における上記銀厚膜の熱収縮の一因としては、導電性ペースト中の銀粉が焼成時に再結晶を起こすことにあるものと考えられている。すなわち、銀粉は微小な結晶子から構成される多結晶体であり、銀粉を含む導電性ペーストを銀厚膜の形成のために焼成する際に銀粉中の微小な結晶子が再結晶化するため、銀厚膜の生成前後で寸法変化が生じ熱収縮を起こすものと考えられる。このため、熱収縮の少ない銀粉含有導電性ペーストを得るには、結晶子の再結晶化がなるべく生じないように、銀粉中の結晶子径が大きいこと、すなわち結晶性の高いものであることが望ましい。上記のように、導電性ペーストに用いられる銀粉には、微粒で、粒度分布がシャープであり、且つ結晶性が高いものであることが望まれている。 It is considered that one cause of the thermal contraction of the silver thick film during such firing is that the silver powder in the conductive paste causes recrystallization during firing. That is, silver powder is a polycrystal composed of fine crystallites, and the fine crystallites in silver powder are recrystallized when firing a conductive paste containing silver powder to form a thick silver film. It is considered that a dimensional change occurs before and after the formation of the thick silver film, causing heat shrinkage. For this reason, in order to obtain a silver powder-containing conductive paste with little heat shrinkage, the crystallite diameter in the silver powder is large, that is, the crystallinity is high so that recrystallization of the crystallite does not occur as much as possible. desirable. As described above, the silver powder used in the conductive paste is desired to be fine, have a sharp particle size distribution, and have high crystallinity.

これに対し、特許文献1(特開2000−265202号公報)には、硝酸銀結晶を所定温度で加熱溶融した溶融物を噴霧して液滴にし、該液滴を所定温度で熱分解させる銀粉末の製造方法が開示されており、該方法によれば、凝集体でなく、粒子の一つ一つが均一で、粒子径が2μm〜4μmの狭い範囲にある銀粉末が得られる。 On the other hand, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-265202) discloses a silver powder in which a melt obtained by heating and melting silver nitrate crystals at a predetermined temperature is sprayed into droplets, and the droplets are thermally decomposed at a predetermined temperature. According to this method, silver powder is obtained which is not an aggregate, and each of the particles is uniform and the particle diameter is in a narrow range of 2 μm to 4 μm.

また、特許文献2(特開2001−107101号公報)には、いわゆる噴霧熱分解法を用いた製造方法であって、所定のアンミン銀錯体水溶液(a)と所定の還元剤水溶液(b)とを、所定条件で混合して銀粒子を還元析出させる高分散性球状銀粉末の製造方法が開示されており、該方法によれば、凝集体でなく、比較的微粒、例えば、D50が1μm〜5μm程度の銀粉末が得られる。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-107101) discloses a production method using a so-called spray pyrolysis method, which includes a predetermined aqueous silver ammine complex solution (a) and a predetermined aqueous reducing agent solution (b). Is produced by reducing and precipitating silver particles by mixing under predetermined conditions. According to this method, relatively fine particles such as D 50 of 1 μm are used instead of aggregates. A silver powder of about -5 μm is obtained.

特開2000−265202号公報(第1頁)JP 2000-265202 A (first page) 特開2001−107101号公報(第1頁)JP 2001-107101 A (first page)

しかしながら、近年は電極や回路を大幅にファイン化するべく導電性ペースト中の銀粉のさらなる微粒化が望まれているため、特許文献1に記載の銀粉末の粒子径が2〜4μmの範囲や、特許文献2に記載の銀粉末のD50が1μm〜5μm程度の範囲のものでは、電極や回路のさらなるファイン化にとって不十分であるという問題があった。また、特許文献1及び特許文献2に記載の銀粉末は、該銀粉末を用いた導電性ペーストをセラミック基板に印刷して焼成すると、銀粉末の再結晶化により銀厚膜の熱収縮が大きいため銀厚膜がセラミック基板の収縮等の差により反りが生じるという問題があった。このように、従来技術においては、微粒で、粒度分布がシャープで、結晶性の高い銀粉が得られていない。 However, in recent years, since further atomization of silver powder in the conductive paste is desired in order to greatly refine electrodes and circuits, the particle diameter of the silver powder described in Patent Document 1 is in the range of 2 to 4 μm, When the D50 of the silver powder described in Patent Document 2 is in the range of about 1 μm to 5 μm, there is a problem that it is insufficient for further refinement of electrodes and circuits. Moreover, when the silver powder of patent document 1 and patent document 2 prints and burns the electrically conductive paste using this silver powder on a ceramic substrate, the thermal contraction of a silver thick film is large by recrystallization of silver powder. Therefore, there is a problem that the thick silver film is warped due to a difference in shrinkage of the ceramic substrate. Thus, in the prior art, silver powder having fine particles, sharp particle size distribution, and high crystallinity has not been obtained.

ところで、このような物性の高結晶性銀粉を製造する場合、特許文献1に記載されているような噴霧熱分解法に比べて特許文献2に記載されているような還元法の方が(粒度分布がシャープな銀粉を得易いため好ましい。そこで、還元法により高結晶性銀粉を製造する場合、最終製品である高結晶性銀粉が上記のように微粒で、粒度分布がシャープで、結晶性の高いものであるためには、中間体であるナノ銀粒子も、同様に微粒で、粒度分布がシャープで、結晶性の高いものであることが好ましい。 By the way, when producing such a highly crystalline silver powder having physical properties, the reduction method as described in Patent Document 2 is more suitable than the spray pyrolysis method as described in Patent Document 1 (particle size). Therefore, when producing highly crystalline silver powder by the reduction method, the highly crystalline silver powder, which is the final product, is fine as described above, the particle size distribution is sharp, and crystalline. In order to be high, it is preferable that the nano silver particles as an intermediate are similarly fine, have a sharp particle size distribution, and have high crystallinity.

従って、本発明の目的は、微粒で、粒度分布がシャープで、結晶性の高い高結晶性ナノ銀粒子スラリー及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a highly crystalline nano silver particle slurry having fine particles, a sharp particle size distribution, and high crystallinity, and a method for producing the same.

かかる実情において、本発明者は鋭意検討を行った結果、非水還元溶媒中に銀塩を溶解して反応液を作製した後、該反応液中の銀イオンをマイクロリアクター中で還元すると、微粒で、粒度分布がシャープで、結晶性の高い高結晶性ナノ銀粒子を含む高結晶性ナノ銀粒子スラリーが得られることを見出し、本発明を完成するに至った。 In such a situation, the present inventor has conducted intensive studies. As a result, after preparing a reaction solution by dissolving silver salt in a non-aqueous reducing solvent, the silver ions in the reaction solution are reduced in a microreactor. Thus, the inventors have found that a highly crystalline nanosilver particle slurry containing a highly crystalline nanosilver particle having a sharp particle size distribution and high crystallinity can be obtained, and the present invention has been completed.

すなわち、本発明(1)は、高結晶性ナノ銀粒子を含み、且つ水を含まない高結晶性ナノ銀粒子スラリーであって、前記高結晶性ナノ銀粒子は、TEM観察平均粒径DTEMが100nm未満、粒度分布の標準偏差を前記TEM観察平均粒径DTEMで除した変動係数が0.25以下であることを特徴とする高結晶性ナノ銀粒子スラリーを提供するものである。 That is, the present invention (1) is a highly crystalline nanosilver particle slurry containing highly crystalline nanosilver particles and not containing water, wherein the highly crystalline nanosilver particles have a TEM observation average particle diameter DTEM. Is less than 100 nm, and the coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the TEM observation average particle diameter DTEM is 0.25 or less.

また、本発明(2)は、本発明(1)において、前記高結晶性ナノ銀粒子は、結晶子径が5nm以上であることを特徴とする高結晶性ナノ銀粒子スラリーを提供するものである。 The present invention (2) provides the highly crystalline nanosilver particle slurry according to the present invention (1), wherein the highly crystalline nanosilver particles have a crystallite diameter of 5 nm or more. is there.

また、本発明(3)は、非水還元溶媒中に銀塩を溶解して反応液を作製した後、該反応液中の銀イオンをマイクロリアクター中で還元することを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (3) is characterized in that a silver salt is dissolved in a non-aqueous reducing solvent to prepare a reaction solution, and then silver ions in the reaction solution are reduced in a microreactor. A method for producing a nano silver particle slurry is provided.

また、本発明(4)は、本発明(3)において、前記非水還元溶媒が、1,2−ジクロロベンゼン、オレイルアミン、トリス−(2−エチルヘキシル)ホスフェート、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール及び2,3−ブタンジオールからなる群より選択される少なくとも1種のジオール化合物を含むものであることを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (4) is the present invention (3), wherein the non-aqueous reducing solvent is 1,2-dichlorobenzene, oleylamine, tris- (2-ethylhexyl) phosphate, ethylene glycol, diethylene glycol, triethylene glycol, At least selected from the group consisting of tetraethylene glycol, 1,2-propanediol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and 2,3-butanediol The present invention provides a method for producing a highly crystalline nano silver particle slurry characterized by comprising one kind of diol compound.

また、本発明(5)は、本発明(3)又は本発明(4)において、前記非水還元溶媒が、分散剤としてさらにポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含むことを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (5) is the present invention (3) or the present invention (4), wherein the non-aqueous reducing solvent is further added as a dispersant to polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate and It provides at least one selected from the group consisting of sodium hexametaphosphate, and provides a method for producing a highly crystalline nano silver particle slurry.

また、本発明(6)は、本発明(3)〜本発明(5)のいずれかにおいて、前記マイクロリアクターは、マイクロ流路断面の最小径が1mm以下であることを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (6) is the high crystallinity characterized in that in any one of the present invention (3) to the present invention (5), the microreactor has a minimum diameter of a microchannel cross section of 1 mm or less. A method for producing a nano silver particle slurry is provided.

また、本発明(7)は、本発明(3)〜本発明(6)のいずれかにおいて、前記マイクロリアクター中の前記反応液の流量が、500μl/min以下であることを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 The present invention (7) is the high crystal according to any one of the present invention (3) to the present invention (6), wherein the flow rate of the reaction solution in the microreactor is 500 μl / min or less. A method for producing a conductive nanosilver particle slurry is provided.

また、本発明(8)は、本発明(3)〜本発明(7)のいずれかにおいて、前記還元温度が、100℃以上であることを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (8) is the method of producing a highly crystalline nano silver particle slurry according to any one of the present invention (3) to the present invention (7), wherein the reduction temperature is 100 ° C or higher. Is to provide.

また、本発明(9)は、本発明(3)〜本発明(8)のいずれかにおいて、前記還元時間が、4秒〜10分であることを特徴とする高結晶性ナノ銀粒子スラリーの製造方法を提供するものである。 Further, the present invention (9) is the high crystalline nano silver particle slurry according to any one of the present invention (3) to the present invention (8), wherein the reduction time is 4 seconds to 10 minutes. A manufacturing method is provided.

本発明に係る高結晶性ナノ銀粒子スラリーは、含まれる高結晶性ナノ銀粒子が微粒で、粒度分布がシャープで、結晶性が高いため、微粒で、粒度分布がシャープで、結晶性の高い高結晶性銀粉の製造原料として好適である。また、本発明に係る高結晶性ナノ銀粒子スラリーの製造方法は、上記本発明に係る高結晶性ナノ銀粒子スラリーを効率よく製造することができる。 The highly crystalline nano silver particle slurry according to the present invention is a highly crystalline nano silver particle containing fine particles, sharp particle size distribution, and high crystallinity, so it is fine particles, sharp particle size distribution, and high crystallinity. It is suitable as a raw material for producing highly crystalline silver powder. Moreover, the manufacturing method of the highly crystalline nano silver particle slurry which concerns on this invention can manufacture the highly crystalline nano silver particle slurry which concerns on the said invention efficiently.

(本発明に係る高結晶性ナノ銀粒子スラリーの製造方法)
本発明に係る高結晶性ナノ銀粒子スラリーの製造方法は、まず、非水還元溶媒中に銀塩を溶解して反応液を作製する。本発明で用いられる銀塩としては、例えば、酢酸銀、硝酸銀、酸化銀、炭酸銀等が挙げられる。
(Method for producing highly crystalline nano silver particle slurry according to the present invention)
In the method for producing a highly crystalline nano silver particle slurry according to the present invention, first, a silver salt is dissolved in a non-aqueous reducing solvent to prepare a reaction solution. Examples of the silver salt used in the present invention include silver acetate, silver nitrate, silver oxide, and silver carbonate.

本発明において非水還元溶媒とは、銀塩を溶解可能で且つ銀イオンに対し還元剤として作用する溶媒であって水を含まない溶媒をいう。非水還元溶媒としては、例えば、1,2−ジクロロベンゼン、オレイルアミン、トリス−(2−エチルヘキシル)ホスフェート(TOP)、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール及び2,3−ブタンジオールからなる群より選択される少なくとも1種のジオール化合物を含むものが挙げられる。このうち、1,2−ジクロロベンゼン、オレイルアミン、トリス−(2−エチルヘキシル)ホスフェートは、銀イオンの還元性を高めると共に、生成する高結晶性ナノ銀粒子が凝集し難くなるため好ましい。また、エチレングリコールは、銀塩の溶解性及び銀イオンの還元性が高くなるため好ましい。 In the present invention, the non-aqueous reducing solvent refers to a solvent that can dissolve a silver salt and acts as a reducing agent for silver ions and does not contain water. Examples of the non-aqueous reducing solvent include 1,2-dichlorobenzene, oleylamine, tris- (2-ethylhexyl) phosphate (TOP), ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, And those containing at least one diol compound selected from the group consisting of dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol. . Among these, 1,2-dichlorobenzene, oleylamine, and tris- (2-ethylhexyl) phosphate are preferable because they increase the reducibility of silver ions and the resulting highly crystalline nanosilver particles are difficult to aggregate. In addition, ethylene glycol is preferable because the solubility of silver salt and the reducibility of silver ions are increased.

また、非水還元溶媒は、必要により、還元剤として、クエン酸水素二アンモニウム等を配合してもよい。還元剤を添加すると、還元性を高めることかできるため好ましい。 In addition, the non-aqueous reducing solvent may contain diammonium hydrogen citrate or the like as a reducing agent if necessary. It is preferable to add a reducing agent because the reducing ability can be improved.

また、非水還元溶媒は、必要により、分散剤としてさらにポリビニルピロリドン(PVP)、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含んでいてもよい。非水還元溶媒がさらに分散剤を含むと、後述の反応液中で還元され析出した結晶性ナノ銀粒子が無秩序に成長して凝集することを抑制することができ、一次粒子同士が凝集していないという意味での分散性に優れた高結晶性銀粉を得ることができるため好ましい。分散剤は、例えば、非水還元溶媒と共に混合し、攪拌することにより、非水還元溶媒に溶解させることができる。 The non-aqueous reducing solvent further contains at least one selected from the group consisting of polyvinyl pyrrolidone (PVP), polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate, and sodium hexametaphosphate, if necessary. You may go out. When the nonaqueous reducing solvent further contains a dispersant, it is possible to prevent the crystalline nanosilver particles that have been reduced and precipitated in the reaction solution described later from growing randomly and agglomerating, and the primary particles are agglomerated. This is preferable because a highly crystalline silver powder excellent in dispersibility in the sense of not being present can be obtained. The dispersing agent can be dissolved in the nonaqueous reducing solvent by, for example, mixing with the nonaqueous reducing solvent and stirring.

非水還元溶媒と分散剤とを混合する場合、非水還元溶媒に対する分散剤の配合割合は、非水還元溶媒1lに対し、通常5g〜100g、好ましくは15g〜50gである。上記配合割合が、該範囲内にあると、高結晶性ナノ銀粒子を作製し易くなり、この結果大きな結晶子径を有する高結晶性銀粉を得易くなるため好ましい。一方、上記配合割合が、非水還元溶媒1lに対し100gを超えると、銀イオンの還元反応が起こり難くなるためあまり好ましくない。 When mixing a non-aqueous reducing solvent and a dispersing agent, the compounding ratio of the dispersing agent to the non-aqueous reducing solvent is usually 5 to 100 g, preferably 15 to 50 g, with respect to 1 liter of the non-aqueous reducing solvent. It is preferable for the blending ratio to fall within this range because it becomes easy to produce highly crystalline nanosilver particles, and as a result, it becomes easy to obtain highly crystalline silver powder having a large crystallite diameter. On the other hand, if the blending ratio exceeds 100 g with respect to 1 liter of the non-aqueous reducing solvent, the reduction reaction of silver ions hardly occurs, which is not preferable.

反応液は、非水還元溶媒中に銀塩を溶解して得られる。非水還元溶媒中に銀塩を溶解する方法としては特に限定されないが、例えば、攪拌した状態の非水還元溶媒中に銀塩を投入して溶解させる方法が挙げられる。なお、反応液の調製の際、すなわち、銀塩を溶解させる状態では、銀イオンの還元反応が進行しないようになるべく低温、例えば、30℃以下に維持することが好ましい。 The reaction solution is obtained by dissolving a silver salt in a non-aqueous reducing solvent. The method for dissolving the silver salt in the non-aqueous reducing solvent is not particularly limited, and examples thereof include a method in which the silver salt is added and dissolved in the stirred non-aqueous reducing solvent. In preparing the reaction solution, that is, in a state in which the silver salt is dissolved, it is preferable to keep the temperature as low as possible, for example, 30 ° C. or less, so that the silver ion reduction reaction does not proceed.

反応液中、非水還元溶媒に対する銀塩の配合割合は、非水還元溶媒1lに対し、通常1g〜100g、好ましくは1g〜50gである。上記配合割合が、該範囲内にあると、高結晶性ナノ銀粒子を作製し易くなり、この結果大きな結晶子径を有する高結晶性銀粉を得易くなるため好ましい。一方、上記配合割合が、非水還元溶媒1lに対し1g未満であると、銀粉の生産性が低下し易いためあまり好ましくない。また、上記配合割合が、非水還元溶媒1lに対し100gを超えると、高結晶性銀粉が互いに凝集し易くなるという意味で高結晶性銀粉同士の分散性が低下し、また、高結晶性銀粉がマイクロリアクターの反応流路の壁面に付着し易くなるためあまり好ましくない。 In the reaction solution, the blending ratio of the silver salt to the nonaqueous reducing solvent is usually 1 g to 100 g, preferably 1 g to 50 g with respect to 1 liter of the nonaqueous reducing solvent. It is preferable for the blending ratio to fall within this range because it becomes easy to produce highly crystalline nanosilver particles, and as a result, it becomes easy to obtain highly crystalline silver powder having a large crystallite diameter. On the other hand, if the blending ratio is less than 1 g with respect to 1 l of the non-aqueous reducing solvent, the productivity of silver powder tends to decrease, which is not preferable. Moreover, when the said mixture ratio exceeds 100g with respect to 1 liter of non-aqueous reducing solvents, the dispersibility of highly crystalline silver powder will fall in the meaning that a highly crystalline silver powder will mutually aggregate easily, Moreover, highly crystalline silver powder Is less preferred because it tends to adhere to the wall of the reaction channel of the microreactor.

本発明では、反応液中の銀イオンをマイクロリアクター中で還元する。ここでマイクロリアクターについて、図1を用いて説明する。図1は、代表的なマイクロリアクターの模式的な斜視図である。マイクロリアクター1は、基板6に、流路入口2a、2b、流路入口2a及び2bからの流路が統合される流路接合部3、マイクロ流路4及び流路出口5がこの順番で形成され、さらに基板6と蓋部7とが接合されることにより、流路入口2a、2b及び流路出口5以外が外界から遮断された連続した流路を有する構造の反応器である。このマイクロリアクター1を用いると、流路入口2a又は2bのいずれか又は両方から導入された原料X及び/又はYを、マイクロ流路4内で反応させ、生成物Zを流路出口5から取り出すことができる。 In the present invention, silver ions in the reaction solution are reduced in a microreactor. Here, the microreactor will be described with reference to FIG. FIG. 1 is a schematic perspective view of a typical microreactor. In the microreactor 1, the flow path inlets 2a and 2b, the flow path junction 3 where the flow paths from the flow path inlets 2a and 2b are integrated, the micro flow path 4 and the flow path outlet 5 are formed in this order on the substrate 6. Further, the substrate 6 and the lid portion 7 are joined to each other, so that the reactor has a continuous flow path except for the flow path inlets 2a and 2b and the flow path outlet 5 from the outside. When this microreactor 1 is used, the raw materials X and / or Y introduced from either or both of the flow path inlets 2a and 2b are reacted in the micro flow path 4, and the product Z is taken out from the flow path outlet 5. be able to.

マイクロリアクター1の材質は、マイクロ流路内を流れる物質に対して耐薬品性、耐熱性等を有するものであればよく特に限定されないが、例えば、ポリテトラフルオロエチレン、アクリル樹脂(PMMA)等が挙げられる。このうち、ポリテトラフルオロエチレン又はアクリル樹脂は、マイクロ流路等の加工が容易であるため好ましい。 The material of the microreactor 1 is not particularly limited as long as it has chemical resistance, heat resistance, and the like with respect to the substance flowing in the microchannel. For example, polytetrafluoroethylene, acrylic resin (PMMA), and the like are used. Can be mentioned. Among these, polytetrafluoroethylene or acrylic resin is preferable because it can be easily processed into a microchannel and the like.

マイクロ流路4の断面形状は、特に限定されものでなく、例えば、円状、楕円状、矩形状等のいずれであってもよい。このうち、円状であると、被反応物及び反応物がマイクロ流路内を流れ易く、反応がマイクロ流路内の断面方向で均一に起こり易いため好ましく、また、矩形状であると、フラットエンドタイプのマイクロドリルを用いることで簡単に作製することができるため好ましい。なお、マイクロ流路4の断面形状が円状、楕円状等であるためにマイクロドリルを用いて加工することができない場合であっても、例えば、エッチング等を行うことによりこれらの形状のマイクロ流路を形成することは可能である。 The cross-sectional shape of the microchannel 4 is not particularly limited, and may be any of a circular shape, an elliptical shape, a rectangular shape, and the like. Of these, the circular shape is preferable because the reactant and the reactant easily flow in the microchannel, and the reaction easily occurs in the cross-sectional direction in the microchannel, and the rectangular shape is preferable. It is preferable to use an end-type microdrill because it can be easily manufactured. Even when the microchannel 4 has a circular shape, an elliptical shape, or the like and cannot be processed using a microdrill, for example, by performing etching or the like, the microchannels of these shapes can be used. It is possible to form a path.

本発明で用いられるマイクロリアクターは、マイクロ流路断面の最小径が1mm以下、好ましくは500μm以下である。マイクロ流路断面の最小径が該範囲内にあると、反応液が層流で流れるため、特有のシャープな粒度分布を有する銀粒子が得られ易く、この結果最終製品である高結晶性銀粉が微粒で、粒度分布がシャープで、結晶性が高くなり易いため好ましい。一方、マイクロ流路断面の最小径が1mmを超えると、流路内に乱流が発生し、最終製品である高結晶性銀粉の粒度分布がブロードになり易いためあまり好ましくない。 In the microreactor used in the present invention, the minimum diameter of the cross section of the microchannel is 1 mm or less, preferably 500 μm or less. When the minimum diameter of the microchannel cross section is within the above range, the reaction liquid flows in a laminar flow, so that silver particles having a specific sharp particle size distribution can be easily obtained. As a result, the highly crystalline silver powder that is the final product is obtained. It is preferable because it is fine and has a sharp particle size distribution and high crystallinity. On the other hand, when the minimum diameter of the cross section of the microchannel exceeds 1 mm, turbulent flow is generated in the channel, and the particle size distribution of the highly crystalline silver powder that is the final product tends to be broad, which is not preferable.

なお、本発明においてマイクロ流路断面の最小径とは、マイクロ流路4の流れ方向に垂直方向の断面の最小長さであり、マイクロ流路の断面形状が円状であれば直径、楕円状であれば短径、矩形状であれば短い方の辺すなわち例えば幅や高さの長さ、それ以外の形状であれば実質的に最小となる部分の長さを意味する。 In the present invention, the minimum diameter of the cross section of the microchannel is the minimum length of the cross section perpendicular to the flow direction of the microchannel 4. If it is a short diameter, if it is rectangular, it means the shorter side, that is, the length of the width or height, for example, and if it is any other shape, it means the length of the portion that is substantially minimum.

また、本発明で用いられるマイクロリアクターとしては、図示しないが、マイクロリアクター全体を管状物で形成したものを用いることもできる。該管状物としては、例えば、内部に上記マイクロ流路を有するポリテトラフルオロエチレンチューブが挙げられる。このような装置を採用すると、ポリテトラフルオロエチレンチューブをオイルバスに浸漬する長さを調整することにより反応時間の調整を容易にすることができると共にマイクロリアクターが低コストのものになるという長所がある。 Moreover, as a microreactor used by this invention, although not shown in figure, what formed the whole microreactor with the tubular thing can also be used. As this tubular thing, the polytetrafluoroethylene tube which has the above-mentioned micro channel inside is mentioned, for example. When such an apparatus is employed, the reaction time can be easily adjusted by adjusting the length of the polytetrafluoroethylene tube immersed in the oil bath, and the microreactor can be reduced in cost. is there.

本発明では、上記反応液中の銀イオンをマイクロリアクター中で還元して、高結晶性ナノ銀粒子を含み且つ水を含まない高結晶性ナノ銀粒子スラリーを作製する。反応液中の銀イオンをマイクロリアクター中で還元する方法としては、例えば、マイクロ流路4内の反応液をヒーター等で所定温度に加熱する方法が挙げられる。 In the present invention, silver ions in the reaction solution are reduced in a microreactor to produce a highly crystalline nanosilver particle slurry containing highly crystalline nanosilver particles and not containing water. Examples of a method for reducing silver ions in the reaction solution in the microreactor include a method in which the reaction solution in the microchannel 4 is heated to a predetermined temperature with a heater or the like.

上記還元反応を起こさせる還元温度としては、通常100℃以上、好ましくは140℃〜180℃、さらに好ましくは150℃〜180℃である。該還元温度が該範囲内にあると、反応液中の銀イオンの還元反応が比較的ゆっくり進行して高結晶性ナノ銀粒子が高い結晶性を維持しながら成長し、この結果、高結晶性銀粉の結晶子径が大きくなり易いため好ましい。 The reduction temperature for causing the reduction reaction is usually 100 ° C. or higher, preferably 140 ° C. to 180 ° C., more preferably 150 ° C. to 180 ° C. When the reduction temperature is within the above range, the reduction reaction of silver ions in the reaction solution proceeds relatively slowly and the highly crystalline nano silver particles grow while maintaining high crystallinity. It is preferable because the crystallite diameter of silver powder tends to increase.

一方、上記還元温度が100℃未満であると、反応時間がかかり過ぎたり反応が進行しなくなったりするおそれがあるためあまり好ましくなく、また、上記還元温度が高すぎると、ナノ銀粒子の結晶子径が十分に大きくなり難いためあまり好ましくない。なお、本発明では、銀イオンの還元反応がマイクロリアクター1の微小なマイクロ流路4内で行われるため、熱交換の効率が極めて高く、急激な加熱又冷却が容易であり、還元温度の温度制御を容易に行うことができる。 On the other hand, if the reduction temperature is less than 100 ° C., the reaction time may be too long or the reaction may not proceed, which is not preferable. If the reduction temperature is too high, the crystallites of nano silver particles Since the diameter is difficult to be sufficiently large, it is not preferable. In the present invention, since the silver ion reduction reaction is performed in the minute microchannel 4 of the microreactor 1, heat exchange efficiency is extremely high, rapid heating or cooling is easy, and the temperature of the reduction temperature is high. Control can be easily performed.

上記還元反応を起こさせる還元時間としては、通常4秒〜10分である。還元時間が短すぎるとナノ銀粒子が十分に成長しないおそれがあるためあまり好ましくなく、また、還元時間が長すぎるとナノ銀粒子が成長しすぎるおそれがあるためあまり好ましくない。 The reduction time for causing the reduction reaction is usually 4 seconds to 10 minutes. If the reduction time is too short, the nano silver particles may not grow sufficiently, which is not preferable, and if the reduction time is too long, the nano silver particles may grow too much, which is not preferable.

また、マイクロリアクター中の前記反応液の流量は、通常500μl/min以下、好ましくは100μl/min〜400μl/minである。該流量が該範囲内にあると、マイクロ流路4内の反応液の流れが層流を形成して、得られる高結晶性ナノ銀粒子の粒径を小さくし且つ結晶性を高くし易いため好ましい。 The flow rate of the reaction solution in the microreactor is usually 500 μl / min or less, preferably 100 μl / min to 400 μl / min. If the flow rate is within this range, the flow of the reaction liquid in the microchannel 4 forms a laminar flow, and the resulting highly crystalline nanosilver particles are likely to have a small particle size and high crystallinity. preferable.

一方、上記流量が500μl/minを超えると、マイクロ流路4内の反応液は流れが乱流を形成して還元反応の速度の制御が困難になり、高結晶性銀粉の粒径及び結晶子径が後述の適度な範囲から外れ易いためあまり好ましくない。また、上記流量が少なすぎると、マイクロ流路4内の反応液は層流を成すが、マイクロ流路4外内の温度勾配が小さすぎて反応液中の銀イオンの還元反応の速度の制御が困難になり、高結晶性銀粉の粒径及び結晶子径が後述の適度な範囲から外れ易いためあまり好ましくない。反応液中の銀イオンをマイクロリアクター中で還元すると、高結晶性ナノ銀粒子を含み且つ水を含まない本発明に係る高結晶性ナノ銀粒子スラリーが得られる。 On the other hand, when the flow rate exceeds 500 μl / min, the reaction solution in the microchannel 4 forms a turbulent flow, making it difficult to control the rate of the reduction reaction. Since the diameter tends to deviate from an appropriate range described later, it is not preferable. If the flow rate is too small, the reaction solution in the microchannel 4 forms a laminar flow, but the temperature gradient inside and outside the microchannel 4 is too small to control the rate of reduction of silver ions in the reaction solution. Is difficult, and the particle diameter and crystallite diameter of the highly crystalline silver powder are easily deviated from an appropriate range described later, which is not preferable. When silver ions in the reaction solution are reduced in a microreactor, a highly crystalline nanosilver particle slurry according to the present invention containing highly crystalline nanosilver particles and no water is obtained.

本発明では、上記のようなマイクロ流路を有するマイクロリアクターを用いて反応液中の銀イオンを還元するため、マイクロ流路内の反応液の流速を適切な範囲になるように制御して反応液の流れを層流にしてマイクロ流路内における反応液の温度勾配を適切化することにより、銀イオンの還元反応のような反応速度の速い反応の制御を、還元温度や還元時間等を制御することで正確に行うことが可能になる。これにより、TEM観察平均粒径DTEMが後述の適切な範囲内にあり且つ結晶性の高い高結晶性ナノ銀粒子を含む高結晶性ナノ銀粒子スラリーを得ることができ、該高結晶性ナノ銀粒子を種結晶としてさらに銀イオンを還元すれば、微粒で、粒度分布がシャープで、結晶性の高い高結晶性銀粉を得ることができるようになる。 In the present invention, since the silver ion in the reaction solution is reduced using the microreactor having the microchannel as described above, the reaction is performed by controlling the flow rate of the reaction solution in the microchannel so as to be within an appropriate range. By controlling the temperature gradient of the reaction liquid in the micro flow path by making the liquid flow into a laminar flow, it is possible to control the reaction with a fast reaction rate such as the reduction reaction of silver ions, the reduction temperature, the reduction time, etc. By doing so, it becomes possible to carry out accurately. As a result, it is possible to obtain a highly crystalline nanosilver particle slurry containing a highly crystalline nanosilver particle having a high TEM observation average particle diameter D TEM within an appropriate range described later and having high crystallinity. If silver ions are further reduced using silver particles as seed crystals, a highly crystalline silver powder having a fine particle size, a sharp particle size distribution, and high crystallinity can be obtained.

(本発明に係る高結晶性ナノ銀粒子スラリー)
本発明に係る高結晶性ナノ銀粒子スラリーは、例えば、上記本発明に係る高結晶性ナノ銀粒子スラリーの製造方法により得られるものであって、特定の高結晶性ナノ銀粒子を含み且つ水を含まないものである。ここで、水を含まないとは、高結晶性ナノ銀粒子の分散媒が水を含まないことをいう。
(Highly crystalline nano silver particle slurry according to the present invention)
The highly crystalline nanosilver particle slurry according to the present invention is obtained, for example, by the above-described method for producing a highly crystalline nanosilver particle slurry according to the present invention, and includes specific high crystalline nanosilver particles and water. Is not included. Here, not containing water means that the dispersion medium of highly crystalline nano silver particles does not contain water.

本発明に係る高結晶性ナノ銀粒子スラリーは、これに含まれる高結晶性ナノ銀粒子のTEM観察平均粒径DTEMが通常100nm未満、好ましくは5nm〜50nmである。スラリー中の高結晶性ナノ銀粒子のTEM観察平均粒径DTEMが上記範囲内にあると、得られる高結晶性銀粉が、微粒になり易いため好ましい。本発明においてTEM観察平均粒径DTEMとは、TEM(透過型電子顕微鏡)観察して測定される粒径(TEM観察粒径)の平均値を意味する。 Highly crystalline silver nanoparticles slurry according to the present invention, TEM observation average particle diameter D TEM is generally less than 100nm highly crystalline nano silver particles contained therein, is preferably 5 nm to 50 nm. When the TEM observation average particle diameter D TEM of the highly crystalline nanosilver particles in the slurry is within the above range, the obtained highly crystalline silver powder tends to be fine, which is preferable. In the present invention, the TEM observation average particle diameter DTEM means an average value of particle diameters (TEM observation particle diameter) measured by TEM (transmission electron microscope) observation.

本発明に係る高結晶性ナノ銀粒子スラリーは、粒度分布の標準偏差を前記TEM観察平均粒径DTEMで除した変動係数(標準偏差/DTEM)が通常0.25以下、好ましくは0.15以下である。該変動係数が該範囲内にあると、得られる高結晶性銀粉の粒度分布がシャープになり易いため好ましい。本発明において粒度分布の標準偏差とは、TEM観察粒径の標準偏差を意味する。 The highly crystalline nano silver particle slurry according to the present invention has a coefficient of variation (standard deviation / D TEM ) obtained by dividing the standard deviation of the particle size distribution by the TEM observation average particle diameter D TEM usually at most 0.25, preferably 0.8. 15 or less. It is preferable for the coefficient of variation to be within this range because the particle size distribution of the resulting highly crystalline silver powder tends to be sharp. In the present invention, the standard deviation of the particle size distribution means the standard deviation of the TEM observation particle size.

本発明に係る高結晶性ナノ銀粒子スラリーは、結晶子径が通常5nm以上、好ましくは10nm以上である。該結晶子径が該範囲内にあると、得られる高結晶性銀粉の結晶性が高くなり易いため好ましい。本発明において結晶子径とは、TEM観察して測定される結晶子径の平均値を意味する。 The highly crystalline nanosilver particle slurry according to the present invention has a crystallite size of usually 5 nm or more, preferably 10 nm or more. When the crystallite diameter is within this range, the crystallinity of the obtained highly crystalline silver powder tends to be high, which is preferable. In the present invention, the crystallite diameter means an average value of crystallite diameters measured by TEM observation.

本発明に係る高結晶性ナノ銀粒子スラリーは、これに含まれる銀粒子が単結晶粒子であると好ましい。本発明において単結晶粒子とは、面欠陥のない単結晶の粒子のみならず、面欠陥を有する単結晶の粒子をも含む概念を意味する。面欠陥を有する単結晶の粒子としては、例えば、輪座五連双晶等の五連双晶の粒子等が挙げられる。 In the highly crystalline nano silver particle slurry according to the present invention, the silver particles contained therein are preferably single crystal particles. In the present invention, the term “single crystal particle” means a concept including not only single crystal particles having no surface defects but also single crystal particles having surface defects. Examples of the single crystal particles having a plane defect include quintuple twin crystal particles such as ring quintuple twin crystals.

本発明に係る高結晶性ナノ銀粒子スラリーは、高結晶性ナノ銀粒子のTEM観察平均粒径DTEMが上記範囲内にあり、結晶性が非常に高く、且つ水を含まないスラリーであるため、高結晶性銀粉の製造原料として好適である。 The highly crystalline nano silver particle slurry according to the present invention is a slurry in which the TEM observation average particle diameter D TEM of the highly crystalline nano silver particles is in the above range, and the crystallinity is very high and does not contain water. It is suitable as a raw material for producing highly crystalline silver powder.

上記本発明に係る高結晶性ナノ銀粒子スラリーは、例えば、そのままビヒクルと混合し適宜溶媒を加熱等で除去することにより電子回路や電極の作製用インキ等として使用することができる。また、本発明に係る高結晶性ナノ銀粒子スラリーは、例えば、チップ部品、プラズマディスプレイパネル、ガラスセラミックパッケージ、セラミックフィルター等の電極や回路形成用導電性ペーストの原料である高結晶性銀粉の製造原料として使用することができる。また、本発明に係る高結晶性ナノ銀粒子スラリーの製造方法によれば、本発明に係る高結晶性ナノ銀粒子スラリーを効率的に製造することができる。 The highly crystalline nano silver particle slurry according to the present invention can be used as, for example, an ink for producing an electronic circuit or an electrode by mixing it with a vehicle as it is and appropriately removing the solvent by heating or the like. Further, the highly crystalline nano silver particle slurry according to the present invention is, for example, the production of highly crystalline silver powder which is a raw material for electrodes and circuit forming conductive pastes such as chip parts, plasma display panels, glass ceramic packages, and ceramic filters. Can be used as a raw material. Moreover, according to the manufacturing method of the highly crystalline nano silver particle slurry which concerns on this invention, the highly crystalline nano silver particle slurry which concerns on this invention can be manufactured efficiently.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not construed as being limited thereto.

実施例1で用いるマイクロリアクターとして、以下の仕様のマイクロ流路を有するキャピラリをオイルバスに浸漬したものを用いた。キャピラリへの試料の注入はシリンジポンプを用いて行った。
マイクロ流路の材質 :ポリテトラフルオロエチレン
マイクロ流路の断面形状 :円形
マイクロ流路の断面の直径 :500(μm)
マイクロ流路の全長 :2(m)
As the microreactor used in Example 1, a capillary having a microchannel having the following specifications immersed in an oil bath was used. The sample was injected into the capillary using a syringe pump.
Material of microchannel: Cross-sectional shape of polytetrafluoroethylene microchannel: Diameter of cross-section of circular microchannel: 500 (μm)
Total length of microchannel: 2 (m)

50mg(0.3mmol)の酢酸銀を、1,2−ジクロロベンゼン25ml及びオレイルアミン2.5ml からなる溶媒と混合して反応液を得た。
該反応液を、シリンダポンプを用いてマイクロリアクターに、流速が157μl/minになるように連続的に注入した。次に、オイルバスの温度及びオイルバスに浸漬するキャピラリの長さを調整し、マイクロ流路内の反応液が170℃に5分間保たれるようにした。
キャピラリの出口より、反応液中の銀イオンが還元されてスラリー状となった高結晶性ナノ銀粒子スラリーを回収した。該高結晶性ナノ銀粒子スラリー中に含まれる高結晶性ナノ銀粒子の濃度は1.18g/lであった。
次に、該高結晶性ナノ銀粒子スラリーにエタノールを添加してナノ銀粒子を凝集させ、遠心沈降操作を行ってナノ銀粒子と溶媒とを分離した後、ナノ銀粒子をトルエンに再分散させた。さらに、同様の操作を繰り返して洗浄を行い、最終的に銀ナノ粒子をトルエンに分散させたスラリーを得た。
トルエン中の高結晶性ナノ銀粒子について、TEM観察平均粒径DTEM、標準偏差、変動係数及び結晶子径を下記の方法により測定した。測定結果を表1に示す。また、トルエン中の高結晶性ナノ銀粒子のTEM写真を図2に示し、TEM観察粒径の粒度分布のグラフを図3に示す。
50 mg (0.3 mmol) of silver acetate was mixed with a solvent consisting of 25 ml of 1,2-dichlorobenzene and 2.5 ml of oleylamine to obtain a reaction solution.
The reaction solution was continuously injected into the microreactor using a cylinder pump so that the flow rate was 157 μl / min. Next, the temperature of the oil bath and the length of the capillary immersed in the oil bath were adjusted so that the reaction solution in the microchannel was kept at 170 ° C. for 5 minutes.
From the capillary outlet, the highly crystalline nano silver particle slurry that was made into a slurry by reduction of silver ions in the reaction solution was recovered. The concentration of highly crystalline nanosilver particles contained in the highly crystalline nanosilver particle slurry was 1.18 g / l.
Next, ethanol is added to the highly crystalline nanosilver particle slurry to aggregate the nanosilver particles, and the nanosilver particles and the solvent are separated by performing centrifugal sedimentation, and then the nanosilver particles are redispersed in toluene. It was. Further, the same operation was repeated for washing, and finally a slurry in which silver nanoparticles were dispersed in toluene was obtained.
The TEM observation average particle diameter D TEM , standard deviation, coefficient of variation, and crystallite diameter of the highly crystalline nanosilver particles in toluene were measured by the following methods. The measurement results are shown in Table 1. Moreover, the TEM photograph of the highly crystalline nano silver particle in toluene is shown in FIG. 2, and the graph of the particle size distribution of the TEM observation particle size is shown in FIG.

(TEM観察平均粒径DTEM及び標準偏差の測定方法並びに変動係数の算出方法):
日本電子株式会社製透過電子顕微鏡JEM−4000EXを用いて試料粒子を加速電圧400kVでTEM観察し、試料粒子の粒径(TEM観察粒径)を測定した。測定は、各試料について1視野分(100個程度)行い、その平均値をTEM観察平均粒径DTEMとした。また、TEM観察粒径の測定値からTEM観察粒径の標準偏差を求め、該標準偏差をDTEMで割って変動係数を求めた。
(結晶子径の測定方法):
フィリィップス株式会社製X線回折装置PW1820を用いて、X線源CuKα、印加電圧30kV、印加電流20A、ステップ角度0.05°、タイムコンスタント5秒の条件で測定したデータからScherrerの式を用いて結晶子径を算出した。
(Measurement method of TEM observation average particle diameter DTEM and standard deviation and calculation method of coefficient of variation):
Using a transmission electron microscope JEM-4000EX manufactured by JEOL Ltd., the sample particles were observed by TEM at an acceleration voltage of 400 kV, and the particle size of the sample particles (TEM observation particle size) was measured. The measurement was performed for one field of view (about 100) for each sample, and the average value was defined as the TEM observation average particle diameter DTEM . Further, the standard deviation of the TEM observation particle size was obtained from the measured value of the TEM observation particle size, and the coefficient of variation was obtained by dividing the standard deviation by DTEM .
(Measurement method of crystallite diameter):
Using the X-ray diffractometer PW1820 manufactured by Phillips Co., Ltd., using the Scherrer equation from data measured under the conditions of the X-ray source CuKα, the applied voltage 30 kV, the applied current 20 A, the step angle 0.05 °, and the time constant 5 seconds. The crystallite size was calculated.

オイルバスに浸漬するキャピラリの長さを調整してマイクロ流路内の反応液が170℃に7分間保たれるようにした以外は実施例1と同様にして、キャピラリの出口より、反応液中の銀イオンが還元されてスラリー状となった高結晶性ナノ銀粒子スラリーを回収した。該高結晶性ナノ銀粒子スラリー中に含まれる高結晶性ナノ銀粒子の濃度は1.18g/lであった。
次に、該高結晶性ナノ銀粒子スラリーについて、実施例1と同様の操作を行って、銀ナノ粒子をトルエンに分散させたスラリーを得た。
トルエン中の高結晶性ナノ銀粒子について、実施例1と同様にして諸特性を測定した。測定結果を表1に示す。
また、トルエン中の高結晶性ナノ銀粒子のTEM写真を図4に示し、TEM観察粒径の粒度分布のグラフを図5に示す。
In the same manner as in Example 1 except that the length of the capillary immersed in the oil bath was adjusted so that the reaction solution in the microchannel was kept at 170 ° C. for 7 minutes. The highly crystalline nano silver particle slurry in which the silver ions were reduced to form a slurry was recovered. The concentration of highly crystalline nanosilver particles contained in the highly crystalline nanosilver particle slurry was 1.18 g / l.
Next, the same operation as Example 1 was performed about this highly crystalline nano silver particle slurry, and the slurry which disperse | distributed silver nanoparticle in toluene was obtained.
Various characteristics of the highly crystalline nanosilver particles in toluene were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
Moreover, the TEM photograph of the highly crystalline nano silver particle in toluene is shown in FIG. 4, and the graph of the particle size distribution of the TEM observation particle size is shown in FIG.

本発明に係る高結晶性ナノ銀粒子スラリー及びその製造方法は、例えば、そのままビヒクルと混合し適宜溶媒を加熱等で除去することにより電子回路や電極の作製用インキ等に利用することができ、その製造を効率的に行うことができる。また、本発明に係る高結晶性ナノ銀粒子スラリー及びその製造方法は、例えば、チップ部品、プラズマディスプレイパネル、ガラスセラミックパッケージ、セラミックフィルター等の電極や回路形成用導電性ペーストの原料である銀粉の原料に利用することができ、その製造を効率的に行うことができる。 The highly crystalline nano silver particle slurry and the production method thereof according to the present invention can be used for, for example, an ink for producing an electronic circuit or an electrode by mixing with a vehicle as it is and appropriately removing the solvent by heating or the like. The production can be performed efficiently. Moreover, the highly crystalline nano silver particle slurry and the manufacturing method thereof according to the present invention are, for example, silver powder that is a raw material of conductive paste for forming electrodes, circuit display panels, glass ceramic packages, ceramic filters, etc. It can be used as a raw material and can be efficiently manufactured.

図1は、代表的なマイクロリアクターの模式的な斜視図である。FIG. 1 is a schematic perspective view of a typical microreactor. 図2は、実施例1で得られた高結晶性ナノ銀粒子のTEM写真である。FIG. 2 is a TEM photograph of the highly crystalline nanosilver particles obtained in Example 1. 図3は、実施例1で得られた高結晶性ナノ銀粒子のTEM観察平均粒径DTEMの粒度分布のグラフである。FIG. 3 is a graph of the particle size distribution of the TEM observation average particle diameter D TEM of the highly crystalline nanosilver particles obtained in Example 1. 図4は、実施例2で得られた高結晶性ナノ銀粒子のTEM写真である。FIG. 4 is a TEM photograph of the highly crystalline nanosilver particles obtained in Example 2. 図5は、実施例2で得られた高結晶性ナノ銀粒子のTEM観察平均粒径DTEMの粒度分布のグラフである。FIG. 5 is a graph of the particle size distribution of the TEM observation average particle diameter D TEM of the highly crystalline nanosilver particles obtained in Example 2.

符号の説明Explanation of symbols

1 マイクロリアクター
2a、2b 流路入口
3 流路接合部
4 マイクロ流路
5 流路出口
6 基板
7 蓋部
X、Y 原料
Z 生成物
1 Microreactor 2a, 2b Channel inlet 3 Channel junction 4 Microchannel 5 Channel outlet 6 Substrate 7 Lid X, Y Raw material Z Product

Claims (9)

高結晶性ナノ銀粒子を含み、且つ水を含まない高結晶性ナノ銀粒子スラリーであって、
前記高結晶性ナノ銀粒子は、TEM観察平均粒径DTEMが100nm未満、粒度分布の標準偏差を前記TEM観察平均粒径DTEMで除した変動係数が0.25以下であることを特徴とする高結晶性ナノ銀粒子スラリー。
A highly crystalline nanosilver particle slurry containing highly crystalline nanosilver particles and no water,
The highly crystalline nano silver particles have a TEM observation average particle diameter DTEM of less than 100 nm, and a coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the TEM observation average particle diameter DTEM is 0.25 or less. High crystalline nano silver particle slurry.
前記高結晶性ナノ銀粒子は、結晶子径が5nm以上であることを特徴とする請求項1に記載の高結晶性ナノ銀粒子スラリー。 The highly crystalline nano silver particle slurry according to claim 1, wherein the highly crystalline nano silver particle has a crystallite diameter of 5 nm or more. 非水還元溶媒中に銀塩を溶解して反応液を作製した後、該反応液中の銀イオンをマイクロリアクター中で還元することを特徴とする高結晶性ナノ銀粒子スラリーの製造方法。 A method for producing a highly crystalline nano silver particle slurry, wherein a silver salt is dissolved in a non-aqueous reducing solvent to prepare a reaction solution, and then silver ions in the reaction solution are reduced in a microreactor. 前記非水還元溶媒が、1,2−ジクロロベンゼン、オレイルアミン、トリス−(2−エチルヘキシル)ホスフェート、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール及び2,3−ブタンジオールからなる群より選択される少なくとも1種のジオール化合物を含むものであることを特徴とする請求項3に記載の高結晶性ナノ銀粒子スラリーの製造方法。 The non-aqueous reducing solvent is 1,2-dichlorobenzene, oleylamine, tris- (2-ethylhexyl) phosphate, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, dipropylene glycol, 1 And at least one diol compound selected from the group consisting of 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol. The manufacturing method of the highly crystalline nano silver particle slurry described in 1. 前記非水還元溶媒が、分散剤としてさらにポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ドデシル硫酸ナトリウム及びヘキサメタリン酸ナトリウムからなる群より選択される少なくとも1種を含むことを特徴とする請求項3又は請求項4に記載の高結晶性ナノ銀粒子スラリーの製造方法。 The non-aqueous reducing solvent further contains at least one selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, sodium dodecyl sulfate and sodium hexametaphosphate as a dispersant. The manufacturing method of the highly crystalline nano silver particle slurry of 3 or Claim 4. 前記マイクロリアクターは、マイクロ流路断面の最小径が1mm以下であることを特徴とする請求項3〜請求項5のいずれか1項に記載の高結晶性ナノ銀粒子スラリーの製造方法。 The method for producing a highly crystalline nanosilver particle slurry according to any one of claims 3 to 5, wherein the microreactor has a minimum diameter of a cross section of the microchannel of 1 mm or less. 前記マイクロリアクター中の前記反応液の流量が、500μl/min以下であることを特徴とする請求項3〜請求項6のいずれか1項に記載の高結晶性ナノ銀粒子スラリーの製造方法。 The method for producing a highly crystalline nanosilver particle slurry according to any one of claims 3 to 6, wherein the flow rate of the reaction solution in the microreactor is 500 µl / min or less. 前記還元温度が、100℃以上であることを特徴とする請求項3〜請求項7のいずれか1項に記載の高結晶性ナノ銀粒子スラリーの製造方法。 The said reduction temperature is 100 degreeC or more, The manufacturing method of the highly crystalline nano silver particle slurry of any one of Claims 3-7 characterized by the above-mentioned. 前記還元時間が、4秒〜10分であることを特徴とする請求項3〜請求項8のいずれか1項に記載の高結晶性ナノ銀粒子スラリーの製造方法。
The method for producing a highly crystalline nano silver particle slurry according to any one of claims 3 to 8, wherein the reduction time is 4 seconds to 10 minutes.
JP2004315775A 2004-10-29 2004-10-29 High crystallinity nano-silver particle slurry and its production method Pending JP2006124787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315775A JP2006124787A (en) 2004-10-29 2004-10-29 High crystallinity nano-silver particle slurry and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315775A JP2006124787A (en) 2004-10-29 2004-10-29 High crystallinity nano-silver particle slurry and its production method

Publications (1)

Publication Number Publication Date
JP2006124787A true JP2006124787A (en) 2006-05-18

Family

ID=36719807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315775A Pending JP2006124787A (en) 2004-10-29 2004-10-29 High crystallinity nano-silver particle slurry and its production method

Country Status (1)

Country Link
JP (1) JP2006124787A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017346A1 (en) 2008-04-10 2009-10-15 Yamamoto Precious Metal Co. Ltd. Process for the preparation of fine precious metal particles
JP2011021271A (en) * 2008-12-26 2011-02-03 Dowa Electronics Materials Co Ltd Fine particle powder of silver, method for producing the same, silver paste using the powder, and method for using the same
JP2011195852A (en) * 2010-03-17 2011-10-06 Daihatsu Motor Co Ltd Method for producing nanoparticle
WO2013008706A1 (en) * 2011-07-13 2013-01-17 エム・テクニック株式会社 Method for manufacturing microparticles with regulated crystallite diameter
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
WO2014050156A1 (en) 2012-09-27 2014-04-03 三ツ星ベルト株式会社 Conductive composition and conductive molded body using same
JP2014511435A (en) * 2011-02-15 2014-05-15 ケアストリーム ヘルス インク Nanowire preparation method, composition, and article
JP2015048494A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Method for producing metal nanoparticles
JP2015078437A (en) * 2008-12-26 2015-04-23 Dowaエレクトロニクス株式会社 Fine silver particle powder and method of producing silver paste using the same
JP2017178912A (en) * 2016-03-31 2017-10-05 株式会社松風 Composition for oral cavity
CN108555309A (en) * 2018-01-10 2018-09-21 云南大学 A kind of micro-fluidic technology of preparing for the monodisperse gold particle that size is controllable
CN109668911A (en) * 2017-10-13 2019-04-23 香港理工大学 A kind of method of in situ TEM observation nanoparticle growth
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
CN114639503A (en) * 2022-04-27 2022-06-17 苏州元懿微纳电子科技有限公司 Conductive silver paste for emergency treatment of high-voltage connector heating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087749A1 (en) * 2001-04-30 2002-11-07 Postech Foundation Colloid solution of metal nanoparticles, metal-polymer nanocomposites and methods for preparation thereof
JP2003193119A (en) * 2001-12-20 2003-07-09 Fuji Photo Film Co Ltd Method of producing nanoparticle and method of preparing nanoparticle-containing dispersion solution
JP2003225900A (en) * 2002-02-05 2003-08-12 National Institute Of Advanced Industrial & Technology Method for manufacturing nanoparticle
JP2004027347A (en) * 2002-06-28 2004-01-29 Toda Kogyo Corp Metal colloid organosol and method for manufacturing the same
JP2004033901A (en) * 2002-07-03 2004-02-05 Nippon Paint Co Ltd Production method for metal colloidal solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087749A1 (en) * 2001-04-30 2002-11-07 Postech Foundation Colloid solution of metal nanoparticles, metal-polymer nanocomposites and methods for preparation thereof
JP2003193119A (en) * 2001-12-20 2003-07-09 Fuji Photo Film Co Ltd Method of producing nanoparticle and method of preparing nanoparticle-containing dispersion solution
JP2003225900A (en) * 2002-02-05 2003-08-12 National Institute Of Advanced Industrial & Technology Method for manufacturing nanoparticle
JP2004027347A (en) * 2002-06-28 2004-01-29 Toda Kogyo Corp Metal colloid organosol and method for manufacturing the same
JP2004033901A (en) * 2002-07-03 2004-02-05 Nippon Paint Co Ltd Production method for metal colloidal solution

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017346A1 (en) 2008-04-10 2009-10-15 Yamamoto Precious Metal Co. Ltd. Process for the preparation of fine precious metal particles
US9721694B2 (en) 2008-12-26 2017-08-01 Dowa Electronics Materials Co., Ltd. Fine silver particle powder, method for manufacturing the same, silver paste using the powder and method of use of the paste
JP2015078437A (en) * 2008-12-26 2015-04-23 Dowaエレクトロニクス株式会社 Fine silver particle powder and method of producing silver paste using the same
JP2011021271A (en) * 2008-12-26 2011-02-03 Dowa Electronics Materials Co Ltd Fine particle powder of silver, method for producing the same, silver paste using the powder, and method for using the same
US9034214B2 (en) 2008-12-26 2015-05-19 Dowa Electronics Materials Co., Ltd. Fine silver particle powder, method for manufacturing the same, silver paste using the powder, and method of use of the paste
JP2011195852A (en) * 2010-03-17 2011-10-06 Daihatsu Motor Co Ltd Method for producing nanoparticle
JP2014511435A (en) * 2011-02-15 2014-05-15 ケアストリーム ヘルス インク Nanowire preparation method, composition, and article
US9492763B2 (en) 2011-07-13 2016-11-15 M. Technique Co., Ltd. Method for producing microparticles having controlled crystallite diameter
JPWO2013008706A1 (en) * 2011-07-13 2015-02-23 エム・テクニック株式会社 Method for producing fine particles with controlled crystallite size
JP2017113751A (en) * 2011-07-13 2017-06-29 エム・テクニック株式会社 Manufacturing method of fine particles of which crystallite diameter is controlled
WO2013008706A1 (en) * 2011-07-13 2013-01-17 エム・テクニック株式会社 Method for manufacturing microparticles with regulated crystallite diameter
US9496069B2 (en) 2012-07-19 2016-11-15 Nof Corporation Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
CN104470659A (en) * 2012-07-19 2015-03-25 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
KR20150033722A (en) * 2012-07-19 2015-04-01 니치유 가부시키가이샤 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
JPWO2014013794A1 (en) * 2012-07-19 2016-06-30 日油株式会社 Silver nanoparticle, production method thereof, silver nanoparticle dispersion and silver element forming substrate
KR101708132B1 (en) 2012-07-19 2017-02-17 니치유 가부시키가이샤 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
WO2014050156A1 (en) 2012-09-27 2014-04-03 三ツ星ベルト株式会社 Conductive composition and conductive molded body using same
JP2015048494A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Method for producing metal nanoparticles
JP2017178912A (en) * 2016-03-31 2017-10-05 株式会社松風 Composition for oral cavity
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11634596B2 (en) 2016-04-04 2023-04-25 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
CN109668911A (en) * 2017-10-13 2019-04-23 香港理工大学 A kind of method of in situ TEM observation nanoparticle growth
CN109668911B (en) * 2017-10-13 2021-09-24 香港理工大学 Method for observing growth of nano particles by in-situ transmission electron microscope
CN108555309A (en) * 2018-01-10 2018-09-21 云南大学 A kind of micro-fluidic technology of preparing for the monodisperse gold particle that size is controllable
CN114639503A (en) * 2022-04-27 2022-06-17 苏州元懿微纳电子科技有限公司 Conductive silver paste for emergency treatment of high-voltage connector heating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5355007B2 (en) Method for producing spherical silver powder
JP2006124787A (en) High crystallinity nano-silver particle slurry and its production method
US8486310B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
TWI273936B (en) Slurry of ultrafine copper powder and method for producing the slurry
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
TWI589375B (en) Plasma device for manufacturing metallic powder and method for manufacturing metallic powder
JP5089647B2 (en) Reducing agent for low temperature reduction sintering of copper nanoparticles and low temperature sintering method using the same
TWI661012B (en) Method for manufacturing core-shell type metal fine particle, core-shell type metal fine particle, conductive ink, and method for manufacturing substrate
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
US20170181291A1 (en) Multi-component nanoinks for direct write applications
JP2011001581A (en) Silver powder and method for producing the same
JP2015510000A (en) Silicon / germanium nanoparticle inks and methods for forming inks having desired printing properties.
JP2007169680A (en) Method for producing metal particulate and metal particulate produced thereby
WO2009031849A2 (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
CN105324337A (en) Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2010059453A (en) Fine copper powder, dispersion liquid thereof, and method for producing fine copper powder
JP2007019055A (en) Silver particle dispersion liquid
US8003019B2 (en) Silver particle dispersion ink
KR20190123777A (en) Nickel Powder And Nickel Paste
Wang et al. The hydrothermal synthesis of ultra-high aspect ratio Ag nanoflakes and their performance as conductive fillers in heaters and pastes
JP2006096569A (en) Method for producing copper oxide fine particle
JP5076135B2 (en) Manufacturing method of nickel powder with hcp structure
KR102314912B1 (en) Method for producing nickel particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601