JP2006124770A - Method for manufacturing ferritic stainless steel sheet - Google Patents

Method for manufacturing ferritic stainless steel sheet Download PDF

Info

Publication number
JP2006124770A
JP2006124770A JP2004314016A JP2004314016A JP2006124770A JP 2006124770 A JP2006124770 A JP 2006124770A JP 2004314016 A JP2004314016 A JP 2004314016A JP 2004314016 A JP2004314016 A JP 2004314016A JP 2006124770 A JP2006124770 A JP 2006124770A
Authority
JP
Japan
Prior art keywords
mass
stainless steel
ferritic stainless
steel sheet
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004314016A
Other languages
Japanese (ja)
Other versions
JP4581630B2 (en
Inventor
Masanori Nishizawa
将憲 西澤
Tetsuo Nakatsugawa
哲雄 中津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004314016A priority Critical patent/JP4581630B2/en
Publication of JP2006124770A publication Critical patent/JP2006124770A/en
Application granted granted Critical
Publication of JP4581630B2 publication Critical patent/JP4581630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a ferritic stainless steel sheet, which improves efficiency and a yield in the manufacturing process. <P>SOLUTION: This manufacturing method includes determining a target annealing temperature in a continuous annealing step, on the basis of a measured result for niobium (Nb), which has been obtained from component analysis performed when tapping molten steel in the steelmaking process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェライト系ステンレス鋼板の製造方法に関し、特にNbを含有する場合の材質ばらつきを低減できるフェライト系ステンレス鋼板の製造方法に関する。   The present invention relates to a method for manufacturing a ferritic stainless steel sheet, and more particularly to a method for manufacturing a ferritic stainless steel sheet that can reduce material variation when Nb is contained.

フェライト系ステンレス鋼板は、需要家要求により硬さの許容範囲が狭いものがあり、連続焼鈍工程における仕上げ焼鈍の目標焼鈍温度を極力狭く制御しても、硬さの許容範囲に入らない場合があるという問題があった。特にNbを含有するフェライト系ステンレス鋼板では、硬さのバラツキが大きくなるという問題があった。
ところで、一般に、冷間圧延後に実施する連続焼鈍工程における仕上げ焼鈍においては、その品種毎に異なる目標焼鈍温度、すなわち、板温が定められており、その板温の許容範囲である板温公差が定められている。そして、連続焼鈍工程においては、この板温公差の範囲内に入り、かつ、できる限り目標板温に近づくように焼鈍温度や通板速度を制御して焼鈍が行われる。
Ferritic stainless steel sheets may have a narrow hardness tolerance due to customer demands, and even if the target annealing temperature for finish annealing in the continuous annealing process is controlled as narrow as possible, it may not fall within the hardness tolerance. There was a problem. In particular, the ferritic stainless steel sheet containing Nb has a problem that the variation in hardness becomes large.
By the way, generally, in the finish annealing in the continuous annealing process carried out after cold rolling, a different target annealing temperature for each product type, that is, a plate temperature, is defined, and a plate temperature tolerance that is an allowable range of the plate temperature is set. It has been established. And in a continuous annealing process, it anneals by controlling an annealing temperature and a plate | board speed so that it may enter into the range of this plate temperature tolerance, and may approach a target plate temperature as much as possible.

通常、ある製品を作りこむ際、まず作りこむ製品の品種・寸法等が決定される。そして次に、図4に示すように、O/C(オンラインコンピュータ)12にオーダ投入11がなされ、上工程である製鋼工程1から仕上げの最終工程である連続焼鈍工程5までの各工程において、温度等の各工程の作り込みのための目標値とその許容範囲が製造条件として決定される。そして、最終の製品工程6での検査結果に基づき、最終的な品質許容範囲内にあるかどうかが判定され、合否が決定される。   Usually, when making a certain product, first, the type and size of the product to be made are determined. Then, as shown in FIG. 4, an order input 11 is made to an O / C (online computer) 12, and in each process from the steelmaking process 1 which is the upper process to the continuous annealing process 5 which is the final process of finishing, A target value for manufacturing each process such as temperature and its allowable range are determined as manufacturing conditions. Then, based on the inspection result in the final product process 6, it is determined whether or not it is within the final acceptable quality range, and pass / fail is determined.

上記の製造工程の各工程においては、それぞれの目標値と許容範囲が、その製品の最終的な品質の平均値が目標値にできるだけ近づき、かつ公差内に入るように設定されている。そして、各工程では、それぞれ個別に、その許容範囲内での作りこみを行っている。その結果、最終的に製造された製品は不可避的に品質上のバラツキを有することになる。
このような製品の品質上のバラツキは、小さいほうが良いことは言うまでもない。このバラツキを小さくし、製品の品質向上を図るには、各工程での公差を実際に許容される範囲より狭くすることで達成することが可能である。しかし、当然ながら、各工程での公差を狭めることは、各工程において、その生産能率や歩留等を悪化させる方向に働くことになる。そのため、各工程において、品質上のバラツキに対してある程度の許容範囲を設けておくことは必須である。
In each process of the above manufacturing process, the target value and the allowable range are set so that the final average quality of the product is as close as possible to the target value and is within the tolerance. And in each process, it makes each within the tolerance | permissible_range individually. As a result, the finally manufactured product inevitably has quality variations.
It goes without saying that the variation in quality of such products should be small. In order to reduce this variation and to improve the quality of the product, it is possible to achieve this by narrowing the tolerance in each step from the range that is actually allowed. However, as a matter of course, narrowing the tolerance in each process works in the direction of deteriorating the production efficiency and yield in each process. Therefore, in each process, it is essential to provide a certain tolerance for quality variations.

従来、品質上のバラツキを低減させる方法としては、特許文献1に示されるような鋼帯の板温を所定の温度範囲内に保持させる連続焼鈍炉の板温制御方法や、特許文献2に示されるような熱延コイル長手方向の結晶粒径の変化を求めて焼鈍後のコイル内材質が均一となるように焼鈍温度を決定する方法が知られている。
また、特許文献3には、フェライト系ステンレス冷延鋼板の硬さ、降伏強さ、引張強さおよび破断伸びのいずれかの目標値に応じて、必要な均熱温度を決定し、焼鈍時の温度がこの均熱温度に一致するように連続焼鈍を行うことが開示されている。
特開平8-13042号公報 特開平9-118927号公報 特開平10-273732号公報
Conventionally, as a method of reducing variation in quality, a method for controlling the plate temperature of a continuous annealing furnace in which the plate temperature of a steel strip as shown in Patent Document 1 is maintained within a predetermined temperature range, or shown in Patent Document 2 is shown. A method is known in which the annealing temperature is determined so that the material in the coil after annealing is uniform by obtaining the change in the crystal grain size in the longitudinal direction of the hot rolled coil.
Further, in Patent Document 3, a required soaking temperature is determined according to any target value of hardness, yield strength, tensile strength, and elongation at break of a ferritic stainless steel cold-rolled steel sheet. It is disclosed that continuous annealing is performed so that the temperature matches the soaking temperature.
Japanese Laid-Open Patent Publication No.8-13042 Japanese Patent Laid-Open No. 9-118927 Japanese Patent Laid-Open No. 10-273732

ところが、近年、需要家の品質要求は年々厳しくなる傾向にあり、それに対応するため作りこみの条件もますます厳しくせざるを得なくなってきている。そのため、フェライト系ステンレス鋼板の製造における能率と歩留の両方の低下を招くようになっているのが現状である。
本発明は、フェライト系ステンレス鋼板の製造における能率と歩留を向上させることを可能としたフェライト系ステンレス鋼板の製造方法を提供するものである。
However, in recent years, customer quality requirements tend to become stricter year by year, and in order to meet this demand, the conditions for making them have become stricter. For this reason, the current situation is that both the efficiency and the yield of the ferritic stainless steel sheet are reduced.
The present invention provides a method for producing a ferritic stainless steel sheet that can improve the efficiency and yield in the production of a ferritic stainless steel sheet.

本発明者らは、フェライト系ステンレス鋼板の製造における品質上のバラツキの発生要因を抑えるため、各工程での作りこみ条件の変動と最終製品の品質の関係を調査し、各工程の中でも、特に出鋼時に決定されるNb等の特定成分のばらつきと冷間圧延後に行う連続焼鈍での焼鈍温度がフェライト系ステンレス鋼板の製品品質、特に材質に大きく影響していることを見出した。   The present inventors investigated the relationship between the variation in the manufacturing conditions in each process and the quality of the final product in order to suppress the cause of quality variations in the production of ferritic stainless steel sheets. It was found that the dispersion of specific components such as Nb determined at the time of steel production and the annealing temperature in continuous annealing after cold rolling have a great influence on the product quality of ferritic stainless steel sheet, especially the material.

すなわち、フェライト系ステンレス鋼板は、鋼種により、目標成分が決定され、Nbを含有するフェライト系ステンレスの成分系としては、例えばNb: 0.4〜0.6 質量%,Cr:11.0〜30.0質量%を含有し、その他の成分としては、概ねC≦0.03質量%,Si≦ 1.0質量%,Mn≦ 1.0質量%,P≦0.04質量%,N≦ 0.025質量%,Ni≦0.60質量%程度の範囲で、残部はFeおよび不可避的不純物である成分組成として、各鋼種,用途などに応じて目標とする成分組成が設定されている。なお、不可避的不純物としては、例えばS≦0.03質量%,Al≦ 0.002質量%,O≦0.01質量%,Mo≦0.02質量%程度で許容している。また、上記成分組成に加えてさらにMo≦ 3.0質量%の範囲で添加する場合もある。ここで各成分組成の目標範囲としては、例えばCrやMoは目標値を含み 0.5質量%程度の範囲で目標範囲が設定される。   That is, the ferritic stainless steel sheet has a target component determined by the steel type, and as a ferritic stainless steel component system containing Nb, for example, Nb: 0.4 to 0.6 mass%, Cr: 11.0 to 30.0 mass%, Other components are generally C ≦ 0.03% by mass, Si ≦ 1.0% by mass, Mn ≦ 1.0% by mass, P ≦ 0.04% by mass, N ≦ 0.025% by mass, Ni ≦ 0.60% by mass, the balance being Fe And as a component composition which is an unavoidable impurity, the target component composition is set according to each steel grade, a use, etc. As inevitable impurities, for example, S ≦ 0.03 mass%, Al ≦ 0.002 mass%, O ≦ 0.01 mass%, and Mo ≦ 0.02 mass% are allowed. Further, in addition to the above component composition, Mo may be added within a range of 3.0% by mass. Here, as the target range of each component composition, for example, Cr and Mo include target values, and the target range is set in a range of about 0.5 mass%.

このような種々のフェライト系ステンレス鋼板の鋼種毎の目標成分組成について、各種成分のばらつきが製品材質、特に硬さに及ぼす影響を検討した。その結果、上記成分のうち特にNbの影響が大きいことを知見した。
そこで、本発明者らは、フェライト系ステンレス鋼板に含有されるNbに着目し、種々検討した結果、Nb等の含有量そのものよりも、製鋼工程において分析したNbとC、Nの質量%から求められるフリーニオブ(F-Nb)の質量%と連続焼鈍における焼鈍温度が、フェライト系ステンレス鋼板の硬さに応じて強い相関があることを見出した。
With regard to the target component composition for each steel type of such various ferritic stainless steel sheets, the effect of variations in various components on product materials, particularly hardness, was examined. As a result, it was found that the influence of Nb was particularly large among the above components.
Therefore, the present inventors focused on Nb contained in the ferritic stainless steel sheet, and as a result of various studies, obtained it from the mass% of Nb, C, and N analyzed in the steelmaking process rather than the content itself of Nb and the like. It was found that there is a strong correlation between the mass% of free niobium (F-Nb) and the annealing temperature in continuous annealing depending on the hardness of the ferritic stainless steel sheet.

そして、製鋼工程における出鋼時の成分分析結果を用いてフリーニオブの質量%を算出し、算出したフリーニオブの質量%に基づいて連続焼鈍工程における目標焼鈍温度を決定することで、フェライト系ステンレス鋼板の硬さのバラツキを低減させることができると考え本発明に至った。
すなわち、本発明は、下記の各項記載のフェライト系ステンレス鋼板の製造方法によって上記課題を解決した。
(1) 製鋼工程から熱間と冷間の圧延工程を経て連続焼鈍工程に至る一連の工程で製造を行うフェライト系ステンレス鋼板の製造方法であって、
前記製鋼工程の溶鋼出鋼時に行う成分分析でのニオブ(Nb)の測定結果を用い、
前記連続焼鈍工程における目標焼鈍温度を決定することを特徴とするフェライト系ステンレス鋼板の製造方法。
(2) 前記ニオブ(Nb)の測定結果を、下式で算出されるフリーニオブ(F-Nb)の質量%(mass%)とすることを特徴とする上記(1)に記載のフェライト系ステンレス鋼板の製造方法。
Then, the mass% of free niobium is calculated using the component analysis results at the time of steel production in the steel making process, and the ferritic stainless steel is determined by determining the target annealing temperature in the continuous annealing process based on the calculated mass% of free niobium. It was considered that the variation in the hardness of the steel sheet can be reduced, and the present invention has been achieved.
That is, this invention solved the said subject by the manufacturing method of the ferritic stainless steel plate as described in each following item.
(1) A method for producing a ferritic stainless steel sheet that is produced in a series of steps from a steelmaking process to a continuous annealing process through a hot and cold rolling process,
Using the measurement result of niobium (Nb) in the component analysis performed at the time of molten steel production in the steel making process,
A method for producing a ferritic stainless steel sheet, wherein a target annealing temperature in the continuous annealing step is determined.
(2) The ferritic stainless steel according to (1) above, wherein the measurement result of niobium (Nb) is the mass% (mass%) of free niobium (F-Nb) calculated by the following formula: A method of manufacturing a steel sheet.


F-Nb = Nb − { C×(92/12)+ N×(92/14)}
但し、Nb:溶鋼中のニオブ(Nb)の質量%(mass%)、C:溶鋼中の炭素(C)の質量%(mass%)、N:溶鋼中の窒素(N)の質量%(mass%)、である。
Record
F-Nb = Nb− {C × (92/12) + N × (92/14)}
However, Nb: mass% (mass%) of niobium (Nb) in molten steel, C: mass% (mass%) of carbon (C) in molten steel, N: mass% of nitrogen (N) in molten steel (mass) %).

本発明によれば、溶鋼の成分分析結果に基づき算出したフリーニオブ(F-Nb)の質量%に基づき、連続焼鈍工程での目標焼鈍温度を決定するようにしたことで、フェライト系ステンレス鋼板の製品段階での最終的な硬さのバラツキを低減させることができるようになった。   According to the present invention, the target annealing temperature in the continuous annealing process is determined based on the mass% of free niobium (F-Nb) calculated based on the component analysis result of the molten steel. The final hardness variation at the product stage can be reduced.

本発明のフェライト系ステンレス鋼板の製造方法を適用した製造フロー図を図1に示す。
なお、図1は、図4で既に説明した従来の製造フロー図をベースとして記載しており、同一の要素部には同一の符号を付している。
図1に示す本発明での製造フローは、図4において既に説明したフローと基本的には変らないが、図1に示す本発明では、連続焼鈍工程5に対する目標焼鈍温度の設定に際し、あらかじめ製鋼工程1での溶鋼の成分分析結果(この成分分析結果は、成分情報としてO/C12に取り込んでいる。)に基づき、O/C12において目標焼鈍温度を決定し、連続焼鈍工程5に対する設定を行うようにすることを特徴とする。
A production flow diagram to which the method for producing a ferritic stainless steel sheet of the present invention is applied is shown in FIG.
Note that FIG. 1 is described based on the conventional manufacturing flow diagram already described with reference to FIG. 4, and the same reference numerals are given to the same element portions.
The manufacturing flow in the present invention shown in FIG. 1 is basically the same as the flow already described in FIG. 4, but in the present invention shown in FIG. 1, steelmaking is performed in advance when setting the target annealing temperature for the continuous annealing step 5. Based on the component analysis result of molten steel in step 1 (this component analysis result is taken into O / C12 as component information), the target annealing temperature is determined in O / C12 and the setting for continuous annealing step 5 is performed. It is characterized by doing so.

ここで、O/C12における目標焼鈍温度の決定方法は、これまでの実績を用いた多変量解析等により導かれた近似式を利用するようにしても良いし、また、あらかじめテーブルを設けておき、成分の変動量等に応じて選択するようにしても良い。
ここでは、前者の例を用いて実施した例を単純化して、具体的に説明する。
ところで、連続焼鈍工程における温度設定は、図5にその一例を模式的に示すように、連続焼鈍工程5での焼鈍炉炉内をゾーンに分割し、加熱、均熱、急冷、徐冷、の各処理を行う。ここで、本発明において設定する目標焼鈍温度とは、フェライト系ステンレス鋼板の板温が均熱温度となる温度を指す。そのため、均熱のために実際に設定する炉内温度は、板温が均熱温度となる条件で設定されることになり、通常、目標焼鈍温度よりも高めに設定されることになる。
Here, as a method for determining the target annealing temperature in O / C12, an approximate expression derived by multivariate analysis using past results may be used, or a table is provided in advance. Alternatively, the selection may be made in accordance with the fluctuation amount of the component.
Here, the example implemented using the former example is simplified and demonstrated concretely.
By the way, the temperature setting in the continuous annealing step is, as schematically shown as an example in FIG. 5, the inside of the annealing furnace in the continuous annealing step 5 is divided into zones, and heating, soaking, rapid cooling, and slow cooling are performed. Perform each process. Here, the target annealing temperature set in the present invention refers to a temperature at which the plate temperature of the ferritic stainless steel plate becomes the soaking temperature. Therefore, the furnace temperature actually set for soaking is set under the condition that the plate temperature becomes the soaking temperature, and is usually set higher than the target annealing temperature.

次に、フェライト系ステンレス鋼板中のフリーニオブの質量%の算出方法について説明する。
製鋼工程において、溶鋼の成分分析を行うが、その分析において、各元素の成分は、他の元素との結合状態にかかわらずトータルの質量%として測定される。ところが、本願発明で着目したニオブは、炭素や窒素との化合物としても存在する。しかしながら、本発明者らは、硬さに応じて焼鈍温度と相関があるのは、フェライト系ステンレス鋼板中に単体で存在するフリーニオブの質量%のみであり、それらの化合物には依存しないことを見出した。
Next, a method for calculating the mass% of free niobium in the ferritic stainless steel sheet will be described.
In the steel making process, component analysis of molten steel is performed. In the analysis, the component of each element is measured as a total mass% regardless of the bonding state with other elements. However, niobium focused on in the present invention also exists as a compound with carbon or nitrogen. However, the inventors of the present invention have a correlation with the annealing temperature according to the hardness only in the mass% of free niobium present alone in the ferritic stainless steel sheet, and do not depend on these compounds. I found it.

すなわち、本発明者らは、下記の式で求めたフリーニオブ(F-Nb)の質量%に応じて連続焼鈍工程における目標焼鈍温度を決定することで、硬さのばらつきを抑え、所望の硬さを得ることができるとの知見を得た。
F-Nb = Nb − { C×(92/12)+ N×(92/14)}
但し、Nb:溶鋼中のニオブ(Nb)の質量%(mass%)、C:溶鋼中の炭素(C)の質量%(mass%)、N:溶鋼中の窒素(N)の質量%(mass%)、である。
That is, the present inventors determine the target annealing temperature in the continuous annealing process according to the mass% of free niobium (F-Nb) obtained by the following formula, thereby suppressing the variation in hardness and the desired hardness. The knowledge that it can be obtained was obtained.
F-Nb = Nb− {C × (92/12) + N × (92/14)}
However, Nb: mass% (mass%) of niobium (Nb) in molten steel, C: mass% (mass%) of carbon (C) in molten steel, N: mass% of nitrogen (N) in molten steel (mass) %).

ここで、一例として、表1に成分組成の目標値,目標範囲を示す鋼種において、硬さ(Hv)が200〜220の範囲となる、上記のフリーニオブ(F-Nb)の質量%(横軸)と、焼鈍温度(縦軸)の関係を図2のグラフに示す。図2から、フリーニオブ(F-Nb)の質量%と、焼鈍温度に強い相関があることは明らかである。図2では、その相関を一次の直線近似で示している。   Here, as an example, in the steel types that show the target value and target range of the component composition in Table 1, the mass% (lateral) of the above free niobium (F-Nb) in which the hardness (Hv) is in the range of 200 to 220 The relationship between the axis) and the annealing temperature (vertical axis) is shown in the graph of FIG. From FIG. 2, it is clear that there is a strong correlation between the mass% of free niobium (F-Nb) and the annealing temperature. In FIG. 2, the correlation is shown by a first-order linear approximation.

すなわち、フェライト系ステンレス鋼板の種類によって要求される硬さ(Hv)の範囲があるが、この硬さ(Hv)に応じて図2に示すグラフに相当するデータをあらかじめ収集しておき、その収集したデータに基づいて、フリーニオブ(F-Nb)の質量%と、焼鈍温度の関係を近似式に置き換えてO/C(オンラインコンピュータ)内に準備しておく。そして、まず、出鋼時の溶鋼成分の分析結果から上記のフリーニオブ(F-Nb)の質量%を求める計算を行う。次に、そのフリーニオブ(F-Nb)の質量%を上記近似式にあてはめ、該当する目標焼鈍温度を決定する。   That is, there is a range of hardness (Hv) required depending on the type of ferritic stainless steel sheet, but data corresponding to the graph shown in FIG. 2 is collected in advance according to the hardness (Hv), and the collection Based on the obtained data, the relationship between the mass% of free niobium (F-Nb) and the annealing temperature is replaced with an approximate expression and prepared in an O / C (online computer). First, calculation is performed to determine the mass% of the above free niobium (F-Nb) from the analysis result of the molten steel component at the time of steel production. Next, mass% of the free niobium (F-Nb) is applied to the above approximate expression to determine the corresponding target annealing temperature.

なお、図2に基づいて、フリーニオブ(F-Nb)の質量%と、焼鈍温度の関係をテーブル化しておき、該テーブルから目標焼鈍温度を決定することもできる。その場合、フリーニオブ(F-Nb)の質量%を、図2に基づいて、例えば、表2に示すように3つのグループに分け、それぞれのグループに応じて目標焼鈍温度を設定するようにしてもよいことは言うまでもない。   In addition, based on FIG. 2, the relationship between the mass% of free niobium (F-Nb) and the annealing temperature can be tabulated, and the target annealing temperature can be determined from the table. In that case, the mass% of free niobium (F-Nb) is divided into three groups as shown in Table 2, for example, based on FIG. 2, and the target annealing temperature is set according to each group. Needless to say.

この場合、オンラインコンピュータ上でフリーニオブ(F-Nb)の質量%に応じて適宜テーブルを選択し、該当する目標焼鈍温度を設定する。   In this case, an appropriate table is selected according to the mass% of free niobium (F-Nb) on the online computer, and the corresponding target annealing temperature is set.

本発明のフェライト系ステンレス鋼板の製造方法を採用し、一例として、図1に示す製造フローで、表1に成分組成の目標値を示す硬さ(Hv)が200〜220と規定されたフェライト系ステンレス鋼板の製造を行った。そして、製品段階で実際に得られた硬さ(Hv)の測定を実施した。測定を実施した結果を本発明例として図3(a)に示す。また、比較のため、図4に示す従来の製造フローでのフェライト系ステンレス鋼板の製造を行い、実際に得られた硬さ(Hv)の測定を実施した。その結果を従来例として図3(b)に示す。  The ferritic stainless steel sheet manufacturing method of the present invention is adopted, and as an example, in the manufacturing flow shown in FIG. 1, a ferrite system in which the hardness (Hv) indicating the target value of the component composition is defined as 200 to 220 in Table 1 Stainless steel sheet was manufactured. And the hardness (Hv) actually obtained at the product stage was measured. The result of the measurement is shown in FIG. For comparison, a ferritic stainless steel sheet was manufactured according to the conventional manufacturing flow shown in FIG. 4, and the actually obtained hardness (Hv) was measured. The result is shown in FIG. 3B as a conventional example.

図3から明らかなように、従来例(図3(b))では硬さ(Hv)が外れる場合もあったが、本発明例(図3(a))においては、硬さのバラツキが収斂し、硬さ(Hv)がすべての例で目標範囲である200〜220内に入っていることがわかる。すなわち、本発明によって、F-Nbの含有成分に応じて最適化した焼鈍を行うことで硬さのバラツキを大きく低減させることに成功したのである。   As is clear from FIG. 3, the hardness (Hv) sometimes deviated in the conventional example (FIG. 3B), but in the example of the present invention (FIG. 3A), the variation in hardness is converged. It can be seen that the hardness (Hv) falls within the target range of 200 to 220 in all examples. That is, according to the present invention, the variation in hardness was successfully reduced by performing the annealing optimized according to the content of F-Nb.

ところで、本実施例では、F-Nbと硬さおよび焼鈍時の目標焼鈍温度だけに着目して説明したが、品種によってはその他の成分、熱延条件および焼鈍時の速度が品質に影響することもあることから、成分はF-Nbに限定するものではなく、一般に冷延鋼板に含まれる成分系全てを対象として品質問題に直結する成分組成を選定することができる。同様に、焼鈍条件も目標焼鈍温度だけではなく焼鈍条件一般を対象とすることができ、コントロールする品質も硬さ以外に抗張力、伸びなど焼鈍によって変化する品質全てを対象とすることもできる。   By the way, in this example, only F-Nb, hardness, and target annealing temperature during annealing were explained, but depending on the type, other components, hot rolling conditions, and annealing speed may affect quality. Therefore, the component is not limited to F-Nb, and in general, the component composition directly related to the quality problem can be selected for all component systems included in the cold-rolled steel sheet. Similarly, the annealing conditions can target not only the target annealing temperature but also general annealing conditions, and the quality to be controlled can be all the qualities that change due to annealing such as tensile strength and elongation in addition to hardness.

本発明のフェライト系ステンレス鋼板の製造方法を適用したフェライト系ステンレス鋼板の製造フロー図である。It is a manufacturing flowchart of the ferritic stainless steel plate to which the manufacturing method of the ferritic stainless steel plate of the present invention is applied. 硬さ(Hv)が200〜220の範囲の場合を例としてフリーニオブ(F-Nb)の質量%と焼鈍温度の関係を示すグラフである。It is a graph which shows the relationship between the mass% of free niobium (F-Nb), and the annealing temperature for the case where hardness (Hv) is the range of 200-220 as an example. フェライト系ステンレス鋼板の製造における本発明例での硬さ分布のばらつき(a)と、従来例でのばらつき(b)を比較したグラフである。It is the graph which compared the dispersion | variation (a) of the hardness distribution in the example of this invention in manufacture of a ferritic stainless steel plate, and the dispersion | variation (b) in a prior art example. 従来のフェライト系ステンレス鋼板の製造フロー図である。It is a manufacturing flowchart of the conventional ferritic stainless steel plate. 連続焼鈍工程において炉内を通過するフェライト系ステンレス鋼板の板温のパターンを示す模式図である。It is a schematic diagram which shows the plate | board temperature pattern of the ferritic stainless steel plate which passes the inside of a furnace in a continuous annealing process.

符号の説明Explanation of symbols

1 製鋼工程
2 熱間圧延工程
3 酸洗工程
4 冷間圧延工程
5 連続焼鈍工程
6 製品工程
10 フェライト系ステンレス鋼板
11 オーダ投入
12 O/C(オンラインコンピュータ)
1 Steelmaking process 2 Hot rolling process 3 Pickling process 4 Cold rolling process 5 Continuous annealing process 6 Product process
10 Ferritic stainless steel sheet
11 Order injection
12 O / C (online computer)

Claims (2)

製鋼工程から熱間と冷間の圧延工程を経て連続焼鈍工程に至る一連の工程で製造を行うフェライト系ステンレス鋼板の製造方法であって、
前記製鋼工程の溶鋼出鋼時に行う成分分析でのニオブ(Nb)の測定結果を用い、
前記連続焼鈍工程における目標焼鈍温度を決定することを特徴とするフェライト系ステンレス鋼板の製造方法。
It is a manufacturing method of a ferritic stainless steel sheet that is manufactured in a series of processes from a steelmaking process to a continuous annealing process through a hot and cold rolling process,
Using the measurement result of niobium (Nb) in the component analysis performed at the time of molten steel production in the steel making process,
A method for producing a ferritic stainless steel sheet, wherein a target annealing temperature in the continuous annealing step is determined.
前記ニオブ(Nb)の測定結果を、下式で算出されるフリーニオブ(F-Nb)の質量%(mass%)とすることを特徴とする請求項1に記載のフェライト系ステンレス鋼板の製造方法。

F-Nb = Nb − { C×(92/12)+ N×(92/14)}
但し、Nb:溶鋼中のニオブ(Nb)の質量%(mass%)、C:溶鋼中の炭素(C)の質量%(mass%)、N:溶鋼中の窒素(N)の質量%(mass%)、である。
The method for producing a ferritic stainless steel sheet according to claim 1, wherein the measurement result of the niobium (Nb) is set to mass% (mass%) of free niobium (F-Nb) calculated by the following equation. .
Record
F-Nb = Nb− {C × (92/12) + N × (92/14)}
However, Nb: mass% (mass%) of niobium (Nb) in molten steel, C: mass% (mass%) of carbon (C) in molten steel, N: mass% of nitrogen (N) in molten steel (mass) %).
JP2004314016A 2004-10-28 2004-10-28 Manufacturing method of ferritic stainless steel sheet and target temperature setting method in continuous annealing process Expired - Fee Related JP4581630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314016A JP4581630B2 (en) 2004-10-28 2004-10-28 Manufacturing method of ferritic stainless steel sheet and target temperature setting method in continuous annealing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314016A JP4581630B2 (en) 2004-10-28 2004-10-28 Manufacturing method of ferritic stainless steel sheet and target temperature setting method in continuous annealing process

Publications (2)

Publication Number Publication Date
JP2006124770A true JP2006124770A (en) 2006-05-18
JP4581630B2 JP4581630B2 (en) 2010-11-17

Family

ID=36719789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314016A Expired - Fee Related JP4581630B2 (en) 2004-10-28 2004-10-28 Manufacturing method of ferritic stainless steel sheet and target temperature setting method in continuous annealing process

Country Status (1)

Country Link
JP (1) JP4581630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317540A (en) * 2020-08-27 2021-02-05 陈恩义 Method for processing hollow steel pipe of drill rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201608A (en) * 1996-01-22 1997-08-05 Nippon Steel Corp Production plant of cold-rolled steel plate
JPH09256113A (en) * 1996-03-15 1997-09-30 Nippon Steel Corp Ferritic stainless steel for automobile exhaust system equipment
JP2000144262A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Production of cold rolled steel sheet for working stable in mechanical property
JP2004217996A (en) * 2003-01-14 2004-08-05 Nippon Steel Corp Ferritic stainless steel sheet superior in formability, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201608A (en) * 1996-01-22 1997-08-05 Nippon Steel Corp Production plant of cold-rolled steel plate
JPH09256113A (en) * 1996-03-15 1997-09-30 Nippon Steel Corp Ferritic stainless steel for automobile exhaust system equipment
JP2000144262A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Production of cold rolled steel sheet for working stable in mechanical property
JP2004217996A (en) * 2003-01-14 2004-08-05 Nippon Steel Corp Ferritic stainless steel sheet superior in formability, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112317540A (en) * 2020-08-27 2021-02-05 陈恩义 Method for processing hollow steel pipe of drill rod

Also Published As

Publication number Publication date
JP4581630B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CN101263239B (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
CN104379773B (en) Austenite stainless product made from steel and its manufacture method
US20170002440A1 (en) Method for optimally producing metal steel and iron alloys in hot-rolled and thick plate factories using a microstructure simulator, monitor, and/or model
JP5428292B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4728710B2 (en) Hot-rolled steel sheet having excellent workability and manufacturing method thereof
KR20080079178A (en) The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
CN102137946A (en) High-carbon hot-rolling steel sheet and a production method therefor
JP5957731B2 (en) Manufacturing condition determining method, manufacturing condition determining apparatus and manufacturing condition determining program for cold rolled steel sheet
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
US6692592B2 (en) Method for manufacturing high chromium system seamless steel pipe
WO2022054500A1 (en) System for predicting material characteristic value, and method for producing metal sheet
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
EP3715491A1 (en) Hot-rolled steel sheet and manufacturing method therefor
JP4767652B2 (en) Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
JP4581630B2 (en) Manufacturing method of ferritic stainless steel sheet and target temperature setting method in continuous annealing process
CN101381853A (en) Ni-saving type austenitic stainless steel
CN114921718A (en) Container steel for multi-mode sheet billet continuous casting and rolling production line and preparation method thereof
TW202138586A (en) Ferritic stainless steel, and method for manufacturing ferritic stainless steel
KR101279051B1 (en) Ferritic stainless steel and method for manufacturing the same
KR101316907B1 (en) Ferritic stainless steel and method for manufacturing the same
JPH0617141A (en) Production of cold rolled steel sheet excellent in workability and shape
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor
US11965224B2 (en) Steel sheet for can and manufacturing method thereof
KR102361090B1 (en) Predicting method of ductility reducing region for as-cast slab in continuous casting process and continuous casting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees