JP2006124736A - Fuse element - Google Patents

Fuse element Download PDF

Info

Publication number
JP2006124736A
JP2006124736A JP2004311751A JP2004311751A JP2006124736A JP 2006124736 A JP2006124736 A JP 2006124736A JP 2004311751 A JP2004311751 A JP 2004311751A JP 2004311751 A JP2004311751 A JP 2004311751A JP 2006124736 A JP2006124736 A JP 2006124736A
Authority
JP
Japan
Prior art keywords
fuse element
temperature
alloy
fuse
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004311751A
Other languages
Japanese (ja)
Other versions
JP4425760B2 (en
Inventor
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2004311751A priority Critical patent/JP4425760B2/en
Publication of JP2006124736A publication Critical patent/JP2006124736A/en
Application granted granted Critical
Publication of JP4425760B2 publication Critical patent/JP4425760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuse element made of a Zn-Al based alloy and built in a tantalum condenser or the like in which interrupting time can be sufficiently reduced. <P>SOLUTION: The fuse element is obtained by working a Zn-Al-Fe alloy comprising, by weight, 1 to 20% Al and 0.001 to 1% Fe, and the balance Zn into a fine wire. Because of addition of the prescribed amount of Fe, its solidus temperature can be held as the original is, so as to increase the specific resistance thereof. Thus, the interrupting time in the fuse can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒュ−ズ素子に関し、コンデンサやトランジスタ等の電子部品に内蔵して使用するヒュ−ズ素子として有用なものである。   The present invention relates to a fuse element, and is useful as a fuse element used in an electronic component such as a capacitor or a transistor.

電子部品においては、電流ヒュ−ズ素子を部品本体に接続し、これらを樹脂モ−ルド等により封止することがある。
例えば、タンタルコンデンサにおいては、万一の極性誤装着による過電流を未然に防止するために、コンデンサ素子にヒュ−ズ素子を接続し、これらを樹脂でモ−ルドしている。 また、パワ−トランジスタにヒュ−ズ素子を接続し、これらを樹脂で封止することも知られている。
In an electronic component, the current fuse element is connected to the component main body, and these may be sealed with a resin mold or the like.
For example, in a tantalum capacitor, a fuse element is connected to a capacitor element and is molded with a resin in order to prevent overcurrent due to a wrong polarity mounting. It is also known to connect fuse elements to power transistors and seal them with resin.

これらのヒュ−ズ内蔵電子部品においては、ヒュ−ズ溶断時のヒュ−ズ素子の発熱温度で加熱される。
而して、その電子部品本体やモ−ルド樹脂の炭化・燃焼を防止するために、その発熱温度を所定の発煙温度以下に抑える必要がある。
すなわち、溶断電流をi、遮断時間をt、ヒュ−ズ素子の溶断時温度をT、同じく抵抗をR、同じくヒュ−ズ素子の熱容量をP、周囲温度をθとすると、ほぼ
〔数式1〕 t=P(T−θ)/Ri
が成立し、ヒュ−ズ素子の断面積をS、ヒュ−ズ素子の比抵抗をρ、ヒュ−ズ素子の比熱をκ、ヒュ−ズ素子の長さをLとすれば、R=ρL/S、P=κSLであるから、
〔数式2〕 t=κS(T−θ)/ρi
が成立する。
この数式2は、ヒューズ素子が温度Tで一挙に溶断するとの前提に立って電流iを通電したときに通電開始からヒューズ素子が溶断するまでの時間tを示すものであり、ヒューズ素子の温度はT以上にならない。
These electronic components with a built-in fuse are heated at the heat generation temperature of the fuse element when the fuse is blown.
Thus, in order to prevent carbonization and combustion of the electronic component body and the mold resin, it is necessary to keep the heat generation temperature below a predetermined smoke generation temperature.
That is, assuming that the fusing current is i, the interruption time is t m , the fuse element fusing temperature is T m , the resistance is R, the heat capacity of the fuse element is P, and the ambient temperature is θ, 1] t m = P (T m −θ) / Ri 2
If the sectional area of the fuse element is S, the specific resistance of the fuse element is ρ, the specific heat of the fuse element is κ, and the length of the fuse element is L, then R = ρL / Since S, P = κSL,
[Formula 2] t m = κS 2 (T m −θ) / ρi 2
Is established.
Formula 2 shows the time t m from the start of energization until the fuse element melts when the current i is energized on the premise that the fuse element melts at a temperature T m . The temperature does not exceed Tm .

ヒューズ素子の溶断温度Tは、ヒューズ素子が取付けられる電子部品、例えばタンタルコンデンサやパワートランジスタの発煙温度よりも充分に低くされている。従って、これらの電子部品が発煙するまえにヒューズ素子の溶断で通電が遮断され、火災などの発生が未然に防止される。
前記ヒューズ素子付き電子部品は、通常リフロ−法またはフロ−法により、回路基板に実装されるから、ヒューズ素子はこのはんだ付け温度に耐え得るものでなければならず、前記ヒューズ素子の溶断温度をはんだ付け温度よりも高くする必要がある。
The fusing temperature Tm of the fuse element is sufficiently lower than the smoke generation temperature of an electronic component to which the fuse element is attached, such as a tantalum capacitor or a power transistor. Therefore, before these electronic components emit smoke, the energization is cut off by blowing the fuse element, and the occurrence of a fire or the like is prevented.
Since the electronic component with a fuse element is usually mounted on a circuit board by a reflow method or a flow method, the fuse element must be able to withstand this soldering temperature. It must be higher than the soldering temperature.

従来、廃棄された電子・電気電子部品からの鉛イオンの溶出による環境汚染を防止するために、鉛フリ−はんだの使用が要請され、Sn−Ag系、Sn−Cu系、Sn−In系、Sn−Bi系等の鉛フリ−はんだが開発されている。これらの鉛フリ−はんだを使用しての実装温度は、Pb−Snはんだ使用の場合よりも高く、最高で280℃が予定されている。   Conventionally, in order to prevent environmental pollution due to elution of lead ions from discarded electronic / electrical electronic parts, the use of lead-free solder has been requested, and Sn-Ag, Sn-Cu, Sn-In, Sn-Bi based lead-free solder has been developed. The mounting temperature using these lead-free solders is higher than that in the case of using Pb—Sn solders, and a maximum of 280 ° C. is planned.

このはんだの鉛フリ−化に対応して、上記ヒュ−ズ素子においても、鉛フリ−化が要請されている。
前記したタンタルコンデンサ等の発煙温度は通常600℃とされており、この温度と鉛フリーはんだによるはんだ付け最高温度280℃ととから、前記ヒューズ素子においては、600〜300℃の間で可能な限り短い遮断時間で溶断作動することが要求される。
Corresponding to this lead freezing of solder, lead freezing is also demanded in the fuse element.
The smoke generation temperature of the tantalum capacitor and the like is normally 600 ° C. From this temperature and the maximum soldering temperature of 280 ° C. using lead-free solder, the fuse element has a temperature as high as possible between 600 and 300 ° C. Fusing operation is required with a short shut-off time.

従来、動作温度300〜400℃の鉛フリーヒューズ素子の一つとして「Alが0.5〜17%、残部がZnの合金を細線に加工したもの」が提案されている(特許文献1)。
特開平10−134698号公報
Conventionally, as a lead-free fuse element having an operating temperature of 300 to 400 ° C., an “alloy of 0.5 to 17% Al and the balance of Zn processed into a thin wire” has been proposed (Patent Document 1).
JP-A-10-134698

特許文献1に開示されたZn−Alヒューズ素子では、比抵抗ρが相当に低く、〔数式2〕からも理解できるとおり、遮断時間tが長いという不都合がある。
この対策として第3成分を添加して比抵抗ρを高くすることが考えられるが、かかる第3成分の添加では通常、固相線温度も高くなり、〔数式2〕におけるTも高くなってしまい、比抵抗ρの増加効果が相殺されてしまう。
The Zn—Al fuse element disclosed in Patent Document 1 has a disadvantage that the specific resistance ρ is considerably low and the interruption time t m is long as can be understood from [Equation 2].
As a countermeasure, it is conceivable to increase the specific resistance ρ by adding a third component. However, the addition of the third component usually increases the solidus temperature and Tm in [Equation 2] also increases. As a result, the effect of increasing the specific resistance ρ is offset.

しかしながら、本発明者の鋭意検討結果によれば、前記Zn−Al合金組成にFeを特定量添加すると、無添加のものに対し融点をほぼ同温度に保持して比抵抗を充分に増大できることを知った。   However, according to the results of earnest study by the present inventor, when a specific amount of Fe is added to the Zn-Al alloy composition, the specific resistance can be sufficiently increased by maintaining the melting point at substantially the same temperature as the additive-free material. Knew.

本発明の目的は、かかる知見に基づき、タンタルコンデンサ等に内蔵させるZn−Al系合金からなるヒューズ素子に対し、ヒューズ遮断時間を充分に短縮できるヒューズ素子を提供することにある。   An object of the present invention is to provide a fuse element capable of sufficiently shortening the fuse cutoff time for a fuse element made of a Zn-Al alloy incorporated in a tantalum capacitor or the like based on such knowledge.

請求項1に係るヒュ−ズ素子は、Alが1〜20%(%は重量%。以下同じ)、Feが0.001〜1%、残部がZnのZn−Al−Fe合金が細線に加工されてなることを特徴とする。
請求項2に係るヒュ−ズ素子は、請求項1におけるZn−Al−Fe合金100重量部にBi、Mg、Geの少なくとも一種が0.5〜10重量部含有された多元合金が細線に加工されてなることを特徴とする。
請求項3に係るヒュ−ズ素子は、請求項1におけるZn−Al−Fe合金100重量部にSn、Inの少なくとも一種が0.5〜10重量部含有された多元合金が細線に加工されてなることを特徴とする。
請求項4に係るヒュ−ズ素子は、請求項1におけるZn−Al−Fe合金または請求項2〜3における多元合金100重量部にAu、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種が1%以下添加された合金が細線に加工されてなることを特徴とする。
請求項5に係るヒュ−ズ素子は、請求項1〜4何れかのヒューズ素子において、細線が線径0.03〜0.6mmφの丸線または厚み0.02〜0.2mm、幅3〜0.15mmのリボン状であることを特徴とする。
In the fuse element according to claim 1, a Zn—Al—Fe alloy having Al of 1 to 20% (% is weight%, the same applies hereinafter), Fe of 0.001 to 1%, and the balance of Zn is processed into a thin wire. It is characterized by being made.
According to a second aspect of the present invention, there is provided a fuse element in which a multi-element alloy containing 0.5 to 10 parts by weight of at least one of Bi, Mg and Ge in the Zn-Al-Fe alloy of 100 parts is processed into a thin wire. It is characterized by being made.
According to a third aspect of the present invention, there is provided a fuse element in which a multi-element alloy containing 0.5 to 10 parts by weight of at least one of Sn and In in 100 parts by weight of the Zn-Al-Fe alloy according to claim 1 is processed into a thin wire. It is characterized by becoming.
The fuse element according to claim 4 is a Zn-Al-Fe alloy according to claim 1 or 100 parts by weight of the multi-element alloy according to claims 2 to 3, and at least one of Au, Ag, Cu, Ni, Pd, P, and Sb. An alloy to which 1% or less is added is processed into a thin wire.
The fuse element according to claim 5 is the fuse element according to any one of claims 1 to 4, wherein the thin wire is a round wire having a wire diameter of 0.03 to 0.6 mmφ, or a thickness of 0.02 to 0.2 mm, and a width of 3 to 3. It is characterized by a ribbon shape of 0.15 mm.

(1)生体に有害な金属元素を含有しておらず、環境保全に資する。更に耐食性に優れ、腐食性環境でも安全に使用できる。
(2)所定量のFeを添加したために固相線温度をほぼ元のままに保持して比抵抗を高めることができ、ヒューズ遮断時間を短くできる。特に、請求項2によれば、Bi、Mg、Sb、Geのために固相線温度も低くでき、固相線温度低下の面からもヒューズ遮断時間を一層に短くできる。
(3)ヒューズ素子が溶断されて通電が遮断される際のヒューズ素子温度が600℃以下でありタンタルコンデンサ等の発煙温度以下であるから、タンタルコンデンサ等の発煙防止に好適である。
(4)固相線温度が350℃以上であるから、鉛フリーはんだによる温度230〜280℃でのはんだ付けでも、ヒューズ素子付き電子部品を回路基板に安全に実装できる。
請求項3に係るヒューズ素子では、固相線温度が140℃〜200℃と低いが、前記の温度230〜280℃でのはんだ付けを行っても充分な保形性の固液共存状態となり、はんだ付け後での冷却固化によりほぼ元の形状を確保させ得るから、鉛フリーはんだ付けを安全に行い得る。
(5)請求項4に係るヒューズ素子では、電極への溶接乃至は溶着を容易に行うことができる。
従って、本発明に係るヒューズ素子によれば、タンタルコンデンサ等の発煙を迅速作動で未然に防止でき、鉛フリーはんだ付けを安全に行い得、電子部品への取付けを容易に行い得る鉛フリーのヒューズ素子を提供できる。
(1) Contain no metallic elements harmful to the living body and contribute to environmental conservation. Furthermore, it has excellent corrosion resistance and can be used safely in corrosive environments.
(2) Since a predetermined amount of Fe is added, the solidus temperature can be maintained almost unchanged, the specific resistance can be increased, and the fuse cutoff time can be shortened. In particular, according to the second aspect, the solidus temperature can be lowered because of Bi, Mg, Sb, and Ge, and the fuse cutoff time can be further shortened from the viewpoint of lowering the solidus temperature.
(3) Since the fuse element temperature when the fuse element is blown and the current is cut off is 600 ° C. or less and the smoke generation temperature of the tantalum capacitor or the like, it is suitable for preventing smoke generation of the tantalum capacitor or the like.
(4) Since the solidus temperature is 350 ° C. or higher, an electronic component with a fuse element can be safely mounted on a circuit board even by soldering at a temperature of 230 to 280 ° C. with lead-free solder.
In the fuse element according to claim 3, the solidus temperature is as low as 140 ° C. to 200 ° C., but it becomes a solid-liquid coexistence state with sufficient shape retention even when soldering at the temperature of 230 to 280 ° C., Since the original shape can be secured by cooling and solidification after soldering, lead-free soldering can be performed safely.
(5) In the fuse element according to the fourth aspect, welding or welding to the electrode can be easily performed.
Therefore, according to the fuse element of the present invention, a lead-free fuse that can prevent smoke generation of a tantalum capacitor or the like by a quick operation, can perform lead-free soldering safely, and can be easily attached to an electronic component. An element can be provided.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明に係るヒュ−ズ素子を内蔵させたコンデンサの一例を示している。
図1において、1はタンタルコンデンサ素子、2は陽極リ−ド導体である。3は配線板であり、一対の電極31,32を有し、その電極間に本発明に係るヒュ−ズ素子aを接続し、一方の電極31をコンデンサ素子1の陰極に接合し、他方の電極32にリ−ド導体4を接合してある。5は封止樹脂層、例えばエポキシ樹脂層である。
上記ヒュ−ズ素子と電極との接合には、抵抗溶接、超音波溶接、若しくはワイヤボ−ルボンディング、ウェッジボンディング、または熱圧接等を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a capacitor incorporating a fuse element according to the present invention.
In FIG. 1, 1 is a tantalum capacitor element, and 2 is an anode lead conductor. Reference numeral 3 denotes a wiring board having a pair of electrodes 31 and 32, connecting the fuse element a according to the present invention between the electrodes, joining one electrode 31 to the cathode of the capacitor element 1, and The lead conductor 4 is joined to the electrode 32. 5 is a sealing resin layer, for example, an epoxy resin layer.
For joining the fuse element and the electrode, resistance welding, ultrasonic welding, wire ball bonding, wedge bonding, heat pressure welding, or the like can be used.

上記のコンデンサは、IC、トランジスタ、チップ抵抗等の他の電子部品と共に鉛フリ−はんだを使用してリフロ−法やフロ−法によって回路基板に温度230℃〜280℃で実装される。   The capacitor is mounted on a circuit board at a temperature of 230 ° C. to 280 ° C. by a reflow method or a flow method using lead-free solder together with other electronic components such as an IC, a transistor, and a chip resistor.

上記したタンタルコンデンサにヒュ−ズ素子を内蔵させる理由は、万一の極性誤接続によって過電流が流れ発煙するのを防止するためである。
前記の数式2は、過電流iによりヒューズ素子の温度がTになった際に一挙にヒューズ素子が溶断するとの前提に立っている。実際にはヒューズ素子の固相線温度Tと液相線温度Tに差があり、ヒューズ素子が固相線温度Tに達してもその温度Tのもとでは溶断完結されずに固相線温度を越えた温度で溶断が完結される。
しかしながら、ヒューズ素子温度が固相線温度Tから溶断温度Tに達するまでの時間Δtは、ヒューズ素子が固相線温度TSに達するまでの時間tに較べて極めて短い。すなわち、T》T−Tであり、しかも固相線温度を越えると比抵抗が液相の混在により急峻に上昇することから、t》Δtが成立する。従って、前記の数式2に代え、
〔数式3〕t==κS(T−θ)/ρi
を用いても、遮断時間tを充分に正確に把握できる。
The reason why the fuse element is built in the tantalum capacitor is to prevent overcurrent from flowing and generating smoke due to an incorrect polarity connection.
Equation 2 above, once the fuse element when the temperature of the fuse element became T m is the assumption of that fused by overcurrent i. Actually, there is a difference between the solidus temperature T S and the liquidus temperature TL of the fuse element, and even when the fuse element reaches the solidus temperature T S , fusing is not completed under the temperature T S. Fusing is completed at a temperature exceeding the solidus temperature.
However, the time Δt until the fuse element temperature reaches the fusing temperature T m from the solidus temperature T S is extremely shorter than the time t S until the fuse element reaches the solidus temperature TS. That is, T S >> T m −T S , and when the solidus temperature is exceeded, the specific resistance sharply increases due to the mixture of liquid phases, so that t S >> Δt is established. Therefore, instead of Equation 2 above,
[Formula 3] t m == κS 2 (T S −θ) / ρi 2
Even if is used, the cutoff time t m can be grasped sufficiently accurately.

本発明に係るヒュ−ズ素子の合金には、(1)Alが1〜20%、Feが0.001〜1%、残部がZnのZn−Al−Fe合金、(2)前記のZn−Al−Fe合金100重量部にBi、Mg、Geの少なくとも一種が0.5〜10重量部含有された多元合金、(3)前記のZn−Al−Fe合金100重量部にSn、Inの少なくとも一種が0.5〜10重量部含有された多元合金、(4)前記のZn−Al−Fe合金または多元合金100重量部にAu、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種が1%以下添加された合金が使用される。
(1)において、Alを添加する理由は固相線温度をほぼ380℃とするためである。Feを添加する理由は、前記の固相線温度380℃をほぼ保持して比抵抗ρを増加するためであり、添加量を0.001〜1%とした理由は、0.001%未満では比抵抗ρの実質的な増加が得られず、1%を越えると固相線温度TSをほぼ380℃に保持し難くなるからである。
従って、数式3において、Fe無添加のものに較べ、(T−θ)を保持して比抵抗ρを増加でき、遮断時間tを短縮できる。
(2)において、Bi、Mg、Geの少なくとも一種を添加する理由は、(1)での比抵抗ρの増加に加え、固相線温度TSを低下させることにより(固相線温度T−周囲温度θ)を減少させて遮断時間tの一層の短縮を図ることにあり、その添加量を0.5〜10重量部とした理由は、0.5重量部未満では固相線温度Tの実質的を低下が得られず、10重量部を越えると加工性が悪くなり細線加工が困難になるからである。
(3)のSn、Inの少なくとも一種の添加によれば、固相線温度が140℃〜200℃と低くなるが、鉛フリーはんだによる温度250℃〜280℃のもとでのヒューズ素子付き電子部品のはんだ付け実装でヒューズ素子が半溶融状態になっても、はんだ付け後ではヒューズ素子に元の形状を確保させ得、(2)と同様に、比抵抗ρの増加に加え固相線温度Tを低下させることにより(固相線温度T−周囲温度θ)を減少させて遮断時間tの更に一層の短縮を図ることができる。SnまたはInの添加量を0.5〜10重量部とした理由は、0.5重量部未満では固相線温度Tの実質的を低下が得られず、10重量部を越えると固相線温度が低くなり過ぎて前記はんだ付けを安全に行い得なくなると共に加工性が悪くなり細線加工が困難になるからである。
(4)において、前記のZn−Al−Fe合金または多元合金100重量部にAu、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種を添加する理由は電極との接合性を良くすることにあり、添加量を1重量部以下とした理由は、11重量部部を越えると、比抵抗の低下や固相線温度の上昇が生じるからである。
The alloy of the fuse element according to the present invention includes (1) a Zn—Al—Fe alloy in which Al is 1 to 20%, Fe is 0.001 to 1%, and the balance is Zn, and (2) the Zn— A multi-element alloy in which 0.5 to 10 parts by weight of at least one of Bi, Mg, and Ge is contained in 100 parts by weight of an Al—Fe alloy; (3) A multi-element alloy containing 0.5 to 10 parts by weight of one kind, (4) at least one of Au, Ag, Cu, Ni, Pd, P, and Sb is added to 100 parts by weight of the Zn—Al—Fe alloy or multi-element alloy. An alloy to which 1% or less is added is used.
In (1), the reason for adding Al is that the solidus temperature is about 380 ° C. The reason for adding Fe is to increase the specific resistance ρ while substantially maintaining the solidus temperature of 380 ° C. The reason why the addition amount is 0.001 to 1% is less than 0.001%. This is because a substantial increase in the specific resistance ρ cannot be obtained, and if it exceeds 1%, it becomes difficult to maintain the solidus temperature TS at about 380 ° C.
Therefore, in Formula 3, the specific resistance ρ can be increased while maintaining (T S −θ), and the cutoff time t m can be shortened, compared to the case where Fe is not added.
In (2), the reason for adding at least one of Bi, Mg, and Ge is that by increasing the specific resistance ρ in (1), by lowering the solidus temperature TS (solidus temperature T S − The reason is that the cutoff time t m is further shortened by reducing the ambient temperature θ), and the reason for the addition amount being 0.5 to 10 parts by weight is that the solidus temperature T is less than 0.5 parts by weight. This is because the substantial reduction of S cannot be obtained, and if it exceeds 10 parts by weight, the workability deteriorates and thin wire processing becomes difficult.
According to the addition of at least one kind of Sn and In in (3), the solidus temperature is lowered to 140 ° C. to 200 ° C., but the electron with a fuse element at a temperature of 250 ° C. to 280 ° C. by lead-free solder Even if the fuse element is in a semi-molten state due to the soldering of the parts, the original shape of the fuse element can be secured after soldering, and in the same way as (2), in addition to the increase in specific resistance ρ, the solidus temperature T S by lowering the - it is possible to even more shorten the interruption time t m by reducing the (solidus temperature T S ambient theta). The reason for the addition amount of Sn or In and 0.5 to 10 parts by weight, reduced substantially the solidus temperature T S can not be obtained is less than 0.5 part by weight, more than 10 parts by weight solid phase This is because the wire temperature becomes too low and the soldering cannot be performed safely, and the workability is deteriorated and the thin wire processing becomes difficult.
In (4), the reason for adding at least one of Au, Ag, Cu, Ni, Pd, P, and Sb to 100 parts by weight of the Zn-Al-Fe alloy or multi-component alloy is to improve the bondability with the electrode. The reason why the amount added is 1 part by weight or less is that when the amount exceeds 11 parts by weight, the specific resistance decreases and the solidus temperature rises.

ヒューズ素子の断面寸法や形状は線径0.03〜0.6mmφの丸線または厚み0.02〜0.2mm、幅3〜0.15mmのリボン状とされる。
上限については、数式3におけるヒューズ素子の断面積Sを抑えて遮断時間tが長くなり過ぎるのを回避することにあり、下限については、ヒューズ素子を電子部品に内蔵する際のハンドリング、組込の作業性、線引き加工性やコスト低減を保証することにある。
厚み0.02〜0.2mm、幅3〜0.15mmのリボン状では、電極との接触面積を充分に広くして接合性を向上できる有利性もある。
The cross-sectional dimension and shape of the fuse element are a round wire having a wire diameter of 0.03 to 0.6 mmφ or a ribbon having a thickness of 0.02 to 0.2 mm and a width of 3 to 0.15 mm.
The upper limit lies to avoid too interruption time t m by suppressing the cross-sectional area S of the fuse element is longer in equation 3, the lower limit, the handling at the time of incorporating a fuse element to the electronic components, embedded Is to guarantee the workability, drawing processability and cost reduction.
The ribbon shape having a thickness of 0.02 to 0.2 mm and a width of 3 to 0.15 mm has an advantage that the contact area with the electrode can be sufficiently widened to improve the bonding property.

本発明に係るヒュ−ズ素子は、リフロ−法またはフロ−法により実装した後での補修やあと付けでも、鏝で安全にはんだ付けすることもできる。
これらの場合、ヒュ−ズ素子が曲げをうけるが、充分な柔軟性を有し、折損なく、スム−ズに、装着、実装またはあと付けできる。
The fuse element according to the present invention can be safely soldered with scissors even after repairing or retrofitting after mounting by the reflow method or the flow method.
In these cases, the fuse element is bent but has sufficient flexibility and can be mounted, mounted or retrofitted smoothly without breakage.

本発明に係るヒュ−ズ素子は、充分な強度を有する多元合金を使用しているから、線引き加工をスム−ズに行うことができる。
この線引き加工の外、回転液中紡糸法によっても製造できる。すなわち、回転ドラムの内周面に遠心力により形成保持された冷却液層に、ノズルから噴射した溶融ジェットを冷却液層の周速と同速・同方向で入射させ、この液層入射ジェットを冷却液層で急冷・凝固させて紡糸することもできる。この場合、ノズルから冷却液層に至る空間でのジェットは、ノズルの円形形状が溶融金属の表面張力により保持されて円形断面となる。更に、ジェットの表面張力による円形保持力を冷却液層の動圧(ジェットを扁平化しようとする圧力)よりも大とするように、冷却液層周速、ジェットの冷却液層入射角等を調整してあり、冷却液層に入射されたジェットも、断面円形を保持しつつ冷却・凝固されていく。従って、線径30μmφという細線のヒュ−ズ素子でも容易に製造できる。
これらの製線中、ボビンへの巻取りを必要とするか、充分な柔軟性のために、折損なく、スム−ズに巻き取ることができる。
Since the fuse element according to the present invention uses a multi-component alloy having sufficient strength, the drawing process can be performed smoothly.
In addition to this drawing process, it can also be produced by spinning in a rotating liquid. That is, the molten jet sprayed from the nozzle is incident on the cooling liquid layer formed and held on the inner peripheral surface of the rotating drum by centrifugal force at the same speed and in the same direction as the peripheral speed of the cooling liquid layer, and this liquid layer incident jet is It can also be spun by rapid cooling and solidification in the cooling liquid layer. In this case, the jet in the space from the nozzle to the coolant layer has a circular cross section with the circular shape of the nozzle being held by the surface tension of the molten metal. Furthermore, the peripheral velocity of the cooling fluid layer, the incident angle of the cooling fluid layer of the jet, etc. are set so that the circular holding force due to the surface tension of the jet is larger than the dynamic pressure of the cooling fluid layer (pressure for flattening the jet). The jet that has been adjusted and entered the cooling liquid layer is cooled and solidified while maintaining a circular cross section. Accordingly, even a thin fuse element having a wire diameter of 30 μm can be easily manufactured.
During these wire making operations, winding onto a bobbin is required, or for sufficient flexibility, it can be wound smoothly without breakage.

Al:5%、Fe:0.01%、残部Znの合金組成にて線径60μmφの細線をダイス伸線により製造した。この合金の固相線温度を測定したところ(加熱速度10℃/minのもとでDSCにより測定)380℃であり、細線の比抵抗を測定したところ5.7μΩcmであった(n=10箇の平均値)。
この細線の3mm切断片をAgメッキ42アロイ電極間に抵抗溶接し、3A通電下での遮断時間を測定したところ87msecであった(n=10箇の平均値)。
A thin wire having a wire diameter of 60 μmφ was manufactured by die drawing with an alloy composition of Al: 5%, Fe: 0.01%, and the balance Zn. The solidus temperature of this alloy was measured (measured by DSC at a heating rate of 10 ° C./min) and found to be 380 ° C. The specific resistance of the thin wire was measured to be 5.7 μΩcm (n = 10 points). Average value).
A 3 mm piece of this thin wire was resistance-welded between the Ag-plated 42 alloy electrodes, and the interruption time under 3A energization was measured to be 87 msec (n = 10 average values).

〔比較例1〕
実施例1に対しFeを無添加とした以外、実施例1と同様にして細線を製造し、固相線温度及び比抵抗を実施例1と同様にして測定したところ、それぞれ380℃及び4.6μΩcmであった。
更に実施例と同様にして遮断時間を測定したところ107msecであった。
この比較例1と実施例1との対比から、Fe添加により無添加の場合の固相線温度を保持して比抵抗を高めることができ、ヒューズ遮断時間を短くできることが確認できる。
[Comparative Example 1]
A thin wire was produced in the same manner as in Example 1 except that Fe was not added to Example 1, and the solidus temperature and specific resistance were measured in the same manner as in Example 1. As a result, 380 ° C. and 4. It was 6 μΩcm.
Further, when the blocking time was measured in the same manner as in the example, it was 107 msec.
From the comparison between Comparative Example 1 and Example 1, it can be confirmed that the specific resistance can be increased by maintaining the solidus temperature when Fe is not added and Fe can be added, and the fuse cutoff time can be shortened.

〔実施例2〜実施例12〕
表1〜表3に示す合金組成とした以外、実施例1と同様にして細線を製造し、固相線温度及び比抵抗を実施例1と同様にして測定したところ、それぞれほぼ380℃及び5.2μΩcm以上であった。
更に実施例1と同様にして遮断時間を測定したところ90msec以下であった。
[Examples 2 to 12]
Except for the alloy compositions shown in Tables 1 to 3, fine wires were produced in the same manner as in Example 1 and the solidus temperature and specific resistance were measured in the same manner as in Example 1. It was 2 μΩcm or more.
Further, when the blocking time was measured in the same manner as in Example 1, it was 90 msec or less.

Figure 2006124736
Figure 2006124736

Figure 2006124736
Figure 2006124736

Figure 2006124736
Figure 2006124736

〔実施例13〜実施例15〕
表4に示す合金組成とした以外、実施例1と同様にして細線を製造し、固相線温度及び比抵抗を実施例1と同様にして測定したところ、375℃〜380℃及び5.2μΩcm以上であった。
更に実施例1と同様にして遮断時間を測定したところ90msec以下であった。
[Examples 13 to 15]
A thin wire was produced in the same manner as in Example 1 except that the alloy composition shown in Table 4 was used, and the solidus temperature and specific resistance were measured in the same manner as in Example 1. As a result, 375 ° C. to 380 ° C. and 5.2 μΩcm That was all.
Further, when the blocking time was measured in the same manner as in Example 1, it was 90 msec or less.

Figure 2006124736
Figure 2006124736

〔実施例16〜実施例17〕
表5に示す合金組成とした以外、実施例1と同様にして細線を製造した、実施例1で使用したDSC法により固相線温度及び液相線温度を測定したところ表5の通りであった。 これらの実施例では、ヒューズ素子の固相線温度がヒューズ素子内臓電子部品の実装温度250℃〜280℃よりも低いが、ヒューズ素子を280℃で1分間加熱し半溶融状態としても、形状が崩れずはんだ付け後ではヒューズ素子に元の形状を確保させ得た。
ヒューズ素子を280℃で1分間加熱したのちに、比抵抗を測定したところ、5.4μΩcm以上であった。
更に実施例1と同様にして遮断時間を測定したところ80msec以下であった。
[Examples 16 to 17]
The solid line temperature and liquidus temperature were measured by the DSC method used in Example 1 except that the alloy composition shown in Table 5 was used. It was. In these examples, the solidus temperature of the fuse element is lower than the mounting temperature of 250 to 280 ° C. of the electronic component with a built-in fuse element, but the shape does not change even if the fuse element is heated at 280 ° C. for 1 minute to be in a semi-molten state The original shape of the fuse element could be secured after soldering without breaking.
When the specific resistance was measured after heating the fuse element at 280 ° C. for 1 minute, it was 5.4 μΩcm or more.
Further, when the blocking time was measured in the same manner as in Example 1, it was 80 msec or less.

Figure 2006124736
Figure 2006124736

本発明に係るヒュ−ズ内蔵電子部品の一例を示す図面である。It is drawing which shows an example of the electronic component with a fuse concerning this invention.

符号の説明Explanation of symbols

a ヒュ−ズ素子
1 コンデンサ素子
5 封止樹脂層
a fuse element 1 capacitor element 5 sealing resin layer

Claims (5)

Alが1〜20%、Feが0.001〜1%、残部がZnのZn−Al−Fe合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 A fuse element, wherein a Zn-Al-Fe alloy having Al of 1 to 20%, Fe of 0.001 to 1%, and the balance of Zn is processed into a thin wire. 請求項1におけるZn−Al−Fe合金100重量部にBi、Mg、Geの少なくとも一種が0.5〜10重量部含有された多元合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 A fuse comprising: a multi-component alloy containing 0.5 to 10 parts by weight of at least one of Bi, Mg and Ge in 100 parts by weight of the Zn-Al-Fe alloy according to claim 1 processed into a thin wire. element. 請求項1におけるZn−Al−Fe合金100重量部にSn、Inの少なくとも一種が0.5〜10重量部含有された多元合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 A fuse element comprising: a multi-element alloy containing 0.5 to 10 parts by weight of at least one of Sn and In in 100 parts by weight of the Zn-Al-Fe alloy according to claim 1. 請求項1におけるZn−Al−Fe合金または請求項2〜3における多元合金100重量部にAu、Ag、Cu、Ni、Pd、P、Sbの少なくとも一種が1%以下添加された合金が細線に加工されてなることを特徴とするヒュ−ズ素子。 An alloy obtained by adding at least 1% of at least one of Au, Ag, Cu, Ni, Pd, P, and Sb to 100 parts by weight of the Zn—Al—Fe alloy according to claim 1 or the multi-element alloy according to claims 2 to 3 is a thin wire. A fuse element obtained by processing. 細線断面が線径0.03〜0.6mmφの円形または厚み0.02〜0.2mm、幅3〜0.15mmのリボン状であることを特徴とする請求項1〜4何れか記載のヒュ−ズ素子。 The thin wire section is a circular shape having a wire diameter of 0.03 to 0.6 mmφ or a ribbon shape having a thickness of 0.02 to 0.2 mm and a width of 3 to 0.15 mm. -Element.
JP2004311751A 2004-10-27 2004-10-27 Fuse element Expired - Fee Related JP4425760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311751A JP4425760B2 (en) 2004-10-27 2004-10-27 Fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311751A JP4425760B2 (en) 2004-10-27 2004-10-27 Fuse element

Publications (2)

Publication Number Publication Date
JP2006124736A true JP2006124736A (en) 2006-05-18
JP4425760B2 JP4425760B2 (en) 2010-03-03

Family

ID=36719756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311751A Expired - Fee Related JP4425760B2 (en) 2004-10-27 2004-10-27 Fuse element

Country Status (1)

Country Link
JP (1) JP4425760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847519A (en) * 2009-03-25 2010-09-29 罗姆股份有限公司 Electrolytic capacitor and method of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847519A (en) * 2009-03-25 2010-09-29 罗姆股份有限公司 Electrolytic capacitor and method of making the same
US20100246099A1 (en) * 2009-03-25 2010-09-30 Rohm Co., Ltd. Electrolytic capacitor and method of making the same

Also Published As

Publication number Publication date
JP4425760B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
KR102207301B1 (en) Lead-free solder alloy with high reliability
JP5278616B2 (en) Bi-Sn high temperature solder alloy
JP2006255784A (en) Unleaded solder alloy
JP2006255762A (en) Wire-shaped solder for electronic component
JP2001058286A (en) Solder paste for joining chip part
US7172726B2 (en) Lead-free solder
JP2004176106A (en) Alloy type thermal fuse, and material for thermal fuse element
KR102242388B1 (en) Solder alloy, solder bonding material and electronic circuit board
TWI469845B (en) High temperature lead free solder alloy
JP4818641B2 (en) Fuse element
JP2001266724A (en) Alloy-type thermal fuse
JP2004176105A (en) Alloy type thermal fuse, and material for thermal fuse element
JP4425760B2 (en) Fuse element
JP2009082986A (en) Lead-free solder alloy for manual soldering
JP2009255176A (en) Soldering composition and electronic component
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP4429476B2 (en) Fuse element for built-in electrical parts
JP2007313548A (en) Cream solder
JP4409747B2 (en) Alloy type thermal fuse
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JP2001195963A (en) Alloy temperature fuse
CN104703749A (en) Solder alloy for die bonding
JP5387808B1 (en) Solder alloy
JPS6350118B2 (en)
CN112296550B (en) Zinc-based high-temperature lead-free soldering tin and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4425760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees