JP2006124495A - Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same - Google Patents

Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same Download PDF

Info

Publication number
JP2006124495A
JP2006124495A JP2004313712A JP2004313712A JP2006124495A JP 2006124495 A JP2006124495 A JP 2006124495A JP 2004313712 A JP2004313712 A JP 2004313712A JP 2004313712 A JP2004313712 A JP 2004313712A JP 2006124495 A JP2006124495 A JP 2006124495A
Authority
JP
Japan
Prior art keywords
flame
polystyrene resin
retardant
extruded foam
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004313712A
Other languages
Japanese (ja)
Inventor
Toshiyuki Onishi
俊行 大西
Naoyuki Futamura
直行 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2004313712A priority Critical patent/JP2006124495A/en
Publication of JP2006124495A publication Critical patent/JP2006124495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extruded and foamed article of a flame retardant polystyrene-based resin, excellent in flame retardance and environmental hygiene and without getting discoloration. <P>SOLUTION: This extruded and foamed article of the flame retardant polystyrene-based resin obtained by extruding/foaming a polystyrene-based resin by using a blowing agent containing ≥1 kind compound selected from 3-5C saturated hydrocarbons is characterized by containing a flame-retardant consisting of 1-10 pt.wt. halogenated aliphatic compound and 0.05-2 pt.wt. 6-dentate meal complex based on 100 pts.wt. polystyrene-based resin, having an excellent flame retardant property, and also capable of improving the thermal stability of the polystyrene-based resin for aiming at the high foaming magnitude and the prevention of discoloration, and further it is excellent in environmental hygiene. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、難燃性及び環境衛生に優れており変色のない難燃性ポリスチレン系樹脂押出発泡体及びその製造方法に関する。   The present invention relates to a flame-retardant polystyrene resin extruded foam excellent in flame retardancy and environmental hygiene and having no discoloration, and a method for producing the same.

従来からポリスチレン系樹脂押出発泡体は、ポリスチレン系樹脂を押出機に供給して溶融、混練し、この溶融状態のポリスチレン系樹脂に発泡剤を圧入した上で押出機から押出発泡させて製造されている。   Conventionally, a polystyrene resin extruded foam is manufactured by supplying a polystyrene resin to an extruder, melting and kneading, pressing a foaming agent into the molten polystyrene resin, and then extruding and foaming from the extruder. Yes.

ポリスチレン系樹脂押出発泡体は、建材分野に多く用いられ、難燃性が求められており、ポリスチレン系樹脂発泡体の難燃剤としては、耐熱性に優れ且つ少ない添加量で難燃性を発揮することから、ヘキサブロモシクロドデカンが用いられてきた。   Polystyrene resin extruded foam is widely used in the field of building materials and is required to have flame retardancy. As a flame retardant for polystyrene resin foam, it has excellent heat resistance and exhibits flame retardancy with a small addition amount. For this reason, hexabromocyclododecane has been used.

ところが、ヘキサブロモシクロドデカンは、比較的難分解性で高蓄積性のある化合物であることから、環境衛生上、好ましいものではなく、これに代わる難燃剤が所望されている。   However, hexabromocyclododecane is a relatively difficult-to-decompose and highly accumulative compound, so it is not preferable for environmental hygiene, and an alternative flame retardant is desired.

そこで、特許文献1には、難燃剤として、ハロゲン化芳香族アリルエーテル類と、ハロゲン化環状脂肪族化合物を除くハロゲン化脂肪族化合物あるいはその誘導体とを含有するものが提案されている。   Therefore, Patent Document 1 proposes a flame retardant containing a halogenated aromatic allyl ether and a halogenated aliphatic compound other than a halogenated cycloaliphatic compound or a derivative thereof.

しかしながら、ハロゲン化芳香族アリルエーテル類は、分解温度が200℃以下と低いために、押出発泡条件下では分解してしまい、この分解生成物がポリスチレン系樹脂の分解を誘発しポリスチレン系樹脂を低分子量化するため、発泡性が低下して発泡体の製造が困難となったり、たとえ発泡体が製造できたとしても、得られる発泡体は、割れ易いのに加えて黄色に変色しており、品質的に満足のいくものではなかった。   However, since halogenated aromatic allyl ethers have a decomposition temperature as low as 200 ° C. or lower, they are decomposed under extrusion foaming conditions, and this decomposition product induces decomposition of the polystyrene resin and lowers the polystyrene resin. Since the molecular weight is increased, the foamability is lowered and the production of the foam is difficult, or even if the foam can be produced, the resulting foam is easily broken and is colored yellow. The quality was not satisfactory.

又、ハロゲン化環状脂肪族化合物を除くハロゲン化脂肪族化合物あるいはその誘導体だけでは難燃性が不充分であることから、発泡体に充分な難燃性を付与するためには、ハロゲン化脂肪族化合物或いはその誘導体を多量に添加する必要があり、このように多量に使用するとポリスチレン系樹脂の可塑化を生じてしまい、高発泡倍率を有する発泡体を得ることができないという問題を生じた。   In addition, the halogenated aliphatic compound excluding the halogenated cycloaliphatic compound or its derivative alone is insufficient in flame retardancy. In order to impart sufficient flame retardancy to the foam, the halogenated aliphatic compound is used. It is necessary to add a large amount of a compound or a derivative thereof, and when such a large amount is used, the polystyrene resin is plasticized, resulting in a problem that a foam having a high expansion ratio cannot be obtained.

特開2003−301064号公報Japanese Patent Laid-Open No. 2003-301064

本発明は、難燃性及び環境衛生に優れており、例えば、住宅の壁、床、屋根などに用いられる断熱材や畳の芯材などの建築材料に好適に用いることができると共に変色のない難燃性ポリスチレン系樹脂押出発泡体及びその製造方法を提供する。   The present invention is excellent in flame retardancy and environmental hygiene, and can be suitably used for building materials such as heat insulating materials and tatami core materials used for walls, floors, roofs of houses, etc. and has no discoloration. A flame-retardant polystyrene resin extruded foam and a method for producing the same are provided.

本発明の難燃性ポリスチレン系樹脂押出発泡体は、ポリスチレン系樹脂を、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物を含有する発泡剤を用いて押出発泡してなるポリスチレン系樹脂発泡体であって、ポリスチレン系樹脂100重量部に対して、ハロゲン化脂肪族化合物又はその誘導体1〜10重量部及び六配位金属錯体0.05〜2重量部からなる難燃剤を含有することを特徴とする。   The flame-retardant polystyrene resin extruded foam of the present invention is obtained by extruding a polystyrene resin using a foaming agent containing one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms. A flame retardant comprising 1 to 10 parts by weight of a halogenated aliphatic compound or a derivative thereof and 0.05 to 2 parts by weight of a hexacoordinated metal complex with respect to 100 parts by weight of a polystyrene resin. It is characterized by containing.

上記ポリスチレン系樹脂としては、特に限定されず、例えば、スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、クロロスチレン、ブロモスチレン等のスチレン系単量体の単独重合体又はこれらスチレン系単量体を2種以上組み合わせた共重合体;アクリル酸メチル、メタクリル酸メチルなどの(メタ)アクリル酸エステル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、無水マレイン酸、ブタジエンなどの単量体と上記スチレン系単量体との共重合体などが挙げられる。なお、共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体の何れであってもよい。又、ポリスチレン系樹脂が50重量%以上含有しておれば、ポリスチレン系樹脂以外の熱可塑性樹脂を添加してもよい。   The polystyrene resin is not particularly limited. For example, homopolymers of styrene monomers such as styrene, methyl styrene, ethyl styrene, isopropyl styrene, dimethyl styrene, chloro styrene, bromo styrene, or styrene single monomers. Copolymers of two or more types of body; (meth) acrylic acid esters such as methyl acrylate and methyl methacrylate, acrylic acid, methacrylic acid, acrylonitrile, methacrylonitrile, acrylamide, maleic anhydride, butadiene, etc. And a copolymer of the styrenic monomer and the styrene monomer. The copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. If the polystyrene resin is contained in an amount of 50% by weight or more, a thermoplastic resin other than the polystyrene resin may be added.

そして、本発明で用いられる難燃剤は、ハロゲン化脂肪族化合物又はその誘導体(ハロゲン化脂肪族化合物の誘導体)と、六配位金属錯体とからなる。上記ハロゲン化脂肪族化合物又はその誘導体としては、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパン、トリス(2,3−ジブロモプロピル)イソシアヌレート、トリブロモネオペンチルアルコール、トリス(トリブロモネオペンチル)ホスフェートなどが挙げられ、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパン、トリス(2,3−ジブロモプロピル)イソシアヌレートが好ましく、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパンとトリス(2,3−ジブロモプロピル)イソシアヌレートとを併用してもよい。なお、ハロゲン化脂肪族化合物又はその誘導体は、単独で用いても二種以上を併用してもよい。   And the flame retardant used by this invention consists of a halogenated aliphatic compound or its derivative (derivative of a halogenated aliphatic compound), and a hexacoordinate metal complex. Examples of the halogenated aliphatic compounds or derivatives thereof include 2,2-bis [4 ′-(2,3-dibromopropoxy) -3 ′, 5′-dibromophenyl] propane, tris (2,3-dibromopropyl). Examples include isocyanurate, tribromoneopentyl alcohol, tris (tribromoneopentyl) phosphate, and 2,2-bis [4 ′-(2,3-dibromopropoxy) -3 ′, 5′-dibromophenyl] propane. , Tris (2,3-dibromopropyl) isocyanurate is preferred, and 2,2-bis [4 '-(2,3-dibromopropoxy) -3', 5'-dibromophenyl] propane and tris (2,3- Dibromopropyl) isocyanurate may be used in combination. In addition, a halogenated aliphatic compound or its derivative may be used independently or may use 2 or more types together.

このハロゲン化脂肪族化合物又はその誘導体の難燃性ポリスチレン系樹脂押出発泡体中における含有量は、少ないと、JIS A9511に規定する難燃性を満足しない一方、多いと、ポリスチレン系樹脂の可塑化が大きくなり、難燃性ポリスチレン系樹脂押出発泡体の高発泡倍率化を図ることができないので、ポリスチレン系樹脂100重量部に対して1〜10重量部に限定され、2〜7重量部が好ましい。   When the content of the halogenated aliphatic compound or derivative thereof in the flame-retardant polystyrene resin extruded foam is small, the flame retardancy specified in JIS A9511 is not satisfied, whereas when the content is large, plasticization of the polystyrene resin is performed. Since the expansion ratio of the flame-retardant polystyrene resin extruded foam cannot be increased, it is limited to 1 to 10 parts by weight with respect to 100 parts by weight of the polystyrene resin, and preferably 2 to 7 parts by weight. .

又、難燃剤には六配位金属錯体が含まれており、この六配位金属錯体の存在によって、得られる難燃性ポリスチレン系樹脂押出発泡体は、優れた難燃性を発揮すると共に、黄変などの変色が防止される。   In addition, the flame retardant contains a hexacoordinated metal complex, and due to the presence of this hexacoordinated metal complex, the obtained flame-retardant polystyrene resin extruded foam exhibits excellent flame retardancy, Discoloration such as yellowing is prevented.

上記六配位金属錯体とは、中心金属に単座配位子又は多座配位子が配位したものであって配位数が6であるものをいい、例えば、ヘキサシアノ金属錯体、トリスアセチルアセトナート金属錯体、トリスエチレンジアミン金属錯体、トリスフェニレンジアミン金属錯体、トリスフェナントロリン金属錯体、トリスエチレンテトラミン金属錯体、トリスビピリジン金属錯体、トリスベンゾイルメタナト金属錯体、ヘキサアミノ金属錯体、ヘキサカルボナート金属錯体、ヘキサピリジン金属錯体などが挙げられ、ヘキサシアノ金属錯体、トリスアセチルアセトナート金属錯体が好ましく、ヘキサシアノ金属錯体がより好ましい。なお、六配位金属錯体は塩を形成していてもよい。   The hexacoordination metal complex is one in which a monodentate ligand or a polydentate ligand is coordinated to a central metal and has a coordination number of 6, for example, hexacyano metal complex, trisacetylacetate Narate metal complex, trisethylenediamine metal complex, trisphenylenediamine metal complex, trisphenanthroline metal complex, trisethylenetetramine metal complex, trisbipyridine metal complex, trisbenzoylmethanato metal complex, hexaamino metal complex, hexacarbonate metal complex, hexa A pyridine metal complex etc. are mentioned, A hexacyano metal complex and a trisacetylacetonate metal complex are preferable, and a hexacyano metal complex is more preferable. Note that the hexacoordinate metal complex may form a salt.

そして、六配位金属錯体を形成する中心金属は遷移金属であることが好ましく、遷移金属としては、周期律表のIIIA族〜IIB 族に属する金属をいい、具体的には、原子番号が21のScから30のZnまで、原子番号が39のYから48のCdまで、原子番号が57のLaから80のHgまで、原子番号が89のAc以上の元素をいう。上記六配位金属錯体を形成する遷移金属のうち、Mn,Fe,Co,Ni,Cu,Znが好ましく、Fe,Co,Niがより好ましく、Feが特に好ましい。   The central metal forming the hexacoordinated metal complex is preferably a transition metal, and the transition metal is a metal belonging to groups IIIA to IIB of the periodic table, and specifically has an atomic number of 21. An element having an atomic number of 89 or higher, from an atomic number of 39 to Y of an atomic number of 39 to an atomic number of Cd of 48 to 48, an atomic number of La to an Hg of 80 and an atomic number of 89 Of the transition metals forming the hexacoordinated metal complex, Mn, Fe, Co, Ni, Cu, and Zn are preferable, Fe, Co, and Ni are more preferable, and Fe is particularly preferable.

上記六配位金属錯体の難燃性ポリスチレン系樹脂押出発泡体中における含有量は、少ないと、難燃性ポリスチレン系樹脂押出発泡体の難燃性が低下する一方、多いと、難燃性ポリスチレン系樹脂押出発泡体に変色を生じるので、ポリスチレン系樹脂100重量部に対して0.05〜2重量部が好ましく、0.1〜1重量部がより好ましい。   If the content of the hexacoordinated metal complex in the flame retardant polystyrene resin extruded foam is small, the flame retardancy of the flame retardant polystyrene resin extruded foam is reduced, whereas if it is large, the flame retardant polystyrene is reduced. Since discoloration occurs in the extruded resin foam, the amount is preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1 part by weight based on 100 parts by weight of the polystyrene resin.

上記難燃剤に加えて難燃助剤を添加してもよい。このような難燃助剤としては、リン酸エステル系化合物や含窒素化合物などが挙げられる。上記リン酸エステル系化合物としては、例えば、トリフェニルホスフェート、トリス(クロロエチル)ホスフェート、トリス(クロロピル)ホスフェートなどのリン酸エステルなどが挙げられ、トリフェニルホスフェートが好ましい。又、上記含窒素化合物としては、例えば、シアヌル酸、イソシアヌル酸又はこれらの誘導体などが挙げられる。   In addition to the flame retardant, a flame retardant aid may be added. Examples of such flame retardant aids include phosphate ester compounds and nitrogen-containing compounds. Examples of the phosphate ester compounds include phosphate esters such as triphenyl phosphate, tris (chloroethyl) phosphate, and tris (chloropyr) phosphate, and triphenyl phosphate is preferable. Moreover, as said nitrogen-containing compound, cyanuric acid, isocyanuric acid, or these derivatives etc. are mentioned, for example.

更に、難燃剤の分解温度調整剤を添加してもよく、このような分解温度調整剤として、2,3−ジメチル−2,3−ジフェニルブタンなどのジフェニルアルカン、2,4−ジフェニル−4−メチル−1−ペンテンなどのジフェニルアルケンなどが挙げられる。   Furthermore, a flame retardant decomposition temperature adjusting agent may be added. Examples of such a decomposition temperature adjusting agent include diphenylalkanes such as 2,3-dimethyl-2,3-diphenylbutane, 2,4-diphenyl-4- And diphenylalkene such as methyl-1-pentene.

又、本発明の難燃性ポリスチレン系樹脂押出発泡体には、その物性を損なわない範囲内において、タルク、炭酸カルシウム、珪酸カルシウム、酸化チタンなどの無機化合物;フェノール系抗酸化剤;リン系安定剤;ベンゾトリアゾール類、ヒンダードアミン類などの耐光性安定剤;帯電防止剤;顔料などの着色剤などの添加剤を含有させてもよい。   In addition, the flame-retardant polystyrene resin extruded foam of the present invention has an inorganic compound such as talc, calcium carbonate, calcium silicate, and titanium oxide; a phenolic antioxidant; Agents; light-resistant stabilizers such as benzotriazoles and hindered amines; antistatic agents; additives such as colorants such as pigments may be included.

一方、ポリスチレン系樹脂を押出発泡させるのに用いられる発泡剤としては、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物を含有するものが用いられる。上記炭素数が3〜5である飽和炭化水素としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンなどが挙げられ、ポリスチレン系樹脂の発泡性及び難燃性ポリスチレン系樹脂押出発泡体の断熱性の観点から、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタンが好ましく、ノルマルブタン、イソブタンがより好ましい。   On the other hand, as a foaming agent used for extrusion foaming a polystyrene-based resin, one containing one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms is used. Examples of the saturated hydrocarbon having 3 to 5 carbon atoms include propane, normal butane, isobutane, normal pentane, isopentane, and the like, and the foamability of polystyrene resin and the heat insulating property of flame-retardant polystyrene resin extruded foam. In view of the above, normal butane, isobutane, normal pentane and isopentane are preferable, and normal butane and isobutane are more preferable.

そして、ポリスチレン系樹脂を押出発泡させる際に用いられる、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物の量としては、少ないと、難燃性ポリスチレン系樹脂押出発泡体中に残存する飽和炭化水素の量が少なくなって、難燃性ポリスチレン系樹脂押出発泡体の断熱性が低下する一方、多いと、難燃性ポリスチレン系樹脂押出発泡体中に残存する飽和炭化水素の量が多くなり過ぎて、難燃性ポリスチレン系樹脂押出発泡体の難燃性が低下するので、ポリスチレン系樹脂100重量部に対して2〜6重量部が好ましく、2〜4重量部がより好ましい。   And, when the amount of the one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms used for extrusion foaming of the polystyrene resin is small, a flame retardant polystyrene resin extrusion foam The amount of saturated hydrocarbon remaining in the resin decreases, and the heat insulation property of the flame-retardant polystyrene resin extruded foam decreases. On the other hand, the saturated hydrocarbon remains in the flame-retardant polystyrene resin extruded foam. Since the flame retardancy of the flame retardant polystyrene resin extruded foam is reduced, the amount is preferably 2 to 6 parts by weight, more preferably 2 to 4 parts by weight with respect to 100 parts by weight of the polystyrene resin. preferable.

更に、ポリスチレン系樹脂を押出発泡させる際に用いられる発泡剤には、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物の他に、これらの飽和炭化水素以外の非フロン系発泡剤が含有されていてもよい。このような非フロン系発泡剤としては、ジメチルエーテル、ジエチルエーテル、塩化メチル、塩化エチル、水、二酸化炭素などが挙げられ、ジメチルエーテル、塩化メチル及び二酸化炭素からなる群から選ばれた少なくとも一種の化合物が好ましく、二酸化炭素とジメチルエーテルとを併用すること、二酸化炭素と塩化メチルとを併用すること、ジメチルエーテル、塩化メチル及び二酸化炭素を併用することが好ましく、二酸化炭素とジメチルエーテルとを併用すること、二酸化炭素と塩化メチルとを併用することがより好ましい。なお、非フロン系発泡剤は、単独で用いられても併用されてもよい。   Furthermore, the foaming agent used when the polystyrene resin is extruded and foamed includes, in addition to one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms, non-fluorocarbons other than these saturated hydrocarbons. A system foaming agent may be contained. Examples of such non-fluorocarbon blowing agents include dimethyl ether, diethyl ether, methyl chloride, ethyl chloride, water, carbon dioxide, and the like, and at least one compound selected from the group consisting of dimethyl ether, methyl chloride, and carbon dioxide. Preferably, carbon dioxide and dimethyl ether are used in combination, carbon dioxide and methyl chloride are used in combination, dimethyl ether, methyl chloride and carbon dioxide are used in combination, carbon dioxide and dimethyl ether are used in combination, carbon dioxide and More preferably, methyl chloride is used in combination. In addition, a non-fluorocarbon foaming agent may be used alone or in combination.

上記非フロン系発泡剤の使用量としては、少ないと、所定の断熱性及び高発泡倍率を有する難燃性ポリスチレン系樹脂押出発泡体の製造が困難となることがある一方、多いと、難燃性ポリスチレン系樹脂押出発泡体の気泡が破れたり或いはボイド(空隙)が発生するなどの不具合が生じる虞れがあるので、ポリスチレン系樹脂100重量部に対して1〜10重量部が好ましく、3〜7重量部がより好ましい。   When the amount of the non-fluorocarbon foaming agent is small, it may be difficult to produce a flame-retardant polystyrene resin extruded foam having a predetermined heat insulating property and a high foaming ratio. 1-10 parts by weight is preferable with respect to 100 parts by weight of the polystyrene-based resin, since there is a risk that bubbles of the extruded polystyrene-based resin foam may be broken or voids (voids) may occur. More preferred is 7 parts by weight.

そして、押出発泡後30日を経過した時点における難燃性ポリスチレン系樹脂押出発泡体中に含まれる、炭素数が3〜5である飽和炭化水素の全量は、多いと、難燃性ポリスチレン系樹脂押出発泡体がJIS A9511で規定された難燃性を満たすことができない虞れがあるので、3.5重量%以下が好ましく、少な過ぎると、難燃性ポリスチレン系樹脂押出発泡体の断熱性が低下する虞れがあるので、1〜3.5重量%がより好ましい。   When the total amount of saturated hydrocarbons having 3 to 5 carbon atoms contained in the flame-retardant polystyrene resin extruded foam after 30 days after extrusion foaming is large, the flame-retardant polystyrene resin Since there is a possibility that the extruded foam cannot satisfy the flame retardancy specified in JIS A9511, it is preferably 3.5% by weight or less, and if it is too small, the heat insulating property of the flame-retardant polystyrene resin extruded foam is low. Since there exists a possibility that it may fall, 1 to 3.5 weight% is more preferable.

なお、押出発泡後30日経過した時点における難燃性ポリスチレン系樹脂押出発泡体中に含まれる飽和炭化水素量は下記の要領で測定されたものをいう。先ず、押出発泡後30日経過した時点の難燃性ポリスチレン系樹脂押出発泡体から、該難燃性ポリスチレン系樹脂押出発泡体の表面と、この表面から厚み方向に内側に2mmだけ入った部分との間にある表層部分を除外し、この表層部分が除外された難燃性ポリスチレン系樹脂押出発泡体から、押出方向に35mm、難燃性ポリスチレン系樹脂押出発泡体の表面に沿い且つ押出方向に直交する方向に5mm、厚み方向に5mmの大きさを有する直方体形状の試験片を切り出し、この試験片の重量を測定する。なお、難燃性ポリスチレン系樹脂押出発泡体の厚み方向とは、難燃性ポリスチレン系樹脂押出発泡体の表面に対して直交する方向をいう。   In addition, the amount of saturated hydrocarbons contained in the flame-retardant polystyrene resin extruded foam when 30 days have passed after extrusion foaming is measured in the following manner. First, from the flame-retardant polystyrene resin extruded foam when 30 days have passed after extrusion foaming, the surface of the flame-retardant polystyrene resin extruded foam, and a portion that is 2 mm inside from the surface in the thickness direction; From the flame retardant polystyrene resin extruded foam from which the surface layer portion was excluded, 35 mm in the extrusion direction, along the surface of the flame retardant polystyrene resin extruded foam and in the extrusion direction. A rectangular parallelepiped test piece having a size of 5 mm in the orthogonal direction and 5 mm in the thickness direction is cut out, and the weight of the test piece is measured. In addition, the thickness direction of a flame-retardant polystyrene-type resin extrusion foam means the direction orthogonal to the surface of a flame-retardant polystyrene-type resin extrusion foam.

そして、上記試験片を150℃の熱分解炉に供給してガスクロマトグラフィーからチャートを得、予め測定しておいた飽和炭化水素の各成分毎の検量線に基づいて上記チャートから試験片中の飽和炭化水素の各成分量を算出し、各成分量の合計を総飽和炭化水素量とし、以下の式に基づいて求める。なお、上記ガスクロマトグラフィーとしては、例えば、島津製作所社から商品名「GC−14B」で市販されている。   And the said test piece is supplied to a 150 degreeC pyrolysis furnace, a chart is obtained from a gas chromatography, Based on the calibration curve for each component of the saturated hydrocarbon measured beforehand, from the said chart, in a test piece, The amount of each component of the saturated hydrocarbon is calculated, and the total amount of each component is defined as the total amount of saturated hydrocarbons, which is obtained based on the following formula. The gas chromatography is commercially available, for example, from Shimadzu Corporation under the trade name “GC-14B”.

(押出発泡後30日経過した時点の難燃性ポリスチレン系樹脂押出発泡体中に含まれる飽和炭化水素量〔重量%〕)=100×試験片中の総飽和炭化水素量/試験片の重量 (Saturated hydrocarbon content [wt%] contained in the flame-retardant polystyrene resin extruded foam when 30 days have passed after extrusion foaming) = 100 × total saturated hydrocarbon content in test piece / weight of test piece

そして、本発明の難燃性ポリスチレン系樹脂押出発泡体は、汎用の押出発泡方法を用いて製造され、例えば、ポリスチレン系樹脂、並びに、ハロゲン化脂肪族化合物又はその誘導体と六配位金属錯体とからなる難燃剤、必要に応じて添加剤を押出機に供給して溶融混練し、この溶融状態のポリスチレン系樹脂に、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物を含有する発泡剤を圧入した後に押出発泡させて難燃性ポリスチレン系樹脂押出発泡体を製造することができる。なお、難燃性ポリスチレン系樹脂押出発泡体の製造時に、難燃性ポリスチレン系樹脂押出発泡体の気泡径を調整するために、マイカ、重炭酸ナトリウム、アゾジカルボンアミドなどの発泡核剤をポリスチレン系樹脂に添加してもよい。   And the flame-retardant polystyrene-type resin extrusion foam of this invention is manufactured using a general-purpose extrusion foaming method, for example, a polystyrene-type resin, and a halogenated aliphatic compound or its derivative (s), a hexacoordination metal complex, One or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms in the molten polystyrene-based resin by supplying the extruder with an extruder as necessary and melt-kneading it as necessary A flame retardant polystyrene resin extruded foam can be produced by pressing and foaming a foaming agent containing styrene. In order to adjust the cell diameter of the flame-retardant polystyrene resin extruded foam, polystyrene nucleating agents such as mica, sodium bicarbonate, azodicarbonamide, etc. are used to adjust the cell diameter of the flame-retardant polystyrene resin extruded foam. It may be added to the resin.

本発明の難燃性ポリスチレン系樹脂押出発泡体は、ポリスチレン系樹脂を、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物を含有する発泡剤を用いて押出発泡してなるポリスチレン系樹脂発泡体であって、ポリスチレン系樹脂100重量部に対して、ハロゲン化脂肪族化合物又はその誘導体1〜10重量部及び六配位金属錯体0.05〜2重量部からなる難燃剤を含有することを特徴とするので、優れた難燃性を有すると共に、ポリスチレン系樹脂の熱安定化を向上させて高発泡倍率化及び変色防止を図ることができ、更に、環境衛生にも優れている。   The flame-retardant polystyrene resin extruded foam of the present invention is obtained by extruding a polystyrene resin using a foaming agent containing one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms. A flame retardant comprising 1 to 10 parts by weight of a halogenated aliphatic compound or a derivative thereof and 0.05 to 2 parts by weight of a hexacoordinated metal complex with respect to 100 parts by weight of a polystyrene resin. In addition to having excellent flame retardancy, it is possible to improve the thermal stabilization of polystyrene resins to increase the expansion ratio and prevent discoloration. ing.

更に、上記難燃性ポリスチレン系樹脂押出発泡体において、ハロゲン化脂肪族化合物又はその誘導体が、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパン及び/又はトリス(2,3−ジブロモプロピル)イソシアヌレートである場合には、より優れた難燃性を有する。   Furthermore, in the flame retardant polystyrene resin extruded foam, the halogenated aliphatic compound or derivative thereof is 2,2-bis [4 ′-(2,3-dibromopropoxy) -3 ′, 5′-dibromophenyl. In the case of propane and / or tris (2,3-dibromopropyl) isocyanurate, it has more excellent flame retardancy.

又、上記難燃性ポリスチレン系樹脂押出発泡体において、六配位金属錯体がヘキサシアノ金属錯体である場合には、難燃性ポリスチレン系樹脂押出発泡体は、より優れた難燃性を有すると共に変色の生じていない美麗なものとなっている。   Further, in the above flame-retardant polystyrene resin extruded foam, when the six-coordinated metal complex is a hexacyano metal complex, the flame-retardant polystyrene resin extruded foam has better flame retardancy and discoloration. It has become a beautiful thing that has not occurred.

そして、上記難燃性ポリスチレン系樹脂押出発泡体において、六配位金属錯体を形成する中心金属が、遷移金属である場合には、より優れた難燃性を有する。   And in the said flame-retardant polystyrene-type resin extrusion foam, when the center metal which forms a hexacoordination metal complex is a transition metal, it has the more excellent flame retardance.

(実施例1〜10、比較例1〜6)
押出機として、口径が50mmの第一押出機の先端に口径が65mmの第二押出機が接続されてなるタンデム型押出機を用い、上記第一押出機に、ポリスチレン(東洋スチレン社製 商品名「HRM−18」)100重量部に対して、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパン、トリス(2,3−ジブロモプロピル)イソシアヌレート、テトラブロモビスフェノールA−ビス(アリルエーテル)、ヘキサシアノ鉄(III) 酸カリウム、ヘキサシアノ鉄(II)酸カリウム三水和物、シクロペンタジエン鉄、トリフェニルホスフェート、イソシアヌル酸及び2,3−ジメチル−2,3−ジフェニルブタンを表1,2に示した所定量(重量部)づつ供給して溶融混練し、この溶融状態のポリスチレンに、イソブタン、ジメチルエーテル、塩化メチル及び二酸化炭素を表1,2に示した所定量(重量部)づつ圧入した後、この溶融状態のポリスチレンを第二押出機に連続的に供給して溶融混練しつつ発泡に適した樹脂温度130℃に冷却した上で、第二押出機の先端部に取り付けたTダイ(幅:70mm、厚み:1.2mm)から35kg/時間の吐出量で押出発泡し、Tダイに密接させて配設された、上下方向に30mmの間隔を存して平行に配設された上下一対のサイジングプレートの対向面間に連続的に供給して、断面が横長長方形状の厚み28mm、幅170mmの難燃性ポリスチレン系樹脂押出発泡板を連続的に製造した。なお、表1に示した各化合物の単位は、「重量部」である。又、比較例2では、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパンを多量に添加したために、ポリスチレンが大きく可塑化して押出発泡性が低下し、難燃性ポリスチレン系樹脂押出発泡板を得ることができなかった。
(Examples 1-10, Comparative Examples 1-6)
As the extruder, a tandem type extruder in which a second extruder having a diameter of 65 mm is connected to the tip of a first extruder having a diameter of 50 mm is used, and polystyrene (made by Toyo Styrene Co., Ltd. "HRM-18") per 100 parts by weight 2,2-bis [4 '-(2,3-dibromopropoxy) -3', 5'-dibromophenyl] propane, tris (2,3-dibromopropyl) ) Isocyanurate, tetrabromobisphenol A-bis (allyl ether), potassium hexacyanoferrate (III), potassium hexacyanoferrate (II) trihydrate, cyclopentadiene iron, triphenyl phosphate, isocyanuric acid and 2,3- Dimethyl-2,3-diphenylbutane is supplied in predetermined amounts (parts by weight) shown in Tables 1 and 2 and melt-kneaded. After press-fitting sobutane, dimethyl ether, methyl chloride and carbon dioxide in predetermined amounts (parts by weight) shown in Tables 1 and 2, this molten polystyrene is continuously supplied to the second extruder and foamed while melt-kneaded. After cooling to a resin temperature suitable for the temperature of 130 ° C., extrusion foaming is performed at a discharge rate of 35 kg / hour from a T die (width: 70 mm, thickness: 1.2 mm) attached to the tip of the second extruder. Are provided in close contact with each other and are continuously supplied between the opposing surfaces of a pair of upper and lower sizing plates disposed in parallel with an interval of 30 mm in the vertical direction, and the cross-section is a horizontally long rectangular shape with a thickness of 28 mm. A flame-retardant polystyrene-based resin extruded foam plate having a width of 170 mm was continuously produced. The unit of each compound shown in Table 1 is “parts by weight”. In Comparative Example 2, since 2,2-bis [4 ′-(2,3-dibromopropoxy) -3 ′, 5′-dibromophenyl] propane was added in a large amount, polystyrene was greatly plasticized and extruded and foamed. As a result, the flame-retardant polystyrene resin extruded foam plate could not be obtained.

得られた難燃性ポリスチレン系樹脂押出発泡板の密度、断熱性、燃焼性、平均気泡径、押出発泡後30日経過した時点のイソブタンの残存量及び変色の有無について、下記に示した要領にて測定し、その結果を表1,2に示した。   Regarding the density, heat insulating property, combustibility, average cell diameter, remaining amount of isobutane after 30 days after extrusion foaming and presence or absence of discoloration of the obtained flame-retardant polystyrene resin extruded foam plate, the following manner was used. The results are shown in Tables 1 and 2.

(密度)
難燃性ポリスチレン系樹脂押出発泡板の密度をJIS K7222に準拠して測定した。
(density)
The density of the flame-retardant polystyrene resin extruded foam plate was measured according to JIS K7222.

(断熱性)
押出発泡後30日が経過した時点の難燃性ポリスチレン系樹脂押出発泡板から、該難燃性ポリスチレン系樹脂押出発泡板の両面と、この両面のそれぞれから厚み方向に内側に1.5mmだけ入った部分との間にある表層部分、及び、幅方向の両端部10mmづつを除去し、この表層部分及び両端部が除去されたスチレン系樹脂発泡板から、押出方向に200mm、スチレン系樹脂発泡板の表面に沿い且つ押出方向に直交する方向に150mm、厚み方向に25mmの大きさを有する試験片を切り出した。
(Thermal insulation properties)
From the flame-retardant polystyrene resin extruded foam plate after 30 days after extrusion foaming, both sides of the flame-retardant polystyrene resin extruded foam plate and 1.5 mm inward in the thickness direction from each of both sides From the styrene resin foam plate from which the surface layer portion and the both end portions 10 mm in the width direction are removed, and the surface layer portion and both end portions are removed, the styrene resin foam plate is 200 mm in the extrusion direction. A test piece having a size of 150 mm in the direction perpendicular to the extrusion direction and 25 mm in the thickness direction was cut out.

そして、上記試験片の熱伝導率を、JIS A1412-1994 の「熱絶縁材の熱伝導率及び熱抵抗の測定方法」において規定された平板熱流計法に準拠して測定し、得られた熱伝導率を断熱性の指標とした。 Then, the thermal conductivity of the test pieces were measured according to a flat plate heat flow meter method defined in the "method of measuring the thermal conductivity of the thermal insulation and thermal resistance" of JIS 1412 -1994, the resultant heat Conductivity was used as an index of heat insulation.

(燃焼性)
押出発泡後一週間が経過した時点の難燃性ポリスチレン系樹脂押出発泡板から、縦25mm×横20mm×厚さ10mmの試験片を5枚、切り出した。そして、この5個の試験片について、切り出してから3日経過後に、JIS A9511-1995 に規定された測定方法Aの燃焼性試験に準拠して燃焼性を測定し、下記の基準にて判断した。
○・・・上記測定方法Aの燃焼性を満足する。即ち、5個の試験片の全てについて炎が 3秒以内に消えると共に残じんがなく、燃焼限界支持線を越えて燃焼しなかっ た。
△・・・自消性は有するものの、○の基準を満足しなかった。
×・・・自消性は認められなかった。
(Combustion quality)
Five test pieces each having a length of 25 mm, a width of 20 mm, and a thickness of 10 mm were cut out from the flame-retardant polystyrene resin extruded foam plate after one week had passed after extrusion foaming. Then, this five test pieces, after a lapse of 3 days from the cut, in compliance with flammability test measurement method A defined in JIS A9511 -1995 measure flammability was determined by the following criteria .
A: Satisfying the combustibility of the above measuring method A. That is, for all five specimens, the flames disappeared within 3 seconds, there was no residue, and the flames did not burn beyond the limit of support.
Δ: Although self-extinguishing, it did not satisfy the criteria of ○.
X: Self-extinguishing property was not recognized.

(イソブタンの残存量)
押出発泡後30日経過した時点の難燃性ポリスチレン系樹脂押出発泡板から、該難燃性ポリスチレン系樹脂押出発泡体の両面と、この両面のそれぞれから厚み方向に内側に2mmだけ入った部分との間にある表層部分を除外し、この表層部分が除外された難燃性ポリスチレン系樹脂押出発泡板から、押出方向に35mm、難燃性ポリスチレン系樹脂押出発泡体の表面に沿い且つ押出方向に直交する方向に5mm、厚み方向に5mmの大きさを有する直方体形状の試験片を切り出し、この試験片の重量を測定する。なお、難燃性ポリスチレン系樹脂押出発泡板の厚み方向とは、難燃性ポリスチレン系樹脂押出発泡板の表面に対して直交する方向をいう。
(Remaining amount of isobutane)
From the flame-retardant polystyrene resin extruded foam plate 30 days after the extrusion foaming, both sides of the flame-retardant polystyrene resin extruded foam, and a portion that is 2 mm inward in the thickness direction from each of both sides, From the flame retardant polystyrene resin extruded foam plate from which the surface layer portion is excluded, 35 mm in the extrusion direction, along the surface of the flame retardant polystyrene resin extruded foam and in the extrusion direction. A rectangular parallelepiped test piece having a size of 5 mm in the orthogonal direction and 5 mm in the thickness direction is cut out, and the weight of the test piece is measured. In addition, the thickness direction of a flame-retardant polystyrene-type resin extrusion foaming board means the direction orthogonal to the surface of a flame-retardant polystyrene-type resin extrusion foaming board.

そして、上記試験片を150℃の熱分解炉に供給してガスクロマトグラフィー(島津製作所社製 商品名「GC−14B」)からチャートを得、予め測定しておいたイソブタンの検量線に基づいて上記チャートから試験片中のイソブタン量を算出し、以下の式に基づいて求めた。
(押出発泡後30日経過した時点の難燃性ポリスチレン系樹脂押出発泡板中に含まれるイソブタン量〔重量%〕)=100×試験片中のイソブタン量/試験片の重量
And the said test piece is supplied to a 150 degreeC pyrolysis furnace, a chart is obtained from gas chromatography (Shimadzu Corporation brand name "GC-14B"), and based on the isobutane calibration curve measured beforehand. The amount of isobutane in the test piece was calculated from the above chart and obtained based on the following formula.
(Amount of isobutane contained in the flame-retardant polystyrene resin extruded foam plate after 30 days from extrusion foaming [wt%]) = 100 × the amount of isobutane in the test piece / the weight of the test piece

(平均気泡径)
難燃性ポリスチレン系樹脂押出発泡板の平均気泡径は、ASTM D2842−69の試験方法に準拠して測定された平均弦長に基づいて算出されたものをいう。具体的には、難燃性ポリスチレン系樹脂押出発泡板から、該難燃性ポリスチレン系樹脂押出発泡板の両面と、この両面のそれぞれから厚み方向に内側に1.5mmだけ入った部分との間にある表層部分を除去した上で、難燃性ポリスチレン系樹脂押出発泡板をその押出方向に沿って厚み方向に切断し、その切断面を走査型電子顕微鏡(日本電子社製 商品名「JSM T−300」)を用いて20倍に拡大して撮影した。
(Average bubble diameter)
The average cell diameter of the flame-retardant polystyrene resin extruded foam plate is calculated based on the average chord length measured according to the test method of ASTM D2842-69. Specifically, between the flame retardant polystyrene resin extruded foam plate, both sides of the flame retardant polystyrene resin extruded foam plate, and a portion that is 1.5 mm inward in the thickness direction from each of both sides. The flame retardant polystyrene resin extruded foam plate is cut in the thickness direction along the extrusion direction, and the cut surface is scanned with a scanning electron microscope (trade name “JSM T” manufactured by JEOL Ltd.). -300 ") and magnified 20 times.

次に、撮影した写真における写真上長さ60mmの一直線上にある気泡数から、各気泡の平均弦長(t)を下記式1に基づいて算出した。
平均弦長(t)=60/(気泡数×写真の倍率)・・・式1
Next, the average chord length (t) of each bubble was calculated based on the following equation 1 from the number of bubbles on a straight line having a length of 60 mm in the photograph taken.
Average chord length (t) = 60 / (number of bubbles × photo magnification) Formula 1

そして、下記式2により、難燃性ポリスチレン系樹脂押出発泡体の平均気泡径を算出した。
平均気泡径D=t/0.616・・・式2
And the average bubble diameter of the flame-retardant polystyrene-type resin extrusion foam was computed by following formula 2.
Average bubble diameter D = t / 0.616 Equation 2

(変色の有無)
難燃性ポリスチレン系樹脂押出発泡板の表面を目視観察して下記基準に基づいて判断した。比較例6では、シクロペンタジエン鉄が四配位金属錯体であり、押出発泡時にシクロペンタジエン鉄が分解して難燃性ポリスチレン系樹脂押出発泡板が黄変し、更に、押出機内における滞留時間が長くなると黒変した。
○・・・難燃性ポリスチレン系樹脂押出発泡体の表面が白色であった。
×・・・難燃性ポリスチレン系樹脂押出発泡体の表面が添加剤やポリスチレンの劣化に より変色していた。
(With or without discoloration)
The surface of the flame-retardant polystyrene-based resin extruded foam plate was visually observed and judged based on the following criteria. In Comparative Example 6, cyclopentadiene iron is a four-coordinate metal complex, cyclopentadiene iron is decomposed during extrusion foaming, the flame-retardant polystyrene resin extruded foam plate is yellowed, and the residence time in the extruder is long. It turned black.
◯: The surface of the flame-retardant polystyrene resin extruded foam was white.
X: The surface of the flame-retardant polystyrene resin extruded foam was discolored due to deterioration of additives and polystyrene.

Figure 2006124495
Figure 2006124495

Figure 2006124495
Figure 2006124495

Claims (7)

ポリスチレン系樹脂を、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物を含有する発泡剤を用いて押出発泡してなるポリスチレン系樹脂発泡体であって、ポリスチレン系樹脂100重量部に対して、ハロゲン化脂肪族化合物又はその誘導体1〜10重量部及び六配位金属錯体0.05〜2重量部からなる難燃剤を含有することを特徴とする難燃性ポリスチレン系樹脂押出発泡体。 A polystyrene resin foam obtained by extrusion foaming a polystyrene resin using a foaming agent containing one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms, the polystyrene resin 100 A flame-retardant polystyrene-based resin comprising a flame retardant comprising 1 to 10 parts by weight of a halogenated aliphatic compound or derivative thereof and 0.05 to 2 parts by weight of a hexacoordinated metal complex with respect to parts by weight Extruded foam. ハロゲン化脂肪族化合物又はその誘導体が、2,2−ビス〔4' −(2,3−ジブロモプロポキシ)−3',5' −ジブロモフェニル〕プロパン及び/又はトリス(2,3−ジブロモプロピル)イソシアヌレートであることを特徴とする請求項1に記載の難燃性ポリスチレン系樹脂押出発泡体。 The halogenated aliphatic compound or derivative thereof is 2,2-bis [4 ′-(2,3-dibromopropoxy) -3 ′, 5′-dibromophenyl] propane and / or tris (2,3-dibromopropyl). The flame-retardant polystyrene resin extruded foam according to claim 1, which is isocyanurate. 六配位金属錯体がヘキサシアノ金属錯体であることを特徴とする請求項1又は請求項2に記載の難燃性ポリスチレン系樹脂押出発泡体。 The flame-retardant polystyrene-based resin extruded foam according to claim 1 or 2, wherein the hexacoordinate metal complex is a hexacyano metal complex. 六配位金属錯体を形成する中心金属が、遷移金属であることを特徴とする請求項1乃至請求項3の何れか1項に記載の難燃性ポリスチレン系樹脂押出発泡体。 The flame-retardant polystyrene-based resin extruded foam according to any one of claims 1 to 3, wherein the central metal forming the hexacoordinated metal complex is a transition metal. 遷移金属がFeであることを特徴とする請求項4に記載の難燃性ポリスチレン系樹脂押出発泡体。 The flame retardant polystyrene resin extruded foam according to claim 4, wherein the transition metal is Fe. 押出発泡後30日経過した時点における、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物の含有量が3.5重量%以下であることを特徴とする請求項1乃至請求項5の何れか1項に記載の難燃性ポリスチレン系樹脂押出発泡体。 The content of one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms when 30 days have passed after extrusion foaming is 3.5% by weight or less. The flame-retardant polystyrene resin extruded foam according to claim 5. ポリスチレン系樹脂及び難燃剤を押出機に供給して溶融混練し、この溶融状態のスチレン系樹脂に発泡剤を供給した上で押出発泡させる難燃性ポリスチレン系樹脂押出発泡体の製造方法であって、上記ポリスチレン系樹脂100重量部に対して、上記難燃剤が、ハロゲン化脂肪族化合物又はその誘導体1〜10重量部及び六配位金属錯体0.05〜2重量部からなると共に、上記発泡剤が、炭素数が3〜5である飽和炭化水素から選ばれた一種以上の化合物2〜6重量部を含有することを特徴とする難燃性ポリスチレン系樹脂押出発泡体の製造方法。 A method for producing a flame-retardant polystyrene resin extruded foam in which a polystyrene resin and a flame retardant are supplied to an extruder, melt kneaded, and a foaming agent is supplied to the molten styrene resin and then extruded and foamed. The flame retardant comprises 1 to 10 parts by weight of a halogenated aliphatic compound or a derivative thereof and 0.05 to 2 parts by weight of a hexacoordinated metal complex with respect to 100 parts by weight of the polystyrene resin, and the foaming agent. Contains 2 to 6 parts by weight of one or more compounds selected from saturated hydrocarbons having 3 to 5 carbon atoms, and a method for producing a flame-retardant polystyrene resin extruded foam.
JP2004313712A 2004-10-28 2004-10-28 Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same Pending JP2006124495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313712A JP2006124495A (en) 2004-10-28 2004-10-28 Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313712A JP2006124495A (en) 2004-10-28 2004-10-28 Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006124495A true JP2006124495A (en) 2006-05-18

Family

ID=36719539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313712A Pending JP2006124495A (en) 2004-10-28 2004-10-28 Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006124495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012102A (en) * 2009-06-30 2011-01-20 Sekisui Plastics Co Ltd Expandable polystyrenic resin particle and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255879A (en) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd Flame-retardant thermoplastic resin composition
JPH11228735A (en) * 1998-02-18 1999-08-24 Asahi Chem Ind Co Ltd Metal complex flame retardant
JP2003301064A (en) * 2002-04-12 2003-10-21 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and its manufacturing method
JP2005330302A (en) * 2004-05-18 2005-12-02 Kaneka Corp Styrenic resin foam and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255879A (en) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd Flame-retardant thermoplastic resin composition
JPH11228735A (en) * 1998-02-18 1999-08-24 Asahi Chem Ind Co Ltd Metal complex flame retardant
JP2003301064A (en) * 2002-04-12 2003-10-21 Kanegafuchi Chem Ind Co Ltd Styrenic resin foam and its manufacturing method
JP2005330302A (en) * 2004-05-18 2005-12-02 Kaneka Corp Styrenic resin foam and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012102A (en) * 2009-06-30 2011-01-20 Sekisui Plastics Co Ltd Expandable polystyrenic resin particle and production method thereof

Similar Documents

Publication Publication Date Title
US6841581B2 (en) Extruded styrene resin foam and process for producing the same
JP2011021060A (en) Extrusion-foam product of polystyrene-based resin and method for producing the same
JP2011225641A (en) Extruded foam of polystyrenic resin and method for producing the same
JP5403169B2 (en) Styrenic resin extruded foam and method for producing the same
JP2012136674A (en) Styrene-based resin extrusion foam body, and method of producing the same
JP2013124281A (en) Method for producing polystyrene-based resin extruded foam
JP6099495B2 (en) Flame retardant melt kneaded material and method for producing polystyrene resin extruded foam using the same
JP2008133424A (en) Method for producing styrenic resin foam
JP6061742B2 (en) Method for producing extruded polystyrene resin foam
JP2006045375A (en) Flame retardant polystyrenic resin foam board and its manufacturing process
JP2006124495A (en) Extruded and foamed article of flame retardant polystyrene-based resin and method for producing the same
JP4784113B2 (en) Styrene resin extruded foam manufacturing method
JP2013166881A (en) Styrene resin extruded foam and method of producing the same
JP4806244B2 (en) Method for producing extruded polystyrene resin foam
JP4413080B2 (en) Flame retardant polystyrene resin extruded foam board
JP2012136675A (en) Styrene-based resin extrusion foam body, and method of producing the same
JP2008163185A (en) Method for preparing styrenic resin extruded foam
JP2009173771A (en) Method for producing styrenic resin extruded foam
JP4222916B2 (en) Flame retardant polystyrene resin extruded foam and method for producing the same
JP3913460B2 (en) Styrenic resin foam and method for producing the same
JP2006328293A (en) Method of manufacturing styrenic resin foamed body and styrenic resin foamed body
JP2007031557A (en) Flame-retardant polystyrene-based resin exclusion foam and method for producing the same
JP4474733B2 (en) Method for producing styrene resin foam
JP2005213440A (en) Foamed styrene resin and method for producing the same
JP2011127000A (en) Styrene-based resin extrusion foam, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005