JP2006124483A - Composite polymer and method for producing the same - Google Patents

Composite polymer and method for producing the same Download PDF

Info

Publication number
JP2006124483A
JP2006124483A JP2004313248A JP2004313248A JP2006124483A JP 2006124483 A JP2006124483 A JP 2006124483A JP 2004313248 A JP2004313248 A JP 2004313248A JP 2004313248 A JP2004313248 A JP 2004313248A JP 2006124483 A JP2006124483 A JP 2006124483A
Authority
JP
Japan
Prior art keywords
polymer
composite
film
target
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004313248A
Other languages
Japanese (ja)
Other versions
JP4255025B2 (en
Inventor
Tomoko Seyama
倫子 瀬山
Katsuyoshi Hayashi
勝義 林
Akiyuki Tate
彰之 館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004313248A priority Critical patent/JP4255025B2/en
Publication of JP2006124483A publication Critical patent/JP2006124483A/en
Application granted granted Critical
Publication of JP4255025B2 publication Critical patent/JP4255025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new composite polymer having mixed structures in molecular level by taking in a plurality of kinds of polymers having different chemical structures as target materials with a process using a radio frequency sputtering method. <P>SOLUTION: This composite polymer is provided by using a composite material obtained by extending a solution of a polymer B having a different molecular structure on a solid polymer A and drying, as a target and forming a structure of condensed fine grains in a high density on a substrate by the radio frequency sputtering. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複合ポリマー及びその作製方法、更に詳細にはドライプロセスにて作製されるポリマー材料の開発およびその作製方法の改良に関わるものである。   The present invention relates to a composite polymer and a production method thereof, and more particularly, to development of a polymer material produced by a dry process and improvement of the production method.

αおよびβという異なる構造を有するモノマーを共重合させたコポリマーは、αおよびβの持つ異なる特性を併せ持つ材料となる。例として、汎用品であるポリエチレンビニルアルコール(EVA)やアクリロニトリル・ポリスチレン共重合体(AS)があげられる。これらのウェットプロセスで作製する材料は、それぞれの化学構造に適した重合方法の開発によって実現されたものである。   A copolymer obtained by copolymerizing monomers having different structures of α and β becomes a material having both different characteristics of α and β. Examples include polyethylene vinyl alcohol (EVA) and acrylonitrile / polystyrene copolymer (AS), which are general-purpose products. The material produced by these wet processes has been realized by the development of a polymerization method suitable for each chemical structure.

一方、プラズマ環境という反応性の高い反応環境を利用すれば、二つの異なる機能を持つポリマーを分子レベルで混合した新しいポリマー材料の作製が可能になる。特に、高周波スパッタ法を用いると、ターゲットの化学構造に起因するイオン性あるいは中性の分子が、電子、イオンおよび中性粒子が比較的自由な状態で飛びかうプラズマ環境下に置かれることとなり、湿式プロセスにより達成が困難な結合が容易に生成され、原子密度の高い3次元的架橋が進んだポリマー材料を基板上に析出させることができる。   On the other hand, if a highly reactive reaction environment such as a plasma environment is used, a new polymer material in which two polymers having different functions are mixed at the molecular level can be produced. In particular, when high frequency sputtering is used, ionic or neutral molecules resulting from the chemical structure of the target will be placed in a plasma environment where electrons, ions and neutral particles fly in a relatively free state. Bonds that are difficult to achieve by a wet process are easily generated, and a polymer material having a high three-dimensional crosslinking with high atomic density can be deposited on a substrate.

プラズマを利用するポリマー形成プロセスの中でも、固体ポリマー材料をターゲット材料とする高周波スパッタ法では、液体あるいは気体の有機系原材料を用いるプラズマプロセスと比して、多種の固体のターゲット材料を適用することができ、それぞれのターゲット材料に固有な化学構造に起因する構造的特徴を有する薄膜材料を作製できる。また、ドライプロセスであることから、マイクロ構造体への形成が容易であり、膜厚制御性が良い。また、金属触媒や有機溶媒に代表される環境負荷の高い試薬を大量に用いることなく、原子密度の高いポリマーを作製可能となる利点もある。そこで、有機固体ターゲットを用いた高周波スパッタ法で形成される薄膜は、基板との密着性が必要な潤滑膜や、密着性や耐環境性、耐薬品性が必要なニオイセンサ用感応膜として適用されてきた(特許文献1,2)。   Among the polymer forming processes using plasma, the high-frequency sputtering method using a solid polymer material as a target material can apply a variety of solid target materials compared to a plasma process using a liquid or gaseous organic raw material. It is possible to produce a thin film material having structural characteristics resulting from a chemical structure unique to each target material. In addition, since it is a dry process, it can be easily formed into a microstructure and has good film thickness controllability. In addition, there is an advantage that a polymer having a high atomic density can be produced without using a large amount of a high environmental load typified by a metal catalyst or an organic solvent. Therefore, thin films formed by high-frequency sputtering using an organic solid target are used as lubricating films that require adhesion to the substrate and sensitive films for odor sensors that require adhesion, environmental resistance, and chemical resistance. (Patent Documents 1 and 2).

従来の有機固体材料を用いる高周波スパッタ法においては、ターゲット材料として、形状のそろった粉末あるいはバルクとして成型可能なポリマーのみを用いてきた。そのため、αおよびβという2種類のポリマーの有する特性を応用する材料を開発するためには、ASやEVAのように、αとβというポリマーの共重合体そのものをターゲット材料として用いてきた。しかしながら、前述のように、湿式プロセスによる従来の共重合体の開発においては、化学構造に応じた合成法を開発しなくてはならず、また、環境負荷の高い溶媒、触媒も必要となる場合がある。
有機薄膜およびそれを用いた化学センサプローブの作成方法(特開平10−253518号) スパッタリングターゲットおよび有機薄膜の作製方法(特開2002−146520号) D.Susac,et al.,Applied Surface Science,vol.174,No.1,p.43−50(2001) I.Sugimoto,et al.,Thin Solid Films,vol.158,p.51−60(1988)
In the conventional high-frequency sputtering method using an organic solid material, only a polymer having a uniform shape or a polymer that can be molded as a bulk has been used as a target material. Therefore, in order to develop a material that applies the characteristics of two types of polymers, α and β, a polymer copolymer of α and β has been used as a target material, such as AS and EVA. However, as described above, in the development of conventional copolymers by a wet process, it is necessary to develop a synthesis method according to the chemical structure, and when a solvent and a catalyst with a high environmental load are required. There is.
Organic thin film and method for producing chemical sensor probe using the same (Japanese Patent Laid-Open No. 10-253518) Sputtering target and organic thin film production method (Japanese Patent Laid-Open No. 2002-146520) D. Susac, et al. , Applied Surface Science, vol. 174, no. 1, p. 43-50 (2001) I. Sugimoto, et al. , Thin Solid Films, vol. 158, p. 51-60 (1988)

異なる化学構造を持つ複数種類のポリマーをターゲット材料とすることで、高周波スパッタ法による一つのプロセスによって、分子レベルで構造が混合された新たなポリマー材料を提供するものである。   By using a plurality of types of polymers having different chemical structures as target materials, a new polymer material in which structures are mixed at the molecular level by one process by high-frequency sputtering is provided.

上記課題を解決するため、本発明による複合ポリマーは、固体のポリマーAの上に、Aと異なる分子構造を有するポリマーB溶液を展開し乾燥させた複合材料をターゲットとして用い、高周波スパッタで基板上に形成した、微細なグレインが高密度に凝縮した構造を有することを特徴とする。   In order to solve the above-described problems, the composite polymer according to the present invention uses a composite material obtained by spreading a polymer B solution having a molecular structure different from A on a solid polymer A and drying it as a target, and then applying high frequency sputtering to the substrate. It is characterized by having a structure in which fine grains formed at a high density are condensed.

また本発明による複合ポリマーの作製方法は、固体のポリマーAの上に、Aと異なる分子構造を有するポリマーB溶液を展開し乾燥させた複合材料をターゲットとし、高周波スパッタで基板上に薄膜を形成することを特徴とする。   In addition, the method for producing a composite polymer according to the present invention is to form a thin film on a substrate by high-frequency sputtering using a composite material obtained by developing a polymer B solution having a molecular structure different from A on a solid polymer A and drying it. It is characterized by doing.

固体ポリマーと液体ポリマー材料を原材料として、複合ポリマーを一度のドライプロセスで作製する方法を開発した。本発明を用いることにより、市販されているポリマー材料をそのまま用いて、新たな複合ポリマー材料の設計開発が容易にできるようになる。また、イオン交換機能を有するフッ化物ポリマーを元にして、イオン交換基であるスルフォン酸を有しながら、吸水が可能な柔軟ポリマー構造を併せ持ち、さらに、基板との密着性の高い材料として析出させることが可能である。また、微細構造を持つデバイスへの新たな特性を有するポリマー膜材料の形成も容易に可能となる。   We have developed a method for producing a composite polymer in a single dry process using solid and liquid polymer materials as raw materials. By using the present invention, it becomes possible to easily design and develop a new composite polymer material using a commercially available polymer material as it is. In addition, based on a fluoride polymer having an ion exchange function, it has a sulfonic acid that is an ion exchange group, and also has a flexible polymer structure capable of absorbing water, and is deposited as a material having high adhesion to the substrate. It is possible. In addition, it is possible to easily form a polymer film material having new characteristics for a device having a fine structure.

円盤状バルクポリマー材料(Aポリマー)の上に、ポリマー溶液(Bポリマー)を展開し溶媒を乾燥させて作製したターゲット材料を作製した。このターゲット材料を用いた高周波スパッタにより、A、B両ポリマーに起因するプラズマ中に放出された粒子が、プラズマ環境下の反応により結合し、さらに基板上に析出することで複合ポリマーの薄膜として形成される。また、高エネルギー粒子となったモノマーが基板と衝突して膜形成に寄与することから、基板との密着性が高い複合ポリマーの薄膜が形成できる。   A target material prepared by developing a polymer solution (B polymer) on a disc-shaped bulk polymer material (A polymer) and drying the solvent was prepared. By high-frequency sputtering using this target material, particles released into the plasma caused by both A and B polymers are combined by reaction in the plasma environment and further deposited on the substrate to form a composite polymer thin film. Is done. Moreover, since the monomer which became high energy particle collides with a board | substrate and contributes to film formation, the thin film of a composite polymer with high adhesiveness with a board | substrate can be formed.

本発明による前記ポリマーAとしては、たとえば炭化水素ポリマーを使用することができ、前記ポリマーBとしてはたとえばフッ化物ポリマーを使用することができる。しかしながら、これに限定されるものではない。   As the polymer A according to the present invention, for example, a hydrocarbon polymer can be used, and as the polymer B, for example, a fluoride polymer can be used. However, the present invention is not limited to this.

ターゲット材料の基板となる円盤状バルクポリマー材料の表面には、前処理として希ガスを用いたエッチング処理を実施した。次に、ポリエチレン円盤(直径13.5mmφ、厚さ15mm)の中央部、直径50mmの範囲にナフィオンのイソプロピルアルコール溶液を展開し、大気環境下で溶媒成分を揮発させた。円盤状ポリマーであるポリエチレンの基本骨格は、CH−(CH=CH)−CHであり、一方、円盤上に展開されたポリマーであるナフィオンの基本構造は、−[(CFCF−C=CF−(OCFCF(CF))OCFCFSOH]−である。作製したターゲット材料を真空チャンバー内の平行平板電極の下部電極上に設置し、100から150Wのパワーを照射して、シリコン基板上に薄膜を形成した。膜の堆積速度は、毎分4.7オングストロームであった。 An etching process using a rare gas was performed as a pretreatment on the surface of the disk-shaped bulk polymer material serving as a target material substrate. Next, an isopropyl alcohol solution of Nafion was developed in the center of a polyethylene disk (diameter: 13.5 mmφ, thickness: 15 mm) and a diameter of 50 mm, and the solvent component was volatilized in an atmospheric environment. The basic skeleton of polyethylene which is a disk-shaped polymer is CH 3 — (CH═CH) x —CH 3 , while the basic structure of Nafion, which is a polymer developed on a disk, is — [(CF 2 CF 2 ) n -C = CF- (OCF 2 CF (CF 3)) m OCF 2 CF 2 SO 3 H] x - it is. The prepared target material was placed on the lower electrode of the parallel plate electrode in the vacuum chamber and irradiated with a power of 100 to 150 W to form a thin film on the silicon substrate. The deposition rate of the film was 4.7 angstroms per minute.

複合ターゲット材料を用いて形成された薄膜(複合ポリマー膜)は、大気中で安定であった。また、水中での膜構造を観察するためのクライオ法により撮影した電子顕微鏡(SEM)写真(図1)に示されているように、水に浸漬すると吸水による膨張が観察されるが、基板との密着性は維持されている。   The thin film (composite polymer film) formed using the composite target material was stable in the atmosphere. In addition, as shown in an electron microscope (SEM) photograph (FIG. 1) taken by a cryo method for observing the film structure in water, expansion by water absorption is observed when immersed in water. The adhesion of is maintained.

この本発明によって作製した薄膜が、ターゲット材料を構成するフッ化物ポリマーあるいはポリエチレンとは異なる材料であることを、以下に示す分析方法によって確認した。   It was confirmed by the analysis method described below that the thin film produced according to the present invention was a material different from the fluoride polymer or polyethylene constituting the target material.

図2は膜厚が約600nmの薄膜の反射型赤外分光スペクトルで、ポリエチレンのみから形成したスパッタ膜と複合ターゲットから形成した膜とを比較したものである。波数が1166cm−1付近にC−F構造に起因するピークが認められ、同時に、1651cm−1あたりにポリエチレン膜スペクトルと同様の位置に、アルケン構造に起因する赤外吸収が認められた。また、1035cm−1には、スルフォン酸に帰属されるピークを含んでいた。また、複合ターゲットから形成した膜およびポリエチレン膜の両方が、963cm−1付近に吸収を持っており、これは、炭素の二重結合における面外変角振動に起因するものと考えられる。一方で、複合ターゲット材料から形成した膜には、CHあるいはCHのC−H伸縮振動に帰属される吸収(2900〜3000cm−1付近)が認められない。大気中で測定する反射型赤外分光スペクトルで、従来のポリエチレンのみをターゲット材料とするプラズマ有機薄膜では、大気中の水を吸着し、3150cm−1より大きな波数の領域に、吸着水にOHに起因する吸収ピークも観測される。しかしながら、複合ターゲット材料から形成した膜では、OHのピークが見られないことから、フッ素を含む構造を有することで、疎水的機能を有していることが確認された。 FIG. 2 is a reflection infrared spectroscopic spectrum of a thin film having a film thickness of about 600 nm, which is a comparison between a sputtered film formed only from polyethylene and a film formed from a composite target. A peak attributed to the C—F structure was observed near the wave number of 1166 cm −1 , and at the same time, infrared absorption attributed to the alkene structure was observed at the same position as the polyethylene film spectrum around 1651 cm −1 . Moreover, 1035 cm −1 contained a peak attributed to sulfonic acid. In addition, both the film formed from the composite target and the polyethylene film have absorption near 963 cm −1 , which is considered to be caused by out-of-plane bending vibration at a carbon double bond. On the other hand, in the film formed from the composite target material, absorption attributed to CH stretching vibration of CH 3 or CH 2 (near 2900 to 3000 cm −1 ) is not recognized. In the reflection type infrared spectroscopy spectrum measured in the atmosphere, the conventional plasma organic thin film using only polyethylene as the target material adsorbs water in the atmosphere, and in the region of wave number larger than 3150 cm −1 , The resulting absorption peak is also observed. However, in the film formed from the composite target material, since no OH peak is observed, it was confirmed that having a structure containing fluorine has a hydrophobic function.

X線光電子分光法(XPS)を用いた測定では、薄膜表面の炭素の化学結合状態の情報が得られるが、図3の結果をみると、炭素の1s軌道から発した電子のスペクトルのピーク位置は284.63eV(結合エネルギー)であった。フッ化物ポリマーの高周波スパッタ膜ではCFあるいはCFが存在することから、炭素1s軌道の電子スペクトルのピーク値は290eV付近よりもさらに高結合エネルギー側に観測されるはずである(非特許文献1,2)。 In the measurement using X-ray photoelectron spectroscopy (XPS), information on the chemical bonding state of carbon on the surface of the thin film is obtained. From the results shown in FIG. 3, the peak position of the spectrum of electrons emitted from the carbon 1s orbital is obtained. Was 284.63 eV (binding energy). The RF sputtering film of fluoride polymer since the presence of CF 2 or CF, the peak value of the electron spectrum of carbon 1s orbital should be further observed in the high binding energy side than near 290 eV (Non-Patent Document 1, 2).

また、ポリエチレンの高周波スパッタ膜では、ピーク位置は286eVよりも結合エネルギーの値が高い位置に観測されるはずである。したがって、本発明による複合ターゲット材料から作製した薄膜(複合ポリマー膜)では、フッ化物ポリマーのみをターゲット材料とした薄膜およびポリエチレンのみをターゲット材料とした薄膜表面と異なる化学結合状態にある炭素原子が多く存在していた。   In the high-frequency sputtered film of polyethylene, the peak position should be observed at a position where the bond energy value is higher than 286 eV. Therefore, in the thin film (composite polymer film) prepared from the composite target material according to the present invention, there are many carbon atoms in different chemical bonding states from the thin film surface using only a fluoride polymer as a target material and the thin film surface using only polyethylene as a target material. Existed.

SEMによる観察からは図4に示すように、100nm以下のグレインが高密度に凝集した構造が認められた。従来の均一な化学構造を有するターゲット材料から形成した膜は、50000倍以上の倍率による測定でも滑らかな形態であり、図4のような形態は観測されていなかった。また、同じく図4の断面部分に着目しても、複合ターゲット材料から作製した薄膜内においては粒界を有する構造を持っていることが確認できた。   From observation by SEM, as shown in FIG. 4, a structure in which grains of 100 nm or less aggregated at a high density was observed. A film formed from a conventional target material having a uniform chemical structure has a smooth form even when measured at a magnification of 50000 times or more, and the form shown in FIG. 4 has not been observed. Similarly, focusing on the cross-sectional portion of FIG. 4, it was confirmed that the thin film produced from the composite target material had a structure having grain boundaries.

固体ポリマーの表面に、前記固体ポリマーとは分子構造が異なる液体ポリマーの溶液を塗布して乾燥させたものをターゲットとして用いて、高周波スパッタリングにより有機薄膜を形成することを特徴とする。本発明を用いることにより、市販されているポリマー材料をそのまま用いて、新たな複合ポリマー材料の設計開発が容易にできるようになる。また、イオン交換機能を有するフッ化物ポリマーを元にして、イオン交換基であるスルフォン酸を有しながら、吸水が可能な柔軟ポリマー構造を併せ持ち、さらに、基板との密着性の高い材料として析出させることが可能である。また、微細構造を持つデバイスへの新たな特性を有するポリマー膜材料の形成も容易に可能となる。   An organic thin film is formed by high-frequency sputtering using a target obtained by applying a liquid polymer solution having a molecular structure different from that of the solid polymer and drying the solution on the surface of the solid polymer. By using the present invention, it becomes possible to easily design and develop a new composite polymer material using a commercially available polymer material as it is. In addition, based on a fluoride polymer having an ion exchange function, it has a sulfonic acid that is an ion exchange group, and also has a flexible polymer structure capable of absorbing water, and is deposited as a material having high adhesion to the substrate. It is possible. In addition, it is possible to easily form a polymer film material having new characteristics for a device having a fine structure.

本発明の合ポリマー膜のクライオ法により撮影した電子顕微鏡(SEM)写真像(水を吸着させた後)Electron microscope (SEM) photograph image (after adsorbing water) taken by the cryo method of the composite polymer film of the present invention 本発明の複合ポリマー膜及びポリエチレン膜の赤外分光スペクトルInfrared spectrum of the composite polymer film and polyethylene film of the present invention 本発明の複合ポリマー膜及びポリエチレン膜のXPSスペクトルXPS spectrum of composite polymer film and polyethylene film of the present invention 本発明の合ポリマー膜のSEM像(膜作製後、そのまま観察)SEM image of the composite polymer film of the present invention (observed as it is after film preparation)

Claims (5)

固体のポリマーAの上に、Aと異なる分子構造を有するポリマーB溶液を展開し乾燥させた複合材料をターゲットとして用い、高周波スパッタで基板上に形成した、微細なグレインが高密度に凝縮した構造を有することを特徴とする複合ポリマー。 A structure in which fine grains are condensed at a high density formed on a substrate by high-frequency sputtering using a composite material obtained by developing and drying a polymer B solution having a molecular structure different from A on a solid polymer A as a target. A composite polymer characterized by comprising: 前記ポリマーAは炭化水素ポリマーであり、前記ポリマーBがフッ化物ポリマーである請求項1記載の複合ポリマー。 The composite polymer according to claim 1, wherein the polymer A is a hydrocarbon polymer, and the polymer B is a fluoride polymer. 前記炭化水素ポリマーはポリエチレンであり、前記フッ化物ポリマーはナフィオンである請求項2記載の複合ポリマー。 The composite polymer according to claim 2, wherein the hydrocarbon polymer is polyethylene and the fluoride polymer is Nafion. 100nm以下のグレインが高密度に凝集した構造である請求項1から3記載の複合ポリマー。 4. The composite polymer according to claim 1, which has a structure in which grains of 100 nm or less are aggregated at high density. 固体のポリマーAの上に、Aと異なる分子構造を有するポリマーB溶液を展開し乾燥させた複合材料をターゲットとし、高周波スパッタで基板上に薄膜を形成することを特徴とする複合ポリマーの作製方法。
A method for producing a composite polymer, characterized in that a thin film is formed on a substrate by high-frequency sputtering using a composite material obtained by spreading a polymer B solution having a molecular structure different from A on a solid polymer A and drying the solution. .
JP2004313248A 2004-10-28 2004-10-28 Composite polymer and method for producing the same Expired - Fee Related JP4255025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313248A JP4255025B2 (en) 2004-10-28 2004-10-28 Composite polymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313248A JP4255025B2 (en) 2004-10-28 2004-10-28 Composite polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006124483A true JP2006124483A (en) 2006-05-18
JP4255025B2 JP4255025B2 (en) 2009-04-15

Family

ID=36719528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313248A Expired - Fee Related JP4255025B2 (en) 2004-10-28 2004-10-28 Composite polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP4255025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845858A (en) * 2021-10-25 2021-12-28 池州市君浦新材料科技有限公司 Antistatic touch screen protection film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845858A (en) * 2021-10-25 2021-12-28 池州市君浦新材料科技有限公司 Antistatic touch screen protection film

Also Published As

Publication number Publication date
JP4255025B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP3274669B2 (en) Fluorine resin with excellent wettability surface
Mackie et al. Characterization of pulsed-plasma-polymerized aromatic films
JP5245094B2 (en) Gas barrier film
Hora et al. Inorganic thin film deposition and application on organic polymer substrates
JP2017526518A (en) Method for forming ordered polymer thin films using atmospheric plasma deposition
Zhang et al. Deposition of fluoropolymer films on Si (100) surfaces by Rf magnetron sputtering of poly (tetrafluoroethylene)
Dutriez et al. Nanocellular foaming of fluorine containing block copolymers in carbon dioxide: the role of glass transition in carbon dioxide
Mittal et al. Adhesion in microelectronics
Yao et al. Poly (cyclohexylethylene)-block-poly (lactide) oligomers for ultrasmall nanopatterning using atomic layer deposition
JP2019521020A (en) Fluorocarbon release coating
JP4255025B2 (en) Composite polymer and method for producing the same
Fu et al. Deposition of nanostructured fluoropolymer films on silicon substrates via plasma polymerization of allylpentafluorobenzene
Pimanpang et al. Effect of hydrophilic group on water droplet contact angles on surfaces of acid modified SiLK and Parylene polymers
Moses et al. Tethered hydrophilic polymers layers on a polyamide surface
Bruce et al. Molecular structure effects on dry etching behavior of Si-containing resists in oxygen plasma
Naddaf et al. Atomic oxygen in remote plasma of radio-frequency hollow cathode discharge source: Characterization and efficiency
Pedram et al. Polytetrafluoroethylene sputtered PES membranes for membrane distillation: Influence of RF magnetron sputtering conditions
Matsumae et al. Room temperature bonding with polymethylglutarimide using the surface activated bonding method for a layer transfer platform
Chan et al. Curious morphology of silicon-containing polymer films on exposure to oxygen plasma
Thiry et al. Tailoring the chemistry and the nano‐architecture of organic thin films using cold plasma processes
Castner et al. Surface characterization of 2-hydroxyethyl methacrylate/styrene copolymers by angle-dependent X-ray photoelectron spectroscopy and static secondary ion mass spectrometry
Koh et al. Altering a polymer surface chemical structure by an ion-assisted reaction
Zuri et al. Film formation and crack development in plasma polymerized hexamethyldisiloxane
Shin et al. A study on the distribution of polystyrene sulfonic acid grafts over the cross-section of a PFA film
Löfstrand et al. Sequential infiltration synthesis and pattern transfer using 6 nm half-pitch carbohydrate-based fingerprint block copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees