JP2006124239A - Method for manufacturing iron oxyhydroxide and iron oxyhydroxide adsorbent - Google Patents

Method for manufacturing iron oxyhydroxide and iron oxyhydroxide adsorbent Download PDF

Info

Publication number
JP2006124239A
JP2006124239A JP2004315713A JP2004315713A JP2006124239A JP 2006124239 A JP2006124239 A JP 2006124239A JP 2004315713 A JP2004315713 A JP 2004315713A JP 2004315713 A JP2004315713 A JP 2004315713A JP 2006124239 A JP2006124239 A JP 2006124239A
Authority
JP
Japan
Prior art keywords
iron oxyhydroxide
drying
iron
temperature
oxyhydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004315713A
Other languages
Japanese (ja)
Other versions
JP4012975B2 (en
Inventor
Kazuhiro Mae
一廣 前
Taisuke Maki
泰輔 牧
Atsushi Uchida
篤志 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIGAKEN SANGYO SHIEN PLAZA
Japan Science and Technology Agency
Kyoto University NUC
Original Assignee
SHIGAKEN SANGYO SHIEN PLAZA
Japan Science and Technology Agency
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIGAKEN SANGYO SHIEN PLAZA, Japan Science and Technology Agency, Kyoto University NUC filed Critical SHIGAKEN SANGYO SHIEN PLAZA
Priority to JP2004315713A priority Critical patent/JP4012975B2/en
Publication of JP2006124239A publication Critical patent/JP2006124239A/en
Application granted granted Critical
Publication of JP4012975B2 publication Critical patent/JP4012975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for advantageously manufacturing iron oxyhydroxide having excellent adsorbability for phosphorus components in industrial wastewater, an exhaust gas and the like and harmful substances such as endocrine disruptors, and an adsorbent obtained by the method. <P>SOLUTION: The method for manufacturing iron oxyhydroxide comprises successively performing (a) a step of adding a base to a ferric ion-containing solution to adjust the pH to 3.3-6 to form a precipitate containing iron oxyhydroxide, (b) a step of drying the precipitate at a temperature of ≤100°C to obtain iron oxyhydroxide, and (c) a step of bringing the obtained iron oxyhydroxide into contact with water and then drying the resulting product at a temperature of ≤100°C. The adsorbent is obtained by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材に関する。さらに詳しくは、本発明は、工場廃水、排ガス中等のリン成分等の有害物質に対して優れた吸着能を有するオキシ水酸化鉄を有利に製造する方法、及びその方法により得られた吸着材に関するものである。   The present invention relates to a method for producing iron oxyhydroxide and an iron oxyhydroxide adsorbent. More specifically, the present invention relates to a method for advantageously producing iron oxyhydroxide having an excellent adsorption capacity for harmful substances such as phosphorus components in factory wastewater and exhaust gas, and an adsorbent obtained by the method. Is.

近年、科学技術の発展に伴って、多種多様な化学物質が製造、使用されている。このような化学物質は、人の健康や生態系に有害な影響を及ぼすものも数多く存在している。例えば、水処理の場合、有機もしくは無機のリン、フッ素、ヒ素、モリブデン、クロム、アンチモン、セレン、ホウ素、テルル、ベリリウム、シアン等が有害物質として知られている。また、気体処理の場合、排ガス中の硫化水素、メルカプタン、青酸、フッ化水素、塩化水素、SOx、NOx、その他、リン、ヒ素、アンチモン、硫黄、セレン、テルル化合物、シアノ化合物等が有害物質として知られている。
上記有害物質は、飲料水、水道水、ミネラルウォーター、治療用水、農業用水、工業廃水、及び空気中、排ガス中等に溶解、懸濁、乳化もしくは浮遊した状態で含まれている場合があり、これらの有害物質を分離、除去することが試みられている。
In recent years, with the development of science and technology, a wide variety of chemical substances are manufactured and used. Many of these chemical substances have harmful effects on human health and ecosystems. For example, in the case of water treatment, organic or inorganic phosphorus, fluorine, arsenic, molybdenum, chromium, antimony, selenium, boron, tellurium, beryllium, cyan and the like are known as harmful substances. In the case of gas treatment, hydrogen sulfide, mercaptan, hydrocyanic acid, hydrogen fluoride, hydrogen chloride, SO x , NO x , phosphorus, arsenic, antimony, sulfur, selenium, tellurium compounds, cyano compounds, etc. in the exhaust gas are harmful. Known as a substance.
The above hazardous substances may be contained in drinking water, tap water, mineral water, therapeutic water, agricultural water, industrial wastewater, and dissolved, suspended, emulsified or suspended in the air or exhaust gas. Attempts have been made to separate and remove the harmful substances.

従来、工業廃水等から有害な化学物質を吸着するための鉄系吸着材について、種々の提案がなされている。例えば、粒度50μm以下の含水酸化鉄を200〜500℃で加熱し、含水酸化鉄中の結晶水を蒸発させ、細孔を0.1〜50nm、比表面積15〜200m2 /gの含水酸化鉄(特許文献1参照)が提案されている。
しかしながら、特許文献1では、200〜500℃で加熱処理しているため、エネルギー消費が大きく、工業的に不利である。しかも、リン成分等の有害物質の吸着に必要な鉄系吸着材の吸着サイト(水素結合サイト)が、高温加熱処理により減少しているため、吸着力が十分でないという問題点があった。
Conventionally, various proposals have been made on iron-based adsorbents for adsorbing harmful chemical substances from industrial wastewater or the like. For example, hydrous iron oxide having a particle size of 50 μm or less is heated at 200 to 500 ° C. to evaporate crystal water in the hydrous iron oxide, and the pores are 0.1 to 50 nm and the specific surface area is 15 to 200 m 2 / g. (See Patent Document 1) has been proposed.
However, in patent document 1, since it heat-processes at 200-500 degreeC, energy consumption is large and it is industrially disadvantageous. In addition, since the adsorption sites (hydrogen bonding sites) of the iron-based adsorbent necessary for the adsorption of harmful substances such as phosphorus components are reduced by the high-temperature heat treatment, there is a problem that the adsorption power is not sufficient.

また、鉄イオン溶液にアルカリを加えてpHを3に調整し、低温で乾燥することによって得られた、非晶質の水酸化鉄系の沈殿生成物からなる陰イオン吸着材(特許文献2参照)が知られている。
しかしながら、pH3では1×10-3mol/dm-3の3価の鉄イオンが残存し、水酸化鉄が安定に沈殿できない。しかも、特許文献2の方法では、本発明方法における(c)工程の水処理及び乾燥処理を行っていないため、得られる吸着材は、比表面積が小さく吸着力も十分でないという問題点があった。
また、BET比表面積50〜500m2/gの微粒子状オキシ水酸化鉄の凝集物の製造方法(特許文献3参照)も提案されている。
しかしながら、特許文献3のオキシ水酸化鉄は、粒子系がナノサイズで小さいため、反応性は優れているが、粒子の飛散や摩擦による発火等の恐れがあり、取り扱いに不便であり、さらに吸着物質の回収も困難であるという問題点があった。
このため、有害物質の吸着能が十分であり、かつ取り扱いの容易な吸着材の開発が望まれていた。
Further, an anion adsorbent comprising an amorphous iron hydroxide-based precipitation product obtained by adjusting the pH to 3 by adding an alkali to the iron ion solution and drying at a low temperature (see Patent Document 2) )It has been known.
However, at pH 3, trivalent iron ions of 1 × 10 −3 mol / dm −3 remain, and iron hydroxide cannot be precipitated stably. Moreover, in the method of Patent Document 2, since the water treatment and the drying treatment in the step (c) in the method of the present invention are not performed, the obtained adsorbent has a problem that the specific surface area is small and the adsorbing power is not sufficient.
In addition, a method for producing an aggregate of fine particle iron oxyhydroxide having a BET specific surface area of 50 to 500 m 2 / g (see Patent Document 3) has also been proposed.
However, the iron oxyhydroxide of Patent Document 3 is excellent in reactivity because the particle system is nano-sized and small, but there is a risk of ignition due to particle scattering or friction, which is inconvenient to handle, and further adsorbed. There was a problem that it was difficult to recover the substance.
For this reason, it has been desired to develop an adsorbent that has sufficient ability to adsorb harmful substances and is easy to handle.

特開2003−154234号公報JP 2003-154234 A 特開2003−334542号公報JP 2003-334542 A 特開2004−509752号公報JP 2004-509752 A

本発明は、上記の現状に鑑み、工場廃水、排ガス中等のリン成分、環境ホルモン等の有害物質に対して優れた吸着能を有するオキシ水酸化鉄を有利に製造する方法、及びその方法により得られた吸着材を提供することを目的とする。   In view of the above-mentioned present situation, the present invention provides a method for advantageously producing iron oxyhydroxide having an excellent adsorbing ability for harmful substances such as phosphorus components in factory wastewater, exhaust gas, and environmental hormones, and the method. It is an object to provide a prepared adsorbent.

本発明者らは、上記目的を達成すべく鋭意検討した結果、3価の鉄イオン含有溶液を出発原料として生成したオキシ水酸化鉄を含む沈殿物を低温乾燥し、更に水と接触させた後、再度低温乾燥することにより、上記目的を達成しうることを見出した。発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)(a)3価の鉄イオン含有溶液に塩基を加え、pHを3.3〜6に調整することにより、オキシ水酸化鉄を含む沈殿物を生成させる工程、
(b)該沈殿物を100℃以下の温度で乾燥することによってオキシ水酸化鉄を得る工程、及び
(c)得られたオキシ水酸化鉄を水と接触させた後、100℃以下の温度で乾燥する工程、を順次行うことを特徴とするオキシ水酸化鉄の製造方法、並びに
(2)前記(1)に記載の方法により得られたオキシ水酸化鉄を主成分とするオキシ水酸化鉄吸着材、
を提供するものである。
As a result of intensive studies to achieve the above-mentioned object, the present inventors dried a precipitate containing iron oxyhydroxide produced using a trivalent iron ion-containing solution as a starting material at a low temperature and further contacted with water. The inventors have found that the above object can be achieved by drying at low temperature again. The invention has been completed based on such findings.
That is, the present invention
(1) (a) A step of generating a precipitate containing iron oxyhydroxide by adding a base to a trivalent iron ion-containing solution and adjusting the pH to 3.3 to 6,
(B) drying the precipitate at a temperature of 100 ° C. or less to obtain iron oxyhydroxide; and (c) contacting the obtained iron oxyhydroxide with water, and then at a temperature of 100 ° C. or less. A method for producing iron oxyhydroxide characterized by sequentially performing a drying step, and (2) iron oxyhydroxide adsorption mainly comprising iron oxyhydroxide obtained by the method described in (1) above Material,
Is to provide.

本発明の製造方法によれば、リン成分、環境ホルモン等の有害物質に対して優れた吸着能を有するオキシ水酸化鉄を効率的に製造することができる。
また、本発明の製造方法により得られたオキシ水酸化鉄を主成分とする吸着材は、比表面積が大きく、かつ従来の5〜8倍の陰イオン吸着サイト(水素結合サイト)を有しているため、リン酸イオン等の陰イオン種に対して優れた吸着力を発揮し、浄水、排水又は気体浄化等の分野で好適に使用することができる。
また、本発明の吸着材は、再使用が容易であるため実用性が高く、吸着した陰イオン種を溶離させることにより、陰イオン種に含まれる元素を効率的に回収することができる。
According to the production method of the present invention, iron oxyhydroxide having an excellent adsorption ability for harmful substances such as phosphorus components and environmental hormones can be efficiently produced.
Further, the adsorbent mainly composed of iron oxyhydroxide obtained by the production method of the present invention has a large specific surface area and has 5 to 8 times the anion adsorption site (hydrogen bonding site) of the conventional one. Therefore, it exhibits an excellent adsorptive power for anionic species such as phosphate ions, and can be suitably used in fields such as water purification, drainage or gas purification.
The adsorbent of the present invention is highly practical because it can be easily reused, and the elements contained in the anionic species can be efficiently recovered by eluting the adsorbed anionic species.

本発明のオキシ水酸化鉄の製造方法は、(a)3価の鉄イオン含有溶液に塩基を加え、pHを3.3〜6に調整することにより、オキシ水酸化鉄を含む沈殿物を生成させる工程、
(b)該沈殿物を100℃以下の温度で乾燥することによってオキシ水酸化鉄を得る工程、及び
(c)得られたオキシ水酸化鉄を水と接触させた後、100℃以下の温度で乾燥する工程、を順次行うが、中でも(c)工程が大きな特徴である。
In the method for producing iron oxyhydroxide of the present invention, (a) a base is added to a trivalent iron ion-containing solution, and the pH is adjusted to 3.3 to 6, thereby generating a precipitate containing iron oxyhydroxide. The process of
(B) drying the precipitate at a temperature of 100 ° C. or less to obtain iron oxyhydroxide; and (c) contacting the obtained iron oxyhydroxide with water, and then at a temperature of 100 ° C. or less. The drying process is sequentially performed, and the (c) process is a significant feature.

本発明方法の(a)工程において、原料溶液である3価の鉄イオン含有溶液としては、塩化第二鉄〔FeCl3〕、硫酸第二鉄〔Fe2(SO43〕、硝酸第二鉄〔Fe(NO33〕等の第二鉄化合物を含有する溶液が挙げられる。これらの中では、反応性等の観点から、塩化第二鉄〔FeCl3〕の水溶液が好ましい。 In the step (a) of the method of the present invention, ferric chloride [FeCl 3 ], ferric sulfate [Fe 2 (SO 4 ) 3 ], ferric nitrate are used as the trivalent iron ion-containing solution as the raw material solution. A solution containing a ferric compound such as iron [Fe (NO 3 ) 3 ] may be mentioned. Among these, an aqueous solution of ferric chloride [FeCl 3 ] is preferable from the viewpoint of reactivity and the like.

塩基は、3価の鉄イオン含有溶液を中和し、pHを調整して、オキシ水酸化鉄を含む沈殿生成物を生成させるために使用する。塩基としては、NaOH、KOH、Na2CO3、K2CO3、CaO、Ca(OH)2、CaCO3、NH3、NH4OH、MgO、MgCO3等を使用することができる。これらの中では、特に水酸化ナトリウム(NaOH)が好ましい。 The base is used to neutralize the trivalent iron ion-containing solution and adjust the pH to produce a precipitated product containing iron oxyhydroxide. As the base, NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , CaO, Ca (OH) 2 , CaCO 3 , NH 3 , NH 4 OH, MgO, MgCO 3 or the like can be used. Of these, sodium hydroxide (NaOH) is particularly preferable.

用いる3価の鉄イオン含有溶液及び塩基の濃度に特に制限はない。塩基の反応制御の容易さの観点から、3価の鉄イオン含有溶液の濃度は0.01〜5mol/Lが好ましく、0.05〜3mol/Lが更に好ましい。また、塩基の濃度は0.1〜10モル/Lが好ましく、1〜5モル/Lが更に好ましい。
pHは3.3〜6に調整する必要がある。pHが3.3未満、例えばpH3では、オキシ水酸化鉄の結晶生成の初期段階なので、1×10-3mol/dm-3の3価の鉄イオンが残存し、安定状態で沈殿物を生成することが困難である。pHを3.3とすることによって、3価の鉄イオンの残存濃度は1×10-4mol/dm-3となり、安定的に水酸化鉄が沈殿できる。また、pH7付近では塩化第一鉄が沈殿する。従って、適切な水素結合サイトを有するオキシ水酸化鉄を高純度で安定に生成させる観点から、pHは好ましくは3.5〜5.5、更に好ましくは3.7〜5.3とする。
There are no particular limitations on the concentration of the trivalent iron ion-containing solution and the base used. In light of ease of reaction control of the base, the concentration of the trivalent iron ion-containing solution is preferably 0.01 to 5 mol / L, and more preferably 0.05 to 3 mol / L. The concentration of the base is preferably 0.1 to 10 mol / L, more preferably 1 to 5 mol / L.
The pH needs to be adjusted to 3.3-6. When the pH is less than 3.3, for example, pH 3, since it is an initial stage of iron oxyhydroxide crystal formation, 1 × 10 −3 mol / dm −3 trivalent iron ions remain and precipitates are formed in a stable state. Difficult to do. By adjusting the pH to 3.3, the residual concentration of trivalent iron ions becomes 1 × 10 −4 mol / dm −3 and iron hydroxide can be stably precipitated. Moreover, in the vicinity of pH 7, ferrous chloride precipitates. Therefore, from the viewpoint of stably producing high-purity iron oxyhydroxide having an appropriate hydrogen bonding site, the pH is preferably 3.5 to 5.5, more preferably 3.7 to 5.3.

(a)工程で得られた沈殿物は吸引濾過等により濾別し、(b)工程に供する。
(b)工程においては、その沈殿物を100℃以下の温度で乾燥する。温度が100℃を超えると乾燥は速いが、陰イオンの吸着サイト(水素結合サイト)を適切に残すよう制御することが困難となる。また、温度が低すぎると乾燥に時間がかかりすぎ、実用的でない場合がある。このため、乾燥温度は、好ましくは20〜80℃、更に好ましくは30〜70℃、特に好ましくは40℃以上60℃未満である。乾燥は、空気中、真空中、不活性ガス中のいずれでもよいが、真空条件下で行うことが好ましい。乾燥時間は特に制限はなく、通常2時間〜2日間、好ましくは5時間〜24時間である。
本発明の(b)工程においては、高温度での乾燥処理がないので、オキシ水酸化鉄の粒子間焼結が起こらない。このため、(b)工程により得られたオキシ水酸化鉄は、30〜300m2/g、特に40〜200m2/gのBET比表面積を有する。
The precipitate obtained in the step (a) is separated by suction filtration or the like, and used for the step (b).
In the step (b), the precipitate is dried at a temperature of 100 ° C. or lower. When the temperature exceeds 100 ° C., the drying is fast, but it becomes difficult to control the adsorption site (hydrogen bonding site) of anions appropriately. If the temperature is too low, drying takes too much time, which may not be practical. For this reason, drying temperature becomes like this. Preferably it is 20-80 degreeC, More preferably, it is 30-70 degreeC, Most preferably, it is 40 degreeC or more and less than 60 degreeC. Drying may be performed in air, vacuum, or inert gas, but is preferably performed under vacuum conditions. The drying time is not particularly limited, and is usually 2 hours to 2 days, preferably 5 hours to 24 hours.
In the step (b) of the present invention, since there is no drying treatment at a high temperature, interparticle sintering of iron oxyhydroxide does not occur. Therefore, (b) iron oxyhydroxide obtained in the step has a 30~300m 2 / g, BET specific surface area of the particular 40 to 200 m 2 / g.

また、(b)工程により得られたオキシ水酸化鉄は、水素結合サイト(陰イオン吸着サイト)を大量に含有し、オキシ水酸化鉄1kg当りの水酸基含有量で3mol−OH/kg以上、好ましくは5〜20mol−OH/kg、更に好ましくは7〜30mol−OH/kgである。
なお、オキシ水酸化鉄の水酸基含有量は、フーリエ変換赤外分光光度計(拡散反射法)を用いて、FeOOHの O−Hの伸縮状態を測定し、Russel et al., Nature 1974, 248, 220-221からFeOOHのピークを3130cm-1及び3420cm-1として、Miura et al., Am. Chem. Soc., Fuel Chem., 1999, 44 (3), 642-646に基づいて算出し、決定することができる。
Further, the iron oxyhydroxide obtained in the step (b) contains a large amount of hydrogen bonding sites (anion adsorption sites), and the hydroxyl group content per kg of iron oxyhydroxide is 3 mol-OH / kg or more, preferably Is 5 to 20 mol-OH / kg, more preferably 7 to 30 mol-OH / kg.
The hydroxyl group content of iron oxyhydroxide was determined by measuring the stretched state of O—H of FeOOH using a Fourier transform infrared spectrophotometer (diffuse reflection method), and Russel et al., Nature 1974, 248, Calculated based on Miura et al., Am. Chem. Soc., Fuel Chem., 1999, 44 (3), 642-646, with FeOOH peaks from 220-221 as 3130 cm -1 and 3420 cm -1 can do.

(b)工程により得られたオキシ水酸化鉄は針状結晶であり、幅が10〜500nm、好ましくは50〜200nmであり、長さ/幅の比(L/D)は、通常5/1〜50/1、好ましくは5/1〜20/1である。
オキシ水酸化鉄は針状結晶であるが、凝集して凝集体粒子となっている。オキシ水酸化鉄の凝集体粒子としての平均粒子径は100〜300μm、好ましくは150〜250μmである。
ここで、平均粒子径とは、レーザー回折/散乱式粒度分布計(例えば、株式会社堀場製作所、LA−920)を用いて、レーザー回折/散乱法で測定された体積基準粒度分布から算出されるメジアン径を意味する。
The iron oxyhydroxide obtained by the step (b) is a needle-like crystal, the width is 10 to 500 nm, preferably 50 to 200 nm, and the length / width ratio (L / D) is usually 5/1. -50/1, preferably 5 / 1-20 / 1.
Iron oxyhydroxide is a needle-like crystal, but is aggregated into aggregate particles. The average particle diameter of the iron oxyhydroxide aggregate particles is 100 to 300 μm, preferably 150 to 250 μm.
Here, the average particle size is calculated from a volume-based particle size distribution measured by a laser diffraction / scattering method using a laser diffraction / scattering particle size distribution analyzer (for example, Horiba, Ltd., LA-920). Mean median diameter.

本発明方法の(c)工程においては、(b)工程で得られたオキシ水酸化鉄を水と接触させた後、100℃以下の温度で乾燥する。
温度が100℃を超えると乾燥は速いが、水素結合サイト(陰イオン吸着サイト)を適切に残すよう制御することが困難となる。また、温度が低すぎると乾燥に時間がかかりすぎ、実用的でない場合がある。このため、乾燥温度は、好ましくは20〜80℃、更に好ましくは30〜70℃、特に好ましくは40℃以上60℃未満である。乾燥は、空気中、真空中、不活性ガス中のいずれでもよいが、真空条件下で行うことが好ましい。乾燥時間は特に制限はなく、通常2時間〜2日間、好ましくは5時間〜24時間である。
(c)工程における処理により、得られるオキシ水酸化鉄1kg当りの水酸基含有量(オキシ水酸化鉄の吸着サイト)は、3mol−OH/kg−FeOOH以上、好ましくは5〜20mol−OH/kg、更に好ましくは7〜30mol−OH/kgのままで大きく変化しない。しかし、BET比表面積は、1.2倍以上、好適条件では1.5〜2.5倍増大する。その結果、BET法による比表面積は、好ましくは100〜400m2/g、更に好ましくは120〜350m2/g、特に好ましくは150〜300m2/gとなる。
本発明の(c)工程においては、高温度での乾燥処理がないので粒子間焼結がなく、増大したBET比表面積が減少することはない。
凝集体粒子としての平均粒子径は、80〜300μm、好ましくは100〜200μmである。
In step (c) of the method of the present invention, the iron oxyhydroxide obtained in step (b) is brought into contact with water and then dried at a temperature of 100 ° C. or lower.
When the temperature exceeds 100 ° C., drying is fast, but it is difficult to control the hydrogen bonding sites (anion adsorption sites) to remain appropriately. If the temperature is too low, drying takes too much time, which may not be practical. For this reason, drying temperature becomes like this. Preferably it is 20-80 degreeC, More preferably, it is 30-70 degreeC, Most preferably, it is 40 degreeC or more and less than 60 degreeC. Drying may be performed in air, vacuum, or inert gas, but is preferably performed under vacuum conditions. The drying time is not particularly limited, and is usually 2 hours to 2 days, preferably 5 hours to 24 hours.
The hydroxyl group content (iron oxyhydroxide adsorption site) per kg of iron oxyhydroxide obtained by the treatment in the step (c) is 3 mol-OH / kg-FeOOH or more, preferably 5 to 20 mol-OH / kg, More preferably, it remains 7 to 30 mol-OH / kg and does not change greatly. However, the BET specific surface area increases by 1.2 times or more, and 1.5 to 2.5 times under suitable conditions. As a result, the specific surface area measured by the BET method, preferably 100 to 400 m 2 / g, more preferably 120~350m 2 / g, particularly preferably a 150 to 300 m 2 / g.
In the step (c) of the present invention, since there is no drying treatment at a high temperature, there is no interparticle sintering, and the increased BET specific surface area does not decrease.
The average particle diameter as the aggregate particles is 80 to 300 μm, preferably 100 to 200 μm.

(c)工程の水処理による比表面積増大のメカニズムについては、次の(1)、(2)が考えられる。
(1)3価の鉄イオン含有溶液に水酸化ナトリウム等の塩基を添加するので、FeOOH凝集体中に不純物としてNaClの結晶がナノサイズで生成する。これが水と接触することによってNaClが溶解し、NaClが溶解した部分は細孔になり、比表面積増大に繋がると考えられる。
(2)FeOOH製造過程でpHを3.3〜6に調整するため、FeOOHを完全に結晶化するには水酸基(OH)が不足状態にあり、その状態のまま100℃以下という低温で乾燥することでさらに水酸基が不足状態となる。その状態でオキシ水酸化鉄が水と接触すると急激な吸水が起こり、その吸水によってFeOOHの結晶格子間が緩むと考えられる。
The following (1) and (2) can be considered about the mechanism of the specific surface area increase by the water treatment of (c) process.
(1) Since a base such as sodium hydroxide is added to the trivalent iron ion-containing solution, NaCl crystals are produced in nano-size as impurities in the FeOOH aggregate. When this comes into contact with water, NaCl is dissolved, and the portion where NaCl is dissolved becomes pores, which is thought to increase the specific surface area.
(2) Since the pH is adjusted to 3.3 to 6 in the production process of FeOOH, there is insufficient hydroxyl group (OH) to completely crystallize FeOOH, and it is dried at a low temperature of 100 ° C. or lower in that state. As a result, the hydroxyl group becomes insufficient. In this state, when iron oxyhydroxide comes into contact with water, rapid water absorption occurs, and it is considered that the crystal lattice of FeOOH is loosened by the water absorption.

本発明方法においては、(a)〜(c)の各工程の条件を適宜調整することにより、BET比表面積、水酸基含有量、単独粒子の平均粒子径及び微粒子凝集体の平均粒子径の異なるオキシ水酸化鉄を製造することができる。   In the method of the present invention, oxy having different BET specific surface area, hydroxyl group content, single particle average particle size and fine particle aggregate average particle size can be obtained by appropriately adjusting the conditions of the steps (a) to (c). Iron hydroxide can be produced.

オキシ水酸化鉄には、α−FeOOH(ゲータイト)、β−FeOOH(アカゲナイト)、γ−FeOOH(レピドクロサイト)の3種類があるが、本発明方法によるオキシ水酸化鉄はα−FeOOHに近いが、100%完全なα−FeOOH(ゲータイト)ではないと考えられる。本発明方法によるオキシ水酸化鉄は、α−FeOOHに近い非晶質FeOOHの微粒子であり、これが大きな凝集体となっており、光沢のある黒色粒子の形態となっている。その凝集体は無数の細孔を保有する。粒子の平均細孔径は、好ましくは0.1〜5.0nm,更に好ましくは0.5〜1.5nmである。   There are three types of iron oxyhydroxide, α-FeOOH (goethite), β-FeOOH (akagenite), and γ-FeOOH (repidocrocite), but the iron oxyhydroxide by the method of the present invention is close to α-FeOOH. However, it is considered that it is not 100% perfect α-FeOOH (goethite). The iron oxyhydroxide by the method of the present invention is amorphous FeOOH fine particles close to α-FeOOH, which are large aggregates, and are in the form of glossy black particles. The aggregate has innumerable pores. The average pore diameter of the particles is preferably 0.1 to 5.0 nm, more preferably 0.5 to 1.5 nm.

本発明のオキシ水酸化鉄の結晶構造は基本的には斜方晶であり、FeO68面体はFeIIIイオンに3つO2-と3つのOH-が配位している。このFeIIIイオンに配位したOH-のO−Hの伸縮が、フーリエ変換赤外分光光度計(FTIR)で測定したときに特徴的なスペクトルとして得ることができる。
すなわち、本発明のFeOOHのFTIRスペクトルピークは、O−H伸縮を示す3420cm-1に大きなピークがあり、弱い水素結合のOH基を大量に含有していることが特徴である。FTIRスペクトルにおけるこの3420cm-1のピークのOH-が、水素結合サイトとして、リン酸イオン等の陰イオン及び環境ホルモンの吸着において大きな役割を果す。
The crystal structure of the iron oxyhydroxide of the present invention is basically orthorhombic, and the FeO 6 octahedron is coordinated with three O 2− and three OH atoms on the FeIII ion. The stretching of OH OH coordinated to FeIII ions can be obtained as a characteristic spectrum when measured with a Fourier transform infrared spectrophotometer (FTIR).
That is, the FTIR spectrum peak of FeOOH of the present invention has a large peak at 3420 cm −1 exhibiting O—H stretching, and is characterized by containing a large amount of weak hydrogen-bonded OH groups. This 3420 cm −1 peak OH in the FTIR spectrum plays a major role in the adsorption of anions such as phosphate ions and environmental hormones as hydrogen bonding sites.

本発明のオキシ水酸化鉄を用いて、水中のリン成分、環境ホルモン等の有害物質を除去する場合、これを充填塔(槽)に充填し、通水する方法で行うことができる。この場合、凝集体粒子の平均細孔径、平均粒子径、BET比表面積等は、吸着除去しようとする有害物質の捕捉に適した値のものを使用する。一般的には、取り扱い性、吸着性、吸着物質の回収性の観点から、平均粒子径が0.2〜100mm、好ましくは0.5〜50mm、更に好ましくは1〜30mmの凝集体で多孔質のオキシ水酸化鉄凝集体が適当である。   When removing harmful substances such as phosphorus components and environmental hormones in water using the iron oxyhydroxide of the present invention, this can be carried out by filling the packed tower (tank) and passing water. In this case, the average pore diameter, average particle diameter, BET specific surface area, etc. of the aggregate particles are those suitable for capturing harmful substances to be adsorbed and removed. In general, from the viewpoint of handleability, adsorptivity, and recoverability of adsorbed substances, the aggregate is porous with an average particle diameter of 0.2 to 100 mm, preferably 0.5 to 50 mm, more preferably 1 to 30 mm. The iron oxyhydroxide aggregates are suitable.

本発明の製造方法で得られたオキシ水酸化鉄は、非表面積が大きく、かつ従来の5〜8倍の陰イオン吸着サイト(水素結合サイト)を有しているため、陰イオン種に対して優れた吸着力を発揮し、浄水又は気体浄化等の分野で好適に使用することができる。また、再使用が容易であるため実用性が高く、吸着したリン酸イオン等を効率的に分離、回収することができる。   The iron oxyhydroxide obtained by the production method of the present invention has a large non-surface area and has an anion adsorption site (hydrogen bonding site) 5 to 8 times that of the conventional one. It exhibits excellent adsorptive power and can be suitably used in fields such as water purification or gas purification. Moreover, since it can be easily reused, it is highly practical, and the adsorbed phosphate ions and the like can be efficiently separated and recovered.

次に、本発明を実施例によってさらに詳細に説明するが、本発明はこれによりなんら限定されるものではない。
(オキシ水酸化鉄の製造)
実施例1
塩化第二鉄(FeCl3・6H2O)を0.1mol/Lとなるように水に溶解し、室温で撹拌しながら、濃度2モル/ LのNaOH溶液を添加して溶液全体のpHを4に調整した。溶液中に生じた沈殿生成物を24時間静置し、吸引濾過して、沈殿物を得た。この沈殿物を50℃で48時間、定温乾燥器中で乾燥してFeOOHを得た。
得られたFeOOHのBET比表面積は50.6m2/g、水酸基含有量は12.78mol−OH/kg−FeOOH、凝集体粒子としての平均粒子径は、200μmであった。
このオキシ水酸化鉄を、パルプ濃度(水重量と乾燥オキシ水酸化鉄との重量比)が5%となるように純水中に投入し、室温で5分間撹拌した。撹拌後に吸引濾過して、オキシ水酸化鉄を得た。得られたオキシ水酸化鉄を55℃で24時間乾燥処理した。
得られたオキシ水酸化鉄のBET比表面積は218.6m2/g、水酸基含有量は12.8mol−OH/kg−FeOOH、凝集体粒子としての平均粒子径は、137.5μmであった。
なお、測定条件は次のとおりである。
(1)BET比表面積
日本ベル株式会社製、BET比表面積測定装置、型式BELSORP-miniを用いて測定した。
(2)水酸基含有量
日本電子株式会社製、フーリエ変換赤外分光光度計(FTIR)、型式SPX60(拡散反射法)を用いて、FeOOHの水素結合サイトとして、 O−Hの伸縮状態を測定した。Russel et al., Nature 1974, 248, 220-221からFeOOHのピークを3130cm-1及び3420cm-1として、水酸基含有量をMiura et al., Am. Chem. Soc., Fuel Chem., 1999, 44 (3), 642-646に基づいて算出し、決定した。
(3)平均粒子径
株式会社堀場製作所製、レーザー回折/散乱式粒度分布計、型式LA-920を用いて測定された体積基準粒度分布からメジアン径を算出した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this.
(Manufacture of iron oxyhydroxide)
Example 1
Dissolve ferric chloride (FeCl 3 · 6H 2 O) in water to a concentration of 0.1 mol / L. While stirring at room temperature, add a 2 mol / L NaOH solution to adjust the pH of the entire solution. 4 was adjusted. The precipitated product generated in the solution was allowed to stand for 24 hours and suction filtered to obtain a precipitate. This precipitate was dried in a constant temperature dryer at 50 ° C. for 48 hours to obtain FeOOH.
The obtained FeOOH had a BET specific surface area of 50.6 m 2 / g, a hydroxyl group content of 12.78 mol-OH / kg-FeOOH, and an average particle size as aggregate particles of 200 μm.
This iron oxyhydroxide was put into pure water so that the pulp concentration (weight ratio of water weight to dry iron oxyhydroxide) was 5%, and stirred at room temperature for 5 minutes. After stirring, suction filtration was performed to obtain iron oxyhydroxide. The obtained iron oxyhydroxide was dried at 55 ° C. for 24 hours.
The obtained iron oxyhydroxide had a BET specific surface area of 218.6 m 2 / g, a hydroxyl group content of 12.8 mol-OH / kg-FeOOH, and an average particle size as aggregate particles of 137.5 μm.
The measurement conditions are as follows.
(1) BET specific surface area It measured using Nippon Belle Co., Ltd. make, BET specific surface area measuring apparatus, and model BELSORP-mini.
(2) Hydroxyl content Using a Fourier transform infrared spectrophotometer (FTIR) manufactured by JEOL Ltd., model SPX60 (diffuse reflection method), the stretched state of OH was measured as a hydrogen bonding site of FeOOH. . Russel et al., Nature 1974, 248, the peaks of FeOOH as 3130Cm -1 and 3420cm -1 of 220-221, a hydroxyl group content Miura et al., Am. Chem . Soc., Fuel Chem., 1999, 44 (3), calculated based on 642-646.
(3) Average particle size The median diameter was calculated from the volume-based particle size distribution measured using a laser diffraction / scattering particle size distribution meter, model LA-920, manufactured by HORIBA, Ltd.

実施例2〜10
実施例1において、pH及び乾燥条件を、第1表に記載した条件としたこと以外は、実施例1と同様に行った。結果を第1表に示す。
なお、真空乾燥の場合は、ゲージ圧0.1MPaで行った。
Examples 2-10
In Example 1, it carried out like Example 1 except having set pH and drying conditions to the conditions described in Table 1. The results are shown in Table 1.
In the case of vacuum drying, the gauge pressure was 0.1 MPa.

比較例1
市販試薬のオキシ水酸化鉄(α−FeOOH、ナカライテスク株式会社製、BET比表面積10.8m2/g)を230℃で2時間加熱処理した。得られたオキシ水酸化鉄のBET比表面積は170m2/g、水酸基含有量は3mol−OH/kg−FeOOH、凝集体粒子としての平均粒子径は、189μmであった。
Comparative Example 1
Commercially available iron oxyhydroxide (α-FeOOH, manufactured by Nacalai Tesque, Inc., BET specific surface area 10.8 m 2 / g) was heat-treated at 230 ° C. for 2 hours. The obtained iron oxyhydroxide had a BET specific surface area of 170 m 2 / g, a hydroxyl group content of 3 mol-OH / kg-FeOOH, and an average particle size as aggregate particles of 189 μm.

比較例2
実施例1において、塩化第二鉄(FeCl3・6H2O)の代わりに、塩化第一鉄(FeCl2)を用い、pHを8に調整し、得られた沈殿物を75℃で24時間乾燥し、(c)工程を行わなかった以外は、実施例1と同様に行った。得られたオキシ水酸化鉄のBET比表面積は132.0m2/g、水酸基含有量は3.3mol−OH/kg−FeOOH、凝集体粒子としての平均粒子径は、123μmであった。
Comparative Example 2
In Example 1, ferrous chloride (FeCl 2 ) was used in place of ferric chloride (FeCl 3 .6H 2 O), the pH was adjusted to 8, and the resulting precipitate was kept at 75 ° C. for 24 hours. The same procedure as in Example 1 was performed except that the drying and the step (c) were not performed. The obtained iron oxyhydroxide had a BET specific surface area of 132.0 m 2 / g, a hydroxyl group content of 3.3 mol-OH / kg-FeOOH, and an average particle size as aggregate particles of 123 μm.

比較例3〜5
実施例2〜10において、乾燥条件を第1表に記載した条件としたこと以外は、実施例2〜10と同様に行った。結果を第1表に示す。
Comparative Examples 3-5
In Examples 2-10, it carried out similarly to Examples 2-10 except having made the drying conditions into the conditions described in Table 1. The results are shown in Table 1.

Figure 2006124239
Figure 2006124239

(オキシ水酸化鉄の評価)
評価試験1
実施法1〜5で得られたオキシ水酸化鉄を、リン濃度50mg/Lのリン酸溶液に1g/Lの割合で投入し、リン酸イオンの吸着性能を評価した。結果を図1に示す。図1から、乾燥温度が50℃から上昇するに従ってリン吸着量が徐々に減少するが、乾燥温度90℃でリン吸着率55%を示し、乾燥温度60℃未満でリン吸着率70%以上を示していることが分かる。
なお、リン吸着率(%)は、下式により算出した。
リン吸着率(%)=(吸着実験後のリン濃度/吸着実験前のリン濃度)×100
(Evaluation of iron oxyhydroxide)
Evaluation test 1
The iron oxyhydroxide obtained in Examples 1 to 5 was introduced into a phosphoric acid solution having a phosphorus concentration of 50 mg / L at a rate of 1 g / L, and the phosphate ion adsorption performance was evaluated. The results are shown in FIG. From FIG. 1, the phosphorus adsorption amount gradually decreases as the drying temperature increases from 50 ° C., but shows a phosphorus adsorption rate of 55% at a drying temperature of 90 ° C. and a phosphorus adsorption rate of 70% or more at a drying temperature of less than 60 ° C. I understand that
The phosphorus adsorption rate (%) was calculated by the following formula.
Phosphorus adsorption rate (%) = (phosphorus concentration after adsorption experiment / phosphorus concentration before adsorption experiment) × 100

評価試験2
フーリエ変換赤外分光光度計(日本電子社製:型式SPX60)を用いて、実施例1で得られたオキシ水酸化鉄、及び市販試薬のオキシ水酸化鉄(α−FeOOH、ナカライテスク社製)について、FeOOHの水素結合サイトとして、 O−Hの伸縮状態を測定した。結果を図2に示す。
図2から、市販試薬のα−FeOOHも、実施例1で得られたFeOOHも、波数2400cm-1〜3700cm-1にピークが存在しているが、実施例1で得られたFeOOHは、波数3420cm-1に大きなピークが存在しており、リン酸イオン等の陰イオン種の吸着能を示す弱い水素結合の水酸基を大量に含有していることが分る。
図3は、実施例1で得られたFeOOHを用いて、評価試験1を行った場合のリン酸イオン吸着前と吸着後のFTIRスペクトルである。リン酸イオン吸着前の波数3420cm-1のピークの水酸基含有量は8.27mol−OH/kg−FeOOHであり、リン酸イオン吸着後の波数3420cm-1のピークの水酸基含有量は3.54mol−OH/kg−FeOOHであった。このようにリン酸イオン吸着後のFTIRスペクトルは3420cm-1のピークが激減している。これはFeOOHの水素結合サイトのOH基の脱離と同時にリン酸イオンが吸着したことを示している。このことから、リン酸イオン等の陰イオン種の吸着除去には、水素結合サイトが寄与していることが分る。
図4は、実施例1において、(b)工程における乾燥温度を50℃〜400℃に変化させた場合のFTIRスペクトルである。加熱温度が上昇するに従って3420cm-1のピークが減少し、100℃を超えた温度で乾燥すると、水素結合サイトが大幅に減少し、リン酸イオン等の陰イオン種の吸着能が大幅に低下することが分かる。
Evaluation test 2
Using a Fourier transform infrared spectrophotometer (manufactured by JEOL Ltd .: model SPX60), the iron oxyhydroxide obtained in Example 1 and the commercially available iron oxyhydroxide (α-FeOOH, manufactured by Nacalai Tesque) As for the hydrogen bonding site of FeOOH, the stretched state of O—H was measured. The results are shown in FIG.
From FIG. 2, both the commercially available reagent α-FeOOH and the FeOOH obtained in Example 1 have a peak at wave numbers 2400 cm −1 to 3700 cm −1 , but FeOOH obtained in Example 1 has a wave number It can be seen that there is a large peak at 3420 cm −1 , and it contains a large amount of weak hydrogen-bonded hydroxyl groups exhibiting the ability to adsorb anionic species such as phosphate ions.
FIG. 3 shows FTIR spectra before and after phosphate ion adsorption when the evaluation test 1 is performed using FeOOH obtained in Example 1. The hydroxyl group content at the peak of wave number 3420 cm −1 before phosphate ion adsorption is 8.27 mol-OH / kg-FeOOH, and the hydroxyl group content at the peak of wave number 3420 cm −1 after phosphate ion adsorption is 3.54 mol − It was OH / kg-FeOOH. Thus, in the FTIR spectrum after phosphate ion adsorption, the peak at 3420 cm −1 is drastically reduced. This indicates that phosphate ions were adsorbed simultaneously with the elimination of the OH group at the hydrogen bonding site of FeOOH. From this, it can be seen that hydrogen bonding sites contribute to the adsorption removal of anionic species such as phosphate ions.
FIG. 4 is an FTIR spectrum when the drying temperature in the step (b) is changed from 50 ° C. to 400 ° C. in Example 1. As the heating temperature rises, the peak at 3420 cm -1 decreases, and when it is dried at a temperature exceeding 100 ° C., the hydrogen bonding sites are greatly reduced and the adsorption ability of anionic species such as phosphate ions is greatly reduced. I understand that.

評価試験3
実施例1で得られたオキシ水酸化鉄と市販試薬のオキシ水酸化鉄(α−FeOOH、ナカライテスク社製)、及びリン酸イオン含有水(和光純薬工業株式会社製リン標準液)を用いて、リン吸着量とリン平衡濃度の関係(オキシ水酸化鉄量1g/L、接触時間24時間)を評価した。結果を図5に示す。
図5からリン酸イオン平衡濃度が上昇するにつれてリン酸イオン吸着量も増加し、実施例1で得られたオキシ水酸化鉄では、平衡濃度200mg/Lでリン吸着量は40mg/gあった。一方、市販試薬のオキシ水酸化鉄では、平衡濃度200mg/Lでリン吸着量は6mg/gあった。この結果、実施例1で得られたオキシ水酸化鉄は、市販試薬のオキシ水酸化鉄の6.7倍の吸着能があることが分る。
Evaluation test 3
Using the iron oxyhydroxide obtained in Example 1, the commercially available reagent iron oxyhydroxide (α-FeOOH, manufactured by Nacalai Tesque), and phosphate ion-containing water (phosphorus standard solution manufactured by Wako Pure Chemical Industries, Ltd.) Then, the relationship between the phosphorus adsorption amount and the phosphorus equilibrium concentration (iron oxyhydroxide amount 1 g / L, contact time 24 hours) was evaluated. The results are shown in FIG.
As shown in FIG. 5, the phosphate ion adsorption amount increased as the phosphate ion equilibrium concentration increased. With the iron oxyhydroxide obtained in Example 1, the phosphorus adsorption amount was 40 mg / g at an equilibrium concentration of 200 mg / L. On the other hand, iron oxyhydroxide, a commercially available reagent, had an adsorption concentration of 6 mg / g at an equilibrium concentration of 200 mg / L. As a result, it can be seen that the iron oxyhydroxide obtained in Example 1 has an adsorption capacity 6.7 times that of the commercially available iron oxyhydroxide.

評価試験4
リン酸イオン含有廃水(滋賀県石部地区工場排水、リン濃度(リン元素換算)52.19mg/L)に、実施例1で得られたオキシ水酸化鉄を添加して、リン酸イオン除去能の評価を行った。オキシ水酸化鉄を2g/L−排水の割合で添加して、24時間攪拌した後のリン濃度は0mg/Lであり、リン酸イオンを完全に除去できた。
Evaluation test 4
Phosphate ion-containing wastewater (Shiga Prefecture Ishibe district factory wastewater, phosphorus concentration (phosphorus element conversion) 52.19 mg / L) was added with the iron oxyhydroxide obtained in Example 1 to remove phosphate ions. Evaluation was performed. After adding iron oxyhydroxide at a rate of 2 g / L-drainage and stirring for 24 hours, the phosphorus concentration was 0 mg / L, and phosphate ions could be completely removed.

評価試験1における、実施法1〜5で得られたオキシ水酸化鉄のリンの吸着性能評価の結果を示す図である。It is a figure which shows the result of the adsorption | suction performance evaluation of the iron oxyhydroxide obtained by the implementation methods 1-5 in the evaluation test 1. FIG. 評価試験2における、実施例1で得られたオキシ水酸化鉄と市販試薬のオキシ水酸化鉄のFTIRスペクトルである。It is a FTIR spectrum of the iron oxyhydroxide obtained in Example 1 and the commercially available reagent iron oxyhydroxide in Evaluation Test 2. 評価試験2における、リン酸イオン吸着前と吸着後のFTIRスペクトルである。It is a FTIR spectrum before and after adsorption of phosphate ions in Evaluation Test 2. 評価試験2における、乾燥温度を変化させた場合のFTIRスペクトルである。It is a FTIR spectrum at the time of changing the drying temperature in the evaluation test 2. FIG. 評価試験3における、リン吸着量とリン平衡濃度の関係を示すグラフである。7 is a graph showing the relationship between phosphorus adsorption amount and phosphorus equilibrium concentration in Evaluation Test 3.

Claims (8)

(a)3価の鉄イオン含有溶液に塩基を加え、pHを3.3〜6に調整することにより、オキシ水酸化鉄を含む沈殿物を生成させる工程、
(b)該沈殿物を100℃以下の温度で乾燥することによってオキシ水酸化鉄を得る工程、及び
(c)得られたオキシ水酸化鉄を水と接触させた後、100℃以下の温度で乾燥する工程、を順次行うことを特徴とするオキシ水酸化鉄の製造方法。
(A) A step of generating a precipitate containing iron oxyhydroxide by adding a base to a trivalent iron ion-containing solution and adjusting the pH to 3.3 to 6,
(B) drying the precipitate at a temperature of 100 ° C. or less to obtain iron oxyhydroxide; and (c) contacting the obtained iron oxyhydroxide with water, and then at a temperature of 100 ° C. or less. A method for producing iron oxyhydroxide, comprising sequentially performing a drying step.
(a)工程におけるpHを3.5〜5.5に調整する請求項1に記載のオキシ水酸化鉄の製造方法。   The method for producing iron oxyhydroxide according to claim 1, wherein the pH in the step (a) is adjusted to 3.5 to 5.5. 乾燥を40℃以上60℃未満の温度で行う請求項1又は2に記載のオキシ水酸化鉄の製造方法。   The method for producing iron oxyhydroxide according to claim 1 or 2, wherein drying is performed at a temperature of 40 ° C or higher and lower than 60 ° C. 乾燥を空気中、真空中又は不活性ガス中のいずれかの雰囲気中で行う請求項1〜3のいずれかに記載のオキシ水酸化鉄の製造方法。   The method for producing iron oxyhydroxide according to any one of claims 1 to 3, wherein the drying is performed in an atmosphere of air, vacuum, or inert gas. 3価の鉄イオン含有溶液の濃度が0.01〜5mol/Lである請求項1〜4のいずれかに記載のオキシ水酸化鉄の製造方法。   The method for producing iron oxyhydroxide according to any one of claims 1 to 4, wherein the concentration of the trivalent iron ion-containing solution is 0.01 to 5 mol / L. 請求項1〜5のいずれかに記載の方法により得られたオキシ水酸化鉄を主成分とするオキシ水酸化鉄吸着材。   The iron oxyhydroxide adsorption material which has as a main component the iron oxyhydroxide obtained by the method in any one of Claims 1-5. BET比表面積が100〜400m2/gである請求項6に記載のオキシ水酸化鉄吸着材。 The iron oxyhydroxide adsorbent according to claim 6, which has a BET specific surface area of 100 to 400 m 2 / g. オキシ水酸化鉄1kg当りの水酸基含有量が3mol以上である請求項6及び7に記載のオキシ水酸化鉄吸着材。

The iron oxyhydroxide adsorbent according to claim 6 or 7, wherein the hydroxyl group content per kg of iron oxyhydroxide is 3 mol or more.

JP2004315713A 2004-10-29 2004-10-29 Iron oxyhydroxide production method and iron oxyhydroxide adsorbent Expired - Lifetime JP4012975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315713A JP4012975B2 (en) 2004-10-29 2004-10-29 Iron oxyhydroxide production method and iron oxyhydroxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315713A JP4012975B2 (en) 2004-10-29 2004-10-29 Iron oxyhydroxide production method and iron oxyhydroxide adsorbent

Publications (2)

Publication Number Publication Date
JP2006124239A true JP2006124239A (en) 2006-05-18
JP4012975B2 JP4012975B2 (en) 2007-11-28

Family

ID=36719326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315713A Expired - Lifetime JP4012975B2 (en) 2004-10-29 2004-10-29 Iron oxyhydroxide production method and iron oxyhydroxide adsorbent

Country Status (1)

Country Link
JP (1) JP4012975B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134828A1 (en) * 2005-06-09 2006-12-21 Tomotaka Yanagita Anion adsorbent, agent for purifying water or soil, and method for producing those
WO2008001442A1 (en) * 2006-06-29 2008-01-03 Createrra Inc. Anion adsorbent, water or soil cleanup agent and process for producing the same
JP2010083719A (en) * 2008-09-30 2010-04-15 Dowa Metals & Mining Co Ltd Porous maghemite, method for producing tmaghemite and method for treating water to be treated
WO2017061116A1 (en) * 2015-10-09 2017-04-13 日本曹達株式会社 Iron oxyhydroxide nanodispersion liquid
WO2017061115A1 (en) * 2015-10-09 2017-04-13 高橋金属株式会社 Adsorbent particles and granular adsorbent
KR20180091908A (en) 2015-12-25 2018-08-16 다카하시 긴조쿠 가부시키가이샤 Sorbent particles
WO2018230489A1 (en) 2017-06-16 2018-12-20 高橋金属株式会社 Adsorption method
JP2019147081A (en) * 2018-02-26 2019-09-05 国立大学法人京都大学 Production method of adsorbent
WO2020255956A1 (en) 2019-06-20 2020-12-24 株式会社杉田製線 Water purifying material having iron as main component, and method for manufacturing same
WO2020255957A1 (en) 2019-06-20 2020-12-24 株式会社杉田製線 Water purification material and water purification method using same
JP2022530839A (en) * 2019-08-13 2022-07-01 エルジー エナジー ソリューション リミテッド Iron oxyhydroxide nitrate on which anions of phosphate are adsorbed, this manufacturing method, positive electrode for lithium secondary battery containing iron oxyhydroxide on which anions of phosphate are adsorbed on the surface, and lithium II containing it. Next battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192326A (en) * 2011-03-15 2012-10-11 Kyoto Univ Material for removing sulphur-containing gas, method of manufacturing the same and method for removing sulphur-containing gas

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134828A1 (en) * 2005-06-09 2006-12-21 Tomotaka Yanagita Anion adsorbent, agent for purifying water or soil, and method for producing those
WO2008001442A1 (en) * 2006-06-29 2008-01-03 Createrra Inc. Anion adsorbent, water or soil cleanup agent and process for producing the same
US8231790B2 (en) 2006-06-29 2012-07-31 Createrra Inc. Process for producing an anion adsorbent and anion adsorbent produced by said process
JP2010083719A (en) * 2008-09-30 2010-04-15 Dowa Metals & Mining Co Ltd Porous maghemite, method for producing tmaghemite and method for treating water to be treated
WO2017061116A1 (en) * 2015-10-09 2017-04-13 日本曹達株式会社 Iron oxyhydroxide nanodispersion liquid
WO2017061115A1 (en) * 2015-10-09 2017-04-13 高橋金属株式会社 Adsorbent particles and granular adsorbent
KR20180063203A (en) 2015-10-09 2018-06-11 닛뽕소다 가부시키가이샤 Oxy iron hydroxide nano dispersion
JPWO2017061116A1 (en) * 2015-10-09 2018-06-21 日本曹達株式会社 Iron oxyhydroxide nano dispersion
JPWO2017061115A1 (en) * 2015-10-09 2018-07-26 高橋金属株式会社 Adsorbent particles and granulated adsorbent
KR102047201B1 (en) 2015-10-09 2019-11-20 닛뽕소다 가부시키가이샤 Iron Oxy Hydroxide Nano Dispersion
US10781109B2 (en) 2015-10-09 2020-09-22 Nippon Soda Co., Ltd. Iron oxyhydroxide nanodispersion liquid
KR20180091908A (en) 2015-12-25 2018-08-16 다카하시 긴조쿠 가부시키가이샤 Sorbent particles
JPWO2017110736A1 (en) * 2015-12-25 2018-09-13 高橋金属株式会社 Adsorbent particles
US10843166B2 (en) 2015-12-25 2020-11-24 Takahashi Metal Industries Co., Ltd. Adsorbent particles
WO2018230489A1 (en) 2017-06-16 2018-12-20 高橋金属株式会社 Adsorption method
US11325847B2 (en) 2017-06-16 2022-05-10 Takahashi Metal Industries Co., Ltd. Adsorption method
JP2019147081A (en) * 2018-02-26 2019-09-05 国立大学法人京都大学 Production method of adsorbent
JP7024967B2 (en) 2018-02-26 2022-02-24 国立大学法人京都大学 Manufacturing method of adsorbent
WO2020255957A1 (en) 2019-06-20 2020-12-24 株式会社杉田製線 Water purification material and water purification method using same
CN114364639A (en) * 2019-06-20 2022-04-15 株式会社杉田制线 Water purification material having iron as main component and method for manufacturing the same
WO2020255956A1 (en) 2019-06-20 2020-12-24 株式会社杉田製線 Water purifying material having iron as main component, and method for manufacturing same
US12121874B2 (en) 2019-06-20 2024-10-22 Sugita Wire, Ltd. Water purifying material having iron as main component, and method for manufacturing same
JP2022530839A (en) * 2019-08-13 2022-07-01 エルジー エナジー ソリューション リミテッド Iron oxyhydroxide nitrate on which anions of phosphate are adsorbed, this manufacturing method, positive electrode for lithium secondary battery containing iron oxyhydroxide on which anions of phosphate are adsorbed on the surface, and lithium II containing it. Next battery
JP7378498B2 (en) 2019-08-13 2023-11-13 エルジー エナジー ソリューション リミテッド Iron oxyhydroxide nitrate having a phosphate anion adsorbed on its surface, a method for producing the same, a positive electrode for a lithium secondary battery containing iron oxyhydroxide nitrate having a phosphate anion adsorbed on its surface, and a lithium secondary battery comprising the same next battery

Also Published As

Publication number Publication date
JP4012975B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Zhang et al. Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe (III) complex sorbents: Characteristic and mechanism
Liu et al. Resource utilization of swine sludge to prepare modified biochar adsorbent for the efficient removal of Pb (II) from water
Sahu et al. Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As (III) and As (V): material preparation, characterization and adsorption mechanism study
Mohanta et al. Bio-inspired adsorption of arsenite and fluoride from aqueous solutions using activated carbon@ SnO2 nanocomposites: isotherms, kinetics, thermodynamics, cost estimation and regeneration studies
JP4126399B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
Long et al. Removal of Pb (Ⅱ) from aqueous solution by hydroxyapatite/carbon composite: Preparation and adsorption behavior
Fida et al. Preparation and characterization of bifunctional Ti–Fe kaolinite composite for Cr (VI) removal
Lu et al. Phosphate removal from aqueous solutions by a nano-structured Fe–Ti bimetal oxide sorbent
Liu et al. An antibacterial and antifouling amidoxime-functionalized graphene oxide aerogel for selective uranium adsorption in Salt Lake water
JP5568751B2 (en) Hypophosphite ion adsorbent, hypophosphite ion treatment method and hypophosphite ion treatment apparatus
Dakroury et al. Utilization of olive pomace in nano MgO modification for sorption of Ni (II) and Cu (II) metal ions from aqueous solutions
Wang et al. Synthesis and Study of an Efficient Metal‐Organic Framework Adsorbent (MIL‐96 (Al)) for Fluoride Removal from Water
JP4012975B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
Yuan et al. Adsorption performance and mechanism for phosphate removal by cerium hydroxide loaded on molecular sieve
Shan et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation
Zhang et al. High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles
Peng et al. Enhanced removal of Cd (II) by poly (acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide
Jing et al. Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate
Xu et al. Chitosan and biochar synergize the efficient elimination of lead from wastewater by sulfidised nano-zero-valent iron
Sert et al. Removal of arsenic (III) ions from aqueous solutions by modified hazelnut shell
Liu et al. High-efficiency adsorption of phosphate by Fe-Zr-La tri-metal oxide composite from aqueous media: Performance and mechanism
Wang et al. Preparation of Fe3O4 magnetic porous microspheres (MPMs) and their application in treating mercury-containing wastewater from the polyvinyl chloride industry by calcium carbide method
Li et al. Preparation of cobalt-containing spinel oxides as novel adsorbents for efficient phosphate removal
Panchu et al. Enriching Trace Level Adsorption Affinity of As 3+ Ion Using Hydrothermally Synthesized Iron-Doped Hydroxyapatite Nanorods
Liang et al. Magnetic mesoporous carbon hollow microspheres adsorbents for the efficient removal of Cr (III) and Cr (III)-EDTA in high salinity water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370