JP2006121463A - Band-pass filter - Google Patents

Band-pass filter Download PDF

Info

Publication number
JP2006121463A
JP2006121463A JP2004307672A JP2004307672A JP2006121463A JP 2006121463 A JP2006121463 A JP 2006121463A JP 2004307672 A JP2004307672 A JP 2004307672A JP 2004307672 A JP2004307672 A JP 2004307672A JP 2006121463 A JP2006121463 A JP 2006121463A
Authority
JP
Japan
Prior art keywords
dielectric
band
waveguide
pass filter
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004307672A
Other languages
Japanese (ja)
Other versions
JP4205654B2 (en
Inventor
Takahiro Miyamoto
貴裕 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2004307672A priority Critical patent/JP4205654B2/en
Publication of JP2006121463A publication Critical patent/JP2006121463A/en
Application granted granted Critical
Publication of JP4205654B2 publication Critical patent/JP4205654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a band-pass filter which can dispense with external circuit for impressing a magnetic field, and is capable of varying its center frequency without changing the passband width, can be miniaturized as a filter for high frequencies, and is capable of compensating the temperature characteristics of a waveguide. <P>SOLUTION: A dielectric 14 is loaded on at least one location on rectangular waveguides 11, 12 in parallel to their H planes, and the length of the waveguide 11, 12 in the direction of the H planes is made to change electrically to realize a band-pass filter whose pass band width is fixed and the center frequency is variable. As the center frequency, an arbitrary frequency can be selected by selecting a thickness tFreq and a dielectric constant εr of the dielectric 14. Moreover, temperature compensation of the band-pass filter can be performed, by loading a dielectric having a dielectric constant temperature characteristics that is reverse to that of the waveguide 11, 12 in parallel with the H planes, on at least one place. Variations in temperature can be made very small, and its center frequency can also be made variable, without changing the pass-band width by combination of the two dielectrics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、帯域通過フィルタに関し、特に、方形導波管と誘電体とを組み合わせた高周波用の帯域通過フィルタに関する。   The present invention relates to a band-pass filter, and more particularly to a high-frequency band-pass filter in which a rectangular waveguide and a dielectric are combined.

一般に、誘電体を装荷しないE面平行金属板による導波管帯域通過フィルタにおいて、その中心周波数を変更するには、フィルタを構成する金属板を他の金属板に交換しなければならない。その理由は、梯子状に配置された金属板の形状(板の厚さ、金属フィンの幅・間隔)が、帯域通過フィルタに必要な結合係数を構成しているためである。従って、中心周波数や通過帯域幅を変更するには、新規に金属板を設計する必要がある。   In general, in a waveguide bandpass filter using an E-plane parallel metal plate that is not loaded with a dielectric material, in order to change the center frequency, the metal plate constituting the filter must be replaced with another metal plate. The reason is that the shape of the metal plates arranged in a ladder shape (plate thickness, metal fin width / interval) constitutes a coupling coefficient necessary for the band-pass filter. Therefore, in order to change the center frequency and the pass bandwidth, it is necessary to design a new metal plate.

また、中心周波数を変更可能な帯域通過フィルタとして、例えば、特許文献1には、外部に磁気回路を配置し、導波管内にフェライトを備えることで中心周波数を迅速に切り換えることのできるフィルタが提案されている。   In addition, as a bandpass filter capable of changing the center frequency, for example, Patent Document 1 proposes a filter that can quickly switch the center frequency by disposing a magnetic circuit outside and providing ferrite in the waveguide. Has been.

この帯域通過フィルタは、図7に示すように、フェライト共振器18を有するアジル型の帯域通過フィルタ3であって、外部に配置された磁気回路による印加磁界を変化させることで中心周波数を変更している。この磁界は、外部磁気回路によって発生する。磁界は、軟鉄製磁気回路19と、可調整直流電流が流れる励起コイル20とを含む電磁石21の2つの磁極部材22及び23の間で、フェライトバー18と同軸的に発生する。コイル20に流れる励起電流を変化させることにより、磁界Hの値が変化し、その結果、フェライトバー18の共振周波数が変化し、帯域通過フィルタ3の中心周波数が変化する。   As shown in FIG. 7, this band-pass filter is an azil-type band-pass filter 3 having a ferrite resonator 18, and changes a center frequency by changing an applied magnetic field by a magnetic circuit arranged outside. ing. This magnetic field is generated by an external magnetic circuit. A magnetic field is generated coaxially with the ferrite bar 18 between the two magnetic pole members 22 and 23 of the electromagnet 21 including the soft iron magnetic circuit 19 and the excitation coil 20 through which the adjustable DC current flows. By changing the excitation current flowing through the coil 20, the value of the magnetic field H changes. As a result, the resonance frequency of the ferrite bar 18 changes, and the center frequency of the bandpass filter 3 changes.

特開平5−37202号公報JP-A-5-37202

しかし、上記特許文献1に記載の帯域通過フィルタ3は、フィルタを接続したまま中心周波数を変化させることができるという利点はあるが、磁界を印加するために外部回路を設ける必要がある。そのため、回路全体が大きくなり、高周波フィルタを扱うに当たって小型化が困難になるという問題があった。   However, the band-pass filter 3 described in Patent Document 1 has an advantage that the center frequency can be changed with the filter connected, but an external circuit needs to be provided to apply a magnetic field. For this reason, there is a problem that the entire circuit becomes large and it is difficult to reduce the size when handling the high-frequency filter.

そこで、本発明は、上記従来の帯域通過フィルタにおける問題点に鑑みてなされたものであって、磁界を印加するための外部回路が不要で、通過帯域幅を変えることなく中心周波数を変化させることができ、高周波用として小型化が可能な帯域通過フィルタを提供することを目的とする。   Therefore, the present invention has been made in view of the problems in the conventional bandpass filter described above, and does not require an external circuit for applying a magnetic field, and changes the center frequency without changing the passband width. An object of the present invention is to provide a band-pass filter that can be miniaturized for high frequency use.

また、一般に、アルミニウムや黄銅等の金属で形成された導波管は、温度が下がると縮小し、温度が上がると膨張する。すなわち、温度が下がれば、帯域通過フィルタを構成する共振器は小さくなり、共振周波数は高い方へと移行する。逆に、温度が下がれば、共振器は大きくなり、共振周波数は低い方へと移行する。このように、温度が変化すると中心周波数(通過帯域)も変化してしまうという問題がある。   In general, a waveguide formed of a metal such as aluminum or brass expands when the temperature decreases and expands when the temperature increases. That is, when the temperature decreases, the resonator constituting the band pass filter becomes smaller and the resonance frequency shifts to a higher side. Conversely, when the temperature is lowered, the resonator becomes larger and the resonance frequency shifts to a lower side. As described above, there is a problem that the center frequency (passband) changes when the temperature changes.

そこで、本発明は、上記目的に加え、導波管の温度特性を補償可能な帯域通過フィルタを提供することを目的とする。   Accordingly, an object of the present invention is to provide a bandpass filter capable of compensating for the temperature characteristics of a waveguide in addition to the above object.

上記目的を達成するため、本発明は、帯域通過フィルタであって、導波管のE面に平行に設けた金属板と、該金属板の上下左右に位置するH面の少なくとも一辺に平行に設けた、比誘電率1.0以上の板状の誘電体とを備えることを特徴とする。   In order to achieve the above object, the present invention is a bandpass filter, which is parallel to at least one side of a metal plate provided in parallel to the E-plane of the waveguide and an H-plane located on the top, bottom, left and right of the metal plate And a plate-like dielectric having a relative dielectric constant of 1.0 or more.

そして、本発明によれば、板状の誘電体の厚さ、高さ、比誘電率を変化させることにより、通過帯域幅を変化させることなく中心周波数を可変とすることができるため、磁界を印加するための外部回路が不要で、高周波用として小型化が可能な帯域通過フィルタを提供することが可能となる。   According to the present invention, by changing the thickness, height, and relative dielectric constant of the plate-like dielectric, the center frequency can be made variable without changing the passband width. It is possible to provide a band-pass filter that does not require an external circuit for application and can be miniaturized for high frequency use.

前記帯域通過フィルタにおいて、前記誘電体を、比誘電率に関して負の温度特性を有するように構成することができる。ここで、負の比誘電率温度特性とは、温度が下がると比誘電率が大きくなる特性をいう。例えば、PTFE等が負の誘電率温度特性を有する誘電体である。導波管に用いるアルミニウムや銅と、これらの誘電体とは、導波管フィルタを構成する上で、互いに逆の温度特性を有している。これによって、導波管フィルタを構成する材料の温度の変化による周波数変動を補償することが可能となる。   In the band pass filter, the dielectric may be configured to have a negative temperature characteristic with respect to a relative dielectric constant. Here, the negative relative dielectric constant temperature characteristic means a characteristic that the relative dielectric constant increases as the temperature decreases. For example, PTFE or the like is a dielectric having negative dielectric constant temperature characteristics. Aluminum and copper used for the waveguide and these dielectrics have temperature characteristics opposite to each other in configuring the waveguide filter. This makes it possible to compensate for frequency fluctuations due to changes in the temperature of the material constituting the waveguide filter.

上記比誘電率に関して負の温度特性を有する板状の誘電体を備える帯域通過フィルタに、さらに、前記H面の少なくとも一辺に平行に、比誘電率1.0以上の板状の第2の誘電体を備えるように構成することができる。これによって、温度変動が非常に小さく、かつ、通過帯域幅を変化させることなく、中心周波数を可変とした帯域通過フィルタを提供することが可能となる。   A band-pass filter including a plate-like dielectric having negative temperature characteristics with respect to the dielectric constant, and a plate-like second dielectric having a dielectric constant of 1.0 or more parallel to at least one side of the H surface. It can be configured to include a body. As a result, it is possible to provide a bandpass filter having a very small temperature variation and a variable center frequency without changing the passband width.

前記帯域通過フィルタを、前記導波管をH面の中央で2分割し、該2分割した導波管によって前記金属板を挟み込むことによって構成することができる。   The bandpass filter can be configured by dividing the waveguide into two at the center of the H plane and sandwiching the metal plate by the divided waveguide.

また、前記帯域通過フィルタを、前記2分割した導波管の一方のH面の一辺に平行に、前記比誘電率1.0以上の板状の誘電体又は前記比誘電率1.0以上で、かつ、比誘電率に関して負の温度特性を有する板状の誘電体を備えるように構成することができる。   The band pass filter may be a plate-like dielectric having a relative dielectric constant of 1.0 or more or a relative dielectric constant of 1.0 or more parallel to one side of one H surface of the two-divided waveguide. And it can comprise so that the plate-shaped dielectric material which has a negative temperature characteristic regarding a relative dielectric constant may be provided.

さらに、前記帯域通過フィルタを、前記2分割した導波管の一方のH面の一辺に平行に、前記比誘電率1.0以上で、かつ、比誘電率に関して負の温度特性を有する板状の誘電体を備え、前記2分割した導波管の他方のH面の一辺に平行に、比誘電率1.0以上の板状の誘電体を備えるように構成することができる。   Further, the bandpass filter is formed in a plate-like shape having a relative dielectric constant of 1.0 or more and a negative temperature characteristic with respect to the relative dielectric constant in parallel with one side of the H surface of the two-divided waveguide. And a plate-like dielectric having a relative dielectric constant of 1.0 or more parallel to one side of the other H surface of the two-divided waveguide.

以上のように、本発明によれば、磁界を印加するための外部回路が不要で、通過帯域幅をほとんど変えることなく中心周波数を変化させることができ、高周波用として小型化が可能で、導波管の温度特性を補償可能な帯域通過フィルタを提供することができる。   As described above, according to the present invention, there is no need for an external circuit for applying a magnetic field, the center frequency can be changed with almost no change in the pass bandwidth, and the size can be reduced for high frequency use. A bandpass filter capable of compensating for the temperature characteristics of the wave tube can be provided.

図1乃至図3は、本発明にかかる帯域通過フィルタの第1の実施の形態を示し、この帯域通過フィルタ1は、導波管11、12をH面中央で2分割し、所定の周波数で通過帯域を有するように設計された金属板13を挟み込み、導波管11にH面と平行な誘電体14を配置した構成となっている。   1 to 3 show a first embodiment of a band-pass filter according to the present invention. This band-pass filter 1 divides a waveguide 11 and 12 into two at the center of the H plane and at a predetermined frequency. A metal plate 13 designed to have a pass band is sandwiched, and a dielectric 14 parallel to the H plane is disposed in the waveguide 11.

導波管11、12の寸法は、幅広面(H面)、幅狭面(E面)の長さを各々、a、bとし、誘電体14は、H面に平行な長さとして幅h、厚さtFreq、伝搬方向の長さは、フィルタを構成する金属板13の初段から終段までの長さ(図3参照)、もしくは、それ以上であれば良い。   As for the dimensions of the waveguides 11 and 12, the lengths of the wide surface (H surface) and the narrow surface (E surface) are a and b, respectively, and the dielectric 14 has a width h as a length parallel to the H surface. The thickness tFreq and the length in the propagation direction may be the length from the first stage to the last stage of the metal plate 13 constituting the filter (see FIG. 3) or more.

次に、上記構成を有する帯域通過フィルタ1の動作について、図1及び図2を参照しながら説明する。   Next, the operation of the bandpass filter 1 having the above configuration will be described with reference to FIGS.

まず、周波数シフトの動作の一例を示す。本帯域通過フィルタ1は、TE10sモード(s=1,2,3,・・)を用いるため、共振周波数は、H面と伝搬方向の長さによって決定される。そこで、H面に平行に板状の誘電体14を装荷することで、H面方向の電気長を可変とし、共振周波数を制御している。   First, an example of the frequency shift operation is shown. Since the bandpass filter 1 uses the TE10s mode (s = 1, 2, 3,...), The resonance frequency is determined by the length of the H plane and the propagation direction. Therefore, by loading a plate-like dielectric 14 parallel to the H plane, the electrical length in the H plane direction can be varied, and the resonance frequency is controlled.

具体的事例を以下に示す。13GHz帯の導波管を用いた5段E面フィルタについて考える。図1及び図2に示すように、H面に平行に誘電体14(比誘電率2.6)を装荷する。この誘電体14は、周波数シフトのためのものであるから、比誘電率εrが1.0以上であれば良い。この誘電体14の厚さtFreqを可変とすることで、図5に示すように、通過帯域の幅を一定としたまま、中心周波数を変化させることが可能である。尚、同図には、誘電体が存在しない場合と、誘電体の厚さを10%、30%と変化させた場合を示している。   Specific examples are shown below. Consider a 5-stage E-plane filter using a 13 GHz waveguide. As shown in FIGS. 1 and 2, a dielectric 14 (relative dielectric constant 2.6) is loaded parallel to the H plane. Since the dielectric 14 is for frequency shift, the relative permittivity εr may be 1.0 or more. By making the thickness tFreq of the dielectric 14 variable, it is possible to change the center frequency while keeping the width of the pass band constant as shown in FIG. In the figure, there are shown a case where there is no dielectric and a case where the thickness of the dielectric is changed to 10% and 30%.

誘電体14を装荷することは、等価的に導波管の幅広面(H面)の長さを長くする効果があり、誘電体14の厚さを厚くすることにより、上述のように、フィルタの共振周波数は、低い方へ移行していく。ここで、幅広面の長さと共振周波数が変化したときのフィルタの結合係数の関係は、ほとんど変化がないため、通過帯域幅を一定としたまま中心周波数を変化させることが可能となる。   Loading the dielectric 14 has an effect of equivalently increasing the length of the wide surface (H surface) of the waveguide. By increasing the thickness of the dielectric 14, as described above, the filter The resonance frequency of shifts to the lower side. Here, since the relationship between the length of the wide surface and the coupling coefficient of the filter when the resonance frequency changes is almost unchanged, the center frequency can be changed while the passband width is kept constant.

誘電体14を装荷することによる効果は、幅広面を等価的に大きくすることである。そのため、低い周波数への移行のみ可能である。高い周波数側へも調整可能な帯域通過フィルタを設計するには、予め誘電体14を装荷した状態で中心周波数を設計した帯域通過フィルタを用い、装荷する誘電体14の厚さtFreq、長さhを減らせば良い。   The effect of loading the dielectric 14 is to increase the wide surface equivalently. Therefore, only a transition to a lower frequency is possible. In order to design a bandpass filter that can be adjusted to a higher frequency side, a bandpass filter whose center frequency is designed in advance with the dielectric 14 loaded is used, and the thickness tFreq and length h of the loaded dielectric 14 are set. Should be reduced.

次に、中心周波数を変化させるための誘電体14の設置場所について説明する。E面の端に誘電体14を置いた場合には、E面の端には、ほとんどTE10sモードが生じないために影響しない。また、E面に平行、かつ、金属板13に近接して設置した場合には、電界が集中するため、中心周波数の変化量も大きくなるが、誘電体14の寸法(厚さなど)や比誘電率に非常に敏感となってしまうので、寸法精度の観点から再現が難しく、現実的ではない。   Next, the installation place of the dielectric 14 for changing the center frequency will be described. When the dielectric 14 is placed at the end of the E plane, there is almost no TE10s mode at the end of the E plane, so there is no effect. In addition, when installed parallel to the E plane and close to the metal plate 13, the electric field concentrates, so that the amount of change in the center frequency increases, but the dimension (thickness, etc.) Since it becomes very sensitive to the dielectric constant, it is difficult to reproduce from the viewpoint of dimensional accuracy and is not realistic.

以上の点を踏まえると、H面に平行に誘電体14を装荷することは、周波数調整感度の点からも都合が良い。具体的には、図5において、誘電体14の規格化厚さ1.0%当たり約26MHzの変化量となり、現実的な寸法精度を得る。   In view of the above points, loading the dielectric 14 parallel to the H-plane is convenient from the viewpoint of frequency adjustment sensitivity. Specifically, in FIG. 5, the amount of change is about 26 MHz per 1.0% of the normalized thickness of the dielectric 14, and realistic dimensional accuracy is obtained.

次に、本発明にかかる帯域通過フィルタの第2の実施形態として、周波数シフトと温度補償を同時に行う場合について、図4を参照しながら説明する。   Next, as a second embodiment of the bandpass filter according to the present invention, a case where frequency shift and temperature compensation are performed simultaneously will be described with reference to FIG.

この帯域通過フィルタ2において、誘電体15、16は、H面に平行であれば上下左右のいずれの面に装荷しても良い。周波数シフトのために用いる誘電体15と、温度補償のために用いる誘電体16は、同じ構成で用いられるが、その設計と効果は各々分けることができる。   In this band pass filter 2, the dielectrics 15 and 16 may be loaded on any of the upper, lower, left and right surfaces as long as they are parallel to the H surface. The dielectric 15 used for frequency shift and the dielectric 16 used for temperature compensation are used in the same configuration, but their design and effects can be separated.

周波数シフト用の誘電体15は、所定の周波数で設計されたフィルタに対して装荷することで、中心周波数を低い方へ移行させるように機能し、上述のように、その周波数の変化量は、厚さtFreqで調整できる。また、温度補償機能を有する帯域通過フィルタは、予め、厚さtTempの温度補償用の誘電体16が装荷されたフィルタを設計することにより、所定の中心周波数において温度変動を補償するように機能する。温度補償用の誘電体16は、負の比誘電率温度特性を持つものでなければならない。   The frequency shift dielectric 15 functions to shift the center frequency to the lower side by loading a filter designed at a predetermined frequency. As described above, the amount of change in the frequency is as follows. The thickness tFreq can be adjusted. The bandpass filter having a temperature compensation function functions to compensate for temperature fluctuations at a predetermined center frequency by designing a filter loaded with a temperature compensation dielectric 16 having a thickness tTemp in advance. . The temperature compensating dielectric 16 must have a negative relative dielectric constant temperature characteristic.

周波数シフト用の誘電体15であっても、負の誘電率温度特性を有していれば、その時の温度による周波数変動を補償する方向に機能する。   Even if the frequency shift dielectric 15 has a negative dielectric constant temperature characteristic, it functions in a direction to compensate for frequency fluctuations due to temperature at that time.

一例を示すと、アルミニウムは冷却すると収縮するため、導波管の口径は小さくなる。すなわち、帯域通過フィルタを構成している共振器は小さくなり、共振周波数は高い方へと移行する。一方、装荷された誘電体15は、冷却すると比誘電率が大きくなるので、導波管のH面方向の電気長は、アルミニウムと誘電体の効果の足し合わせによって、温度変動を小さく抑えることができる。従って、導波管に用いる材料と、誘電体に用いる材料の組み合わせを選択することで、温度による周波数変動を小さく抑えることができる。誘電体15は、厚さtFreqやH面方向の長さhを調整することで、その効果を調整することができる。   For example, since the aluminum contracts when cooled, the diameter of the waveguide becomes small. That is, the resonator constituting the band pass filter becomes smaller, and the resonance frequency shifts to a higher side. On the other hand, when the loaded dielectric 15 is cooled, the relative permittivity increases, so that the electrical length in the H-plane direction of the waveguide can suppress temperature fluctuations small by adding the effects of aluminum and the dielectric. it can. Therefore, by selecting a combination of a material used for the waveguide and a material used for the dielectric, frequency fluctuation due to temperature can be suppressed to a small level. The effect of the dielectric 15 can be adjusted by adjusting the thickness tFreq and the length h in the H-plane direction.

例えば、図5に示す規格化厚さ30%の誘電体を装荷した場合の温度特性は、図6に示すように、装荷する誘電体の規格化厚さ30%の時の周波数変動と同じとなる。すなわち、規格化厚さ30%の誘電体を装荷することで、820MHzの周波数シフトとともに、約14MHz(38%)の温度補償を実現している。   For example, as shown in FIG. 6, the temperature characteristic when a dielectric with a normalized thickness of 30% shown in FIG. 5 is loaded is the same as the frequency fluctuation when the normalized thickness of the loaded dielectric is 30%. Become. That is, by loading a dielectric with a standardized thickness of 30%, a temperature compensation of about 14 MHz (38%) is realized with a frequency shift of 820 MHz.

本発明にかかる帯域通過フィルタの第1の実施形態を示す分解斜視図である。It is a disassembled perspective view which shows 1st Embodiment of the bandpass filter concerning this invention. 図1の帯域通過フィルタを正面から見た断面図である。It is sectional drawing which looked at the bandpass filter of FIG. 1 from the front. 図1の帯域通過フィルタを側面(上側)から見た断面図である。It is sectional drawing which looked at the bandpass filter of FIG. 1 from the side surface (upper side). 本発明にかかる帯域通過フィルタの第2の実施形態を正面から見た断面図である。It is sectional drawing which looked at 2nd Embodiment of the bandpass filter concerning this invention from the front. 本発明にかかる帯域通過フィルタの第1の実施形態の構造に類似する帯域通過フィルタの誘電体を装荷した場合の通過特性を示す実測グラフである。It is an actual measurement graph which shows the pass characteristic at the time of loading the dielectric material of the band pass filter similar to the structure of 1st Embodiment of the band pass filter concerning this invention. 本発明にかかる帯域通過フィルタの第2の実施形態の構造に類似する帯域通過フィルタの誘電体(εr=2.6)を装荷した場合の温度変化に対する周波数変動特性を示した実測グラフである。It is the measurement graph which showed the frequency fluctuation characteristic with respect to the temperature change at the time of loading the dielectric material ((epsilon) r = 2.6) of the bandpass filter similar to the structure of 2nd Embodiment of the bandpass filter concerning this invention. 従来の帯域通過フィルタの一例を示す概略外観図である。It is a schematic external view which shows an example of the conventional band pass filter.

符号の説明Explanation of symbols

1 帯域通過フィルタ
2 帯域通過フィルタ
3 帯域通過フィルタ
11 導波管
12 導波管
13 金属板
14 誘電体
15 周波数シフト用の誘電体
16 温度補償用の誘電体
17 同軸ケーブル
18 フェライトバー
19 軟鉄製磁気回路
20 コイル
21 電磁石
22 磁極部材
23 磁極部材
24 導波管
25 同軸アンテナ
26 金属製端部プレート
27 同軸ケーブル
28 同軸アンテナ
29 金属製端部プレート
DESCRIPTION OF SYMBOLS 1 Bandpass filter 2 Bandpass filter 3 Bandpass filter 11 Waveguide 12 Waveguide 13 Metal plate 14 Dielectric 15 Frequency shift dielectric 16 Temperature compensation dielectric 17 Coaxial cable 18 Ferrite bar 19 Soft iron magnetism Circuit 20 Coil 21 Electromagnet 22 Magnetic pole member 23 Magnetic pole member 24 Waveguide 25 Coaxial antenna 26 Metal end plate 27 Coaxial cable 28 Coaxial antenna 29 Metal end plate

Claims (6)

導波管のE面に平行に設けた金属板と、
該金属板の上下左右に位置するH面の少なくとも一辺に平行に設けた、比誘電率1.0以上の板状の誘電体とを備えることを特徴とする帯域通過フィルタ。
A metal plate provided parallel to the E-plane of the waveguide;
A band-pass filter comprising: a plate-like dielectric having a relative dielectric constant of 1.0 or more, provided in parallel to at least one side of an H surface located on the top, bottom, left, and right of the metal plate.
前記誘電体は、比誘電率に関して負の温度特性を有することを特徴とする請求項1に記載の帯域通過フィルタ。   The bandpass filter according to claim 1, wherein the dielectric has a negative temperature characteristic with respect to a relative dielectric constant. さらに、前記H面の少なくとも一辺に平行に設けた、比誘電率1.0以上の板状の第2の誘電体を備えることを特徴とする請求項2に記載の帯域通過フィルタ。   The band pass filter according to claim 2, further comprising a plate-like second dielectric material having a relative dielectric constant of 1.0 or more provided in parallel with at least one side of the H-plane. 前記導波管をH面の中央で2分割し、該2分割した導波管によって前記金属板を挟み込むことを特徴とする請求項1、2又は3に記載の帯域通過フィルタ。   4. The bandpass filter according to claim 1, wherein the waveguide is divided into two at the center of the H plane, and the metal plate is sandwiched between the divided waveguides. 5. 前記2分割した導波管の一方のH面の一辺に平行に、前記比誘電率1.0以上の板状の誘電体又は前記比誘電率1.0以上で、かつ、比誘電率に関して負の温度特性を有する板状の誘電体を備えることを特徴とする請求項4に記載の帯域通過フィルタ。   The plate-like dielectric having a relative dielectric constant of 1.0 or more or the relative dielectric constant of 1.0 or more and a negative relative dielectric constant in parallel with one side of one H surface of the two-divided waveguide. The band-pass filter according to claim 4, further comprising a plate-like dielectric having a temperature characteristic of: 前記2分割した導波管の一方のH面の一辺に平行に、前記比誘電率1.0以上で、かつ、比誘電率に関して負の温度特性を有する板状の誘電体を備え、
前記2分割した導波管の他方のH面の一辺に平行に、前記比誘電率1.0以上の板状の誘電体を備えることを特徴とする請求項4に記載の帯域通過フィルタ。
A plate-like dielectric having a relative dielectric constant of 1.0 or more and having a negative temperature characteristic with respect to the relative dielectric constant, parallel to one side of one H surface of the two-divided waveguide,
5. The bandpass filter according to claim 4, further comprising a plate-like dielectric having a relative dielectric constant of 1.0 or more parallel to one side of the other H-plane of the two divided waveguides.
JP2004307672A 2004-10-22 2004-10-22 Band pass filter Expired - Fee Related JP4205654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307672A JP4205654B2 (en) 2004-10-22 2004-10-22 Band pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307672A JP4205654B2 (en) 2004-10-22 2004-10-22 Band pass filter

Publications (2)

Publication Number Publication Date
JP2006121463A true JP2006121463A (en) 2006-05-11
JP4205654B2 JP4205654B2 (en) 2009-01-07

Family

ID=36538922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307672A Expired - Fee Related JP4205654B2 (en) 2004-10-22 2004-10-22 Band pass filter

Country Status (1)

Country Link
JP (1) JP4205654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150815A1 (en) 2009-06-23 2010-12-29 日本電気株式会社 Tunable band-pass filter
JP2012147421A (en) * 2010-12-20 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> Finline type ortho-mode transducer
CN104362416A (en) * 2014-11-28 2015-02-18 电子科技大学 Elliptical hole cut-off metal diaphragm and E-plane waveguide filter formed by same
CN113383463A (en) * 2019-03-14 2021-09-10 株式会社藤仓 Filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023758B2 (en) * 2014-06-30 2016-11-09 日本電産コパル株式会社 Tunable filter
JP6023757B2 (en) * 2014-06-30 2016-11-09 日本電産コパル株式会社 Tunable filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150815A1 (en) 2009-06-23 2010-12-29 日本電気株式会社 Tunable band-pass filter
US8878635B2 (en) 2009-06-23 2014-11-04 Nec Corporation Tunable band-pass filter
JP2012147421A (en) * 2010-12-20 2012-08-02 Nippon Telegr & Teleph Corp <Ntt> Finline type ortho-mode transducer
CN104362416A (en) * 2014-11-28 2015-02-18 电子科技大学 Elliptical hole cut-off metal diaphragm and E-plane waveguide filter formed by same
CN113383463A (en) * 2019-03-14 2021-09-10 株式会社藤仓 Filter

Also Published As

Publication number Publication date
JP4205654B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US6414572B2 (en) Dielectric resonator having a frequency tuning member spirally engaged with the cavity
TW477110B (en) Planar filter an filter system
US7663454B2 (en) Discrete dielectric material cavity resonator and filter having isolated metal contacts
KR101320896B1 (en) The Ceramic Panel Dual mode Resonators using Quasi TM110 mode and RF Dual mode Filter by the same
US8779873B2 (en) Ferrite phase shifter and automatic matching apparatus
JPS6161722B2 (en)
KR101451705B1 (en) Multiple Split Ring Resonator Using Metamaterial having Negative Permeability
US7705694B2 (en) Rotatable elliptical dielectric resonators and circuits with such dielectric resonators
JP4205654B2 (en) Band pass filter
US7046104B2 (en) Controlling a time delay line by adding and removing a fluidic dielectric
EP1079457B1 (en) Dielectric resonance device, dielectric filter, composite dielectric filter device, dielectric duplexer, and communication apparatus
US9287599B1 (en) Miniature tunable filter
CN111293383A (en) Dielectric phase shifter and base station antenna
JP6720742B2 (en) Dielectric waveguide type resonant component and its characteristic adjusting method
JPH06507282A (en) Dielectric resonator structure
JP6998595B2 (en) Orbital angular momentum mode Pseudo-progressive wave resonator and orbital angular momentum antenna device
US9912026B2 (en) Low-loss continuously tunable filter and resonator thereof
JPH09506494A (en) Dielectric resonator
EP3104451B1 (en) Resonator assembly and filter
JP2009267692A (en) Resonator and waveguide filter
KR101468409B1 (en) Dual mode resonator including the disk with notch and filter using the same
US4570135A (en) Delay line
US3445790A (en) Ferrite waveguide device having magnetic return path within the waveguide
JP2006340043A (en) Coaxial filter, duplexer, and manufacturing method of coaxial filter
Botes et al. Spatially decoupled varactor biasing for a tunable staircase filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees