JP2006120255A - Optical disk device and defect processing method of optical disk - Google Patents
Optical disk device and defect processing method of optical disk Download PDFInfo
- Publication number
- JP2006120255A JP2006120255A JP2004307678A JP2004307678A JP2006120255A JP 2006120255 A JP2006120255 A JP 2006120255A JP 2004307678 A JP2004307678 A JP 2004307678A JP 2004307678 A JP2004307678 A JP 2004307678A JP 2006120255 A JP2006120255 A JP 2006120255A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- defect
- period
- optical disc
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Signal Processing For Digital Recording And Reproducing (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
本発明は、光ディスクに記録された信号を再生可能な光ディスク装置及びその光ディスクの欠陥信号を処理する欠陥処理方法に関する。 The present invention relates to an optical disc apparatus capable of reproducing a signal recorded on an optical disc and a defect processing method for processing a defect signal of the optical disc.
近年、ブルーレイディスク(Blu−ray Disk)にデータを記録再生する光ディスク装置が出現している。ブルーレイディスクによれば、波長405nmの青紫色レーザと、開口数(NA)0.85の対物レンズに加えて、光透過保護層厚0.1ミリメートルのディスク構造を採用することにより、直径12cmの書き換え可能な相変化光ディスクの片面に最大27GBのデータを記録することができる。 In recent years, optical disc apparatuses that record and reproduce data on a Blu-ray Disc have appeared. According to the Blu-ray Disc, in addition to a blue-violet laser having a wavelength of 405 nm and an objective lens having a numerical aperture (NA) of 0.85, a disc structure having a light transmission protective layer thickness of 0.1 mm is adopted. Up to 27 GB of data can be recorded on one side of a rewritable phase change optical disk.
DVDでは、680nmの光に於いては、カバー層が厚い事、レーザ波長が680nmが長く、ビーム径が大きい事等で、ディスクについた指紋、傷、ゴミ等に関しては大きなきな弊害にはならない。ところが、ブルーレイディスクでは、DVDに比べて記録密度が約5倍、ディスクの光透過保護層が約1/7であるためディスク表面の欠陥(ディフェクト)の影響を受けやすい。そこで、ECC(Error Correction Code)のエラー訂正能力を高くするために、1ECCブロックのサイズを、ブルーレイディスクの記録再生単位であるRUB(Recording Unit Block)と同じ大きさである64KByteと大きくしてある。しかし、想定外の大きな指紋や大きな擦り傷などの欠陥がディスク面にあると、データが欠如してしまい、これにより1ECC部(1RUB)の1/3にも達し、1RUBのデータが破綻してしまう。 In the case of DVD at 680 nm, the cover layer is thick, the laser wavelength is long, 680 nm, the beam diameter is large, etc., and it does not cause a significant adverse effect on fingerprints, scratches, dust, etc. on the disc. . However, since the recording density of a Blu-ray disc is about 5 times that of a DVD and the light transmission protective layer of the disc is about 1/7, it is easily affected by defects on the surface of the disc. Therefore, in order to increase the error correction capability of ECC (Error Correction Code), the size of one ECC block is increased to 64 KB, which is the same size as the RUB (Recording Unit Block) which is a recording / playback unit of a Blu-ray disc. . However, if there are defects such as unexpected large fingerprints or large scratches on the disk surface, the data will be lost, and this will reach 1/3 of 1 ECC part (1RUB), and 1RUB data will be corrupted. .
また、このようなディスクの欠陥により、欠陥から復帰した後のPLL(Phase Locked Loop)のロックイン時間や、AGC(Automatic Gain Control)の過渡応答による再生RF信号のDC変動等によるエラーが加算されることで、ECCエラーとなる場合がある。 Also, due to such a disk defect, errors due to PLL (Phase Locked Loop) lock-in time after recovering from the defect, DC fluctuation of the reproduction RF signal due to transient response of AGC (Automatic Gain Control), etc. are added. As a result, an ECC error may occur.
このような不具合を発生する原因は、ディスク欠陥によるデータの欠如であり、その対策として、従来よりディスク欠陥に起因する信号の欠落や指紋などの汚れに起因する信号レベルの低下を、AGC回路が持つ時定数やHPF(ハイパスフィルタ)のカットオフ周波数で補償(吸収)する方法を採っていた(例えば特許文献1参照)。
ところで、680nmの光ディスクで2値データを扱う再生系では、2値の比較が再生RF信号のレベルの影響を殆ど受けないという理由からAGC回路が不要とされており、ディスク欠陥に対しては、比較動作に再生信号にQFB(Quantized Feedback)(いわゆるオートスライサ)を掛けることによってゼロクロス点の変動を抑圧していた。 By the way, in a reproduction system that handles binary data on a 680 nm optical disk, the AGC circuit is unnecessary because the binary comparison is hardly affected by the level of the reproduction RF signal. In comparison operation, the reproduction signal is subjected to QFB (Quantized Feedback) (so-called auto slicer) to suppress the fluctuation of the zero cross point.
ところが、ここへ来て、ブルーレイディスクのように更なる高密度記録を達成するために、1−7PP(parity pre−serve/prohibit)RMTR(Repeated Minimum Transition Runlength)を採用し、A/D変換を必要とするものが登場し、再生回路中にAGC回路が再び必要となってきた。これは、A/D変換でのS/N低下を最小限に抑えるためにA/D変換のレンジに対して、RF信号のレベルが小さすぎないようにするためである。このAGC回路は、通常、プリアンプから出力される再生RF信号を入力してゲイン制御を行う。 However, in order to achieve higher density recording like a Blu-ray disc, 1-7PP (parity pre-serve / prohibit) RMTR (Repeated Minimum Transition Runlength) is adopted and A / D conversion is performed. What is needed has appeared, and the AGC circuit has become necessary again in the reproduction circuit. This is to prevent the level of the RF signal from being too small with respect to the range of A / D conversion in order to minimize the S / N reduction in A / D conversion. This AGC circuit normally performs a gain control by inputting a reproduction RF signal output from a preamplifier.
しかしながら、このように再生回路にAGC回路を搭載した場合、ディスク上の未記録部から記録部、記録部から未記録部ヘの変化や、大きな欠陥によるRF信号の低下や欠如に対する、ループの周波数応答が問題となってくる。AGC回路において、RF信号の欠陥を検出した後、その検出信号に基づきAGCホールドをかけることでエラーを低減する方法もあるが、この場合でも特にホールド解除後のループ過渡応答に問題があった。 However, when the AGC circuit is mounted on the reproducing circuit in this way, the frequency of the loop against the change from the unrecorded portion to the recorded portion, the recorded portion to the unrecorded portion on the disk, or the decrease or absence of the RF signal due to a large defect Response becomes a problem. In the AGC circuit, after detecting a defect in the RF signal, there is a method of reducing the error by applying AGC hold based on the detection signal. However, even in this case, there is a problem in the loop transient response especially after the hold release.
また、通常、そのような欠陥の検出は入力RF信号に対して遅れを伴う。欠陥検出の遅れを伴う場合、欠陥の数が少ない場合は欠陥検出後でもエラーの改善が可能であるが、その遅れの分だけエラーが発生するため、欠陥数が多い場合、現状では、リトライ(再度の再生)を数回行ったり、イコライザの特性を変化させて再生したりする方法しかない。 Also, usually such defect detection is delayed with respect to the input RF signal. When there is a delay in defect detection, if the number of defects is small, the error can be improved even after the defect detection. The only way to do this is to repeat the playback a few times, or change the equalizer characteristics.
以上のような事情に鑑み、本発明の目的は、AGC回路の過渡応答を抑制し、再生エラーを低減することができる光ディスク装置及び光ディスクの欠陥処理方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide an optical disc apparatus and an optical disc defect processing method capable of suppressing a transient response of an AGC circuit and reducing a reproduction error.
上記目的を達成するため、本発明に係る光ディスク装置は、所定量のブロック単位で信号が記録された光ディスクからの反射光を用いて、前記信号をRF信号として再生するRF信号再生手段と、前記記録された信号のブロックに対応する前記光ディスク上の位置情報を、該ブロックと対応するように記憶する記憶手段と、前記RF信号の周波数より低い周波数を有する、前記再生されたRF信号に含まれた第1の期間でなる欠陥信号を、前記第1の期間の開始から遅延して該第1の期間より短い第2の期間で検出する検出手段と、前記欠陥信号が含まれるRF信号が記録されたブロックに対応する前記位置情報に基づき当該ブロックに対応する信号を再度再生する場合に、前記検出された欠陥信号を改善するための欠陥処理信号を前記第2の期間より長い第3の期間生成して前記欠陥信号に対する所定の改善処理を前記第3の期間だけ実行するように制御する制御手段とを具備する。 In order to achieve the above object, an optical disc apparatus according to the present invention comprises an RF signal reproducing means for reproducing the signal as an RF signal using reflected light from an optical disc on which a signal is recorded in a predetermined amount of block units, Included in the reproduced RF signal having storage means for storing the position information on the optical disc corresponding to the block of the recorded signal so as to correspond to the block, and having a frequency lower than the frequency of the RF signal. Detection means for detecting a defect signal in the first period in a second period which is delayed from the start of the first period and shorter than the first period, and an RF signal including the defect signal is recorded. When the signal corresponding to the block is reproduced again based on the position information corresponding to the detected block, the defect processing signal for improving the detected defect signal is the second And control means for controlling to perform predetermined improvement processing by the third period for longer than the third period generated by the defect signal period.
本発明では、検出された欠陥信号を改善するための欠陥処理信号を、欠陥の検出期間である第2の期間より長い第3の期間だけ生成するようにしたので、本来の第1の期間でなる欠陥信号によるエラーを極力低減することができる。また、例えばAGC回路に、再生されたRF信号が入力される場合、特に、欠陥検出の前後(第2の期間の前後)で発生するAGCの過渡応答を抑制することができる。 In the present invention, the defect processing signal for improving the detected defect signal is generated only for the third period longer than the second period, which is the defect detection period. The error due to the defect signal can be reduced as much as possible. For example, when the reproduced RF signal is input to the AGC circuit, it is possible to suppress the AGC transient response generated before and after the defect detection (before and after the second period).
本発明の一の形態によれば、前記制御手段は、前記再度再生する場合に、前記第1の期間が開始される前に前記欠陥処理信号を生成して前記改善処理を開始し、かつ、前記第2の期間を含むように前記欠陥処理信号を生成しながら前記改善処理を実行する。欠陥は、第1の期間の開始から遅延して検出されるので、再度再生するときに、その遅延分も含めて早く欠陥処理信号を生成することにより、エラーをさらに低減することができる。 According to an aspect of the present invention, the control unit generates the defect processing signal and starts the improvement process before the first period starts when the reproduction is performed again, and The improvement process is executed while generating the defect processing signal so as to include the second period. Since the defect is detected with a delay from the start of the first period, when the reproduction is performed again, the error can be further reduced by generating the defect processing signal early including the delay.
本発明の一の形態によれば、前記反射光量のゲインを自動制御するAGC回路をさらに具備し、前記制御手段は、前記改善処理として、前記欠陥処理信号を用いて前記AGC回路に前記第3の期間だけAGCホールドをかける。これにより、AGC回路の過渡応答を抑制するとともに、エラーを低減することができる。 According to an aspect of the present invention, the image processing apparatus further includes an AGC circuit that automatically controls the gain of the reflected light amount, and the control unit uses the defect processing signal as the improvement process to the AGC circuit. AGC hold is applied only during the period. Thereby, the transient response of the AGC circuit can be suppressed and errors can be reduced.
本発明の一の形態によれば、前記光ディスクに記録された同期信号からクロックを生成するPLL回路をさらに具備し、前記制御手段は、前記改善処理として、前記欠陥処理信号を用いて前記第3の期間だけPLLホールドをかければよい。この同期信号は、ブロックごとに記録された所定の信号としてもよいし、ブロックに関係なく光ディスクに所定間隔で記録された信号であってもよい。 According to an aspect of the present invention, the signal processing apparatus further includes a PLL circuit that generates a clock from a synchronization signal recorded on the optical disc, and the control unit uses the defect processing signal as the third processing to improve the third processing. It is only necessary to hold the PLL hold for the period of. The synchronization signal may be a predetermined signal recorded for each block, or may be a signal recorded on the optical disc at a predetermined interval regardless of the block.
本発明の一の形態によれば、前記欠陥信号の周波数より高いカットオフ周波数を有するハイパスフィルタと、前記改善処理として、前記欠陥処理信号を生成している間だけ、前記欠陥信号を前記ハイパスフィルタにかけるように制御する手段とを有する。これにより、欠陥信号を減衰させることができ、エラーを低減することができる。 According to an aspect of the present invention, the high-pass filter having a cutoff frequency higher than the frequency of the defect signal, and the defect signal is converted into the high-pass filter only while the defect processing signal is generated as the improvement process. And a means for controlling to apply to. Thereby, a defect signal can be attenuated and an error can be reduced.
本発明に係る光ディスクの欠陥処理方法は、所定量のブロック単位で信号が記録された光ディスクからの反射光を用いて、前記信号をRF信号として再生するステップと、前記記録された信号のブロックに対応する前記光ディスク上の位置情報を、該ブロックと対応するように記憶するステップと、前記RF信号の周波数より低い周波数を有する、前記再生されたRF信号に含まれた第1の期間でなる欠陥信号を、前記第1の期間の開始から遅延して該第1の期間より短い第2の期間で検出するステップと、前記欠陥信号が含まれるRF信号が記録されたブロックに対応する前記位置情報に基づき当該ブロックに対応する信号を再度再生する場合に、前記検出された欠陥信号を改善するための欠陥処理信号を前記第2の期間より長い第3の期間生成して前記欠陥信号に対する所定の改善処理を実行するように制御するステップとを具備する。 The defect processing method for an optical disc according to the present invention includes a step of reproducing the signal as an RF signal using reflected light from an optical disc on which a signal is recorded in a predetermined amount of block unit, and a block of the recorded signal. A step of storing corresponding position information on the optical disc so as to correspond to the block, and a defect having a first period included in the reproduced RF signal having a frequency lower than the frequency of the RF signal Detecting a signal in a second period that is delayed from the start of the first period and shorter than the first period; and the position information corresponding to a block in which an RF signal including the defect signal is recorded. When the signal corresponding to the block is reproduced again based on the above, the defect processing signal for improving the detected defect signal is set to a third period longer than the second period. It generates and includes a step of controlling to execute a predetermined improvement process on the defect signal.
本発明では、検出された欠陥信号を改善するための欠陥処理信号を、欠陥の検出期間である第2の期間より長い第3の期間だけ生成するようにしたので、本来の第1の期間でなる欠陥信号によるエラーを低減することができる。 In the present invention, the defect processing signal for improving the detected defect signal is generated only for the third period longer than the second period, which is the defect detection period. It is possible to reduce errors due to the defect signal.
以上のように、本発明によれば、AGC回路の過渡応答をなくし、再生エラーを低減することができる。 As described above, according to the present invention, the transient response of the AGC circuit can be eliminated and the reproduction error can be reduced.
以下、本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の一実施の形態に係る光ディスク装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of an optical disc apparatus according to an embodiment of the present invention.
この光ディスク装置101は、DVD±R/RW、CD−R/RW、ブルーレイディスクのような光ディスク102を回転駆動するスピンドルモータ103、PD(フォト・ディテクタ)104やレーザ光源105を有する光ピックアップ106、この光ピックアップ106を光ディスク102の半径方向に移動する送りモータ107、装置全体及び信号処理やサーボ制御などの個別制御を行うシステムコントローラ108、光ピックアップ106のPD(フォト・ディテクタ)104から出力される各種の信号に基づいてフォーカスエラー信号、トラッキングエラー信号、RF信号を生成するプリアンプ109、ディスク表面のディフェクトによる再生RF信号のDC変動を抑制するディフェクト信号処理回路110、信号の変調、復調及びECCの付加、ECCに基づくエラー訂正処理を行う信号変復調器&ECC部111、スピンドルモータ103及び送りモータ107を駆動制御するサーボ制御部112、外部コンピュータ130を接続するためのインターフェース113、D/A変換器114、オーディオ・ビジュアル処理部115、オーディオ・ビジュアル信号入出力処理部116、レーザ光源105を駆動するレーザ制御部117を有している。
The
図2は、図1に示すディフェクト信号処理回路110の構成を示すブロック図である。ディフェクト信号処理回路110は、上記プリアンプ109からのRF再生信号をそのまま通過させる信号と、コンデンサC1及び抵抗R1でなるハイパスフィルタを通した信号に分割するサブHPF1、分割された信号がIN1及びIN2にそれぞれ入力され、入力されたいずれか一方の信号を選択するRFスイッチ2、コンデンサC2及び抵抗R2でなり、RF信号に含まれる、ディスクの回転周期により発生する低域成分を除去するメインHPF3、メディアによって信号レベルのばらつき等がある場合に、安定的に復調できるようにするために信号レベルを一定レベルに自動的にコントロールするAGC回路4、符号間干渉を抑え、減衰する高域のレベルを増強するイコライザ5、アナログ信号をデジタル変換するA/D変換器6、光ディスク102に所定間隔で記録された同期信号を基にクロックを生成するPLL回路11を有する。また、ディフェクト信号処理回路110は、RF再生信号からディフェクトを検出するディフェクト検出回路7、ディフェクト検出回路7で検出されたディフェクト検出信号のパルスと、そのディフェクトがあった光ディスク上の記録位置、つまりアドレス情報を記憶するメモリ8、このメモリ8の記憶処理や読み出しタイミング等を制御するメモリコントローラ9、メモリ8からアドレス情報を読み出し、また、ディフェクト信号処理回路110の全体的な統括制御を行うプロセッサ10を有している。
FIG. 2 is a block diagram showing a configuration of the defect
光ディスクからの反射率の極度の低下または極度の上昇でなるディフェクトは、指紋や傷等で発生し、これらのディフェクトは、1RUBの一部分であるものがほとんどである。したがって、メモリ8が記憶する上記アドレス情報とは、ディフェクトがあったRUBのアドレス情報及びそのRUBごとに1つずつ記録されている同期信号を基準としたディフェクトまでの時間情報等であってもよい。一般的に、ブルーレイの光ディスク102には、1RUBごとに1つの同期信号及び3つのアドレス情報が記録されている。
Defects caused by extremely low or extremely high reflectivity from the optical disk are caused by fingerprints or scratches, and these defects are mostly a part of one RUB. Therefore, the address information stored in the memory 8 may be address information of a defective RUB and time information until the defect with reference to a synchronization signal recorded for each RUB. . In general, on a Blu-ray
サブHPF1のカットオフ周波数fcsは、メインHPF3のカットオフ周波数fcmより高く設定されている。サブHPF1のカットオフ周波数fcsは、ブルーレイのRF信号である2T〜8Tを十分通過する周波数に設定される。例えばfcsは1MHzに設定される。ブルーレイの2倍速再生のシステムが採用される場合、fcsは1〜3MHzに設定される。一方、メインHPF3のカットオフ周波数fcmは、データエラーを起こさない程度の帯域とされ、例えば33〜66KHzに設定される。
The cut-off frequency fcs of the
プロセッサ10は、ディフェクト検出回路7で検出されたディフェクト信号に基づいて、以下のような、ディフェクト処理のためのディフェクト処理信号21、22及び23を生成し、RFスイッチ2、AGC回路4及びPLL回路11にそれぞれ出力する。具体的には、ディフェクト処理信号21、22及び23は、それぞれ、RFスイッチ2の切り替えるためのスイッチパルス信号21、AGC回路4のゲインをホールドするAGCホールド信号22、及びPLL回路11をホールドするPLLホールド信号23である。PLLホールドは、例えば図示しないVCO(電圧制御発振器)に入力される電圧を、PLLホールド信号23が出力される直前の状態に保持することにより実現される。
Based on the defect signal detected by the
以上のように構成された光ディスク装置101の大まかな再生動作について説明する。
A rough reproduction operation of the
プリアンプ109で再生されたRF信号の出力は、サブHPF1に入力される。適正なRF再生信号が得られている場合には、RFスイッチ2は、IN1を選択してHPF1の出力を入力している。つまり、そのままのRF信号を入力する。そして、メインHPF3により、不要な低域成分やDC成分が除去され、AGC回路4にRF信号が供給される。AGC回路4ではRF信号が一定のゲインに調整され、イコライザ5において、減衰する高域のレベルが増強され、A/D変換器6においてデジタル化されてデータが取り出される。PLL回路11では、A/D変換器6の出力からクロック信号が生成され、信号変復調器&ECC部111においてそのクロック信号を基にデータの復調、エラー訂正が行われる。データの復調及びエラー訂正が行われると、データがインターフェース113を介して外部コンピュータに供給されたり、D/A変換器114でアナログ信号に変換されてオーディオ・ビジュアル処理部115で映像や音声が再生されたりする。
The output of the RF signal reproduced by the
図3は、従来において、AGCホールド後のAGC回路の過渡応答を説明するための波形図である。図3(a)に示すように、光ディスク上の大きな傷や指紋等があると、光ディスクからの反射率が大きく低下するような信号が生じる。つまりRF再生信号に大きな落ち込むディフェクト信号が生じる。なお、図3中、斜線で示す部分がRFの高周波信号である。図3(b)に示すように、このディフェクト信号がLPF(ローパスフィルタ)に通されると、周波数の高域が取り除かれる。ディフェクト信号のレベルが図3(b)の閾値レベルTHより小さくなったときに、図3(c)に示すディフェクト検出信号Dが生成される。ディフェクト検出信号Dが生成されると、このディフェクト検出信号Dに基づき、図3(d)に示すようにAまたはBの電位でAGCホールドがかけられる。しかしながら、閾値THの設定により、ディフェクト信号の検出信号Dが遅延してON状態となり、さらに図3(a)に示すディフェクト信号の終了前に検出信号DがOFF状態となっている。このため、図3(d)のAGCホールドが解除された後に、図3(e)(AGC回路の出力を示す。)のCの期間でAGC回路に過渡応答が発生してしまう。また、上述したように、AGC入力にDC成分が含まれていると、過渡応答が生じる。なお、通常、AGC回路の入力前には、ディスクの回転周期で生じる反射率変動による低域成分やDC成分を除去するHPFが設けられているため、AGC出力信号は図3(e)で示すような微分形となる。 FIG. 3 is a waveform diagram for explaining the transient response of the AGC circuit after AGC hold in the prior art. As shown in FIG. 3A, if there are large scratches, fingerprints, or the like on the optical disc, a signal is generated that greatly reduces the reflectivity from the optical disc. That is, a defect signal that is greatly reduced in the RF reproduction signal is generated. In FIG. 3, the hatched portion is the RF high frequency signal. As shown in FIG. 3B, when this defect signal is passed through an LPF (low pass filter), the high frequency band is removed. When the level of the defect signal becomes lower than the threshold level TH in FIG. 3B, the defect detection signal D shown in FIG. 3C is generated. When the defect detection signal D is generated, an AGC hold is applied based on the defect detection signal D at the potential of A or B as shown in FIG. However, the detection signal D of the defect signal is delayed and turned on by setting the threshold value TH, and the detection signal D is turned off before the completion of the defect signal shown in FIG. For this reason, after the AGC hold in FIG. 3D is released, a transient response occurs in the AGC circuit during the period C in FIG. 3E (showing the output of the AGC circuit). Further, as described above, when a DC component is included in the AGC input, a transient response occurs. Usually, before the input of the AGC circuit, an HPF that removes a low-frequency component and a DC component due to the reflectance fluctuation that occurs in the rotation period of the disk is provided, so the AGC output signal is shown in FIG. The differential form is as follows.
ディフェクト信号を高精度に検出するために閾値THのレベルを高く設定することも考えられるが、閾値THを高く設定してしまうと、図3(a)のように大きなディフェクトではなく、ECC部でエラー訂正可能な範囲の小さなディフェクトでもディフェクト検出信号として検出してしまうため処理が無駄になる。本実施の形態に係る光ディスク装置101は、上記したようなAGCの過渡応答をなくして、極力エラーを低減しようとするものである。
Although it is conceivable to set the threshold value TH high in order to detect the defect signal with high accuracy, if the threshold value TH is set high, it is not a large defect as shown in FIG. Since even a defect having a small error correction range is detected as a defect detection signal, processing is wasted. The
図4に、実際のディフェクトの波形を示す。各グラフの符号31がAGC回路の出力波形、符号32がディフェクト信号(プリアンプの出力)、符号33がディフェクト検出信号(図4(d)、(e)では、図3(b)で示したLPFの出力)である。図に示すように、AGCの出力波形31は、微分された形となっている。図4(a)、(b)及び(c)で示された反射率が低下するディフェクトとは逆に、図4(d)、(e)で示されたディフェクトは反射率が増加するスクラッチ傷である。このようなスクラッチ傷は、比較的幅が狭い。つまり、比較的短時間のディフェクトである。また、図4(c)、(d)及び(e)で示されるディフェクトは、図4(a)及び(b)のディフェクトと比べ、深さが浅く、RF信号の低下が小さいので、サグの発生が大きく見えるが、図4(a)〜(e)はすべて大きなエラーにつながるディフェクトである。
FIG. 4 shows an actual defect waveform. In each graph,
また、図8及び図9に、それぞれHPFの低周波応答の波形を示す。これらは、通常AGC回路に入力されるHPFの出力波形であり、図8はステップ波、図9はサイン波で示している。符号34a及び44aは20μs幅のパルス入力であり、符号35a及び45aはそれらに対するHPF応答である。符号34b及び44bは、1μs幅のパルス入力であり、符号35b及び45bはそれらのHPF応答である。これから判るように、低周波の信号がHPFに通されると、信号の後にHPFの時定数による減衰特性を起こす。これが、AGC回路で過渡応答を引き起こす原因となる。
8 and 9 show waveforms of the HPF low frequency response, respectively. These are the output waveforms of the HPF normally input to the AGC circuit. FIG. 8 shows a step wave and FIG. 9 shows a sine wave.
図5は、本実施の形態に係るディフェクト処理の信号波形を示す図である。図5(a)に示すように、例えばHS時点で始まり、HE時点で終了する20μs程度のディフェクト信号があった場合、図3(c)で示した場合と同様に閾値を設け、ディフェクト検出回路7は、図5(b)に示すように20μsより短い期間のディフェクト検出信号Dを生成してプロセッサ10に出力する。プロセッサ10は、このディフェクトの検出期間に対応する光ディスク102上のアドレス情報を、そのディフェクト検出期間の情報と対応付けてメモリ8に記憶させる。この場合、プロセッサ10は、再生クロック(例えば66MHz)を10MHz程度に分周してメモリ8に書き込めばよい。ディフェクトは数μsからであり、0.1μs程度の精度であれば十分だからである。
FIG. 5 is a diagram showing signal waveforms of the defect processing according to the present embodiment. As shown in FIG. 5A, for example, when there is a defect signal of about 20 μs starting at the HS time and ending at the HE time, a threshold value is provided as in the case shown in FIG. 7 generates a defect detection signal D having a period shorter than 20 μs and outputs it to the
ディフェクト検出信号Dが検出されると、通常再生時においては、プロセッサ10は、図5(c)に示すように、ディフェクト検出信号Dの期間よりxだけ長いディフェクト処理信号Fを生成する。このディフェクト処理信号F(あるいは、後述するディフェクト処理信号G)は、上述したように、ディフェクトによる影響を改善するための信号であり、RFスイッチ2、AGC回路4及びPLL回路11にそれぞれ出力する信号である。このxは、図5(a)に示すディフェクト信号の終了時HEを含むように、つまり、ディフェクト処理信号Fの終了時FEがHEと同じ、あるいはHEより後になるように設定される。このxは、例えば4〜8μsとすればよい。これにより、ディフェクト処理期間が長くなり、例えば、このディフェクト処理信号Fの期間だけAGCホールドを行えば、AGCホールド解除後のAGC過渡応答等を抑えることができる。これにより、エラーを低減することができる。AGCホールドに限らず、PLLホールドや、後述するようにRFスイッチ2によるスイッチング処理も合わせて行うようにしてもよい。なお、PLLホールドは、20μs以下のディフェクト信号に対しては行わない。
When the defect detection signal D is detected, during normal playback, the
一方、図5(c)で示すディフェクト処理信号Fが生成された場合でも、ECCが破綻した場合、プロセッサ10は再度の再生(リトライ)を行うように制御する。具体的には、プロセッサ10は、メモリ8に記憶された、ディフェクトが生じたRUBのディスク上のアドレス情報に基づき、例えばそのディフェクト部分が含まれるRUBの1ブロックを再生するための図示しないリード信号を生成し、さらに、メモリ8に記憶されたディフェクト検出の信号パルスRをメモリ8から読み出す。この場合、同期信号を基準としたディフェクト開始(ディフェクト検出信号Dの立上がり)までの時間情報等に基づき、そのディフェクト検出の信号パルスRの読み出されるタイミングが次のように設定される。つまり、信号パルスRの立上がりRSがディフェクトの信号の開始時HSより前となるように設定される。さらに、プロセッサ10は、図5(e)に示すように、元のディフェクト検出信号Dよりyだけ早めたディフェクト処理信号Gを生成する。このyは、ディフェクト処理信号Gのパルスが、HS〜HEを完全に包含するように設定される。図5では、FEとGEとが同じタイミングになっているが、これは異なるタイミングであってもよい。また、yは、例えば4〜8μsとすればよい。これにより、例えば約6μs分のエラー改善区間を増やすことができ、ECCの破綻を抑制することができる。
On the other hand, even when the defect processing signal F shown in FIG. 5C is generated, when the ECC fails, the
また、ブルーレイディスクのトラックピッチpは、図6に示すように、0.32μmと狭く、数百μmのディフェクト15、16、17及び18が有った場合、隣接するトラック同士では、ディスク回転周期においてほぼ同じタイミングで、ほぼ同じ影響を受ける事となる。つまり、ディフェクト15等に対してトラックピッチpが十分小さければ、ディフェクトの形に関わらず、トラックごとのディフェクト形状はほぼ相似と言える。従って、CLV(Constant Linear Velocity)の連続再生では、ディスク1回転前のディフェクト信号を使用する事が可能となるので、通常再生(アドレスが連続変化する再生)でもエラーの低減をすることができる。つまり、一度ディフェクトの信号を検出し、そのアドレスを記憶していれば、ディスクの回転周期でほぼ同じ、あるいは相似形のディフェクトが検出されることが予測可能となる。このことを利用することにより、大きなディフェクトがあってもリトライを要せず、連続再生が可能となり、無駄なリトライ動作を減らすことができる。この場合、具体的には、各トラックごとのディフェクトは相似形であることが多いので、図5(e)に比べて、図7(e)に示すようにエラー改善区間が6±Xμs(Xはディフェクトの予測形状に応じた値である。)となる。
Further, as shown in FIG. 6, the track pitch p of the Blu-ray disc is as narrow as 0.32 μm, and when there are
次に、RFスイッチ2に関わる部分の動作について説明する。 Next, the operation of the part related to the RF switch 2 will be described.
プリアンプ109の出力は、図2に示すサブHPF1に入力され、上述したように、適正なRF再生信号が得られている場合には、RFスイッチ2は、IN1を選択してHPF1の出力を入力している。つまり、そのままのRF信号を入力する。
The output of the
一方、図5(a)に示すようなディフェクト信号が合った場合、ディフェクト検出回路7は、図5(b)に示すような検出信号をプロセッサ10に出力する。プロセッサ10は、この検出信号に基づいて、図5(e)に示すように、リトライ時のディフェクト処理信号G、例えばスイッチパルスを生成してRFスイッチ2に出力する。そうすると、RFスイッチ2は、IN2にディフェクト信号を入力する。つまり、ディフェクト信号をサブHPF1のハイパス部を通すようにする。これにより、ディフェクト信号を減衰させることができ、エラーを低減することができる。
On the other hand, when the defect signal as shown in FIG. 5A matches, the
また、プロセッサ10は、スイッチパルス信号21だけでなく、これに加え、AGCホールド信号22及びPLLホールド信号23のうち少なくとも一方を出力するようにしてもよい。
Further, the
図10及び図11は、RFスイッチ2によるDC成分除去の様子を示す波形図である。符号36はディフェクト低周波信号、符号37はRFスイッチ2のIN1に信号が入力された場合のメインHPF3の出力、符号38はサブHPF1のハイパスそのものの出力(IN2に入力される信号)をそれぞれ示している。また、符号39は、符号41のスイッチパルスがディフェクト信号から遅延してRFスイッチ2に入力され、これによりRFスイッチ2でIN2が選択された場合の当該RFスイッチ2の出力、符号40はそのときのメインHPF3の出力をそれぞれ示している。動作をわかりやすくするため、このようにスイッチパルス41の入力を、ディフェクト信号36に対して遅延させた。実際の回路では、図3(c)や図5(b)等で示したように、ディフェクト検出はディフェクト信号に対して遅れるので、より現実に近く、わかりやすい。また、図11で示すスイッチパルス41は、図10のそれに比べ遅くON状態になるように、かつ、ディフェクト信号36の終了時より早くOFF状態になるようにした。
10 and 11 are waveform diagrams showing how the DC component is removed by the RF switch 2.
図10及び図11から、IN2にスイッチングされることにより、メインHPF3による影響がなくなっていることが判る。このように、ディフェクト信号があったときは、メインHPF3の入力前、つまり、AGC回路4の入力前に、メインHPF3の時定数より小さい時定数のサブHPF1に切り替えられることで、AGC回路4の過渡応答を抑制し、エラーを低減することができる。
From FIGS. 10 and 11, it can be seen that the effect of the
図12は、本実施の形態のディフェクト処理信号Gでディフェクト処理したときの効果を示すグラフである。横軸が測定回数、縦軸がLDC(Long Distance Code)のエラー個数を示している。LDCは、ブルーレイディスクで採用されている誤り訂正の方式であり、リードソロモン符号のパリティを長くして訂正能力を向上させたものである。図中、符号25は、ディフェクト処理として、図4(b)に示すタイミングでRFスイッチ2のスイッチング動作及びAGCホールド動作を行った場合、符号26は、本実施の形態を示し、ディフェクト処理として、図4(e)に示すタイミングでRFスイッチ2のスイッチング動作及びAGCホールド動作を行った場合を示している。符号27は、図4(b)に示すタイミングでAGCホールドを行った場合、符号28はAGCホールド及びスイッチング両方ともない場合を示している。
FIG. 12 is a graph showing the effect when the defect processing is performed with the defect processing signal G of the present embodiment. The horizontal axis indicates the number of measurements, and the vertical axis indicates the number of errors in LDC (Long Distance Code). LDC is an error correction method used in Blu-ray Discs, and improves the correction capability by increasing the parity of Reed-Solomon codes. In the figure,
このグラフから判るように、符号25で示す場合と比較して、LDCエラーが平均80個改善されている。事前に本発明者が予測した最大60個より多くなったのは、測定精度が悪いためと考えられるが、ほぼ一致と言え、改善効果が確認された。本実施の形態では、すべてのディフェクトに効果があるものはなく、図4のように減衰及び増加のなだらかなディフェクトに効果がある。言い換えれば、RF信号がなければ改善できないことが判る。
As can be seen from this graph, an average of 80 LDC errors are improved compared to the case indicated by
1 サブHPF
2 RFスイッチ
3 メインHPF
4 AGC回路
7 ディフェクト検出回路
8 メモリ
10 プロセッサ
11 PLL回路
101 光ディスク装置
102 光ディスク
110 ディフェクト信号処理回路
1 Sub HPF
2
4
Claims (6)
前記記録された信号のブロックに対応する前記光ディスク上の位置情報を、該ブロックと対応するように記憶する記憶手段と、
前記RF信号の周波数より低い周波数を有する、前記再生されたRF信号に含まれた第1の期間でなる欠陥信号を、前記第1の期間の開始から遅延して該第1の期間より短い第2の期間で検出する検出手段と、
前記欠陥信号が含まれるRF信号が記録されたブロックに対応する前記位置情報に基づき当該ブロックに対応する信号を再度再生する場合に、前記検出された欠陥信号を改善するための欠陥処理信号を前記第2の期間より長い第3の期間生成して前記欠陥信号に対する所定の改善処理を前記第3の期間だけ実行するように制御する制御手段と
を具備することを特徴とする光ディスク装置。 RF signal reproducing means for reproducing the signal as an RF signal by using reflected light from an optical disk on which a signal is recorded in a predetermined amount of block unit;
Storage means for storing position information on the optical disc corresponding to the block of the recorded signal so as to correspond to the block;
A defect signal having a first period included in the reproduced RF signal having a frequency lower than the frequency of the RF signal is delayed from the start of the first period and is shorter than the first period. Detecting means for detecting in a period of two;
The defect processing signal for improving the detected defect signal when the signal corresponding to the block is reproduced again based on the position information corresponding to the block in which the RF signal including the defect signal is recorded. An optical disc apparatus comprising: control means for generating a third period longer than the second period and controlling to execute a predetermined improvement process for the defect signal only for the third period.
前記制御手段は、前記再度再生する場合に、前記第1の期間が開始される前に前記欠陥処理信号を生成して前記改善処理を開始し、かつ、前記第2の期間を含むように前記欠陥処理信号を生成しながら前記改善処理を実行することを特徴とする光ディスク装置。 The optical disc apparatus according to claim 1,
When the reproduction is performed again, the control means generates the defect processing signal before the first period is started, starts the improvement process, and includes the second period. An optical disc apparatus that executes the improvement process while generating a defect processing signal.
前記反射光量のゲインを自動制御するAGC回路をさらに具備し、
前記制御手段は、前記改善処理として、前記欠陥処理信号を用いて前記AGC回路に前記第3の期間だけAGCホールドをかけることを特徴とする光ディスク装置。 The optical disc apparatus according to claim 1,
An AGC circuit that automatically controls the gain of the reflected light amount;
The optical disc apparatus characterized in that the control means applies an AGC hold to the AGC circuit only for the third period using the defect processing signal as the improvement process.
前記光ディスクに記録された同期信号からクロックを生成するPLL回路をさらに具備し、
前記制御手段は、前記改善処理として、前記欠陥処理信号を用いて前記第3の期間だけPLLホールドをかけることを特徴とする光ディスク装置。 The optical disc apparatus according to claim 1,
A PLL circuit for generating a clock from the synchronization signal recorded on the optical disc;
The optical disc apparatus characterized in that the control means applies a PLL hold only for the third period using the defect processing signal as the improvement processing.
前記制御手段は、
前記欠陥信号の周波数より高いカットオフ周波数を有するハイパスフィルタと、
前記改善処理として、前記欠陥処理信号を生成している間だけ、前記欠陥信号を前記ハイパスフィルタにかけるように制御する手段と
を有することを特徴とする光ディスク装置。 The optical disc apparatus according to claim 1,
The control means includes
A high-pass filter having a cutoff frequency higher than the frequency of the defect signal;
An optical disc apparatus comprising: means for controlling the defect signal to be applied to the high-pass filter only while the defect processing signal is generated as the improvement process.
前記記録された信号のブロックに対応する前記光ディスク上の位置情報を、該ブロックと対応するように記憶するステップと、
前記RF信号の周波数より低い周波数を有する、前記再生されたRF信号に含まれた第1の期間でなる欠陥信号を、前記第1の期間の開始から遅延して該第1の期間より短い第2の期間で検出するステップと、
前記欠陥信号が含まれるRF信号が記録されたブロックに対応する前記位置情報に基づき当該ブロックに対応する信号を再度再生する場合に、前記検出された欠陥信号を改善するための欠陥処理信号を前記第2の期間より長い第3の期間生成して前記欠陥信号に対する所定の改善処理を実行するように制御するステップと
を具備することを特徴とする光ディスクの欠陥処理方法。 Replaying the signal as an RF signal using reflected light from an optical disc on which a signal is recorded in units of a predetermined amount of blocks;
Storing position information on the optical disc corresponding to the block of the recorded signal so as to correspond to the block;
A defect signal having a first period included in the reproduced RF signal having a frequency lower than the frequency of the RF signal is delayed from the start of the first period and is shorter than the first period. Detecting in a period of two;
The defect processing signal for improving the detected defect signal when the signal corresponding to the block is reproduced again based on the position information corresponding to the block in which the RF signal including the defect signal is recorded. An optical disc defect processing method comprising: generating a third period longer than the second period and performing a predetermined improvement process on the defect signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307678A JP2006120255A (en) | 2004-10-22 | 2004-10-22 | Optical disk device and defect processing method of optical disk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307678A JP2006120255A (en) | 2004-10-22 | 2004-10-22 | Optical disk device and defect processing method of optical disk |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006120255A true JP2006120255A (en) | 2006-05-11 |
Family
ID=36537987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004307678A Pending JP2006120255A (en) | 2004-10-22 | 2004-10-22 | Optical disk device and defect processing method of optical disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006120255A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047164A (en) * | 2006-08-10 | 2008-02-28 | Nec Electronics Corp | Defect detecting circuit and controller |
US7907484B2 (en) | 2007-09-14 | 2011-03-15 | Sony Corporation | Reproducing apparatus and reproduction method |
-
2004
- 2004-10-22 JP JP2004307678A patent/JP2006120255A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008047164A (en) * | 2006-08-10 | 2008-02-28 | Nec Electronics Corp | Defect detecting circuit and controller |
US7907484B2 (en) | 2007-09-14 | 2011-03-15 | Sony Corporation | Reproducing apparatus and reproduction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007280571A (en) | Optical disk device and reproduction signal processing method | |
US6097678A (en) | Information recording apparatus | |
JP2004227668A (en) | Recording method, program and recording medium, and information recorder | |
JP2009026371A (en) | Method and device for detecting optical disk state | |
JP2006120255A (en) | Optical disk device and defect processing method of optical disk | |
JP2006120256A (en) | Optical disk device and defect processing method of optical disk | |
JP3797303B2 (en) | Disc player | |
JP2006127646A (en) | Optical disk drive and defect processing method for optical disk drive | |
JP2009070510A (en) | Reproduction device and reproduction method | |
JP2004071045A (en) | Device and method for defect detection | |
JP2008130126A (en) | Information recording/reproducing device and recording learning method | |
JP5029411B2 (en) | Playback device, playback method, data detection processing circuit | |
JP2013218759A (en) | Optical disk device and optical disk record presence determination method | |
JP4192667B2 (en) | Binarization circuit, binarization method, optical disc apparatus | |
KR100727877B1 (en) | A method to retry record of a optical record/playback apparatus | |
JP2002288848A (en) | Optical disk device and adjusting method for the same | |
JP3300807B2 (en) | Optical information recording device and optical information recording method | |
JP4218409B2 (en) | Optical disc apparatus and seek speed control method | |
JP2000298835A (en) | Optical disk drive | |
JP2004079001A (en) | Device and method to detect linking deviation of optical recording medium | |
JP2001202680A (en) | Optical disk discriminating method and optical disk device | |
JP2008234831A (en) | Rewritable recording medium | |
JP2006155740A (en) | Optical disk apparatus and defect processing method for optical disk | |
JP4626691B2 (en) | Optical disc apparatus and optical disc discrimination method | |
JP4599229B2 (en) | Equalizer characteristic setting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060424 |