JP2006119669A - Display apparatus and method for manufacturing the same - Google Patents

Display apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP2006119669A
JP2006119669A JP2006003551A JP2006003551A JP2006119669A JP 2006119669 A JP2006119669 A JP 2006119669A JP 2006003551 A JP2006003551 A JP 2006003551A JP 2006003551 A JP2006003551 A JP 2006003551A JP 2006119669 A JP2006119669 A JP 2006119669A
Authority
JP
Japan
Prior art keywords
electrode
film
end portion
bump
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003551A
Other languages
Japanese (ja)
Other versions
JP2006119669A5 (en
JP5041703B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Hideomi Suzawa
英臣 須沢
Ichiro Uehara
一郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006003551A priority Critical patent/JP5041703B2/en
Publication of JP2006119669A publication Critical patent/JP2006119669A/en
Publication of JP2006119669A5 publication Critical patent/JP2006119669A5/ja
Application granted granted Critical
Publication of JP5041703B2 publication Critical patent/JP5041703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a display apparatus and a method for manufacturing the apparatus by which uniformity in the film thickness of an EL (electroluminescence) film and a cathode formed on a curved side face of a bump on an electrode can be improved, occurrence of discontinuity in the EL film and the cathode can be prevented, the yield of an EL element can be increased and the display quality can be improved. <P>SOLUTION: The EL element has an insulating film 101 formed on an anode 100 and further an EL film 102 and a cathode 103 formed on the insulating film 101, wherein each of a bottom end portion and a top end portion of the insulating film 101 is formed in a curved surface. The taper angle in the center of the insulating film 101 is controlled within a range of 35° to 70°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エレクトロルミネッセンス(Electro luminescence:以下ELと記す)が得られる化合物からなる薄膜(以下、「EL膜」と記載)を電極間に挟んだ素子(以下、「EL素子」と記載)を含む表示装置及びその作製方法に関する。   The present invention relates to an element (hereinafter referred to as “EL element”) in which a thin film (hereinafter referred to as “EL film”) made of a compound from which electroluminescence (hereinafter referred to as EL) is obtained is sandwiched between electrodes. The present invention relates to a display device including the same and a manufacturing method thereof.

ELには、三重項励起状態から基底状態へと遷移するときに発光されるりん光
(phosphporescence)や、一重項励起状態から基底状態へと遷移するときに発光される蛍光(fluorescence)がある。
EL includes phosphorescence emitted when transitioning from a triplet excited state to a ground state, and fluorescence emitted when transitioning from a singlet excited state to a ground state.

EL膜は無機材料又は有機材料を用いることができる。有機EL膜とはEL膜として有機材料を用いたものである。有機EL素子とは、有機EL膜を電極間に挟んだEL素子である。   An inorganic material or an organic material can be used for the EL film. The organic EL film uses an organic material as the EL film. An organic EL element is an EL element in which an organic EL film is sandwiched between electrodes.

本明細書における薄膜トランジスタ(TFT)素子とは少なくとも3つの電極を有する半導体素子をいう。これらの電極とはゲート電極、ソース電極、ドレイン電極であり、ソース電極、ゲート電極は配線としての機能を兼ねることもある。   A thin film transistor (TFT) element in this specification refers to a semiconductor element having at least three electrodes. These electrodes are a gate electrode, a source electrode, and a drain electrode, and the source electrode and the gate electrode may also function as a wiring.

有機EL膜を用いた表示装置は、従来のCRTと比べ軽量化や薄型化が可能であり、様々な用途への応用が進められている。携帯電話や個人向け携帯型情報端末(Personal Digital Assistant : PDA)などは、インターネットに接続することが可能となり、映像表示で示される情報量が飛躍的に増え、表示装置にはカラー化や高精細化の要求が高まっている。   A display device using an organic EL film can be reduced in weight and thickness as compared with a conventional CRT, and is being applied to various applications. Mobile phones and personal digital assistants (PDAs) can be connected to the Internet, and the amount of information displayed on the video display increases dramatically. There is a growing demand for aging.

表示装置を高精細化する手段として、薄膜トランジスタ(TFT)のような能動素子により、EL膜に電圧を印加する手段が採用されている。   A means for applying a voltage to the EL film by an active element such as a thin film transistor (TFT) is employed as a means for increasing the definition of the display device.

また、EL素子で画素部を形成した表示装置は自発光型であり、液晶表示装置のようにバックライトなどの光源を必要としないので、軽量化や薄型化を実現する手段として有望視されている。   In addition, a display device in which a pixel portion is formed of an EL element is a self-luminous type and does not require a light source such as a backlight unlike a liquid crystal display device. Therefore, the display device is promising as a means for realizing weight reduction and thinning. Yes.

EL素子は画素毎に形成された陽極上にEL膜が形成され、EL膜上に共通電極として陰極が形成される構成が一般的である。しかし、抵抗を小さくするために、膜厚を200nm程度と厚くした陽極上に、膜厚が30nm〜150nmと薄いEL膜が形成されるため、陽極の側面において、EL膜の断線が発生していた。EL膜の断線が起こると、その断線した部分で陽極と陰極が短絡してしまいEL膜が発光せず、黒点の欠陥となる。   An EL element generally has a configuration in which an EL film is formed on an anode formed for each pixel, and a cathode is formed as a common electrode on the EL film. However, in order to reduce the resistance, a thin EL film having a thickness of 30 nm to 150 nm is formed on the anode having a thickness of about 200 nm, so that the EL film is broken on the side surface of the anode. It was. When the EL film is disconnected, the anode and the cathode are short-circuited at the disconnected portion, and the EL film does not emit light, resulting in a black spot defect.

そこで、図18のような断面構造が提案されている。図18は従来のEL素子の断面である。EL膜1002の断線を防ぐために、陽極1000の端部を絶縁膜1001で覆うことにより、陽極の端部における、陽極と陰極1003の短絡を防止することを目的としている。陽極の端部に設けられた絶縁膜は一般にバンプと呼ばれている。   Therefore, a cross-sectional structure as shown in FIG. 18 has been proposed. FIG. 18 is a cross section of a conventional EL element. In order to prevent disconnection of the EL film 1002, the end of the anode 1000 is covered with an insulating film 1001 to prevent a short circuit between the anode and the cathode 1003 at the end of the anode. The insulating film provided at the end of the anode is generally called a bump.

しかし、図18の断面構造においても、実工程においては、いくつかの問題が見られる。図18のように、陽極1000上の絶縁膜1001の側面が直線状であるときは、陽極の上面と絶縁膜の側面の接するところ1004で、EL膜の断線が起こりやすい。つまり、EL膜の成膜面の傾きが急激に変化する場所で、EL膜1002が蒸着されず間隙ができる。この間隙により陽極と陰極が短絡してしまう。また、EL膜が断線しなかったとしても、陽極の上面と絶縁膜の側面の接するところ1004で、EL膜が薄くなると、EL膜が薄くなった部分に電界が集中し、EL膜が薄くなったところでしか発光が起こらない。   However, even in the cross-sectional structure of FIG. 18, there are some problems in the actual process. As shown in FIG. 18, when the side surface of the insulating film 1001 on the anode 1000 is linear, the EL film is likely to break at the point 1004 where the upper surface of the anode and the side surface of the insulating film are in contact with each other. That is, the EL film 1002 is not deposited and a gap is formed at a place where the inclination of the deposition surface of the EL film changes abruptly. This gap causes a short circuit between the anode and the cathode. Even if the EL film is not disconnected, when the EL film is thinned at 1004 where the upper surface of the anode and the side surface of the insulating film are in contact with each other, the electric field concentrates on the thinned portion of the EL film, and the EL film becomes thin. Luminescence occurs only in places.

さらに、絶縁膜上の陰極が絶縁膜を貫通するコンタクトホールを介して絶縁膜下の配線と導通するときは、絶縁膜の側面で陰極が断線すると、陰極に電位が付与されず、表示が行われない場合が生じる。   In addition, when the cathode on the insulating film is electrically connected to the wiring under the insulating film through a contact hole that penetrates the insulating film, if the cathode is disconnected on the side surface of the insulating film, no potential is applied to the cathode and display is performed. There is a case where it is not broken.

また、絶縁膜1001の側面と絶縁膜の上面の接線近傍1005において、EL膜及び陰極の断線が発生しやすい。通常、絶縁膜(バンプ)は隣接する画素の間隙を覆って、ストライプ状に形成されている。このとき、バンプが画素の周囲に形成されるときは、陰極の断線が発生し、その断線が連続的につながって閉曲線状になると、その閉曲線の内側の陰極は電極としての機能を持たず、EL膜に電圧が印加されない。つまり点欠陥となる。   Further, disconnection of the EL film and the cathode is likely to occur near the tangent line 1005 between the side surface of the insulating film 1001 and the upper surface of the insulating film. Usually, the insulating film (bump) is formed in a stripe shape so as to cover the gap between adjacent pixels. At this time, when the bump is formed around the pixel, a disconnection of the cathode occurs, and when the disconnection is continuously connected to form a closed curve, the cathode inside the closed curve does not have a function as an electrode, No voltage is applied to the EL film. That is, it becomes a point defect.

EL素子を用いた表示装置の高精細化を図るために画素数を多くしたときに、陽極と陰極の短絡による点欠陥若しくは陰極の断線による点欠陥は歩留まり、表示品質を低下する要因となり、早急な対応が要求されている。また、EL膜が局所的に薄くなることによる電界の集中は、欠陥のある画素の輝度が、欠陥のない画素の輝度に対し変わってしまい視認性を損なうため、対策が必要である。   When the number of pixels is increased to increase the definition of a display device using an EL element, a point defect due to a short circuit between the anode and the cathode or a point defect due to the disconnection of the cathode causes a yield and a deterioration in display quality. Response is required. Further, the concentration of the electric field due to the local thinning of the EL film needs to be countered because the luminance of the defective pixel is changed with respect to the luminance of the pixel having no defect, thereby impairing the visibility.

本発明者らはバンプの形状を最適化することで、バンプ上のEL膜と陰極の成膜面の傾きががなだらかに変化して、EL膜と陰極が均一な膜厚に成膜されやすくなり、EL膜及び陰極が断線すること、EL膜の膜厚が局所的に変化することが抑えられるのではないかと考えた。そこで、EL膜、陰極を均一な膜厚に成膜でき、かつ優れた表示性能を確保できるようバンプの形状を最適化した。   By optimizing the shape of the bumps, the inventors of the present invention gently change the inclination of the EL film and cathode film formation surfaces on the bumps, so that the EL film and the cathode are easily formed in a uniform film thickness. Thus, it was thought that the disconnection of the EL film and the cathode and the local change in the film thickness of the EL film could be suppressed. Therefore, the shape of the bump was optimized so that the EL film and the cathode could be formed with a uniform film thickness and excellent display performance was ensured.

本発明においてバンプの形状を示すために用いる用語を図20を参照しながら以下に説明する。図20(A)〜図20(B)はバンプの形状を示す断面図の一例である。   The terms used to indicate the shape of the bump in the present invention will be described below with reference to FIG. 20A to 20B are examples of cross-sectional views illustrating the shape of the bumps.

例えば、図20(A)の断面図に示す上面107が平面状であるバンプの場合、絶縁膜101の下部の両端が下端部104、絶縁膜の上部の両端が上端部106、絶縁膜の上面107と絶縁膜下の陽極100の上面に接する面の中間にある高さの部分を中央部105という。絶縁膜の表面は平坦な上面107と側面108に区分される。   For example, in the case where the upper surface 107 shown in the cross-sectional view of FIG. 20A is a planar bump, both lower ends of the insulating film 101 are the lower end portion 104, both upper ends of the insulating film are the upper end portion 106, and the upper surface of the insulating film. A portion having a height between 107 and the surface in contact with the upper surface of the anode 100 under the insulating film is referred to as a central portion 105. The surface of the insulating film is divided into a flat upper surface 107 and side surfaces 108.

例えば、図20(B)の断面図に示す上部が曲面状であるバンプの場合、絶縁膜201の下部の両端が下端部204、絶縁膜の一番膜厚の厚い部分の近傍が上部206、絶縁膜の上部206と絶縁膜下の陽極200の上面に接する面の中間にある高さの部分を中央部205という。   For example, in the case where the upper portion shown in the cross-sectional view of FIG. 20B is a bump having a curved surface, both ends of the lower portion of the insulating film 201 are the lower end portion 204, the vicinity of the thickest portion of the insulating film is the upper portion 206, A portion having a height in the middle between the upper surface 206 of the insulating film and the surface in contact with the upper surface of the anode 200 below the insulating film is referred to as a central portion 205.

本発明の構成の例を図1(A)に示す。図1(A)はEL素子の断面の一例を示す。EL素子の一方の電極、例えば陽極100と、陽極100上に選択的に形成された絶縁膜(バンプ)101がある。さらに、絶縁膜及び陽極上にEL膜102が形成され、EL膜上に陰極103とが形成されている。本発明は絶縁膜の形状に特徴がある。以下に、図2を用いて絶縁膜の形状を説明する。図2はバンプの断面形状を説明する断面図である。   An example of the structure of the present invention is shown in FIG. FIG. 1A illustrates an example of a cross section of an EL element. There is one electrode of the EL element, for example, an anode 100 and an insulating film (bump) 101 selectively formed on the anode 100. Further, an EL film 102 is formed over the insulating film and the anode, and a cathode 103 is formed over the EL film. The present invention is characterized by the shape of the insulating film. The shape of the insulating film will be described below with reference to FIG. FIG. 2 is a sectional view for explaining the sectional shape of the bump.

なお、本発明において、絶縁膜101の厚さ(T)とは、デバイスとして使われるときの絶縁膜の膜厚をいう。また、絶縁膜の厚さ(T)とは、絶縁膜の上面から絶縁膜の下面まで下ろした垂線の長さをいう。   In the present invention, the thickness (T) of the insulating film 101 refers to the thickness of the insulating film when used as a device. Further, the thickness (T) of the insulating film refers to the length of a perpendicular line extending from the upper surface of the insulating film to the lower surface of the insulating film.

EL膜102、陰極103の断線を防止するために、絶縁膜の厚さは厚すぎない方が良く、3.0μm以下とすることが好ましい。また、絶縁膜の厚さは、絶縁膜上に形成される陰極103と絶縁膜101の下方のTFT素子との寄生容量を低減するためには、少なくとも1.0μm以上あることが好ましい。つまり、絶縁膜の厚さは1.0μm以上3.0μm以下とすると良い。   In order to prevent disconnection of the EL film 102 and the cathode 103, the thickness of the insulating film is preferably not too thick, and is preferably 3.0 μm or less. Further, the thickness of the insulating film is preferably at least 1.0 μm or more in order to reduce the parasitic capacitance between the cathode 103 formed on the insulating film and the TFT element below the insulating film 101. That is, the thickness of the insulating film is preferably 1.0 μm or more and 3.0 μm or less.

(1) 本発明は、EL素子において、前記EL素子の一方の電極例えば陽極100と、陽極上に選択的に形成された絶縁膜101とを有し、陽極の上面に接する絶縁膜の下端部104は、絶縁膜の側面の外側に中心を有する楕円若しくは円に接し、上端部106は絶縁膜の上面107に連続し、絶縁膜の側面108の内側に中心を有する楕円若しくは円に接することを特徴とする(図2(B))。このように、絶縁膜の下端部と上端部をなめらかな形状にしたときに、成膜面の傾きが連続的に変化してEL膜102、陰極103の断線を防止することができる。また、陰極と陽極に挟まれた部分で、EL膜の膜厚が局所的に薄くなることを抑えることができ、EL膜に局所的に電界が集中することを防ぐことができる。 (1) The present invention provides an EL element having one electrode of the EL element, for example, an anode 100, and an insulating film 101 selectively formed on the anode, and a lower end portion of the insulating film in contact with the upper surface of the anode 104 is in contact with an ellipse or circle having a center outside the side surface of the insulating film, and an upper end portion 106 is continuous with the upper surface 107 of the insulating film, and is in contact with an ellipse or circle having a center inside the side surface 108 of the insulating film. Features (FIG. 2B). As described above, when the lower end portion and the upper end portion of the insulating film are formed into smooth shapes, the inclination of the film formation surface is continuously changed, and disconnection of the EL film 102 and the cathode 103 can be prevented. In addition, it is possible to suppress the thickness of the EL film from being locally reduced at a portion between the cathode and the anode, and it is possible to prevent the electric field from being locally concentrated on the EL film.

楕円の中心とは、楕円の短軸と長軸の交点をいう。円の中心とは、円の接線に対する垂線を、円における位置を変えて少なくとも三本以上設けたときの交点をいう。   The center of the ellipse refers to the intersection of the minor axis and the major axis of the ellipse. The center of a circle refers to an intersection when at least three perpendicular lines to the tangent line of the circle are provided at different positions in the circle.

(2) 上記(1)の構成に加えて、絶縁膜の中央部105が、絶縁膜の側面に接する面と陽極の上面とのなす角度θが35°以上70°以下である側面を有すると、絶縁膜の側面108におけるEL膜、陰極の断線を防止することができる。本明細書において、「中央部」とは絶縁膜101において、絶縁膜の上面と陽極の上面に接する面の中間にある高さの部分をいう。本明細書では、以降、絶縁膜の側面に接する面を「傾斜面」と称する。そして、傾斜面と陽極の上面とのなす角度を「傾斜面のテーパー角」と称する。   (2) In addition to the configuration of (1) above, the central portion 105 of the insulating film has a side surface where the angle θ formed by the surface in contact with the side surface of the insulating film and the upper surface of the anode is 35 ° or more and 70 ° or less. Further, disconnection of the EL film and the cathode on the side surface 108 of the insulating film can be prevented. In this specification, the “center portion” refers to a portion of the insulating film 101 having a height in the middle between the upper surface of the insulating film and the surface in contact with the upper surface of the anode. In the present specification, a surface in contact with the side surface of the insulating film is hereinafter referred to as an “inclined surface”. An angle formed between the inclined surface and the upper surface of the anode is referred to as “tapered taper angle”.

絶縁膜の中央部において傾斜面のテーパー角は35°以上70°以下が好ましい。傾斜面のテーパー角が70°を超えると、陰極の膜厚が絶縁膜の側面において薄くなり陰極の断線が生じる恐れが大きくなる。傾斜面のテーパー角が35°未満であると、傾斜面のテーパー角の減少にともなって絶縁膜(バンプ)の膜厚が薄くなる傾向が生じる。絶縁膜の膜厚が薄くなると絶縁膜下方のTFT素子と絶縁膜上の陰極との寄生容量が増加してしまい好ましくない。   The taper angle of the inclined surface in the central portion of the insulating film is preferably 35 ° or more and 70 ° or less. When the taper angle of the inclined surface exceeds 70 °, the thickness of the cathode becomes thin on the side surface of the insulating film, and the possibility that the cathode is disconnected is increased. When the taper angle of the inclined surface is less than 35 °, the film thickness of the insulating film (bump) tends to decrease with a decrease in the taper angle of the inclined surface. If the thickness of the insulating film is reduced, the parasitic capacitance between the TFT element below the insulating film and the cathode on the insulating film increases, which is not preferable.

(3) 本発明はEL素子において、EL素子の一方の電極、例えば陽極100と、陽極上に選択的に形成された絶縁膜101とを有する。絶縁膜の下端部104は、陽極100の上面に接し、陽極と前記下端部との接線の上方の曲率中心(O1)及び第1の曲率半径(R1)により決まる曲面状の側面に接する。そして、絶縁膜の上端部106は、絶縁膜の上面に連続し、上端部106と平坦な上面107との境界線の下方の曲率中心(O2)及び第2の曲率半径(R2)により決まる曲面状の側面を有する(図2(A)、図2(B))。   (3) The present invention includes an EL element having one electrode of the EL element, for example, an anode 100, and an insulating film 101 selectively formed on the anode. The lower end portion 104 of the insulating film is in contact with the upper surface of the anode 100 and is in contact with the curved side surface determined by the center of curvature (O1) and the first radius of curvature (R1) above the tangent line between the anode and the lower end portion. The upper end portion 106 of the insulating film is continuous with the upper surface of the insulating film, and is a curved surface determined by the center of curvature (O2) below the boundary line between the upper end portion 106 and the flat upper surface 107 and the second radius of curvature (R2). (FIGS. 2A and 2B).

絶縁膜の下端部において、EL膜の成膜面の傾きが連続的に変化するようななだらかな曲面形状を有するため、絶縁膜の下端部に形成されるEL膜のカバレッジが良くなり、下端部におけるEL膜の断線を防止することができる。これにより、EL膜の断線による陽極と陰極の短絡が低減する。また、EL膜が部分的に薄くなることを防止でき、EL膜における局部的な電界の集中を防ぐことができる。   Since the lower end portion of the insulating film has a gentle curved surface shape in which the inclination of the deposition surface of the EL film continuously changes, the coverage of the EL film formed on the lower end portion of the insulating film is improved, and the lower end portion The disconnection of the EL film can be prevented. Thereby, the short circuit of the anode and the cathode due to the disconnection of the EL film is reduced. In addition, the EL film can be prevented from being partially thinned, and local electric field concentration in the EL film can be prevented.

絶縁膜の上端部106において、陽極100の上面に対して絶縁膜の側面に接する面の傾きが連続的に変化することで、絶縁膜の上面107と側面108の境界近傍におけるEL膜及び陰極の断線を防ぐことができる。特に陰極の断線を防止できるため、絶縁膜を陽極の端部を全て覆うように設けたときに、陰極の断線部が連続して、閉曲線状になることによる点欠陥が防止される。また、絶縁膜を陽極の端部の一部を覆うようにストライプ状に設けたときに、陰極の断線により陰極の配線抵抗が増加することを防ぐことができる。さらに、絶縁膜を貫通するコンタクトホールを介して陰極が絶縁膜下の配線と接する時にコンタクトホールの側面で陰極が断線することを抑えることができる。   In the upper end portion 106 of the insulating film, the inclination of the surface in contact with the side surface of the insulating film with respect to the upper surface of the anode 100 continuously changes, so that the EL film and the cathode in the vicinity of the boundary between the upper surface 107 and the side surface 108 of the insulating film. Disconnection can be prevented. In particular, since the disconnection of the cathode can be prevented, when the insulating film is provided so as to cover the entire end portion of the anode, point defects due to the continuous disconnection of the cathode becoming a closed curve shape can be prevented. Further, when the insulating film is provided in a stripe shape so as to cover a part of the end portion of the anode, it is possible to prevent the cathode wiring resistance from increasing due to the disconnection of the cathode. Furthermore, it is possible to suppress disconnection of the cathode on the side surface of the contact hole when the cathode contacts the wiring under the insulating film through the contact hole penetrating the insulating film.

(4) 上記(3)の構成に加えて、本発明は、第1の曲率半径は0.2μm以上3.0μm以下であることを特徴とする。第1の曲率半径(R1)が0.2μm未満であると、陽極100に接する絶縁膜101の側面が切り立った形状となるため、絶縁膜101の側面において、EL膜、陰極を均一な膜厚で形成することが困難になる恐れが生じる。例えば、EL膜の成膜面の傾きが急激に変化するため、EL膜が薄くなりその部分に局部的に電界が集中する。また、第1の曲率半径が3.0μmを超えると、絶縁膜の膜厚の薄い部分が広く存在し、TFT素子を絶縁膜で被覆することが困難になる傾向が生じる。 (4) In addition to the configuration of (3), the present invention is characterized in that the first radius of curvature is not less than 0.2 μm and not more than 3.0 μm. When the first radius of curvature (R 1 ) is less than 0.2 μm, the side surface of the insulating film 101 in contact with the anode 100 has a sharp shape. Therefore, the EL film and the cathode are uniformly formed on the side surface of the insulating film 101. There is a risk that it may be difficult to form with a large thickness. For example, since the inclination of the deposition surface of the EL film changes abruptly, the EL film becomes thin and the electric field concentrates locally on that portion. Further, when the first radius of curvature exceeds 3.0 μm, a thin portion of the insulating film is widely present, and it tends to be difficult to cover the TFT element with the insulating film.

酸、塩基等の水溶液を用いたエッチングにしても、反応性ガスを用いたエッチングにしても、第1の曲率半径が0.2μm以上3.0μm以下となれば形状の制御がしやすくなる。   Regardless of etching using an aqueous solution of acid, base, or the like, or etching using a reactive gas, the shape can be easily controlled if the first radius of curvature is 0.2 μm or more and 3.0 μm or less.

(5) 上記(3)、(4)の構成に加えて、絶縁膜の中央部105は、傾斜面のテーパー角θが35°以上、70°以下であることが好ましい。   (5) In addition to the configurations of (3) and (4) above, the central portion 105 of the insulating film preferably has a taper angle θ of the inclined surface of 35 ° or more and 70 ° or less.

(6) 上記(3)、(4)、(5)の構成に加えて、第2の曲率半径(R2)は0.2μm以上3.0μm以下が好ましい。第2の曲率半径(R2)が小さすぎると、絶縁膜101の上面に接する絶縁膜の側面が切り立った形となるため、絶縁膜101の断面形状において、上端部が曲面状になっても、EL膜の断線を防止する効果が低い。このため、第2の曲率半径は少なくとも0.2μm以上は必要である。 (6) In addition to the configurations of (3), (4), and (5) above, the second radius of curvature (R 2 ) is preferably 0.2 μm or more and 3.0 μm or less. If the second radius of curvature (R 2 ) is too small, the side surface of the insulating film in contact with the upper surface of the insulating film 101 is cut off, so that the upper end portion of the insulating film 101 has a curved surface. The effect of preventing disconnection of the EL film is low. For this reason, the second curvature radius must be at least 0.2 μm or more.

酸、塩基等の水溶液を用いたエッチングにしろ、反応性ガスを用いたエッチングにしても、実工程で制御可能な曲率半径として、第2の曲率半径は0.2μm以上3.0μm以下が適当である。   Whether the etching is performed using an aqueous solution of acid, base, or the like, or the etching using a reactive gas, the second radius of curvature is suitably 0.2 μm or more and 3.0 μm or less as the curvature radius that can be controlled in the actual process. It is.

絶縁膜の下端部、中央部及び上端部の側面の曲率半径又は傾斜を以上のような数値範囲で設けることにより、絶縁膜全体として、側面形状がなだらかになり、EL膜、陰極の断線を防ぎやすくなる。また、絶縁膜の下端部の側面において、EL膜が局所的に薄くなることによる電界の集中を防ぐことができる。   By providing the curvature radius or inclination of the side surfaces of the lower end, center and upper end of the insulating film within the above numerical range, the side shape of the insulating film as a whole becomes gentle, and the disconnection of the EL film and the cathode is prevented. It becomes easy. Further, concentration of an electric field due to local thinning of the EL film can be prevented on the side surface of the lower end portion of the insulating film.

ところで、陰極の断線を図1(A)に対し、さらに効果的に防止できる構造を図1(B)で示す。図1(B)は、電極、例えば陽極200上に選択的に絶縁膜201が設けられており、絶縁膜201上にEL膜202、EL膜上に陰極203が形成されている。図1(B)の特徴は絶縁膜の上部を含んで絶縁膜の側面が曲面状であることである。   By the way, FIG. 1B shows a structure that can more effectively prevent the disconnection of the cathode from FIG. In FIG. 1B, an insulating film 201 is selectively provided over an electrode, for example, an anode 200, and an EL film 202 is formed over the insulating film 201 and a cathode 203 is formed over the EL film. The feature of FIG. 1B is that the side surface of the insulating film is curved, including the upper part of the insulating film.

図1(B)で示した絶縁膜の断面形状を図3を用いて詳細に説明する。   A cross-sectional shape of the insulating film illustrated in FIG. 1B will be described in detail with reference to FIG.

なお、図3における、絶縁膜の厚さ(T)とは、絶縁膜の上端部から絶縁膜の下面に下ろした垂線の長さをいう。上端部とは、絶縁膜の表面において、絶縁膜が形成された平面からの距離が最大である部分をいう。絶縁膜の厚さは3.0μm以下とすると良い。   Note that the thickness (T) of the insulating film in FIG. 3 refers to the length of a perpendicular line extending from the upper end of the insulating film to the lower surface of the insulating film. The upper end portion is a portion where the distance from the plane on which the insulating film is formed is maximum on the surface of the insulating film. The thickness of the insulating film is preferably 3.0 μm or less.

(7) 本発明は、EL素子において、前記EL素子の一方の電極例えば陽極200と、陽極上に選択的に形成された絶縁膜201とを有し、陽極の上面に接する絶縁膜の下端部204は、絶縁膜の側面の外側に中心を有する楕円若しくは円に接する側面を有し、上端部206は、絶縁膜の側面の内側に中心を有する楕円若しくは円に接する側面を有することを特徴とする(図3(B))。 (7) In the EL element, the present invention includes one electrode of the EL element, for example, an anode 200, and an insulating film 201 selectively formed on the anode, and a lower end portion of the insulating film in contact with the upper surface of the anode 204 has a side surface in contact with an ellipse or circle having a center outside the side surface of the insulating film, and an upper end portion 206 has a side surface in contact with the ellipse or circle having a center inside the side surface of the insulating film. (FIG. 3B).

(8) 本発明は上記(7)の構成に加えて、絶縁膜の中央部205において、傾斜面のテーパー角θが35°以上70°以下であることを特徴とする。   (8) In addition to the configuration of (7), the present invention is characterized in that the taper angle θ of the inclined surface is not less than 35 ° and not more than 70 ° in the central portion 205 of the insulating film.

(9) 本発明はEL素子において、EL素子の一方の電極、例えば陽極200と、陽極上に選択的に形成された絶縁膜201とを有する。絶縁膜の下端部204は、陽極200の上面に接し、陽極と前記下端部との接点の上方の曲率中心(O1)及び第1の曲率半径(R1)により決まる曲面状の側面を有する。そして、絶縁膜の上端部206は、上端部の下方の曲率中心(O2)及び第2の曲率半径(R2)により決まる曲面状の側面を有する。絶縁膜の下端部、上部の側面を曲面状にするだけでなく、さらに、絶縁膜の中央部205において傾斜面のテーパー角を35°以上70°以下とすることが好ましい(図3(A)、図3(B))。 (9) The present invention includes an EL element having one electrode of the EL element, for example, an anode 200, and an insulating film 201 selectively formed on the anode. The lower end portion 204 of the insulating film is in contact with the upper surface of the anode 200 and has a curved side surface determined by the center of curvature (O 1 ) and the first radius of curvature (R 1 ) above the contact point between the anode and the lower end portion. . The upper end portion 206 of the insulating film has a curved side surface determined by the center of curvature (O 2 ) and the second radius of curvature (R 2 ) below the upper end portion. In addition to making the lower end portion and upper side surface of the insulating film curved, it is preferable that the taper angle of the inclined surface at the central portion 205 of the insulating film is 35 ° to 70 ° (FIG. 3A). FIG. 3 (B)).

(10) 上記(9)の構成に加えて、下端部204の第1の曲率半径(R1)は0.2μm以上3.0μm以下が好ましい。第1の曲率半径(R1)が小さすぎると、陽極200に接する絶縁膜201の側面が切り立った形となるため、絶縁膜201の断面形状において、下端部が曲面状になっても、EL膜の断線、EL膜が局所的に薄くなることを防止する効果が低い。このため、第1の曲率半径は少なくとも0.2μm以上は必要である。しかし、第1の曲率半径が大きすぎると、絶縁膜の膜厚が薄い領域が広く存在することになり、TFT素子を絶縁膜が被覆することが難しくなる。従って、EL表示装置において絶縁膜の第1の曲率半径が大きすぎても問題がある。第1の絶縁膜の曲率半径はこのため、3.0μm以下とすることが好ましい。プロセス的にも、第1の曲率半径(R1)が0.2μm以上3.0μm以下ならば、実工程で充分制御可能である。 (10) In addition to the configuration of (9) above, the first curvature radius (R 1 ) of the lower end portion 204 is preferably 0.2 μm or more and 3.0 μm or less. If the first radius of curvature (R 1 ) is too small, the side surface of the insulating film 201 in contact with the anode 200 is cut off. Therefore, even if the lower end of the insulating film 201 is curved, the EL The effect of preventing disconnection of the film and local thinning of the EL film is low. For this reason, the first curvature radius needs to be at least 0.2 μm or more. However, if the first radius of curvature is too large, there will be a wide area where the thickness of the insulating film is thin, and it will be difficult to cover the TFT element with the insulating film. Therefore, there is a problem even if the first radius of curvature of the insulating film is too large in the EL display device. Therefore, the radius of curvature of the first insulating film is preferably 3.0 μm or less. Also in terms of process, if the first radius of curvature (R 1 ) is 0.2 μm or more and 3.0 μm or less, it can be sufficiently controlled in the actual process.

(11) 上記(8)、(9)、(10)の構成に加えて、本発明において、絶縁膜の断面形状において、絶縁膜の上部206は、上部の下方の曲率中心(O2)と、第2の曲率中心(R2)により決まる曲面形状である。このように、EL膜、陰極を形成する表面をなだらかに変化させることで、絶縁膜の表面上で陰極の膜厚が薄くなることによる陰極の断線を防止することができる。上部206の第2の曲率半径(R2)は、互いに隣接する陽極間の距離を考慮して決定すると良い。図1(B)及び図3において、絶縁膜の上端部206を曲面状にすることで、急激な角度変化による陰極層の断線を防止することができ効果的である。 (11) In addition to the above configurations (8), (9), and (10), in the present invention, in the cross-sectional shape of the insulating film, the upper portion 206 of the insulating film has a lower center of curvature (O 2 ) The curved surface shape is determined by the second center of curvature (R 2 ). In this way, by gently changing the surfaces on which the EL film and the cathode are formed, disconnection of the cathode due to a reduction in the thickness of the cathode on the surface of the insulating film can be prevented. The second radius of curvature (R 2 ) of the upper portion 206 may be determined in consideration of the distance between adjacent anodes. In FIG. 1B and FIG. 3, the upper end portion 206 of the insulating film has a curved surface, which is effective in preventing disconnection of the cathode layer due to a sudden change in angle.

なお、図2〜図3において、絶縁膜の側面の下端部から上端部(又は上部)において、傾斜面のテーパー角θが、電極と絶縁膜が接する絶縁膜の端部において0°となり、絶縁膜の側面に沿って0°以上70°以下の範囲で連続的に変化する形状が、EL膜、陰極の断線を防止し、EL膜が局所的に薄くなることによる電界の集中を防止できて好ましい。   2 to 3, the taper angle θ of the inclined surface from the lower end to the upper end (or upper portion) of the side surface of the insulating film is 0 ° at the end of the insulating film where the electrode and the insulating film are in contact with each other. The shape that continuously changes in the range of 0 ° to 70 ° along the side surface of the film prevents disconnection of the EL film and the cathode, and prevents concentration of the electric field due to locally thinning of the EL film. preferable.

なお、上述のEL膜を有機材料から形成される有機EL膜とすることで、直流駆動、低電圧駆動が可能となり、低消費電力の表示装置を作製することができる。 Note that when the above EL film is an organic EL film formed of an organic material, direct current driving and low voltage driving are possible, and a display device with low power consumption can be manufactured.

アクティブマトリクス型の表示装置を中心に説明をしたが、本発明は、パッシブマトリクス型または、アクティブマトリクス型のいずれであっても適用できる。絶縁膜の形状により、陰極及びEL膜の断線、EL膜の膜厚が局所的に薄くなることを効果的に防止できるからである。   Although the description has focused on an active matrix display device, the present invention can be applied to either a passive matrix type or an active matrix type. This is because, depending on the shape of the insulating film, disconnection of the cathode and the EL film, and local reduction in the film thickness of the EL film can be effectively prevented.

また、絶縁膜下の電極を陽極を例にして説明したが、絶縁膜下の電極を陰極とすることも可能である。   In addition, the electrode under the insulating film has been described by taking the anode as an example, but the electrode under the insulating film can also be used as the cathode.

以上、説明したように本発明を用いることで、EL素子を用いた表示装置において、電極上のバンプの側面を曲面状にして成膜されるEL膜、陰極の膜厚の均一性を向上させることで、EL膜、陰極の断線を防止でき、EL素子の歩留まりを高め、表示品質の向上を図ることができる。   As described above, by using the present invention as described above, in a display device using an EL element, the uniformity of the film thickness of the EL film and the cathode which are formed with the side surfaces of the bumps on the electrodes being curved is improved. Thus, disconnection of the EL film and the cathode can be prevented, the yield of EL elements can be increased, and display quality can be improved.

本発明の実施の形態を以下に説明する。   Embodiments of the present invention will be described below.

まず、有機材料として、非感光性のポリイミド樹脂膜、非感光性のアクリル膜を用いた工程を示す。反応性ガスを用いて絶縁膜をエッチングするときに、反応性ガスの流量比を徐々に変えることによって、図1(A)の絶縁膜の断面形状を作製することができる。作製方法の一例を、図4を用いて以下に示す。   First, a process using a non-photosensitive polyimide resin film and a non-photosensitive acrylic film as an organic material will be described. When the insulating film is etched using a reactive gas, the cross-sectional shape of the insulating film in FIG. 1A can be manufactured by gradually changing the flow rate ratio of the reactive gas. An example of a manufacturing method is described below with reference to FIGS.

基板上には、有機EL素子のスイッチング素子として、TFT素子が形成されている。TFT素子は半導体層にドレイン側の電極416、ソース側の電極417が接続し、半導体層上方にゲート電極411が設けられている。TFT素子のドレイン側の電極416下に、電気的に接続された有機EL素子の陽極422が形成されている。陽極としてはITO(酸化インジウム・スズ)のような透明導電膜を用いることができる。   On the substrate, a TFT element is formed as a switching element of the organic EL element. In the TFT element, a drain side electrode 416 and a source side electrode 417 are connected to a semiconductor layer, and a gate electrode 411 is provided above the semiconductor layer. An anode 422 of an organic EL element that is electrically connected is formed under the electrode 416 on the drain side of the TFT element. As the anode, a transparent conductive film such as ITO (indium tin oxide) can be used.

第1工程として、これら電極上に、絶縁膜301を成膜する。絶縁膜としては、アクリル樹脂膜、ポリイミド樹脂膜を成膜することが可能である。まず、絶縁膜を基板上に塗布する。その後、50℃〜150℃の温度で1〜5分の時間熱処理をして、ポリイミド樹脂膜中に含まれる溶媒を除去する。さらに、オーブンにより200℃〜250℃の熱処理をしてポリイミド樹脂膜をイミド化する。イミド化した後のポリイミド樹脂膜の膜厚は1.0μm以上、3.0μm以下となることが好ましい。   As a first step, an insulating film 301 is formed on these electrodes. As the insulating film, an acrylic resin film or a polyimide resin film can be formed. First, an insulating film is applied on the substrate. Thereafter, heat treatment is performed at a temperature of 50 ° C. to 150 ° C. for 1 to 5 minutes to remove the solvent contained in the polyimide resin film. Furthermore, the polyimide resin film is imidized by heat treatment at 200 ° C. to 250 ° C. in an oven. The film thickness of the polyimide resin film after imidization is preferably 1.0 μm or more and 3.0 μm or less.

第2工程として、絶縁膜301上にレジスト膜300をパターニングする。ポリイミド樹脂膜上に感光性のフォトレジスト膜(以下、レジスト膜と記載)を形成する。レジスト膜300は、パターニング後にレジスト膜の側面と、レジスト膜の下面が50°〜80°の角度をなすような、テーパーを有することが好ましい(図4(A))。   As a second step, the resist film 300 is patterned on the insulating film 301. A photosensitive photoresist film (hereinafter referred to as a resist film) is formed on the polyimide resin film. The resist film 300 preferably has a taper such that the side surface of the resist film and the lower surface of the resist film form an angle of 50 ° to 80 ° after patterning (FIG. 4A).

第3工程として、少なくとも第1の反応性ガスと第2の反応性ガスを用いて絶縁膜をエッチングをする。このとき、第1の反応性ガスと第2の反応性ガスの流量比を経時変化させる。エッチング用ガスに第1の反応性ガスCF4と第2の反応性ガスO2と不活性ガスHeとを用いてポリイミド樹脂膜をエッチングする方法を例示する。第1の反応性ガスCF4のガス流量比が大きいほど、レジスト膜302に比べてポリイミド樹脂膜303がエッチングされやすくなる。つまり、レジスト膜302の側面部がレジスト膜の内側へと後退する幅(X)に対し、ポリイミド樹脂膜303が膜厚方向にエッチングされる深さ(Y)の方が大きくなり、Y/Xに依存して決まる絶縁膜の傾斜面のテーパー角が大きくなる。つまり、第1の反応性ガスCF4のガス流量比が大きいと傾斜面のテーパー角が大きく、きりたった形状になる。 As a third step, the insulating film is etched using at least the first reactive gas and the second reactive gas. At this time, the flow rate ratio of the first reactive gas and the second reactive gas is changed over time. A method of etching a polyimide resin film using the first reactive gas CF 4 , the second reactive gas O 2, and an inert gas He as an etching gas will be exemplified. As the gas flow ratio of the first reactive gas CF 4 is larger, the polyimide resin film 303 is more easily etched than the resist film 302. That is, the depth (Y) at which the polyimide resin film 303 is etched in the film thickness direction becomes larger than the width (X) in which the side surface portion of the resist film 302 recedes to the inside of the resist film. The taper angle of the inclined surface of the insulating film determined depending on the value increases. That is, when the gas flow ratio of the first reactive gas CF 4 is large, the taper angle of the inclined surface is large and the shape is sharp.

逆に、第1の反応性ガスCF4のガス流量比が小さいと、傾斜面のテーパー角が小さく、緩やかに傾斜した形状になる。 Conversely, when the gas flow rate ratio of the first reactive gas CF 4 is small, the taper angle of the inclined surface is small and the shape is gently inclined.

そこで、第1の反応性ガスCF4と第2の反応性ガスO2との流量比を徐々に変えることで、絶縁膜の傾斜面のテーパー角をなだらかに変えることができる。 Therefore, by gradually changing the flow rate ratio between the first reactive gas CF 4 and the second reactive gas O 2 , the taper angle of the inclined surface of the insulating film can be changed gently.

第1のエッチング工程として、RIE(Reactive Ion Etching)法を用い、エッチング用ガスに第1の反応性ガスCF4、第2の反応性ガスO2、不活性ガスHeを用いる。エッチングを開始するときには、CF4とO2とHeのガス流量比を1.5/98.5/40(sccm)とする。そして、エッチング時間が進むにつれて、第2の反応性ガスO2に対する第1の反応性ガスCF4のガス流量比を時間毎に増加していき、最終的にCF4とO2とHeとのガス流量比が7/93/40(sccm)となるようにする。第1の反応性ガスCF4の流量比を上げることで、絶縁膜の傾斜面のテーパー角が大きくなる。そこで、傾斜面のテーパー角を細かいステップで連続的に変えることにより、絶縁膜の側面が曲面状になる。この曲面の曲率半径を第1の曲率半径と称する。第1の曲率半径は0.2μm以上3.0μm以下とすることが好ましい。このようにして絶縁膜の側面において第1の領域318が形成される(図4(B))。 As the first etching process, RIE (Reactive Ion Etching) is used, and the first reactive gas CF 4 , the second reactive gas O 2 , and the inert gas He are used as the etching gas. When etching is started, the gas flow ratio of CF 4 , O 2, and He is set to 1.5 / 98.5 / 40 (sccm). Then, as the etching time advances, the gas flow ratio of the first reactive gas CF 4 to the second reactive gas O 2 increases with time, and finally the CF 4 , O 2, and He The gas flow rate ratio is set to 7/93/40 (sccm). Increasing the flow rate ratio of the first reactive gas CF 4 increases the taper angle of the inclined surface of the insulating film. Therefore, by continuously changing the taper angle of the inclined surface in fine steps, the side surface of the insulating film becomes curved. The curvature radius of this curved surface is referred to as a first curvature radius. The first radius of curvature is preferably 0.2 μm or more and 3.0 μm or less. In this manner, the first region 318 is formed on the side surface of the insulating film (FIG. 4B).

第1のエッチング工程で行ったエッチング条件を第1のエッチング条件という。   Etching conditions performed in the first etching step are referred to as first etching conditions.

なお、第1のエッチング条件において、第1の反応性ガスCF4のガス流量比の時間変化を緩やかにすると、絶縁膜の側面の傾きが徐々に変わるため、第1の曲率半径が大きくなる。その逆に、第1のエッチングにおいて、第1の反応性ガスCF4のガス流量比の時間変化を急峻にすることで、第1の曲率半径が小さくなる。 Note that, when the time change of the gas flow rate ratio of the first reactive gas CF 4 is moderated under the first etching condition, the slope of the side surface of the insulating film gradually changes, so that the first radius of curvature increases. Conversely, in the first etching, the first curvature radius is reduced by making the time change of the gas flow rate ratio of the first reactive gas CF 4 abrupt.

この後、レジスト膜を除去せずにエッチングをする。第2のエッチング工程においては、エッチング用ガスにそのままCF4とO2とHeとを用い、第1の反応性ガスCF4、第2の反応性ガスO2、不活性ガスHeのガス流量比を7/93/40(sccm)と一定に保ってエッチングを続ける。これにより、絶縁膜303の側面において、傾斜面のテーパー角が一定の領域ができる。これにより絶縁膜の側面において、第2の領域319が形成される。第1のエッチング工程の最終的なガス流量比によって、第2のエッチング工程で形成される絶縁膜の傾斜面のテーパー角が決まる。第2の反応性ガスO2に対する第1の反応性ガスCF4の割合が大きいほど、絶縁膜の傾斜面のテーパー角が大きくなる。第2の領域319において、絶縁膜の側面のテーパー角は35°以上70°以下となることが好ましい。 Thereafter, etching is performed without removing the resist film. In the second etching step, CF 4 , O 2, and He are used as they are for the etching gas, and the gas flow ratio of the first reactive gas CF 4 , the second reactive gas O 2 , and the inert gas He. Is kept constant at 7/93/40 (sccm) and etching is continued. Thereby, a region where the taper angle of the inclined surface is constant is formed on the side surface of the insulating film 303. Thus, a second region 319 is formed on the side surface of the insulating film. The taper angle of the inclined surface of the insulating film formed in the second etching process is determined by the final gas flow rate ratio in the first etching process. The taper angle of the inclined surface of the insulating film increases as the ratio of the first reactive gas CF 4 to the second reactive gas O 2 increases. In the second region 319, the taper angle of the side surface of the insulating film is preferably 35 ° to 70 °.

第2のエッチング条件によるエッチングにおいて、反応性ガスによる異方性のエッチングを行っているため、図4(B)で形成された絶縁膜の側面の第1の領域318はその形状を維持したまま、ポリイミド樹脂膜の下側に転写される。   In the etching under the second etching condition, since anisotropic etching is performed with a reactive gas, the shape of the first region 318 on the side surface of the insulating film formed in FIG. 4B is maintained. And transferred to the lower side of the polyimide resin film.

レジスト膜304は、上面と側面がエッチングされて、膜厚が減り、側面がレジスト膜の内側に後退する(図4(C))。   The upper and side surfaces of the resist film 304 are etched to reduce the film thickness, and the side surfaces recede to the inside of the resist film (FIG. 4C).

次いで、第3のエッチング工程を行う。レジスト膜を除去せずに第3のエッチング条件に変え、エッチング用ガスにそのままCF4とO2とHeとを用い、第2の反応性ガスO2に対する第1の反応性ガスCF4の比を時間毎に低下させていく。例えば、CF4とO2とHeとのガス流量比を7/93/40(sccm)から、1.5/98.5/40(sccm)へと時間変化させていく。これにより、絶縁膜の傾斜面のテーパー角が徐々に低減して曲面状になる。この曲面の曲率半径を第2の曲率半径と称する。第3のエッチング条件により絶縁膜307の第3の領域320が形成される。 Next, a third etching process is performed. The third etching condition is changed without removing the resist film, and CF 4 , O 2, and He are used as etching gases as they are, and the ratio of the first reactive gas CF 4 to the second reactive gas O 2 is changed . Will be reduced every hour. For example, the gas flow ratio of CF 4 , O 2, and He is changed over time from 7/93/40 (sccm) to 1.5 / 98.5 / 40 (sccm). Thereby, the taper angle of the inclined surface of the insulating film is gradually reduced to form a curved surface. The curvature radius of this curved surface is referred to as a second curvature radius. A third region 320 of the insulating film 307 is formed under the third etching condition.

レジスト膜306は、上面と側面がエッチングされて、膜厚が減り、側面がレジスト膜の内側に後退する(図5(A))。   The upper and side surfaces of the resist film 306 are etched to reduce the film thickness, and the side surfaces recede to the inside of the resist film (FIG. 5A).

第1のエッチング条件、第2のエッチング条件、第3のエッチング条件において共通して65Paの圧力で500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行う。   Etching is performed by generating plasma by applying 500 W of RF (13.56 MHz) power at a pressure of 65 Pa in common in the first etching condition, the second etching condition, and the third etching condition.

以上により、絶縁膜の側面において第1の領域318、第2の領域319及び第3の領域320が形成される。第1の領域は絶縁膜の下端部を含む。第2の領域は絶縁膜の中央部を含む。第3の領域は絶縁膜の上端部を含む。   Thus, the first region 318, the second region 319, and the third region 320 are formed on the side surface of the insulating film. The first region includes the lower end portion of the insulating film. The second region includes the central portion of the insulating film. The third region includes the upper end portion of the insulating film.

その後、第4工程としてレジスト膜306を除去し、第5工程として絶縁膜及び電極上にEL膜423を形成する。さらに、陰極424をEL膜上に形成することでEL素子が形成される(図5(B))。   Thereafter, the resist film 306 is removed as a fourth step, and an EL film 423 is formed over the insulating film and the electrode as a fifth step. Further, an EL element is formed by forming the cathode 424 over the EL film (FIG. 5B).

なお、図5(B)の鎖線B−B’で示す断面は、図9の上面図を鎖線B−B’で切断した断面に対応する。図9と同じ部位は、同じ符号が付されている。   Note that a cross section indicated by a chain line B-B ′ in FIG. 5B corresponds to a cross section obtained by cutting the top view of FIG. 9 along the chain line B-B ′. The same parts as those in FIG. 9 are given the same reference numerals.

反応性ガスを用いたエッチングでは微細加工が可能であるという利点がある。図4では、絶縁膜として有機材料を用いた例を示したが、絶縁膜として無機材料を用いることも可能である。例えば、絶縁膜としてSiO2膜を用いたときは、反応性ガスとして第1の反応性ガスにCHF3を用いて、第2の反応性ガスにO2を用いると良い。そして、前述のように第1のエッチング工程、第2のエッチング工程、第3のエッチング工程において、第1の反応性ガス、第2の反応性ガスの流量比を変えていく。第1の反応性ガスCHF3のガス流量比を上げるほど、絶縁膜の膜厚方向のエッチングが進みやすく、傾斜面のテーパー角が高くなる。このようにして、前述の工程の材料を置き換えても、図5(A)と同様に、絶縁膜の第1の領域318、第3の領域320を曲面状に形成し、第2の領域319の傾斜面を一定の傾きとすることが可能である。 Etching using a reactive gas has the advantage that microfabrication is possible. Although FIG. 4 shows an example in which an organic material is used as the insulating film, an inorganic material can also be used as the insulating film. For example, when a SiO 2 film is used as the insulating film, CHF 3 may be used as the first reactive gas and O 2 may be used as the second reactive gas. Then, as described above, in the first etching process, the second etching process, and the third etching process, the flow ratio of the first reactive gas and the second reactive gas is changed. As the gas flow ratio of the first reactive gas CHF 3 is increased, etching in the film thickness direction of the insulating film proceeds more easily, and the taper angle of the inclined surface becomes higher. In this manner, even when the material in the above step is replaced, the first region 318 and the third region 320 of the insulating film are formed in a curved shape, and the second region 319 is formed as in FIG. It is possible to make the inclined surface of the constant inclination.

ただし、無機絶縁膜は下方の凹凸を反映するため、無機絶縁膜の表面にTFT素子の配線等に起因する凹凸が生じてしまう場合がある。このときは、無機絶縁膜の表面をあらかじめ、CMP(Chemical Mechanical Polish : 化学的機械研磨)で研磨した後に、レジスト膜を形成して、無機絶縁膜をエッチングしてバンプを形成するとよい。   However, since the inorganic insulating film reflects the unevenness on the lower side, unevenness due to the wiring of the TFT element or the like may occur on the surface of the inorganic insulating film. In this case, the surface of the inorganic insulating film may be previously polished by CMP (Chemical Mechanical Polish), and then a resist film is formed, and the inorganic insulating film is etched to form bumps.

また、ポリイミド樹脂膜を用いて図1(B)の形状を作製する方法を図6を用いて説明する。   A method for manufacturing the shape of FIG. 1B using a polyimide resin film will be described with reference to FIGS.

なお、ポリイミド樹脂膜は熱硬化前は、ポリアミック酸を主成分とする有機膜であり、熱硬化により脱水縮合してポリイミド膜になる。図4〜図5により説明した実施形態においては、特に区別の必要がないため、熱硬化前後の樹脂膜ともポリイミド樹脂膜と記載した。しかし、図6により示す工程においては、ポリアミック酸とポリイミドの化学特性の違いを利用しているため、その違いを明記して説明をする。   The polyimide resin film is an organic film containing polyamic acid as a main component before thermosetting, and is dehydrated and condensed into a polyimide film by thermosetting. In the embodiment described with reference to FIGS. 4 to 5, the resin film before and after thermosetting is described as a polyimide resin film because it is not necessary to distinguish between them. However, in the process shown by FIG. 6, since the difference in the chemical characteristics of a polyamic acid and a polyimide is utilized, the difference is specified and demonstrated.

まず、第1工程において、電極上にポリアミック酸を主成分とする有機膜309を塗布する。   First, in the first step, an organic film 309 containing polyamic acid as a main component is applied on the electrode.

その後、第2工程として50℃〜150℃の温度で1〜5分の時間熱処理をして、有機膜中の溶媒を除去する。次に、第3工程としてレジスト膜308を有機膜309上に成膜する。レジスト膜の膜厚は0.5μm〜3.0μm程度が好ましい。そして、第4工程としてフォトマスクを通して紫外線を照射してレジスト膜を露光する(図6(A))。   Thereafter, as a second step, heat treatment is performed at a temperature of 50 ° C. to 150 ° C. for 1 to 5 minutes to remove the solvent in the organic film. Next, a resist film 308 is formed on the organic film 309 as a third step. The thickness of the resist film is preferably about 0.5 μm to 3.0 μm. Then, as a fourth step, the resist film is exposed by irradiating ultraviolet rays through a photomask (FIG. 6A).

そして、第5工程として、塩基性を有する現像液に、基板上のレジスト膜及び有機膜を浸漬して現像を行う。現像液は例えば、濃度が2.0〜6.0%のテトラメチルアンモニウムハイドロオキサイド(TMAH)現像液を用いることができる。まずレジスト膜のうち、紫外線が照射されて露光された部分が現像液に溶解する。その後に、塩基性を示す現像液によりポリアミック酸を主成分とする有機膜311がレジスト膜をマスクとして等方的にエッチングされる。レジスト膜310下のポリイミド樹脂膜311は、おおむねレジスト膜に保護されて残るが、それでも、レジスト膜の端部下方のポリイミド樹脂膜は等方性のエッチングにより、側面が曲面状の断面になる(図6(B))。   And as a 5th process, it develops by immersing the resist film and organic film on a board | substrate in the developing solution which has basicity. As the developer, for example, a tetramethylammonium hydroxide (TMAH) developer having a concentration of 2.0 to 6.0% can be used. First, a portion of the resist film that has been exposed to irradiation with ultraviolet rays is dissolved in the developer. Thereafter, the organic film 311 containing polyamic acid as a main component is isotropically etched using a resist film as a mask with a basic developer. Although the polyimide resin film 311 below the resist film 310 is generally protected by the resist film and remains, the polyimide resin film below the end of the resist film still has a curved cross section due to isotropic etching. FIG. 6 (B)).

その後、第6工程として、レジスト膜の溶剤にレジスト膜を浸漬してレジスト膜を溶解して、除去する。レジスト膜の溶剤の例としてNMP(N−メチル−2−ピロリドン)が挙げられる。   Thereafter, as a sixth step, the resist film is immersed in a solvent for the resist film to dissolve and remove the resist film. An example of the resist film solvent is NMP (N-methyl-2-pyrrolidone).

その後、第7工程として、180℃以上350℃以下の温度で1時間〜3時間の時間で、有機膜を脱水縮合しイミド化する。これによりポリアミック酸を主成分とする有機膜がポリイミド樹脂膜に化学変化する。イミド化に伴ってポリイミド樹脂膜が内側方向に収縮して、ポリイミド樹脂膜312の表面が丸みを帯びる(図6(C))。   Thereafter, as the seventh step, the organic film is dehydrated and condensed and imidized at a temperature of 180 ° C. or higher and 350 ° C. or lower for 1 hour to 3 hours. As a result, the organic film containing polyamic acid as a main component is chemically changed to a polyimide resin film. With the imidization, the polyimide resin film contracts inward, and the surface of the polyimide resin film 312 is rounded (FIG. 6C).

このようにして、絶縁膜の表面に第1の領域321、第2の領域322及び第3の領域323が形成される。第1の領域321は、絶縁膜の下端部を含む曲面形状である。第2の領域322は絶縁膜の側面の中央部を含む。第3の領域323は絶縁膜の上端部を含む。   In this manner, the first region 321, the second region 322, and the third region 323 are formed on the surface of the insulating film. The first region 321 has a curved shape including the lower end portion of the insulating film. The second region 322 includes the central portion of the side surface of the insulating film. The third region 323 includes the upper end portion of the insulating film.

第2の領域322は、ポリイミド膜の熱収縮により、多少丸みを帯びる。このときに、絶縁膜の中央部において、側面に接する面と陽極422の上面のなす角度が35°〜70°の範囲にあることが好ましい。 The second region 322 is somewhat rounded due to thermal contraction of the polyimide film. At this time, it is preferable that the angle formed by the surface in contact with the side surface and the upper surface of the anode 422 in the central portion of the insulating film is in the range of 35 ° to 70 °.

第3の領域323は、熱収縮により、丸みを帯びて、絶縁膜の側面及び上端部を含む範囲で絶縁膜の表面が曲面形状となる。 The third region 323 is rounded due to thermal contraction, and the surface of the insulating film has a curved shape within a range including the side surface and the upper end portion of the insulating film.

次に第8工程として、ポリイミド樹脂膜上にEL膜423を形成し、EL膜上に陰極424を形成する(図6(D))。   Next, as an eighth step, an EL film 423 is formed over the polyimide resin film, and a cathode 424 is formed over the EL film (FIG. 6D).

図1(A)の断面形状の作製方法のその他の例を示す。   Another example of the method for manufacturing the cross-sectional shape of FIG.

例えば、絶縁膜上にレジスト膜をパターニングして、絶縁膜を等方的にエッチングした後にレジスト膜を除去する。その後、RIE(Reactive Ion Etching)により絶縁膜をエッチングすると、絶縁膜の側面と上面が接する部分においては、反応性ガスがあたりやすいため、絶縁膜の側面と上面との接線近傍を曲面状にすることができる。   For example, a resist film is patterned on the insulating film, and after the insulating film is isotropically etched, the resist film is removed. After that, when the insulating film is etched by RIE (Reactive Ion Etching), a reactive gas is likely to hit the portion where the side surface of the insulating film is in contact with the upper surface, so that the vicinity of the tangent line between the side surface and the upper surface of the insulating film is curved. be able to.

図19を用いてこの工程を説明する。図19はバンプを形成する工程を説明する断面図である。   This process will be described with reference to FIG. FIG. 19 is a cross-sectional view illustrating a process of forming bumps.

まず、電極上に絶縁膜324を成膜し、絶縁膜324上にレジスト膜325を形成する。絶縁膜の厚さは1〜3μmとし、レジスト膜の厚さは0.5〜5μmとする。絶縁膜はポリイミド樹脂膜、アクリル樹脂膜を塗布し、熱硬化して形成する(図19(A))。   First, the insulating film 324 is formed over the electrode, and the resist film 325 is formed over the insulating film 324. The insulating film has a thickness of 1 to 3 μm, and the resist film has a thickness of 0.5 to 5 μm. The insulating film is formed by applying a polyimide resin film or an acrylic resin film and thermosetting (FIG. 19A).

次いで、レジスト膜を露光し現像する。レジスト膜327は、画素電極の端部及び隣接する画素電極の間隙と重なって形成される。次いで、絶縁膜を等方的にエッチングする。等方的なエッチング処理としては公知の方法を用いればよい。例えばプラズマを発生させてエッチングを行う場合に、エッチングをする気圧を高くするとエッチングが等方的に進行することが知られている(実用ドライエッチング技術 REALIZE INC. p.40)。エッチングによりレジスト膜の端部の下方の絶縁膜が削られて、側面が曲面状の絶縁膜326が残る(図19(B))。   Next, the resist film is exposed and developed. The resist film 327 is formed so as to overlap with an end portion of the pixel electrode and a gap between adjacent pixel electrodes. Next, the insulating film is isotropically etched. A known method may be used as the isotropic etching process. For example, when etching is performed by generating plasma, it is known that the etching proceeds isotropically if the etching pressure is increased (practical dry etching technology REALIZE INC. P. 40). The insulating film below the end portion of the resist film is etched away by etching, so that the insulating film 326 having a curved side surface remains (FIG. 19B).

次いで、レジスト膜を除去する(図19(C))。   Next, the resist film is removed (FIG. 19C).

次いで、RIE(Reactive Ion Etching)法により絶縁膜をエッチングする。0.1〜1Torrの気圧で、電離度0.1〜1%のプラズマを形成する。RIE法を用いたエッチングでは反応性ガスと絶縁膜が化学的に反応してエッチングが進行する。反応性ガスは、絶縁膜の側面と上面とが接する部分(絶縁膜の上端部329)にあたりやすいため、絶縁膜328の上端部が丸みを帯びた形状になる(図19(D))。   Next, the insulating film is etched by RIE (Reactive Ion Etching). Plasma with an ionization degree of 0.1 to 1% is formed at a pressure of 0.1 to 1 Torr. In the etching using the RIE method, the reactive gas and the insulating film chemically react and the etching proceeds. Since the reactive gas easily hits a portion where the side surface and the upper surface of the insulating film are in contact (upper end portion 329 of the insulating film), the upper end portion of the insulating film 328 has a rounded shape (FIG. 19D).

次いで、EL膜423、陰極424を形成する(図19(E))。   Next, an EL film 423 and a cathode 424 are formed (FIG. 19E).

図1(A)又は図1(B)の断面形状の作製方法のその他の例を示す。   Another example of the method for manufacturing the cross-sectional shape of FIG. 1A or FIG.

絶縁膜として、感光性の有機材料を用いたときの作製方法を図7(A)に示す。感光性の材料を露光し、現像液によりエッチングすることで、断面形状をなだらかにすることができる。有機材料としては、感光性ポリイミド樹脂膜、感光性アクリル膜を用いることができる。感光性の有機材料はポジ型を用いることが好ましい。   A manufacturing method when a photosensitive organic material is used as the insulating film is illustrated in FIG. By exposing the photosensitive material and etching with a developer, the cross-sectional shape can be smoothed. As the organic material, a photosensitive polyimide resin film or a photosensitive acrylic film can be used. The photosensitive organic material is preferably a positive type.

例えば、感光性のポリイミド樹脂膜316を1.0〜3.0μmの厚さで塗布をして、50℃〜150℃の温度で1〜5分の時間、熱処理をして、感光性のポリイミド樹脂膜中に含まれる溶媒を除去する。その後、石英ガラス314にクロム膜315が形成されたフォトマスクを通して紫外線313を照射して、感光性のポリイミド樹脂膜を露光する(図7(A))。   For example, a photosensitive polyimide resin film 316 is applied with a thickness of 1.0 to 3.0 μm, and heat-treated at a temperature of 50 ° C. to 150 ° C. for 1 to 5 minutes, thereby photosensitive polyimide. The solvent contained in the resin film is removed. After that, the photosensitive polyimide resin film is exposed by irradiating ultraviolet rays 313 through a photomask in which a chromium film 315 is formed on the quartz glass 314 (FIG. 7A).

なお、本発明では露光時にあえて、フォトマスクを通過した紫外線を回折させる。通常の露光装置ではフォトマスクを通過した光が回折により広がるため、回折によって広がった光をレンズに入射させて、レンズの焦点の位置に基板を配置することで、基板上の感光性のポリイミド樹脂膜にフォトマスクのパターンを精度良く転写する。しかし、本発明において、感光性のポリイミド樹脂膜を露光するときは、あえてレンズの焦点の位置から0.05〜30μmほど下方に基板を配置する。すると、フォトマスクを通過して回折により広がった光が感光性のポリイミド樹脂膜に照射される。感光性樹脂に照射される光(紫外線313)は、回折によりフォトマスクに形成されたクロム膜315の内側まで入り込む。   In the present invention, the ultraviolet rays that have passed through the photomask are intentionally diffracted during exposure. In ordinary exposure equipment, the light that has passed through the photomask spreads by diffraction, so the light spread by diffraction is incident on the lens, and the substrate is placed at the focal point of the lens. The photomask pattern is accurately transferred onto the film. However, in the present invention, when exposing the photosensitive polyimide resin film, the substrate is intentionally disposed 0.05 to 30 μm below the focal point of the lens. Then, light that has passed through the photomask and spread by diffraction is irradiated onto the photosensitive polyimide resin film. Light (ultraviolet rays 313) irradiated to the photosensitive resin enters the inside of the chromium film 315 formed on the photomask by diffraction.

感光性のポリイミド樹脂膜を露光するときに、回折を積極的に利用することにより、なだらかな曲面を有する断面形状にすることができる。現像後の絶縁膜317の断面は、露光時の回折光の強度分布を反映した形状になる。露光現像条件を調節することで、絶縁膜の表面がなだらかな形状にすることができる。現像後に絶縁膜317をベークして、熱硬化させる。(図7(B))。また、感光性樹脂膜を露光するときに、回折した光をフォトマスクで遮光されている部分の感光性樹脂の表面にまで入射させることで、図1(A)の断面形状だけでなく、図1(B)の断面形状を作製することもできる。   When exposing the photosensitive polyimide resin film, it is possible to obtain a cross-sectional shape having a gentle curved surface by positively utilizing diffraction. The cross section of the insulating film 317 after development has a shape reflecting the intensity distribution of diffracted light at the time of exposure. By adjusting the exposure and development conditions, the surface of the insulating film can be made gentle. After the development, the insulating film 317 is baked and thermally cured. (FIG. 7B). In addition, when exposing the photosensitive resin film, the diffracted light is incident on the surface of the photosensitive resin in a portion shielded by the photomask, so that not only the cross-sectional shape of FIG. A cross-sectional shape of 1 (B) can also be produced.

その後、絶縁膜上にEL膜423、陰極424を蒸着により形成する(図7(C))。   After that, an EL film 423 and a cathode 424 are formed on the insulating film by vapor deposition (FIG. 7C).

上述のエッチング方法は、EL表示装置や液晶表示装置のような表示装置中の絶縁膜にコンタクトホールを形成する際にも用いることができる。   The above-described etching method can also be used when a contact hole is formed in an insulating film in a display device such as an EL display device or a liquid crystal display device.

なお、上述の実施形態により作製したバンプの断面の形状は、バンプを形成した基板を切断し、断面を電界放射形走査電子顕微鏡(Scanning Electron Microscope :SEM)で観察することで、容易に確認ができる。   In addition, the shape of the cross section of the bump manufactured according to the above-described embodiment can be easily confirmed by cutting the substrate on which the bump is formed and observing the cross section with a scanning electron microscope (SEM). it can.

以下、実施例により、本発明を用いたEL表示装置を具体的に説明する。   Hereinafter, an EL display device using the present invention will be specifically described with reference to examples.

本発明はEL素子を用いたあらゆる表示装置に適用することができる。図8はその一例であり、TFTを用いて作製されるアクティブマトリクス型の表示装置の例を示す。TFTはチャネル形成領域を形成する半導体膜の材質により、アモルファスシリコンTFTやポリシリコンTFTと区別されることがあるが、本発明はそのどちらにも適用することができる。   The present invention can be applied to any display device using an EL element. FIG. 8 shows an example of this, and shows an example of an active matrix display device manufactured using TFTs. A TFT may be distinguished from an amorphous silicon TFT or a polysilicon TFT depending on the material of a semiconductor film forming a channel formation region, but the present invention can be applied to either of them.

図8では駆動回路部450にnチャネル型TFT452とpチャネル型TFT453が形成され、画素部451にスイッチング用TFT454、電流制御用TFT455が形成されている様子を示している。これらのTFTは、島状半導体層403〜406、ゲート絶縁膜407、ゲート電極408〜411などを用いて形成されている。   FIG. 8 shows a state where an n-channel TFT 452 and a p-channel TFT 453 are formed in the driver circuit portion 450, and a switching TFT 454 and a current control TFT 455 are formed in the pixel portion 451. These TFTs are formed using island-shaped semiconductor layers 403 to 406, a gate insulating film 407, gate electrodes 408 to 411, and the like.

基板401はコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板を用いる。なお、基板401としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。   As the substrate 401, a substrate made of glass such as barium borosilicate glass represented by Corning # 7059 glass or # 1737 glass or aluminoborosilicate glass is used. Note that as the substrate 401, a quartz substrate, a silicon substrate, a metal substrate, or a stainless steel substrate with an insulating film formed thereon may be used. Further, a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment may be used.

下地膜402として、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの絶縁膜を用いることができる。本実施例では下地膜402として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。   As the base film 402, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film can be used. Although a two-layer structure is used as the base film 402 in this embodiment, a single-layer film of the insulating film or a structure in which two or more layers are stacked may be used.

層間絶縁膜は窒化シリコン、酸化窒化シリコンなどで形成される無機絶縁膜418と、アクリル樹脂膜またはポリイミド樹脂膜などで形成される有機絶縁膜419とから成っている。 The interlayer insulating film includes an inorganic insulating film 418 formed of silicon nitride, silicon oxynitride, or the like, and an organic insulating film 419 formed of an acrylic resin film or a polyimide resin film.

駆動回路部450の回路構成は、ゲート信号側駆動回路とデータ信号側駆動回路とで異なるがここでは省略する。nチャネル型TFT452及びpチャネル型TFT453には配線412、配線413が接続され、これらのTFTを用いて、シフトレジスタやラッチ回路、バッファ回路などが形成される。   The circuit configuration of the drive circuit unit 450 differs between the gate signal side drive circuit and the data signal side drive circuit, but is omitted here. A wiring 412 and a wiring 413 are connected to the n-channel TFT 452 and the p-channel TFT 453, and a shift register, a latch circuit, a buffer circuit, or the like is formed using these TFTs.

画素部451では、データ配線414がスイッチング用TFT454のソース側に接続し、ドレイン側の配線415は電流制御用TFT455のゲート電極411と接続している。また、電流制御用TFT455のソース側は電源供給配線417と接続し、ドレイン側の電極416がEL素子の陰極と接続するように配線されている。図9(A)はこのような画素の上面図を示し、便宜上図8と共通する符号を用いて示している。また、図9(A)において、A−A'線に対応する断面が図8において示されている。   In the pixel portion 451, the data wiring 414 is connected to the source side of the switching TFT 454, and the drain side wiring 415 is connected to the gate electrode 411 of the current control TFT 455. Further, the source side of the current control TFT 455 is connected to the power supply wiring 417, and the drain side electrode 416 is connected to the cathode of the EL element. FIG. 9A shows a top view of such a pixel, and uses the same reference numerals as those in FIG. 8 for convenience. Further, in FIG. 9A, a cross section corresponding to the line AA ′ is shown in FIG.

EL素子456は、MgAgやLiFなどの材料を用いて形成される陰極424、有機EL材料を用いて作製されるEL膜423、ITO(酸化インジウム・スズ)で形成される陽極422、とから成っている。バンプ420、421は、陽極422の端部を覆うように形成される。バンプにより、陰極と陽極との短絡、陰極424の断線を防ぐ。   The EL element 456 includes a cathode 424 formed using a material such as MgAg or LiF, an EL film 423 manufactured using an organic EL material, and an anode 422 formed of ITO (indium tin oxide). ing. The bumps 420 and 421 are formed so as to cover the end of the anode 422. The bump prevents a short circuit between the cathode and the anode and disconnection of the cathode 424.

バンプは、TFT素子の配線を覆うようにアクリル樹脂膜やポリイミド樹脂膜などの絶縁膜を用いて形成する。本実施例ではバンプとして感光性のポリイミド樹脂膜を用いる。感光性のポリイミド樹脂膜を露光するときの回折を積極的に利用して、感光性樹脂膜の表面をなだらかな曲面形状にする。露光装置の光学系を調節して回折を起こす。   The bump is formed using an insulating film such as an acrylic resin film or a polyimide resin film so as to cover the wiring of the TFT element. In this embodiment, a photosensitive polyimide resin film is used as the bump. The diffraction when exposing the photosensitive polyimide resin film is positively utilized to make the surface of the photosensitive resin film a gentle curved surface. Diffraction occurs by adjusting the optical system of the exposure apparatus.

EL膜を形成する材料は、低分子系材料または高分子系材料のどちらであっても構わない。低分子系材料を用いる場合は蒸着法を用いるが、高分子系材料を用いる場合はスピンコート法や印刷法またはインクジェット法などを用いる。   The material for forming the EL film may be either a low molecular material or a high molecular material. When a low molecular material is used, a vapor deposition method is used. When a high molecular material is used, a spin coating method, a printing method, an ink jet method, or the like is used.

高分子系材料では、π共役ポリマー材料などが知られている。その代表例は結晶質半導体膜パラフェニレンビニレン(PPV)系、ポリビニルカルバゾール(PVK)系、ポリフルオレン系などが上げられる。このような材料を用いて形成されるEL膜は、単層又は積層構造で用いられるが、積層構造で用いた方が発光効率は良い。一般的には陽極上に正孔注入層/正孔輸送層/発光層/電子輸送層の順に形成されるが、正孔輸送層/発光層/電子輸送層、または正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層のような構造でも良い。本発明では公知のいずれの構造を用いても良いし、EL膜に対して蛍光性色素等をドーピングしても良い。   Among polymer materials, π-conjugated polymer materials are known. Typical examples thereof include crystalline semiconductor films such as paraphenylene vinylene (PPV), polyvinyl carbazole (PVK), and polyfluorene. An EL film formed using such a material is used in a single layer or a stacked structure, but the light emitting efficiency is better when the EL film is used in a stacked structure. Generally, the hole injection layer / hole transport layer / light emitting layer / electron transport layer are formed on the anode in this order, but the hole transport layer / light emitting layer / electron transport layer, or hole injection layer / hole are formed. A structure such as a transport layer / a light emitting layer / an electron transport layer / an electron injection layer may be used. In the present invention, any known structure may be used, and the EL film may be doped with a fluorescent dye or the like.

有機EL材料としては、例えば、以下の米国特許又は公開公報に開示された材料を用いることができる。米国特許第4,356,429号、米国特許第4,539,507号、米国特許第4,720,432号、米国特許第4,769,292号、米国特許第4,885,211号、米国特許第4,950,950号、米国特許第5,059,861号、米国特許第5,047,687号、米国特許第5,073,446号、米国特許第5,059,862号、米国特許第5,061,617号、米国特許第5,151,629号、米国特許第5,294,869号、米国特許第5,294,870号、特開平10−189525号公報、特開平8−241048号公報、特開平8−78159号公報。   As the organic EL material, for example, materials disclosed in the following US patents or publications can be used. U.S. Patent No. 4,356,429, U.S. Patent No. 4,539,507, U.S. Patent No. 4,720,432, U.S. Patent No. 4,769,292, U.S. Patent No. 4,885,211, US Patent No. 4,950,950, US Patent No. 5,059,861, US Patent No. 5,047,687, US Patent No. 5,073,446, US Patent No. 5,059,862, US Pat. No. 5,061,617, US Pat. No. 5,151,629, US Pat. No. 5,294,869, US Pat. No. 5,294,870, JP-A-10-189525, JP-A-10-189525 JP-A-8-241048, JP-A-8-78159.

なお、カラー表示には大別して四つの方式があり、R(赤)G(緑)B(青)に対応した三種類のEL素子を形成する方式、白色発光のEL素子とカラーフィルターを組み合わせた方式、青色又は青緑発光のEL素子と蛍光体(蛍光性の色変換層:CCM)とを組み合わせた方式、陰極(対向電極)に透明電極を使用してRGBに対応したEL素子を重ねる方式がある。   There are four main types of color display, a method of forming three types of EL elements corresponding to R (red), G (green), and B (blue), and a combination of a white light emitting EL element and a color filter. A method that combines a blue or blue-green light emitting EL element and a phosphor (fluorescent color conversion layer: CCM), a method that uses a transparent electrode for the cathode (counter electrode), and stacks the EL elements corresponding to RGB. There is.

具体的なEL膜としては、赤色に発光するEL膜にはシアノポリフェニレン、緑色に発光するEL膜にはポリフェニレンビニレン、青色に発光するEL膜にはポリフェニレンビニレンまたはポリアルキルフェニレンを用いれば良い。EL膜の厚さは30〜150nmとすれば良い。   As a specific EL film, cyanopolyphenylene may be used for an EL film that emits red light, polyphenylene vinylene may be used for an EL film that emits green light, and polyphenylene vinylene or polyalkylphenylene may be used for an EL film that emits blue light. The thickness of the EL film may be 30 to 150 nm.

上記の例は発光層として用いることのできる有機EL材料の一例であり、これに限定されるものではない。発光層、電荷輸送層、電荷注入層を形成するための材料は、その可能な組合せにおいて自由に選択することができる。本実施例で示すEL膜は、発光層とPEDOT(ポリチオフェン)またはPAni(ポリアニリン)から成る正孔注入層を設けた構造とする。   The above example is an example of an organic EL material that can be used as a light emitting layer, and is not limited thereto. The materials for forming the light emitting layer, the charge transport layer, and the charge injection layer can be freely selected in the possible combinations. The EL film shown in this embodiment has a structure in which a light-emitting layer and a hole injection layer made of PEDOT (polythiophene) or PAni (polyaniline) are provided.

EL膜423の上にはEL素子の陰極424が設けられる。陰極424としては、仕事関数の小さいマグネシウム(Mg)、リチウム(Li)若しくはカルシウム(Ca)を含む材料を用いる。好ましくはMgAg(MgとAgをMg:Ag=20:1で混合した材料)でなる電極を用いれば良い。他にもMgAgAl電極、LiAl電極、また、LiFAl電極が挙げられる。   On the EL film 423, a cathode 424 of an EL element is provided. As the cathode 424, a material containing magnesium (Mg), lithium (Li), or calcium (Ca) having a low work function is used. An electrode made of MgAg (a material in which Mg and Ag are mixed at Mg: Ag = 20: 1) is preferably used. Other examples include MgAgAl electrodes, LiAl electrodes, and LiFAl electrodes.

陰極424はEL膜423を形成した後、大気解放しないで連続的に形成することが好ましい。陰極424とEL膜423との界面状態はEL素子の発光効率に大きく影響するからである。なお、本明細書中では、陽極(画素電極)、EL膜及び陰極で形成される発光素子をEL素子と呼ぶ。   The cathode 424 is preferably formed continuously after the EL film 423 is formed without being released to the atmosphere. This is because the interface state between the cathode 424 and the EL film 423 greatly affects the light emission efficiency of the EL element. Note that in this specification, a light-emitting element formed using an anode (pixel electrode), an EL film, and a cathode is referred to as an EL element.

EL膜423と陰極424とでなる積層体は、各画素で個別に形成する必要があるが、EL膜423は水分に極めて弱いため、通常のフォトリソグラフィ技術を用いることができない。また、アルカリ金属を用いて作製される陰極424は容易に酸化されてしまう。従って、メタルマスク等の物理的なマスク材を用い、真空蒸着法、スパッタ法、プラズマCVD法等の気相法で選択的に形成することが好ましい。なお、EL膜を選択的に形成する方法として、インクジェット法やスクリーン印刷法等を用いることも可能であるが、これらは現状では陰極の連続形成ができないので、上述の方法が好ましいと言える。   A stacked body including the EL film 423 and the cathode 424 needs to be formed individually for each pixel. However, since the EL film 423 is extremely weak against moisture, a normal photolithography technique cannot be used. In addition, the cathode 424 manufactured using an alkali metal is easily oxidized. Accordingly, it is preferable to use a physical mask material such as a metal mask and selectively form the film by a vapor phase method such as a vacuum deposition method, a sputtering method, or a plasma CVD method. As a method for selectively forming the EL film, an ink jet method, a screen printing method, or the like can be used. However, since the cathode cannot be continuously formed at present, the above method is preferable.

また、陰極424上に外部の水分等から保護するための保護電極を積層しても良い。保護電極としては、アルミニウム(Al)、銅(Cu)若しくは銀(Ag)を含む低抵抗な材料を用いることが好ましい。或いは、透明電極を用いることで、図8において矢印で示す方向に光を放射させることもできる(これを便宜上、上面放射という)。その場合、有機樹脂層間絶縁膜419に黒色の顔料を混合させると、偏光板を用いなくても非発光時に黒色の画面を形成できる。この保護電極にはEL膜の発熱を緩和する放熱効果も期待できる。また、上記EL膜423、陰極424を形成した後、大気解放しないで連続的に保護電極まで形成することも有効である。   Further, a protective electrode for protecting from external moisture or the like may be stacked on the cathode 424. As the protective electrode, it is preferable to use a low-resistance material containing aluminum (Al), copper (Cu), or silver (Ag). Alternatively, by using a transparent electrode, light can be emitted in a direction indicated by an arrow in FIG. 8 (this is called top emission for convenience). In that case, when a black pigment is mixed in the organic resin interlayer insulating film 419, a black screen can be formed when no light is emitted without using a polarizing plate. The protective electrode can also be expected to have a heat dissipation effect that alleviates the heat generation of the EL film. It is also effective to form the protective electrode continuously after the EL film 423 and the cathode 424 are formed without being released to the atmosphere.

図17のように、黒色の顔料を混合させた有機樹脂層間絶縁膜1100上に、陽極1101として透明導電膜を形成し、絶縁膜からなるバンプ1102、EL膜1103を形成する。さらに、陰極1104としてLiFAl、MgAgを10〜50nmの厚さで形成し、光透過性を持たせる。さらに配線抵抗を下げる目的で、透明導電膜1105を陰極上に形成する。これにより、図17において、矢印で示す方向に光を出射させることができる。このとき、陰極が光透過性を有するために、非発光時の表示画面のぎらつきを抑えることができる。   As shown in FIG. 17, a transparent conductive film is formed as an anode 1101 on an organic resin interlayer insulating film 1100 mixed with a black pigment, and a bump 1102 and an EL film 1103 made of an insulating film are formed. Further, LiFAl and MgAg are formed as the cathode 1104 with a thickness of 10 to 50 nm so as to have optical transparency. Further, a transparent conductive film 1105 is formed on the cathode for the purpose of lowering the wiring resistance. Thereby, in FIG. 17, light can be emitted in the direction indicated by the arrow. At this time, since the cathode has light transmittance, glare of the display screen when no light is emitted can be suppressed.

図8ではスイッチング用TFT454をマルチゲート構造とし、電流制御用TFT455にはゲート電極とオーバーラップするLDDを設けている。ポリシリコンを用いたTFTは、高い動作速度を示すが故にホットキャリア注入などの劣化も起こりやすい。そのため、画素内において機能に応じて構造の異なるTFT(オフ電流の十分に低いスイッチング用TFTと、ホットキャリア注入に強い電流制御用TFT)を形成することは、高い信頼性を有し、且つ、良好な画像表示が可能な(動作性能の高い)表示装置を作製する上で非常に有効である。   In FIG. 8, the switching TFT 454 has a multi-gate structure, and the current control TFT 455 is provided with an LDD overlapping the gate electrode. Since a TFT using polysilicon exhibits a high operation speed, deterioration such as hot carrier injection is likely to occur. Therefore, it is highly reliable to form TFTs with different structures (switching TFTs with sufficiently low off-state current and TFTs for current control strong against hot carrier injection) having different structures depending on functions in the pixels, and This is very effective in manufacturing a display device capable of displaying a good image (high operation performance).

図9(B)は図8、図9(A)に示される画素の回路図である。ゲート配線とデータ配線の交点近傍に画素が配置され、画素にはスイッチング用TFT454、電流制御用TFT455、EL素子456が設けられている。   FIG. 9B is a circuit diagram of the pixel shown in FIGS. 8 and 9A. A pixel is arranged near the intersection of the gate wiring and the data wiring, and a switching TFT 454, a current control TFT 455, and an EL element 456 are provided in the pixel.

スイッチング用TFT454は、そのゲート電極がゲート配線410に接続されている。スイッチング用TFTのソース側はデータ配線414に接続されており、ドレイン側は電流制御用TFT455のゲート電極及びコンデンサー458の一方の電極に接続されている。コンデンサーの他方の電極は電源供給線417に接続されている。電源供給線417に電流制御用TFTのソース側が接続されており、EL素子456に電流制御用TFTのドレイン側が接続されている。   The switching TFT 454 has a gate electrode connected to the gate wiring 410. The source side of the switching TFT is connected to the data wiring 414, and the drain side is connected to the gate electrode of the current control TFT 455 and one electrode of the capacitor 458. The other electrode of the capacitor is connected to the power supply line 417. The power supply line 417 is connected to the source side of the current control TFT, and the EL element 456 is connected to the drain side of the current control TFT.

457は隣接する画素の電流制御用TFTである。電流制御用TFT457のソース側は電源供給線417に接続されている。隣接する画素で共通の電源供給線417を用いることができるため、開口率を高くすることが可能となる。   Reference numeral 457 denotes a current control TFT of an adjacent pixel. The source side of the current control TFT 457 is connected to the power supply line 417. Since the common power supply line 417 can be used for adjacent pixels, the aperture ratio can be increased.

図12はこのような表示装置の外観を示す図である。画像を表示する方向はEL素子の構成によって異なるが、ここでは上方に光が放射して表示が成される。図12で示す構成は、TFTを用いて駆動回路部604、駆動回路部605及び画素部603が形成された素子基板601と封止基板602がシール材610により貼り合わされている。素子基板601の端には、入力端子608が設けられこの部分でFPC(Flexible Print Circuit)が接続される。入力端子608には外部回路から画像データ信号や各種タイミング信号及び電源を入力する端子が500μmピッチで設けられている。そして、配線609で駆動回路部と接続されている。また、必要に応じてCPU、メモリーなどを形成したICチップ607がCOG(Chip on Glass)法などにより素子基板601に実装されていても良
い。
FIG. 12 is a diagram showing the appearance of such a display device. The direction in which an image is displayed varies depending on the configuration of the EL element, but here, light is emitted upward and display is performed. In the structure illustrated in FIG. 12, an element substrate 601 over which a driver circuit portion 604, a driver circuit portion 605, and a pixel portion 603 are formed using TFTs and a sealing substrate 602 are attached to each other with a sealant 610. An input terminal 608 is provided at the end of the element substrate 601, and an FPC (Flexible Print Circuit) is connected to this portion. Input terminals 608 are provided with terminals for inputting image data signals, various timing signals, and power from an external circuit at a pitch of 500 μm. The wiring 609 is connected to the drive circuit unit. Further, an IC chip 607 on which a CPU, a memory, and the like are formed may be mounted on the element substrate 601 by a COG (Chip on Glass) method or the like as necessary.

入力端子は図11で示すように、チタン(Ti)とアルミニウム(Al)とから成る配線705と陽極として形成したITO706とを積層して形成している。図11は、入力端子部におけるC−C'線に対応する断面図を示している。素子基板701と封止基板702はシール材703で貼り合わされている。駆動回路部において、EL膜707、陰極708はバンプ709上に形成されるが、陰極708を配線とコンタクトさせるため図示するようなコンタクト部720を設けている。コンタクト部720においても、バンプの側面がなだらかな曲面を有するため、陰極層の断線を防ぐことができる。   As shown in FIG. 11, the input terminal is formed by laminating a wiring 705 made of titanium (Ti) and aluminum (Al) and ITO 706 formed as an anode. FIG. 11 shows a cross-sectional view corresponding to the line CC ′ in the input terminal portion. The element substrate 701 and the sealing substrate 702 are bonded to each other with a sealant 703. In the drive circuit portion, the EL film 707 and the cathode 708 are formed on the bump 709, but a contact portion 720 as shown is provided to make the cathode 708 contact the wiring. Also in the contact part 720, since the side surface of the bump has a gentle curved surface, disconnection of the cathode layer can be prevented.

このようなEL素子を用いた表示装置において、バンプの側面がなだらかな曲面を有することで、EL膜、陰極の断線を防ぎ、表示装置の歩留まりを高めることができる。   In a display device using such an EL element, the side surfaces of the bumps have gentle curved surfaces, so that disconnection of the EL film and the cathode can be prevented and the yield of the display device can be increased.

図13は逆スタガ型のTFTを用いた表示装置の一例を示す。使用する基板501やEL素子556は実施例1と同様な構成であり、ここではその説明を省略する。   FIG. 13 shows an example of a display device using an inverted stagger type TFT. The substrate 501 and the EL element 556 to be used have the same configuration as that of the first embodiment, and description thereof is omitted here.

逆スタガ型のTFTは、基板501側からゲート電極508〜511、ゲート絶縁膜507、半導体膜503〜506の順に形成されている。図13において、駆動回路部550にnチャネル型TFT552とpチャネル型TFT553が形成され、画素部551にスイッチング用TFT554、電流制御用TFT555、EL素子556が形成されている。層間絶縁膜は窒化シリコン、酸化窒化シリコンなどで形成される無機絶縁膜518と、アクリルまたはポリイミドなどで形成される有機樹脂膜519とから成っている。   The inverted staggered TFT is formed in the order of gate electrodes 508 to 511, a gate insulating film 507, and semiconductor films 503 to 506 from the substrate 501 side. In FIG. 13, an n-channel TFT 552 and a p-channel TFT 553 are formed in the driver circuit portion 550, and a switching TFT 554, a current control TFT 555, and an EL element 556 are formed in the pixel portion 551. The interlayer insulating film is composed of an inorganic insulating film 518 formed of silicon nitride, silicon oxynitride, or the like, and an organic resin film 519 formed of acrylic or polyimide.

駆動回路部550の回路構成は、ゲート信号側駆動回路とデータ信号側駆動回路とで異なるがここでは省略する。nチャネル型TFT552及びpチャネル型TFT553には配線512、配線513が接続され、これらのTFTを用いて、シフトレジスタやラッチ回路、バッファ回路などが形成される。   The circuit configuration of the drive circuit unit 550 differs between the gate signal side drive circuit and the data signal side drive circuit, but is omitted here. A wiring 512 and a wiring 513 are connected to the n-channel TFT 552 and the p-channel TFT 553, and a shift register, a latch circuit, a buffer circuit, or the like is formed using these TFTs.

画素部551では、データ配線514がスイッチング用TFT554のソース側に接続し、ドレイン側の配線515は電流制御用TFT555のゲート電極511と接続している。また、電流制御用TFT555のソース側は電源供給配線517と接続し、ドレイン側の電極516がEL素子の陽極と接続するように配線されている。   In the pixel portion 551, the data wiring 514 is connected to the source side of the switching TFT 554, and the drain side wiring 515 is connected to the gate electrode 511 of the current control TFT 555. The source side of the current control TFT 555 is connected to the power supply wiring 517, and the drain side electrode 516 is connected to the EL element anode.

そして、これら配線を覆うようにアクリルやポリイミドなどの有機樹脂、好適には感光性の有機樹脂を用いてバンプ520、521が形成される。感光性の樹脂を露光するときの、回折を積極的に利用することでバンプは側面がなだらかな曲面形状とすることができる。EL素子556は、ITO(酸化インジウム・スズ)で形成される陽極522、有機EL材料を用いて作製されるEL膜523、MgAgやLiFなどの材料を用いて形成される陰極524とから成っている。バンプ520、521は、陽極522の端部を覆うように形成され、陰極と陽極とがショートすることを防ぐ。   Then, bumps 520 and 521 are formed using an organic resin such as acrylic or polyimide, preferably a photosensitive organic resin so as to cover these wirings. By positively utilizing diffraction when exposing a photosensitive resin, the bumps can have a curved surface with a gentle side surface. The EL element 556 includes an anode 522 formed of ITO (indium tin oxide), an EL film 523 manufactured using an organic EL material, and a cathode 524 formed using a material such as MgAg or LiF. Yes. The bumps 520 and 521 are formed so as to cover the end portion of the anode 522 and prevent a short circuit between the cathode and the anode.

陽極522を透明電極を用いて作製し、陰極524を、仕事関数の小さいマグネシウム(Mg)、リチウム(Li)若しくはカルシウム(Ca)を含む金属材料を用いて作製することで、図13において矢印で示す方向に光が放射される。光の放射方向は、陰極に光反射性を持たせるかどうかで任意に決定することができる。   The anode 522 is manufactured using a transparent electrode, and the cathode 524 is manufactured using a metal material containing magnesium (Mg), lithium (Li), or calcium (Ca) having a low work function. Light is emitted in the direction shown. The light emission direction can be arbitrarily determined depending on whether or not the cathode has light reflectivity.

その他、TFTの構造を省けば、画素部の構成、及び表示装置の構成は実施例1と同様な構成となる。ポリシリコンを用いた逆スタガ型TFTは、アモルファスシリコンTFT(通常は逆スタガ型TFTで形成される)の製造ラインを流用して作製できるという利点がある。勿論、エキシマレーザーを用いたレーザーアニール技術を使えば、300℃以下のプロセス温度でもポリシリコンTFTが作製可能である。   In addition, if the TFT structure is omitted, the configuration of the pixel portion and the configuration of the display device are the same as those in the first embodiment. An inversely staggered TFT using polysilicon has an advantage that it can be manufactured by diverting an amorphous silicon TFT (usually formed by an inversely staggered TFT) production line. Of course, if a laser annealing technique using an excimer laser is used, a polysilicon TFT can be manufactured even at a process temperature of 300 ° C. or lower.

実施例1で示す表示装置を用いた電子装置の一例を図14を用いて説明する。図14の表示装置は、基板上に形成されたTFTによって画素920から成る画素部921、画素部の駆動に用いるデータ信号側駆動回路915、ゲート信号側駆動回路914が形成されている。データ信号側駆動回路915はデジタル駆動の例を示しているが、シフトレジスタ916、ラッチ回路917、918、バッファ回路919から成っている。また、ゲート信号側駆動回路914はシフトレジスタ、バッファ等(いずれも図示せず)を有している。   An example of an electronic device using the display device shown in Embodiment 1 will be described with reference to FIG. In the display device of FIG. 14, a pixel portion 921 including a pixel 920, a data signal side driver circuit 915 used for driving the pixel portion, and a gate signal side driver circuit 914 are formed by TFTs formed over a substrate. The data signal side driving circuit 915 is an example of digital driving, and includes a shift register 916, latch circuits 917 and 918, and a buffer circuit 919. The gate signal side driver circuit 914 includes a shift register, a buffer, and the like (none of which are shown).

画素部921は、VGAの場合には640×480(横×縦)の画素を有し、図8または図9で説明したように、各画素にはスイッチング用TFTおよび電流制御用TFTが配置されている。EL素子の動作は、ゲート配線が選択されるとスイッチング用TFTのゲートが開き、ソース配線のデータ信号がコンデンサに蓄積され、電流制御用TFTのゲートが開く。つまり、ソース配線から入力されるデータ信号により電流制御用TFTに電流が流れEL素子が発光する。   In the case of VGA, the pixel portion 921 has 640 × 480 (horizontal × vertical) pixels, and a switching TFT and a current control TFT are arranged in each pixel as described in FIG. 8 or FIG. ing. As for the operation of the EL element, when the gate wiring is selected, the gate of the switching TFT is opened, the data signal of the source wiring is accumulated in the capacitor, and the gate of the current control TFT is opened. That is, a current flows through the current control TFT by the data signal input from the source wiring, and the EL element emits light.

図14で示すシステムブロック図は、PDAなどの携帯型情報端末の形態を示すものである。実施例1で示す表示装置には画素部921、ゲート信号側駆動回路914、データ信号側駆動回路915が形成されている。   The system block diagram shown in FIG. 14 shows the form of a portable information terminal such as a PDA. In the display device shown in Embodiment 1, a pixel portion 921, a gate signal side driver circuit 914, and a data signal side driver circuit 915 are formed.

この表示装置に接続する外部回路の構成は、安定化電源と高速高精度のオペアンプからなる電源回路901、USB端子などを備えた外部インターフェイスポート902、CPU903、入力手段として用いるペン入力タブレット910及び検出回路911、クロック信号発振器912、コントロール回路913などから成っている。   The configuration of the external circuit connected to the display device is as follows: a power supply circuit 901 including a stabilized power supply and a high-speed and high-precision operational amplifier; an external interface port 902 including a USB terminal; a CPU 903; a pen input tablet 910 used as input means; The circuit 911, a clock signal oscillator 912, a control circuit 913, and the like.

CPU903は映像信号処理回路904やペン入力タブレット910からの信号を入力するタブレットインターフェイス905などが内蔵されている。また、VRAM906、DRAM907、フラッシュメモリ908及びメモリーカード909が接続されている。CPU903で処理された情報は、映像信号(データ信号)として映像信号処理回路904からコントロール回路913に出力する。コントロール回路913は、映像信号とクロックを、データ信号側駆動回路915とゲート信号側駆動回路914のそれぞれのタイミング仕様に変換する機能を持っている。   The CPU 903 incorporates a video signal processing circuit 904, a tablet interface 905 for inputting signals from the pen input tablet 910, and the like. Further, a VRAM 906, a DRAM 907, a flash memory 908, and a memory card 909 are connected. Information processed by the CPU 903 is output from the video signal processing circuit 904 to the control circuit 913 as a video signal (data signal). The control circuit 913 has a function of converting the video signal and the clock into timing specifications of the data signal side driving circuit 915 and the gate signal side driving circuit 914.

具体的には、映像信号を表示装置の各画素に対応したデータに振り分ける機能と、外部から入力される水平同期信号及び垂直同期信号を、駆動回路のスタート信号及び内蔵電源回路の交流化のタイミング制御信号に変換する機能を持っている。   Specifically, the function of distributing the video signal to the data corresponding to each pixel of the display device, the horizontal synchronization signal and the vertical synchronization signal input from the outside, the drive circuit start signal and the built-in power supply circuit AC timing Has the function of converting to control signals.

PDAなどの携帯型情報端末はACコンセントに接続しなくても、充電型のバッテリーを電源として屋外や電車の中などでも長時間使用できることが望まれている。また、このような電子装置は持ち運び易さを重点において、軽量化と小型化が同時に要求されている。電子装置の重量の大半を占めるバッテリーは容量を大きくすると重量増加してしまう。従って、このような電子装置の消費電力を低減するために、バックライトの点灯時間を制御したり、スタンバイモードを設定したりといった、ソフトウエア面からの対策も施す必要がある。   It is desired that a portable information terminal such as a PDA can be used for a long time outdoors or in a train with a rechargeable battery as a power source without being connected to an AC outlet. In addition, such electronic devices are required to be lighter and smaller at the same time with emphasis on ease of carrying. Batteries that occupy most of the weight of electronic devices increase in weight when the capacity is increased. Therefore, in order to reduce the power consumption of such an electronic device, it is necessary to take measures from the software side, such as controlling the lighting time of the backlight or setting the standby mode.

例えば、CPU903に対して一定時間ペン入力タブレット910からの入力信号がタブレットインターフェイス905に入らない場合、スタンバイモードとなり、図14において点線で囲んだ部分の動作を同期させて停止させる。表示装置ではEL素子の発光強度を減衰させるか、映像の表示そのものを止める。または、各画素にメモリーを備えておき、静止画像の表示モードに切り替えるなどの処置をとる。こうして、電子装置の消費電力を低減させる。   For example, when an input signal from the pen input tablet 910 does not enter the tablet interface 905 to the CPU 903 for a certain period of time, the standby mode is set, and the operation of the portion surrounded by a dotted line in FIG. In the display device, the light emission intensity of the EL element is attenuated or the image display itself is stopped. Alternatively, each pixel is provided with a memory and measures such as switching to a still image display mode are taken. Thus, power consumption of the electronic device is reduced.

また、静止画像を表示するにはCPU903の映像信号処理回路904、VRAM906のなどの機能を停止させ、消費電力の低減を図ることができる。図14では動作をおこなう部分を点線で表示してある。また、コントーロラ913は、図12で示すように、ICチップを用い、COG法で素子基板に装着してもよいし、表示装置の内部に一体形成してもよい。   In order to display a still image, functions such as the video signal processing circuit 904 and the VRAM 906 of the CPU 903 are stopped, so that power consumption can be reduced. In FIG. 14, the part that performs the operation is indicated by a dotted line. Further, as shown in FIG. 12, the controller 913 may use an IC chip and may be mounted on the element substrate by the COG method, or may be integrally formed inside the display device.

本実施例では、EL膜として一重項励起子(シングレット)により発光する有機化合物(以下、シングレット化合物という)および三重項励起子(トリプレット)により発光する有機化合物(以下、トリプレット化合物という)を併用する例について説明する。なお、シングレット化合物とは一重項励起のみを経由して発光する化合物を指し、トリプレット化合物とは三重項励起を経由して発光する化合物を指す。   In this embodiment, an organic compound that emits light by singlet excitons (hereinafter referred to as singlet compound) and an organic compound that emits light by triplet excitons (triplet) (hereinafter referred to as triplet compounds) are used in combination as the EL film. An example will be described. The singlet compound refers to a compound that emits light only through singlet excitation, and the triplet compound refers to a compound that emits light via triplet excitation.

トリプレット化合物としては以下の論文に記載の有機化合物が代表的な材料として挙げられる。(1)T.Tsutsui, C.Adachi, S.Saito, Photochemical Processes in Organized Molecular Systems, ed.K.Honda, (Elsevier Sci.Pub., Tokyo,1991) p.437.(2)M.A.Baldo, D.F.O'Brien, Y.You, A.Shoustikov, S.Sibley, M.E.Thompson, S.R.Forrest, Nature 395 (1998) p.151.この論文には次の式で示される有機化合物が開示されている。(3)M.A.Baldo, S.Lamansky, P.E.Burrrows, M.E.Thompson, S.R.Forrest, Appl.Phys.Lett.,75 (1999) p.4.(4)T.Tsutsui, M.-J.Yang, M.Yahiro, K.Nakamura, T.Watanabe, T.tsuji, Y.Fukuda, T.Wakimoto, S.Mayaguchi, Jpn.Appl.Phys., 38 (12B) (1999) L1502.   As the triplet compound, organic compounds described in the following papers can be cited as typical materials. (1) T. Tsutsui, C. Adachi, S. Saito, Photochemical Processes in Organized Molecular Systems, ed. K. Honda, (Elsevier Sci. Pub., Tokyo, 1991) p.437. (2) MABaldo, DF O'Brien, Y.You, A.Shoustikov, S.Sibley, METhompson, SRForrest, Nature 395 (1998) p.151. This paper discloses an organic compound represented by the following formula. (3) MABaldo, S. Lamansky, PEBurrrows, METhompson, SRForrest, Appl. Phys. Lett., 75 (1999) p. 4. (4) T. Tsutsui, M.-J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. tsuji, Y. Fukuda, T. Wakimoto, S. Mayaguchi, Jpn. Appl. Phys., 38 (12B) (1999) L1502.

また、上記論文に記載された発光性材料だけでなく、次の分子式で表される発光性材料(具体的には金属錯体もしくは有機化合物)を用いることが可能であると考えている。   In addition to the luminescent material described in the above paper, it is considered possible to use a luminescent material represented by the following molecular formula (specifically, a metal complex or an organic compound).

Figure 2006119669
Figure 2006119669

Figure 2006119669
Figure 2006119669

上記分子式において、Mは周期表の8〜10族に属する元素である。Etはエチル基である。上記論文では、白金、イリジウムが用いられている。また、本発明者はニッケル、コバルトもしくはパラジウムは、白金やイリジウムに比べて安価であるため、発光装置の製造コストを低減する上で好ましいと考えている。特に、ニッケルは錯体を形成しやすいため生産性も高く好ましいと考えられる。   In the above molecular formula, M is an element belonging to groups 8 to 10 of the periodic table. Et is an ethyl group. In the above paper, platinum and iridium are used. In addition, the present inventor believes that nickel, cobalt, or palladium is preferable for reducing the manufacturing cost of the light emitting device because it is cheaper than platinum or iridium. In particular, nickel is considered preferable because it is easy to form a complex and has high productivity.

上記トリプレット化合物は、シングレット化合物よりも発光効率が高く、同じ発光輝度を得るにも動作電圧(EL素子を発光させるに要する電圧)を低くすることが可能である。本実施例ではこの特徴を利用する。   The triplet compound has higher luminous efficiency than the singlet compound, and the operating voltage (voltage required for causing the EL element to emit light) can be lowered to obtain the same light emission luminance. This feature is used in this embodiment.

低分子の有機化合物を発光層として用いる場合、現状では赤色に発光する発光層の寿命が他の色に発光する発光層よりも短い。これは発光効率が他の色よりも劣るため、他の色と同じ発光輝度を得るためには動作電圧を高く設定しなければならず、その分劣化の進行も早いためである。   When a low molecular organic compound is used as the light emitting layer, the lifetime of the light emitting layer that emits red light is currently shorter than that of the light emitting layer that emits light in other colors. This is because the light emission efficiency is inferior to that of other colors, so that the operating voltage must be set high in order to obtain the same light emission luminance as the other colors, and the deterioration progresses accordingly.

しかしながら、本実施例では赤色に発光する発光層として発光効率の高いトリプレット化合物を用いているため、緑色に発光する発光層や青色に発光する発光層と同じ発光輝度を得ながらも動作電圧を揃えることが可能である。従って、赤色に発光する発光層の劣化が極端に早まることはなく、色ずれ等の問題を起こさずにカラー表示を行うことが可能となる。また、動作電圧を低く抑えることができることは、トランジスタの耐圧のマージンを低く設定できる点からも好ましいことである。   However, since a triplet compound having high luminous efficiency is used as the light emitting layer emitting red light in this embodiment, the operating voltage is adjusted while obtaining the same light emission luminance as the light emitting layer emitting green light and the light emitting layer emitting blue light. It is possible. Therefore, the deterioration of the light emitting layer emitting red light is not accelerated rapidly, and color display can be performed without causing problems such as color misregistration. In addition, it is preferable that the operating voltage can be kept low from the viewpoint that the breakdown voltage margin of the transistor can be set low.

なお、本実施例では、赤色に発光する発光層としてトリプレット化合物を用いた例を示しているが、さらに緑色に発光する発光層もしくは青色に発光する発光層にトリプレット化合物を用いることも可能である。   In this embodiment, an example is shown in which a triplet compound is used as a light emitting layer that emits red light. However, a triplet compound can also be used for a light emitting layer that emits green light or a light emitting layer that emits blue light. .

RGBカラー表示をする場合には、画素部に赤色に発光するEL素子、緑色に発光するEL素子、青色に発光するEL素子を設ける必要がある。この場合、赤色に発光するEL素子にトリプレット化合物を用い、その他はシングレット化合物を用いて形成することも可能である。   In the case of performing RGB color display, it is necessary to provide an EL element that emits red light, an EL element that emits green light, and an EL element that emits blue light in the pixel portion. In this case, a triplet compound can be used for an EL element that emits red light, and the others can be formed using a singlet compound.

こうしてトリプレット化合物とシングレット化合物を使い分けることでそれぞれのEL素子の動作電圧をすべて同一(20V以下、好ましくは3〜20V)とすることが可能となる。従って、表示装置に必要な電源を例えば3Vもしくは5Vで統一することができるため、回路設計が容易となる利点がある。なお、本実施例の構成は、実施例1〜実施例3のいずれの構成とも組み合わせて実施することが可能である。   In this way, by properly using the triplet compound and the singlet compound, the operating voltages of the respective EL elements can all be the same (20 V or less, preferably 3 to 20 V). Therefore, since the power source required for the display device can be unified at, for example, 3V or 5V, there is an advantage that the circuit design is facilitated. In addition, the structure of a present Example can be implemented in combination with any structure of Example 1- Example 3.

本発明を実施して形成された表示装置は様々な電気器具に内蔵され、画素部は映像表示部として用いられる。本発明の電子装置としては、携帯電話、PDA、電子書籍、ビデオカメラ、ノート型パーソナルコンピュータ、記録媒体を備えた画像再生装置、例えばDVD(Digital Versatile Disc)プレーヤー、デジタルカメラ、などが挙げられる。それら電子装置の具体例を図15、図16に示す。   A display device formed by implementing the present invention is built in various electric appliances, and a pixel portion is used as an image display portion. Examples of the electronic device of the present invention include a mobile phone, a PDA, an electronic book, a video camera, a notebook personal computer, and an image reproducing device provided with a recording medium, such as a DVD (Digital Versatile Disc) player and a digital camera. Specific examples of these electronic devices are shown in FIGS.

図15(A)は携帯電話であり、表示用パネル9001、操作用パネル9002、接続部9003から成り、表示用パネル9001には表示装置9004、音声出力部9005、アンテナ9009などが設けられている。操作パネル9002には操作キー9006、電源スイッチ9007、音声入力部9008などが設けられている。本発明は表示装置9004に適用することができる。   FIG. 15A illustrates a mobile phone, which includes a display panel 9001, an operation panel 9002, and a connection portion 9003. The display panel 9001 is provided with a display device 9004, an audio output portion 9005, an antenna 9009, and the like. . The operation panel 9002 is provided with operation keys 9006, a power switch 9007, a voice input unit 9008, and the like. The present invention can be applied to the display device 9004.

図15(B)も携帯電話であり、本体または筐体9101、表示装置9102、音声出力部9103、音声入力部9104、アンテナ9105を備えている。表示装置9102はタッチ式センサーが組み込んで、画面上でボタン操作ができるようにしても良い。本発明において、プラスチック基板にTFT素子、EL素子を形成した表示装置を用いると、表示装置を完成した後に基板を湾曲させることが可能である。このような特性を生かして、人間工学に基づいて設計された3次元的な曲面を有する筐体にも違和感なく組み入れることができる。   FIG. 15B also illustrates a mobile phone, which includes a main body or a housing 9101, a display device 9102, an audio output portion 9103, an audio input portion 9104, and an antenna 9105. The display device 9102 may incorporate a touch sensor so that buttons can be operated on the screen. In the present invention, when a display device in which a TFT element and an EL element are formed on a plastic substrate is used, the substrate can be curved after the display device is completed. Taking advantage of such characteristics, it can be incorporated into a housing having a three-dimensional curved surface designed based on ergonomics without a sense of incongruity.

図15(C)はモバイルコンピュータ或いは携帯型情報端末であり、本体9201、カメラ部9202、受像部9203、操作スイッチ9204、表示装置9205で構成されている。本発明は表示装置9205に適用することができる。このような電子装置には、3インチから5インチクラスの表示装置が用いられるが、本発明の表示装置を用いることにより、携帯型情報端末の軽量化を図ることができる。   FIG. 15C illustrates a mobile computer or a portable information terminal, which includes a main body 9201, a camera portion 9202, an image receiving portion 9203, operation switches 9204, and a display device 9205. The present invention can be applied to the display device 9205. For such an electronic device, a 3 inch to 5 inch class display device is used; however, by using the display device of the present invention, the weight of the portable information terminal can be reduced.

図15(D)は携帯書籍であり、本体9301、表示装置9303、記憶媒体
9304、操作スイッチ9305、アンテナ9306から構成されており、ミニディスク(MD)やDVDに記憶されたデータや、アンテナで受信したデータを表示するものである。本発明は表示装置9303に用いることができる。携帯書籍は、4インチから12インチクラスの表示装置が用いられるが、本発明の表示装置を用いることにより、携帯書籍の軽量化と薄型化を図ることができる。
FIG. 15D illustrates a portable book which includes a main body 9301, a display device 9303, a storage medium 9304, operation switches 9305, and an antenna 9306, and includes data stored in a minidisc (MD) or DVD, and an antenna. The received data is displayed. The present invention can be used for the display device 9303. A portable book uses a 4-inch to 12-inch class display device, but by using the display device of the present invention, the portable book can be reduced in weight and thickness.

図15(E)はビデオカメラであり、本体9401、表示装置9402、音声入力部9403、操作スイッチ9404、バッテリー9405などで構成されている。本発明は表示装置9402に適用することができる。   FIG. 15E illustrates a video camera which includes a main body 9401, a display device 9402, an audio input portion 9403, operation switches 9404, a battery 9405, and the like. The present invention can be applied to the display device 9402.

図16(A)はパーソナルコンピュータであり、本体9601、画像入力部9602、表示装置9603、キーボード9604で構成される。本発明は表示装置9603に適用することができる。   FIG. 16A illustrates a personal computer which includes a main body 9601, an image input portion 9602, a display device 9603, and a keyboard 9604. The present invention can be applied to the display device 9603.

図16(B)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体9701、表示装置9702、スピーカ部9703、記録媒体9704、操作スイッチ9705で構成される。なお、この装置は記録媒体としてDVD(Digital Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明は表示装置9702に適用することができる。   FIG. 16B shows a player using a recording medium (hereinafter referred to as a recording medium) in which a program is recorded. The player includes a main body 9701, a display device 9702, a speaker portion 9703, a recording medium 9704, and operation switches 9705. This apparatus uses a DVD (Digital Versatile Disc), CD, or the like as a recording medium, and can perform music appreciation, movie appreciation, games, and the Internet. The present invention can be applied to the display device 9702.

図16(C)はデジタルカメラであり、本体9801、表示装置9802、接眼部9803、操作スイッチ9804、受像部(図示しない)で構成される。本発明は表示装置9802に適用することができる。   FIG. 16C illustrates a digital camera which includes a main body 9801, a display device 9802, an eyepiece unit 9803, an operation switch 9804, and an image receiving unit (not shown). The present invention can be applied to the display device 9802.

図16(D)もデジタルカメラであり、本体9901、表示装置9902、受像部9903、操作スイッチ9904、バッテリー9905などで構成される。本発明は表示装置9902に適用することができる。本発明の有機樹脂基板を用いると、表示装置を完成した後に基板を湾曲させることが可能である。このような特性を生かして、人間工学に基づいて設計された3次元的な曲面を有する筐体にも違和感なく組み入れることができる。   FIG. 16D also illustrates a digital camera, which includes a main body 9901, a display device 9902, an image receiving portion 9903, operation switches 9904, a battery 9905, and the like. The present invention can be applied to the display device 9902. When the organic resin substrate of the present invention is used, the substrate can be curved after the display device is completed. Taking advantage of such characteristics, it can be incorporated into a housing having a three-dimensional curved surface designed based on ergonomics without a sense of incongruity.

また、図15(A)と(B)で示す携帯電話操作において、操作キーを使用している時に輝度を上げ、操作スイッチの使用が終わったら輝度を下げることで低消費電力化することができる。また、着信した時に表示装置の輝度を上げ、通話中は輝度を下げることによっても低消費電力化することができる。また、継続的に使用している場合に、リセットしない限り時間制御で表示がオフになるような機能を持たせることで低消費電力化を図ることもできる。なお、これらはマニュアル制御であっても良い。   Further, in the cellular phone operation shown in FIGS. 15A and 15B, the power consumption can be reduced by increasing the luminance when using the operation keys and decreasing the luminance when the operation switch is used. . Further, the power consumption can be reduced by increasing the brightness of the display device when an incoming call is received and decreasing the brightness during a call. Further, in the case of continuous use, it is possible to reduce power consumption by providing a function of turning off the display by time control unless resetting. Note that these may be manual control.

ここでは図示しなかったが、本発明はその他にもナビゲーションシステムをはじめ冷蔵庫、洗濯機、電子レンジ、固定電話機、ファクシミリなどに組み込む表示装置としても適用することも可能である。このように本発明の適用範囲はきわめて広く、さまざまな製品に適用することができる。   Although not shown here, the present invention can also be applied to a display device incorporated in a navigation system, a refrigerator, a washing machine, a microwave oven, a fixed telephone, a facsimile, and the like. Thus, the application range of the present invention is very wide and can be applied to various products.

本発明におけるEL素子の断面を説明する断面図。Sectional drawing explaining the cross section of the EL element in this invention. 本発明におけるバンプの断面を説明する断面図。Sectional drawing explaining the cross section of the bump in this invention. 本発明におけるバンプの断面を説明する断面図。Sectional drawing explaining the cross section of the bump in this invention. 本発明のバンプの作製工程を説明する断面図(実施形態)。Sectional drawing explaining the manufacturing process of the bump of this invention (embodiment). 本発明のバンプの作製工程を説明する断面図(実施形態)。Sectional drawing explaining the manufacturing process of the bump of this invention (embodiment). 本発明のバンプの作製工程を説明する断面図(実施形態)。Sectional drawing explaining the manufacturing process of the bump of this invention (embodiment). 本発明のバンプの作製工程を説明する断面図(実施形態)。Sectional drawing explaining the manufacturing process of the bump of this invention (embodiment). 表示装置の駆動回路と画素部の構成を説明する断面図(実施例1)。Sectional drawing explaining the structure of the drive circuit and pixel part of a display apparatus (Example 1). 表示装置の画素部の構成を説明する上面図と等価回路図(実施例1)。4A and 4B are a top view and an equivalent circuit diagram illustrating a structure of a pixel portion of a display device (Example 1). 表示装置の入力端子部の構成を説明する図(実施例1)。FIG. 6 illustrates a configuration of an input terminal portion of a display device (Example 1). 表示装置の入力端子部の構成を説明する図(実施例1)。FIG. 6 illustrates a configuration of an input terminal portion of a display device (Example 1). 本発明のEL表示装置の外観を示す斜視図(実施例1)。1 is a perspective view showing an external appearance of an EL display device of the present invention (Example 1). FIG. 表示装置の駆動回路と画素部の構成を説明する断面図(実施例2)。Sectional drawing explaining the structure of the drive circuit and pixel part of a display apparatus (Example 2). 表示装置を内蔵する電子装置のシステムブロック図(実施例3)。FIG. 12 is a system block diagram of an electronic device incorporating a display device (Example 3). 電子装置の一例を説明する図(実施例5)。FIG. 10 illustrates an example of an electronic device (Example 5). 電子装置の一例を説明する図(実施例5)。FIG. 10 illustrates an example of an electronic device (Example 5). EL素子の光の放射方向を示す図(実施例1)。The figure which shows the radiation | emission direction of the light of an EL element (Example 1). 従来例のバンプの形状を説明する図。The figure explaining the shape of the bump of a prior art example. 本発明のバンプの作製工程を説明する断面図(実施形態)。Sectional drawing explaining the manufacturing process of the bump of this invention (embodiment). 本発明のバンプの形状を説明する図。The figure explaining the shape of the bump of this invention.

Claims (25)

一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記バンプの側面は前記一方の電極の上面に接する下端部と、前記バンプの平坦な上面に連続する上端部とを有し、
前記下端部の側面は前記一方の電極上方に中心を有する楕円または円に接し、前記上端部の側面は前記バンプの内部に中心を有する楕円または円に接することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The side surface of the bump has a lower end portion in contact with the upper surface of the one electrode, and an upper end portion continuous with the flat upper surface of the bump,
The display device according to claim 1, wherein a side surface of the lower end portion is in contact with an ellipse or circle having a center above the one electrode, and a side surface of the upper end portion is in contact with an ellipse or circle having a center inside the bump.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記バンプの側面は前記一方の電極の上面に接する下端部と、前記バンプの平坦な上面に連続する上端部と、前記下端部と上端部との間の中央部と、を有し、前記一方の電極上方に中心を有する楕円若しくは円に前記下端部が接し、
前記中央部に接する面は、前記一方の電極の上面に対する角度が35°以上70°以下であり、
前記バンプの内部に中心を有する楕円または円に前記上端部が接することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The side surface of the bump has a lower end portion in contact with the upper surface of the one electrode, an upper end portion continuous with the flat upper surface of the bump, and a central portion between the lower end portion and the upper end portion, The lower end is in contact with an ellipse or circle having a center above the electrode,
The surface in contact with the central portion has an angle with respect to the upper surface of the one electrode of 35 ° to 70 °,
The display device, wherein the upper end portion is in contact with an ellipse or a circle having a center inside the bump.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記一方の電極の上面に接する前記バンプの下端部は、前記一方の電極と前記下端部との接線の上方の曲率中心及び第1の曲率半径を有する円に接する曲面状の側面を有し、
前記バンプの上端部は、前記バンプの平坦な上面に連続し、
前記バンプの上端部は、前記上端部と前記上面との境界の下方の曲率中心及び第2の曲率半径を有する円に接する曲面状の側面を有することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The lower end of the bump in contact with the upper surface of the one electrode has a curved side surface in contact with a circle having a center of curvature above the tangent line between the one electrode and the lower end and a first radius of curvature,
The upper end of the bump is continuous with the flat upper surface of the bump,
An upper end portion of the bump has a curved side surface in contact with a circle having a center of curvature below a boundary between the upper end portion and the upper surface and a second radius of curvature.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記一方の電極の上面に接する前記バンプの下端部は、前記一方の電極と前記下端部との接線の上方の曲率中心及び第1の曲率半径を有する円に接する曲面状の側面を有し、
前記バンプの中央部の側面に接する面は、前記一方の電極の上面に対する角度が35°以上70°以下であり、
前記バンプの上端部は、前記バンプの平坦な上面に連続し、
前記バンプの上端部は、前記上端部と前記上面との境界の下方の曲率中心及び第2の曲率半径を有する円に接する曲面状の側面を有することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The lower end of the bump in contact with the upper surface of the one electrode has a curved side surface in contact with a circle having a center of curvature above the tangent line between the one electrode and the lower end and a first radius of curvature,
The surface in contact with the side surface of the central portion of the bump has an angle with respect to the upper surface of the one electrode of 35 ° or more and 70 ° or less,
The upper end of the bump is continuous with the flat upper surface of the bump,
An upper end portion of the bump has a curved side surface in contact with a circle having a center of curvature below a boundary between the upper end portion and the upper surface and a second radius of curvature.
請求項1乃至4のいずれか一項において、
前記バンプの側面の前記下端部から前記上端部において、前記バンプの側面に接する面の前記一方の電極の上面に対する角度が連続的に変化し、前記角度が0°以上70°以下の範囲であることを特徴とする表示装置。
In any one of Claims 1 thru | or 4,
From the lower end portion to the upper end portion of the side surface of the bump, the angle of the surface in contact with the side surface of the bump with respect to the upper surface of the one electrode continuously changes, and the angle is in the range of 0 ° to 70 °. A display device characterized by that.
請求項3乃至5のいずれか一項において、
前記第1の曲率半径及び前記第2の曲率半径が0.2μm以上3.0μm以下であることを特徴とする表示装置。
In any one of Claims 3 thru | or 5,
The display device, wherein the first curvature radius and the second curvature radius are 0.2 μm or more and 3.0 μm or less.
請求項4乃至6のいずれか一項において、
前記バンプの厚さが1.0μm以上3.0μm以下であることを特徴とする表示装置。
In any one of Claims 4 thru | or 6,
A display device, wherein the bump has a thickness of 1.0 μm to 3.0 μm.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記バンプの側面は前記一方の電極の上面に接する下端部と、前記バンプの平坦な上面に連続する上端部とを有し、前記下端部から前記上端部において、前記バンプの側面に接する面は、前記一方の電極の上面に対する角度が連続的に変化し、前記角度が0°以上70°以下の範囲であることを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The side surface of the bump has a lower end portion in contact with the upper surface of the one electrode and an upper end portion continuous with the flat upper surface of the bump, and the surface in contact with the side surface of the bump from the lower end portion to the upper end portion is The display device is characterized in that an angle with respect to the upper surface of the one electrode continuously changes, and the angle is in a range of 0 ° to 70 °.
請求項1、請求項3、請求項5、請求項6、請求項7又は請求項8において、前記他方の電極が前記バンプの上端部及び下端部と重なって形成することを特徴とする表示装置。   5. The display device according to claim 1, wherein the other electrode is formed so as to overlap with an upper end portion and a lower end portion of the bump. . 請求項2、請求項4、請求項5、請求項6又は請求項7において、
前記他方の電極が前記バンプの上端部、中央部、及び下端部と重なって形成することを特徴とする表示装置。
In claim 2, claim 4, claim 5, claim 6 or claim 7,
The display device, wherein the other electrode is formed so as to overlap an upper end portion, a central portion, and a lower end portion of the bump.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記バンプの表面は前記一方の電極の上面に接する下端部と、上端部とを有し、
前記一方の電極の上面に接する前記バンプの下端部は、前記一方の電極上に中心を有する楕円若しくは円状の表面を有し、
前記バンプの上端部は、前記バンプの表面の内側に中心を有する楕円若しくは円状の表面を有することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The surface of the bump has a lower end contacting the upper surface of the one electrode, and an upper end.
The lower end of the bump in contact with the upper surface of the one electrode has an elliptical or circular surface having a center on the one electrode,
An upper end portion of the bump has an elliptical or circular surface having a center inside the surface of the bump.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、
前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記一方の電極の上面に接する前記バンプの下端部は、前記一方の電極と前記下端部との接線の上方の曲率中心及び第1の曲率半径を有する円に接する曲面状の側面を有し、
前記バンプの上端部は、前記上端部の下方の曲率中心及び第2の曲率半径により決まる曲面状の表面を有することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film,
A bump selectively formed covering an end of the one electrode;
The lower end of the bump in contact with the upper surface of the one electrode has a curved side surface in contact with a circle having a center of curvature above the tangent line between the one electrode and the lower end and a first radius of curvature,
An upper end portion of the bump has a curved surface determined by a center of curvature below the upper end portion and a second radius of curvature.
一方の電極と、前記一方の電極上のEL膜と、前記EL膜上の他方の電極とを含むEL素子を用いた表示装置において、前記一方の電極の端部を覆って選択的に形成されたバンプを有し、
前記一方の電極の上面に接する前記バンプの下端部は、前記一方の電極と前記下端部との接線の上方の曲率中心及び第1の曲率半径を有する円に接する曲面状の側面を有し、
前記バンプの中央部の側面に接する面は、の前記一方の電極の上面に対する角度が35°以上70°以下であり、
前記バンプの上端部は、前記上端部の下方の曲率中心及び第2の曲率半径により決まる曲面状の表面を有することを特徴とする表示装置。
In a display device using an EL element including one electrode, an EL film on the one electrode, and the other electrode on the EL film, the electrode is selectively formed so as to cover an end portion of the one electrode. Have bumps,
The lower end of the bump in contact with the upper surface of the one electrode has a curved side surface in contact with a circle having a center of curvature above the tangent line between the one electrode and the lower end and a first radius of curvature,
The surface in contact with the side surface of the central portion of the bump has an angle of 35 ° to 70 ° with respect to the upper surface of the one electrode.
An upper end portion of the bump has a curved surface determined by a center of curvature below the upper end portion and a second radius of curvature.
請求項11乃至13のいずれか一項において、
前記バンプの表面の前記下端部から前記上端部において、前記バンプの表面に接する面の前記電極の上面に対する角度が連続的に変化し、前記角度が0°以上70°以下の範囲であることを特徴とする表示装置。
In any one of claims 11 to 13,
The angle of the surface in contact with the surface of the bump to the upper surface of the electrode continuously changes from the lower end portion to the upper end portion of the bump surface, and the angle is in the range of 0 ° to 70 °. Characteristic display device.
請求項12乃至14のいずれか一項において、
前記第1の曲率半径及び前記第2の曲率半径が0.2μm以上3.0μm以下であることを特徴とする表示装置。
In any one of Claims 12 to 14,
The display device, wherein the first curvature radius and the second curvature radius are 0.2 μm or more and 3.0 μm or less.
請求項11乃至15のいずれか一項において、
前記バンプの厚さが3.0μm以下であることを特徴とする表示装置。
In any one of Claims 11 thru | or 15,
A display device, wherein the bump has a thickness of 3.0 μm or less.
請求項11、請求項12、請求項14、請求項15又は請求項16において、
前記他方の電極が前記バンプの下端部及び上端部と重なって形成することを特徴とする表示装置。
In claim 11, claim 12, claim 14, claim 15 or claim 16,
The display device, wherein the other electrode is formed so as to overlap a lower end portion and an upper end portion of the bump.
請求項13、請求項14又は請求項16において、
前記他方の電極が前記バンプの上端部、中央部、及び下端部と重なって形成することを特徴とする表示装置。
In claim 13, claim 14 or claim 16,
The display device, wherein the other electrode is formed so as to overlap an upper end portion, a central portion, and a lower end portion of the bump.
請求項1乃至18のいずれか一項において、
前記電極は陽極若しくは陰極であることを特徴とする表示装置。
In any one of claims 1 to 18,
The display device, wherein the electrode is an anode or a cathode.
請求項1乃至19のいずれか一項において、
前記EL素子は前記電極及び前記バンプ上に有機材料からなるEL膜を有することを特徴とする表示装置。
In any one of claims 1 to 19,
The display device, wherein the EL element has an EL film made of an organic material on the electrode and the bump.
請求項1乃至20のいずれか一項記載の表示装置を用いた、パーソナルコンピュータ、ビデオカメラ、携帯型情報端末、デジタルカメラ、DVDプレーヤー、電子遊技機器。   A personal computer, a video camera, a portable information terminal, a digital camera, a DVD player, and an electronic game machine using the display device according to any one of claims 1 to 20. 電極を形成する第1工程と、
前記電極上に絶縁膜を成膜する第2工程と、
前記絶縁膜上にレジスト膜をパターニングする第3工程と、
前記絶縁膜を少なくとも第1の反応性ガスと第2の反応性ガスを用いてエッチングして絶縁膜を形成する第4工程と、
レジスト膜を除去する第5工程と、
前記絶縁膜上にEL膜を形成する第6工程とを有し、
前記第4工程において、第2の反応ガスに対し、第1の反応性ガスの流量比が時間毎に増加する第1のエッチング工程と、第1の反応ガスと第2の反応性ガスの流量比が一定である第2のエッチング工程と、第2の反応ガスに対し、第1の反応性ガスの流量比が時間毎に低下する第3のエッチング工程とを有することを特徴とする表示装置の作製方法。
A first step of forming an electrode;
A second step of forming an insulating film on the electrode;
A third step of patterning a resist film on the insulating film;
A fourth step of forming the insulating film by etching the insulating film using at least a first reactive gas and a second reactive gas;
A fifth step of removing the resist film;
A sixth step of forming an EL film on the insulating film,
In the fourth step, the first etching step in which the flow rate ratio of the first reactive gas to the second reactive gas increases with time, and the flow rates of the first reactive gas and the second reactive gas. A display device comprising: a second etching step in which the ratio is constant; and a third etching step in which a flow rate ratio of the first reactive gas to the second reactive gas decreases with time. Manufacturing method.
請求項21において、
前記第1の反応性ガスがCF4であり、前記第2の反応性ガスがO2であり、前記絶縁膜がアクリル樹脂膜若しくはポリイミド樹脂膜であることを特徴とする表示装置の作製方法。
In claim 21,
The method for manufacturing a display device, wherein the first reactive gas is CF 4 , the second reactive gas is O 2 , and the insulating film is an acrylic resin film or a polyimide resin film.
電極上にポリアミック酸を主成分とする有機膜を塗布する第1工程と、
前記有機膜を50℃以上150℃以下の温度で熱処理する第2工程と、
前記有機膜上にレジスト膜を成膜する第3工程と、
前記レジスト膜を露光する第4工程と、
前記レジスト膜及び前記有機膜の一部を選択的に塩基性を示す現像液に溶解する第5工程と、
前記レジスト膜を除去する第6工程と、
前記有機膜を180℃以上350℃以下の温度で熱処理し、ポリイミド樹脂膜を形成する第7工程と、
前記ポリイミド樹脂膜上にEL膜を形成する第8工程とを有することを特徴とする表示装置の作製方法。
A first step of applying an organic film mainly composed of polyamic acid on the electrode;
A second step of heat-treating the organic film at a temperature of 50 ° C. or higher and 150 ° C. or lower;
A third step of forming a resist film on the organic film;
A fourth step of exposing the resist film;
A fifth step of selectively dissolving a part of the resist film and the organic film in a developer having basicity;
A sixth step of removing the resist film;
A seventh step of heat-treating the organic film at a temperature of 180 ° C. or higher and 350 ° C. or lower to form a polyimide resin film;
And a eighth step of forming an EL film over the polyimide resin film.
請求項22乃至24のいずれか一項記載の表示装置の作製方法を用いた、パーソナルコンピュータ、ビデオカメラ、携帯型情報端末、デジタルカメラ、デジタルビデオディスクプレーヤー、電子遊技機器の作製方法。   25. A method for manufacturing a personal computer, a video camera, a portable information terminal, a digital camera, a digital video disc player, or an electronic game machine, using the method for manufacturing a display device according to any one of claims 22 to 24.
JP2006003551A 2000-09-18 2006-01-11 Light emitting device and manufacturing method thereof Expired - Lifetime JP5041703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003551A JP5041703B2 (en) 2000-09-18 2006-01-11 Light emitting device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000282312 2000-09-18
JP2000282312 2000-09-18
JP2006003551A JP5041703B2 (en) 2000-09-18 2006-01-11 Light emitting device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001284174A Division JP2002164181A (en) 2000-09-18 2001-09-18 Display device and its manufacturing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011243339A Division JP5194161B2 (en) 2000-09-18 2011-11-07 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP2012104511A Division JP2012181538A (en) 2000-09-18 2012-05-01 Light-emitting device

Publications (3)

Publication Number Publication Date
JP2006119669A true JP2006119669A (en) 2006-05-11
JP2006119669A5 JP2006119669A5 (en) 2008-09-04
JP5041703B2 JP5041703B2 (en) 2012-10-03

Family

ID=36537528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003551A Expired - Lifetime JP5041703B2 (en) 2000-09-18 2006-01-11 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5041703B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192122A (en) * 2009-02-13 2010-09-02 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el lighting
CN113178463A (en) * 2021-04-07 2021-07-27 深圳市华星光电半导体显示技术有限公司 Display panel and manufacturing method thereof
JP2022519393A (en) * 2018-11-20 2022-03-24 京東方科技集團股▲ふん▼有限公司 Pixel structure, display device and manufacturing method of pixel structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299783A (en) * 1985-10-23 1987-05-09 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Electroluminescent display
JPH03250583A (en) * 1990-02-28 1991-11-08 Idemitsu Kosan Co Ltd Electroluminescence element and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299783A (en) * 1985-10-23 1987-05-09 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Electroluminescent display
JPH03250583A (en) * 1990-02-28 1991-11-08 Idemitsu Kosan Co Ltd Electroluminescence element and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192122A (en) * 2009-02-13 2010-09-02 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el lighting
JP2022519393A (en) * 2018-11-20 2022-03-24 京東方科技集團股▲ふん▼有限公司 Pixel structure, display device and manufacturing method of pixel structure
JP7348075B2 (en) 2018-11-20 2023-09-20 京東方科技集團股▲ふん▼有限公司 Pixel structure, display device, and method for manufacturing pixel structure
CN113178463A (en) * 2021-04-07 2021-07-27 深圳市华星光电半导体显示技术有限公司 Display panel and manufacturing method thereof

Also Published As

Publication number Publication date
JP5041703B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP6393007B2 (en) Active matrix light emitting device
JP2002164181A (en) Display device and its manufacturing method
TWI401638B (en) Display device and electronic device
JP5041703B2 (en) Light emitting device and manufacturing method thereof
JP2006011406A (en) Display device and electronic device
JP4646874B2 (en) Display device, mobile phone, digital camera and electronic device
JP2005309400A (en) Light emitting device and manufacturing method thereof
JP2003282273A (en) Display device, its manufacturing method, and electronic equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term