JP2006119405A - Liquid crystal display device and electronic appliance - Google Patents

Liquid crystal display device and electronic appliance Download PDF

Info

Publication number
JP2006119405A
JP2006119405A JP2004307752A JP2004307752A JP2006119405A JP 2006119405 A JP2006119405 A JP 2006119405A JP 2004307752 A JP2004307752 A JP 2004307752A JP 2004307752 A JP2004307752 A JP 2004307752A JP 2006119405 A JP2006119405 A JP 2006119405A
Authority
JP
Japan
Prior art keywords
liquid crystal
control means
display device
alignment control
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004307752A
Other languages
Japanese (ja)
Other versions
JP2006119405A5 (en
JP4604645B2 (en
Inventor
Joji Nishimura
城治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004307752A priority Critical patent/JP4604645B2/en
Publication of JP2006119405A publication Critical patent/JP2006119405A/en
Publication of JP2006119405A5 publication Critical patent/JP2006119405A5/ja
Application granted granted Critical
Publication of JP4604645B2 publication Critical patent/JP4604645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction with which alignment controllability of a liquid crystal is further heightened by a method different from a conventional method, in a liquid crystal display device equipped with an alignment controlling structure. <P>SOLUTION: The liquid crystal display device comprises a plurality of pixel regions constructed by arranging the liquid crystal 130, which is aligned in a direction substantially vertical to inside faces of a pair of substrates 110, 120 in the case with no electric field applied thereto, between the pair of substrates 110, 120, and is characterized by being equipped with a principal alignment controlling means 122a formed on the inside face of one of the substrate out of the pair of substrates inside the pixel region, and a plurality of auxiliary alignment controlling means 122b formed on the inside face of the one substrate or the other substrate inside the pixel region, arranged on the periphery of the principal alignment controlling means so as to be extended to a direction going away from the principal alignment controlling means, and having a width S2 less than a width W1 of the principal alignment controlling means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は液晶表示装置及び電子機器に係り、特に、電界無印加状態で液晶が基板の内面に対して実質的に垂直に配向する垂直配向モードの液晶表示装置に関する。   The present invention relates to a liquid crystal display device and an electronic apparatus, and more particularly to a vertical alignment mode liquid crystal display device in which liquid crystal is aligned substantially perpendicular to the inner surface of a substrate in the absence of an electric field.

従来の液晶表示装置は、一般に、一対の基板間に液晶を封入したセル構造を有し、この液晶の配向状態を電界によって制御することで表示を行うように構成されている。このような液晶表示装置としては、電界無印加状態で液晶の配向方向が液晶層の厚さ方向に90度捩れ、電界印加状態で液晶が基板の内面に対して略垂直に配向するTNモードの液晶表示装置や、電界の有無で液晶の配向方向が基板の内面と平行な平面上を旋回するIPSモードの液晶表示装置などがあるが、TNモードでは視野角が狭いという問題点があり、また、IPSモードでは視野角を比較的広く確保できるものの、応答速度が遅い、光透過率が不十分である、製造が難しいなどの問題点がある。   Conventional liquid crystal display devices generally have a cell structure in which liquid crystal is sealed between a pair of substrates, and are configured to perform display by controlling the alignment state of the liquid crystal by an electric field. Such a liquid crystal display device has a TN mode in which the alignment direction of the liquid crystal is twisted 90 degrees in the thickness direction of the liquid crystal layer when no electric field is applied, and the liquid crystal is aligned substantially perpendicular to the inner surface of the substrate when the electric field is applied. There are liquid crystal display devices and IPS mode liquid crystal display devices in which the alignment direction of the liquid crystals rotates on a plane parallel to the inner surface of the substrate in the presence or absence of an electric field, but there is a problem that the viewing angle is narrow in the TN mode. In the IPS mode, although a wide viewing angle can be secured, there are problems such as a slow response speed, insufficient light transmittance, and difficulty in manufacturing.

そこで、広い視野角を確保しつつ、その他の特性をも満足することのできる方式として、VA(Vertical Aligned)モードの液晶表示装置が開発されている。この液晶表示装置は、一般的には誘電異方性が負の液晶を用い、電圧無印加状態で液晶が基板の内面に対して略垂直に配向し、電圧印加状態で液晶が倒れて基板の内面に対して略平行に配向するように構成される。このVAモードの液晶表示装置の欠点は、電界印加状態において液晶の倒れる方位を制御することが難しいことにある。この液晶が倒れる方位が偏ると視角依存性が生ずるため、通常、基板の内面に突起やスリット(電極パターンの開口部)などの配向制御構造を形成し、これらの配向制御構造によって液晶の倒れる方位が偏らないように構成して視角依存性を低減させている(例えば、以下の特許文献1参照)。   Therefore, a VA (Vertical Aligned) mode liquid crystal display device has been developed as a method that can satisfy other characteristics while ensuring a wide viewing angle. This liquid crystal display device generally uses a liquid crystal having a negative dielectric anisotropy, and the liquid crystal is oriented substantially perpendicularly to the inner surface of the substrate in a state where no voltage is applied. It is configured to be oriented substantially parallel to the inner surface. The drawback of this VA mode liquid crystal display device is that it is difficult to control the direction in which the liquid crystal tilts when an electric field is applied. If the orientation in which the liquid crystal is tilted is biased, viewing angle dependence occurs. Therefore, an orientation control structure such as a projection or slit (electrode pattern opening) is usually formed on the inner surface of the substrate, and the orientation in which the liquid crystal is tilted by these orientation control structures Is configured so as not to be biased to reduce the viewing angle dependency (see, for example, Patent Document 1 below).

また、画素領域を複数のサブドットに分割し、これらのサブドット毎に上記の配向制御構造(突起及び電極の開口部)を設けることにより、配向制御構造による画素内の液晶の配向状態の制御性を高める方法も提案されている(例えば、以下の特許文献2及び3参照)。この構造では、上記に加えて、サブドットの形状を円形や正方形などの回転対象形状とすることでさらに配向制御性を向上させ、また、液晶にカイラル剤を添加することで配向不良(ディスクリネーション)に起因するざらしみ(視角によって表示態様が変化するしみ)などの表示不良の発生を防止している。
特開平11−258606号公報 特開2002−202511号公報 特開2003−43525号公報
In addition, the pixel region is divided into a plurality of subdots, and the alignment control structure (protrusions and electrode openings) is provided for each subdot, thereby controlling the alignment state of the liquid crystal in the pixel by the alignment control structure. A method for improving the performance has also been proposed (see, for example, Patent Documents 2 and 3 below). In this structure, in addition to the above, the shape of the sub-dots can be rotated, such as a circle or square, to further improve the alignment controllability, and by adding a chiral agent to the liquid crystal, alignment defects (discrete) The occurrence of display defects such as roughness (spots whose display mode changes depending on the viewing angle) due to (nation) is prevented.
JP-A-11-258606 JP 2002-202511 A JP 2003-43525 A

しかしながら、前述のようにサブドット毎に配向制御構造を設けて配向安定性を高めたVAモードの液晶表示装置においても、液晶の配向制御は、突起若しくはスリットの大きさによって大きく左右され、例えば突起が小さい場合には液晶がツイスト配向しやすくなり、ディスクリネーションがランダムに発生する。このディスクリネーションはざらしみなどの表示不良、応答速度の低下、残像の発生などの不具合を引き起こすという問題点がある。特に、液晶表示装置の精細度が低い場合にはサブドットが大きくなるため、液晶の配向安定性が低下し、ディスクリネーションが発生しやすくなる。サブドットの対称性が低下した場合も同様である。また、配向安定性が不十分であると、液晶表示装置に外力が加わったときに配向が乱れ易く、しかも、一旦乱れると元の状態に復帰しにくくなるという問題点もある。   However, even in a VA mode liquid crystal display device in which an alignment control structure is provided for each sub-dot to improve alignment stability as described above, the liquid crystal alignment control is greatly influenced by the size of the protrusions or slits. When is small, the liquid crystal is easily twisted and disclination occurs randomly. This disclination causes problems such as display defects such as roughness, a decrease in response speed, and occurrence of afterimages. In particular, when the definition of the liquid crystal display device is low, the sub-dots are large, so that the alignment stability of the liquid crystal is lowered and disclination is likely to occur. The same applies to the case where the symmetry of the subdot is lowered. In addition, if the alignment stability is insufficient, there is a problem that the alignment is easily disturbed when an external force is applied to the liquid crystal display device, and that once it is disturbed, it is difficult to return to the original state.

そこで、本発明は上記問題点を解決するものであり、その課題は、配向制御構造を備えた液晶表示装置において、従来の手法とは異なる方法により液晶の配向制御性をさらに高めることのできる構成を実現することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that in a liquid crystal display device having an alignment control structure, the liquid crystal alignment controllability can be further improved by a method different from the conventional method. Is to realize.

斯かる実情に鑑み、本発明の液晶表示装置は、一対の基板の間に、電界無印加状態で基板の内面に対して実質的に垂直な方向に配向される液晶を配置して複数の画素領域を構成した液晶表示装置であって、前記画素領域内の前記一対の基板のうち一方の前記基板の内面に形成された主配向制御手段と、前記画素領域内の前記一方の基板若しくは他方の前記基板の内面に形成され、前記主配向制御手段の周囲にて前記主配向制御手段から離間する方向に伸びるように設けられ、前記主配向制御手段の幅より小さい幅を有する複数の補助配向制御手段と、を具備することを特徴とする。   In view of such a situation, the liquid crystal display device of the present invention has a plurality of pixels in which a liquid crystal aligned in a direction substantially perpendicular to the inner surface of the substrate is applied between a pair of substrates in the absence of an electric field. A liquid crystal display device comprising a region, wherein a main orientation control means formed on an inner surface of one of the pair of substrates in the pixel region, and the one substrate or the other of the one in the pixel region A plurality of auxiliary alignment controls formed on the inner surface of the substrate and extending in a direction away from the main alignment control means around the main alignment control means and having a width smaller than the width of the main alignment control means. And means.

この発明によれば、電界印加時において液晶は主配向制御手段を核としてその周囲に向けて配向するが、当該周囲の領域では、主配向制御手段より細幅の複数の補助配向制御手段が主配向制御手段から離間する方向に伸びているので、補助配向制御手段に沿って液晶が配向しやすくなり、その結果、主配向制御手段から離間した領域においても液晶の配向状態が安定するため、ディスクリネーションの発生、応答速度の低下、残像の発生などを低減させることができるとともに、外力により生じた配向状態の乱れの復元性を高めることができる。   According to the present invention, when an electric field is applied, the liquid crystal is oriented toward the periphery using the main alignment control means as a nucleus. However, in the surrounding area, a plurality of auxiliary alignment control means narrower than the main alignment control means are mainly used. Since it extends in a direction away from the alignment control means, the liquid crystal is easily aligned along the auxiliary alignment control means, and as a result, the alignment state of the liquid crystal is stabilized even in a region away from the main alignment control means. It is possible to reduce the occurrence of linations, the reduction in response speed, the occurrence of afterimages, and the like, and it is possible to improve the resilience of the alignment state disturbance caused by the external force.

本発明において、前記複数の補助配向制御手段は、前記主配向制御手段の周囲に放射状に配置されていることが好ましい。これによれば、電圧印加時において主配向制御手段を中心としてその周囲に向けて放射状に液晶が配向することになるため、液晶表示装置の視角依存性を効率的に低減することができる。   In the present invention, it is preferable that the plurality of auxiliary orientation control means are arranged radially around the main orientation control means. According to this, when the voltage is applied, the liquid crystal is aligned radially around the main alignment control means, so that the viewing angle dependency of the liquid crystal display device can be efficiently reduced.

本発明において、前記主配向制御手段及び前記補助配向制御手段は、前記液晶に電圧を印加するための電極に形成された開口部で構成されていることが好ましい。開口部(スリット)は電極の端縁を形成するため、電極の端縁にて形成される斜め電界によって液晶の配向方向を規制することができる。また、主配向制御手段や補助配向制御手段としては、上記の電極開口部の他に、前記一方の基板若しくは前記他方の基板の内面に形成された突起若しくは窪みで構成することもできる。これらの突起や窪みは、どの突出部分や凹部分によって上記と同様の斜め電界を発生させることができ、液晶の配向方向を定めることができるが、電極開口部に比べて高い形状精度を実現することが困難であり、立体形状の制御性にも問題がある。特に、微細なパターンを形成する場合には電極開口部で構成することが最も確実でしかも十分な配向制御能力を得ることができる点で最も好ましい。なお、本発明においては、主配向制御手段と補助配向制御手段が上記三つの具体的構成のうちの相互に異なる構成となっていても構わない。   In the present invention, it is preferable that the main alignment control unit and the auxiliary alignment control unit include an opening formed in an electrode for applying a voltage to the liquid crystal. Since the opening (slit) forms the edge of the electrode, the alignment direction of the liquid crystal can be regulated by an oblique electric field formed at the edge of the electrode. Further, the main alignment control means and the auxiliary alignment control means may be constituted by protrusions or depressions formed on the inner surface of the one substrate or the other substrate, in addition to the electrode openings. These protrusions and depressions can generate an oblique electric field similar to that described above depending on which protrusion or recess, and can determine the alignment direction of the liquid crystal, but achieve higher shape accuracy than the electrode opening. It is difficult to control the three-dimensional shape. In particular, in the case of forming a fine pattern, it is most preferable that it is constituted by an electrode opening because the most reliable and sufficient alignment control ability can be obtained. In the present invention, the main alignment control means and the auxiliary alignment control means may be different from each other among the above three specific configurations.

本発明において、前記補助配向制御手段の幅が3〜8μmの範囲内にあることが好ましい。補助配向制御手段の幅は主配向制御手段の幅より小さければよく、それ以外には本来特に限定されないが、通常寸法の液晶表示装置では、補助配向制御手段の幅が3〜8μmの範囲内であれば、液晶に対して十分な配向方向の制御性を生じさせることができるとともに、補助配向制御手段の近傍における表示不良の発生を抑制できる。例えば、補助配向制御手段の幅が3μm未満になると、補助配向制御手段の伸びる方向に沿った液晶の配向安定性が低くなる場合があり、逆に8μmを越えると、補助配向制御手段の近傍における液晶の配向の乱れが発生しやすくなり、透過率が低下する場合がある。   In the present invention, the width of the auxiliary orientation control means is preferably in the range of 3 to 8 μm. The width of the auxiliary alignment control means is only required to be smaller than the width of the main alignment control means, and is otherwise not particularly limited. However, in a normal size liquid crystal display device, the width of the auxiliary alignment control means is within a range of 3 to 8 μm. If it exists, sufficient controllability of the alignment direction can be generated for the liquid crystal, and the occurrence of display defects in the vicinity of the auxiliary alignment control means can be suppressed. For example, if the width of the auxiliary alignment control means is less than 3 μm, the alignment stability of the liquid crystal along the direction in which the auxiliary alignment control means extends may be lowered. Conversely, if the width exceeds 8 μm, it is in the vicinity of the auxiliary alignment control means. The liquid crystal alignment is likely to be disturbed, and the transmittance may be reduced.

本発明において、前記複数の補助配向制御手段の間隔が5〜30μmの範囲内にあることが好ましい。補助配向制御手段の間隔は本来特に限定されないが、通常寸法の液晶表示装置では、補助配向制御手段の間隔が5〜30μmの範囲内であれば、画素領域の光透過率の低下を抑制しつつ、当該間隔内に存在する液晶を補助配向制御手段の伸びる方向に沿って安定的に配向させることができる。例えば、補助配向制御手段の間隔が5μm未満になると、補助配向制御手段の数が大きくなりすぎ、画素領域の光透過率が低下する場合があり、逆に30μmを越えると、液晶の配向安定性が不十分になる場合がある。   In the present invention, it is preferable that an interval between the plurality of auxiliary orientation control means is in a range of 5 to 30 μm. The interval between the auxiliary alignment control means is not particularly limited. However, in a normal size liquid crystal display device, if the interval between the auxiliary alignment control means is within the range of 5 to 30 μm, the decrease in the light transmittance of the pixel region is suppressed. The liquid crystal present in the interval can be stably aligned along the direction in which the auxiliary alignment control means extends. For example, if the interval between the auxiliary alignment control means is less than 5 μm, the number of auxiliary alignment control means may be too large, and the light transmittance of the pixel region may decrease. Conversely, if it exceeds 30 μm, the alignment stability of the liquid crystal May be insufficient.

本発明において、前記補助配向制御手段の先端同士を結ぶ包絡線の形状と、前記画素領域の外縁形状とが実質的に相似形であることが好ましい。これによれば、補助配向制御手段の先端同士を結ぶ包絡線の形状が画素領域の外縁形状と実質的に相似形であることにより、補助配向制御手段から画素領域の外縁までの距離のばらつきを主配向制御手段の周囲全体に亘って低減することができるため、より高い効果を得ることができる。   In the present invention, it is preferable that the shape of an envelope connecting the tips of the auxiliary orientation control means and the outer edge shape of the pixel region are substantially similar. According to this, since the shape of the envelope connecting the tips of the auxiliary alignment control means is substantially similar to the outer edge shape of the pixel area, the variation in distance from the auxiliary alignment control means to the outer edge of the pixel area is reduced. Since it can reduce over the whole circumference | surroundings of a main orientation control means, a higher effect can be acquired.

本発明において、前記画素領域内に複数のサブ領域が構成され、前記主配向制御手段及び前記複数の補助配向制御手段が前記サブ領域毎に設けられていることが好ましい。画素領域内に構成された複数のサブ領域においてそれぞれ主配向制御手段及び複数の補助配向制御手段が設けられることにより、画素領域の平面形状や寸法に拘らず、サブ領域を液晶の配向安定性を高めるために適した態様、例えば、回転対称性の高い平面形状としたり、比較的小さな寸法で構成したりすることが可能になるので、上記効果をさらに高めることができる。   In the present invention, it is preferable that a plurality of sub-regions are formed in the pixel region, and the main orientation control means and the plurality of auxiliary orientation control means are provided for each sub-region. By providing a main alignment control means and a plurality of auxiliary alignment control means in each of the plurality of sub-regions configured in the pixel region, the sub-region can be provided with liquid crystal alignment stability regardless of the planar shape and dimensions of the pixel region. Since it is possible to achieve a mode suitable for enhancement, for example, a planar shape with high rotational symmetry, or a relatively small size, the above effect can be further enhanced.

本発明の電子機器は、上記のいずれか一項に記載の液晶表示装置と、該液晶表示装置を制御する制御手段とを有することを特徴とする。本発明の電子機器は、上記の液晶表示装置を有することにより、表示品位の高い表示画面を備えた機器を構成できる。電子機器としては、例えば、携帯電話、携帯型情報端末、電子時計、パーソナルコンピュータなどが挙げられる。   An electronic apparatus according to the present invention includes the liquid crystal display device according to any one of the above, and a control unit that controls the liquid crystal display device. The electronic apparatus according to the present invention includes the above-described liquid crystal display device, whereby an apparatus having a display screen with high display quality can be configured. Examples of the electronic device include a mobile phone, a portable information terminal, an electronic timepiece, and a personal computer.

次に、添付図面を参照して本発明に係る液晶表示装置及び電子機器の実施形態について詳細に説明する。以下に説明する各実施形態は、通常、基本的に一対の基板をシール材で貼り合わせ、基板間に液晶を封入してなるパネル構造を有するものとして構成されるが、このようなパネル構造は周知慣用技術であるため、詳細の説明は省略し、以下に示す図1乃至図5では、それぞれパネル構造内に複数配列形成された一つの画素領域に対応する部分のみを示し、当該部分の説明のみを行うこととする。なお、各図はあくまでも模式的なもので、液晶分子のサイズを含め、各部の寸法は図示の都合上実際のものに対して大幅に変えて描いてある。   Next, embodiments of a liquid crystal display device and an electronic apparatus according to the present invention will be described in detail with reference to the accompanying drawings. Each embodiment described below is usually configured to have a panel structure in which a pair of substrates is basically bonded with a sealing material and liquid crystal is sealed between the substrates. Since this is a well-known and commonly used technique, detailed description is omitted, and FIGS. 1 to 5 shown below show only a portion corresponding to one pixel region formed in a plurality of arrays in the panel structure. Only to do. Each figure is merely schematic, and the dimensions of each part, including the size of the liquid crystal molecules, are drawn greatly different from the actual ones for convenience of illustration.

[第1実施形態]
図1は、本発明に係る液晶表示装置の第1実施形態の構造を示す概略構成図である。この図1において、中央には一つの画素領域に対応する縦断面図を描き、この縦断面図の上方には第1基板の内面構造の平面図を描き、縦断面図の下方には第2基板の内面構造の平面図が描いてある。
[First Embodiment]
FIG. 1 is a schematic configuration diagram showing a structure of a first embodiment of a liquid crystal display device according to the present invention. In FIG. 1, a vertical sectional view corresponding to one pixel region is drawn at the center, a plan view of the inner surface structure of the first substrate is drawn above the vertical sectional view, and a second view is shown below the vertical sectional view. A plan view of the internal structure of the substrate is depicted.

本実施形態の液晶表示装置は透過型のパネル構造を有し、ガラスやプラスチックスなどで構成される基板111の内面上に後述する内面構造を構成してなる第1基板110と、同様の基板121の内面上に後述する内面構造を構成してなる第2基板120とを有し、この第1基板110と第2基板120とをシール材などを介して1〜10μm程度の間隔を隔てて対向させ、これらの間に液晶層130を配置してなるものである。本実施形態はいわゆるVAモードの液晶表示装置であり、液晶層130は誘電異方性が負の液晶であり、例えばネガ型ネマチック液晶などで構成される。ただし、図示例とは異なるが、EOC(Electrically-induced Optical Compensation)方式であれば正の誘電異方性を有する液晶を用いることもできる。液晶層130内には多数の液晶分子131が所定の配向状態となるように配置されている。   The liquid crystal display device according to the present embodiment has a transmissive panel structure, and is similar to the first substrate 110 having the inner surface structure described later on the inner surface of the substrate 111 made of glass, plastics, or the like. 121 has a second substrate 120 having an inner surface structure to be described later on the inner surface of 121, and the first substrate 110 and the second substrate 120 are separated by a gap of about 1 to 10 μm via a sealing material or the like. The liquid crystal layer 130 is disposed between them so as to face each other. This embodiment is a so-called VA mode liquid crystal display device, and the liquid crystal layer 130 is a liquid crystal having negative dielectric anisotropy, and is composed of, for example, a negative type nematic liquid crystal. However, although different from the illustrated example, a liquid crystal having positive dielectric anisotropy can be used in an EOC (Electrically-induced Optical Compensation) system. A large number of liquid crystal molecules 131 are arranged in the liquid crystal layer 130 in a predetermined alignment state.

基板111の外面上には位相差板(例えば1/4波長板)141及び偏光板143が配置され、基板121の外側には位相差板(1/4波長板)142及び偏光板144が配置される。位相差板141,142は広帯域であることが好ましく、また、位相差板を設けなくてもよく、或いは、1/4波長以外の他の位相差を有するもので構成してもよい。一方、偏光板141,143は、電界印加の有無により液晶層130の透過光の遮断状態と透過状態が得られる関係(例えばクロスニコル配置)となるように設定される。   A retardation plate (for example, a quarter-wave plate) 141 and a polarizing plate 143 are disposed on the outer surface of the substrate 111, and a retardation plate (a quarter-wave plate) 142 and a polarizing plate 144 are disposed on the outside of the substrate 121. Is done. It is preferable that the phase difference plates 141 and 142 have a wide band. Further, the phase difference plates may not be provided, or may be configured with a phase difference other than a quarter wavelength. On the other hand, the polarizing plates 141 and 143 are set so as to have a relationship (for example, a crossed Nicol arrangement) in which a transmitted light blocking state and a transmitting state of the liquid crystal layer 130 are obtained depending on whether or not an electric field is applied.

第1基板110では、基板111の内面上に金属などで構成された信号線112が設けられ、この信号線112は接続部113を介して画素領域内のコンタクト部114に導電接続される。図示例の場合、これらの導電接続構造は省略して描いてあり、実際には接続部113にTFT(薄膜トランジスタ)やTFD(薄膜ダイオード)などのスイッチング素子が構成され、このスイッチング素子を介して信号線112からコンタクト部114へ信号電位が供給される。TFTのような3端子素子の場合には、図示しない走査線が信号線112と交差する方向に形成され、この走査線の走査電位によって3端子素子の導通状態が制御されるように構成される。また、TFDのような2端子素子の場合には、信号線112の信号電位によって2端子素子の導通状態が制御されるように構成される。   In the first substrate 110, a signal line 112 made of metal or the like is provided on the inner surface of the substrate 111, and the signal line 112 is conductively connected to the contact portion 114 in the pixel region via the connection portion 113. In the illustrated example, these conductive connection structures are omitted, and actually, a switching element such as a TFT (thin film transistor) or a TFD (thin film diode) is formed in the connection portion 113, and a signal is transmitted via the switching element. A signal potential is supplied from the line 112 to the contact portion 114. In the case of a three-terminal element such as a TFT, a scanning line (not shown) is formed in a direction crossing the signal line 112, and the conduction state of the three-terminal element is controlled by the scanning potential of the scanning line. . In the case of a two-terminal element such as TFD, the conduction state of the two-terminal element is controlled by the signal potential of the signal line 112.

上記コンタクト部114上には、アクリル樹脂のような透明絶縁体により絶縁膜115が形成され、この絶縁膜115にはコンタクトホール115aが形成される。絶縁膜115は通常感光性樹脂を用いたフォトリソグラフィ技術によってコンタクトホール115aを有する態様にパターニングされる。絶縁膜115の上にはITO(インジウムスズ酸化物)などの透明導電体により画素電極116が形成される。画素電極116は上記コンタクトホール115aを介して上記コンタクト部114に導電接続されている。信号線112と画素電極116との間の寄生容量を低減するために上記絶縁膜115は或る程度厚く形成する必要があり、通常、0.5〜3.0μm程度、典型的には1.0μm程度の厚さに形成される。絶縁膜115を形成することで、画素電極116によって画成される画素領域の外縁を信号線112(走査線も形成される場合には信号線及び走査線)の形成部分に近接させることが可能になり、その結果、液晶表示装置の開口率を高めて明るい表示が実現されるように構成できる。   An insulating film 115 is formed of a transparent insulator such as acrylic resin on the contact portion 114, and a contact hole 115a is formed in the insulating film 115. The insulating film 115 is usually patterned into a mode having the contact hole 115a by a photolithography technique using a photosensitive resin. A pixel electrode 116 is formed on the insulating film 115 by a transparent conductor such as ITO (indium tin oxide). The pixel electrode 116 is conductively connected to the contact portion 114 through the contact hole 115a. In order to reduce the parasitic capacitance between the signal line 112 and the pixel electrode 116, the insulating film 115 needs to be formed to a certain thickness, and is usually about 0.5 to 3.0 μm, typically 1. It is formed to a thickness of about 0 μm. By forming the insulating film 115, the outer edge of the pixel region defined by the pixel electrode 116 can be brought close to the formation portion of the signal line 112 (the signal line and the scanning line when the scanning line is also formed). As a result, it is possible to increase the aperture ratio of the liquid crystal display device and realize a bright display.

画素電極116上には垂直配向膜117が形成される。この垂直配向膜117は、電界無印加状態で液晶層130の液晶分子131を基板内面と直交する方向に配向させる初期配向能を有する。ここで、液晶分子131は電界無印加状態でも完全に垂直に配向しているわけではなく、僅かに傾斜した状態で配向される。通常、基板内面に対して85度以上の配向角度を有するものが実質的に垂直配向状態にあると呼ばれる。   A vertical alignment film 117 is formed on the pixel electrode 116. The vertical alignment film 117 has an initial alignment ability for aligning the liquid crystal molecules 131 of the liquid crystal layer 130 in a direction perpendicular to the inner surface of the substrate in the absence of an electric field. Here, the liquid crystal molecules 131 are not perfectly vertically aligned even when no electric field is applied, but are aligned slightly inclined. Usually, one having an orientation angle of 85 degrees or more with respect to the inner surface of the substrate is said to be in a substantially vertical orientation state.

一方、第2基板120では、基板121の内面上にITO等の透明導電体で対向電極122が形成され、この対向電極122の上に上記と同様の垂直配向膜123が形成される。なお、第2基板120の内面上に図示しない周知のカラーフィルタ構造を構成し、このカラーフィルタ構造上に対向電極122を形成してもよい。このカラーフィルタ構造は第1基板110に設けても構わない。なお、対向電極122は上記3端子素子が設けられる場合にはパネル内に全面的に形成される全面電極となり、上記2端子素子が設けられる場合にはストライプ状の帯状電極となるのが一般的である。   On the other hand, in the second substrate 120, a counter electrode 122 is formed of a transparent conductor such as ITO on the inner surface of the substrate 121, and a vertical alignment film 123 similar to the above is formed on the counter electrode 122. A well-known color filter structure (not shown) may be formed on the inner surface of the second substrate 120, and the counter electrode 122 may be formed on the color filter structure. This color filter structure may be provided on the first substrate 110. The counter electrode 122 is generally a full-surface electrode formed in the panel when the three-terminal element is provided, and is generally a strip-like strip electrode when the two-terminal element is provided. It is.

上記対向電極122には、画素領域Dの中央部分に設けられ、対向電極122の開口部で構成される主配向制御手段122aが設けられている。この主配向制御手段122aは図示例では電極開口部で構成されるが、電極自体、電極上の誘電体、或いは、電極下の絶縁体で構成される突起(錐形状でも柱状でもよい。)として設けられていても構わない。さらに、突起とは逆に窪みによって構成されていてもよい。いずれの場合でも、主配向制御手段122aは、画素領域D内に斜め電界を形成し、電界印加状態における液晶分子131の倒伏方位を制御する配向制御性を備えている。すなわち、主配向制御手段122aは電界印加状態における液晶分子131の配向状態を決定する核として機能するものである。   The counter electrode 122 is provided with a main orientation control means 122 a provided in the central portion of the pixel region D and configured by an opening of the counter electrode 122. The main orientation control means 122a is constituted by an electrode opening in the illustrated example, but as a projection (may be a cone shape or a column shape) constituted by the electrode itself, a dielectric on the electrode, or an insulator under the electrode. It may be provided. Furthermore, it may be constituted by a depression opposite to the protrusion. In any case, the main alignment control means 122a has an alignment controllability that forms an oblique electric field in the pixel region D and controls the breakdown direction of the liquid crystal molecules 131 in the electric field application state. That is, the main alignment control means 122a functions as a nucleus that determines the alignment state of the liquid crystal molecules 131 in an electric field application state.

ただし、主配向制御手段122aが突起である場合には、微細なパターン形成が困難であり、立体形状の制御性が低いとともに、液晶配向の乱れが生じやすく、しかも、液晶注入を妨げることとなり注入時間が長くなるという問題点があるので、主配向制御手段122aは図示例のように電極開口部(スリット)で構成されることが最も望ましい。   However, when the main alignment control means 122a is a projection, it is difficult to form a fine pattern, the controllability of the three-dimensional shape is low, the liquid crystal alignment is easily disturbed, and the liquid crystal injection is hindered. Since there is a problem that the time becomes long, it is most desirable that the main orientation control means 122a is composed of electrode openings (slits) as in the illustrated example.

また、主配向制御手段122aは、図示例では横長の画素形状に対応した平面形状である横長形状、すなわち図示例のように電極開口部で構成される場合にはスリット形状となるように構成されている。主配向制御手段122aの幅W1は、通常、5〜30μm程度とすることが上記の配向制御機能を確保するとともに、主配向制御手段122a自体による液晶配向の乱れを低減する上で好ましく、特に8〜15μm程度であることが望ましい。例えば、幅W1が小さすぎると上記配向制御機能が得られにくくなり、また、当該幅W1が大きすぎると主配向制御手段122aの形成範囲が大きくなるので、当該形成範囲内で生ずる液晶配向の乱れによるコントラストの低下が生ずる。   In addition, the main orientation control means 122a is configured to have a horizontally long shape corresponding to a horizontally long pixel shape in the illustrated example, that is, a slit shape in the case of being configured with electrode openings as in the illustrated example. ing. The width W1 of the main alignment control means 122a is usually preferably about 5 to 30 μm in order to ensure the above-described alignment control function and reduce disturbance of the liquid crystal alignment by the main alignment control means 122a itself. It is desirable to be about ˜15 μm. For example, if the width W1 is too small, it is difficult to obtain the alignment control function, and if the width W1 is too large, the formation range of the main alignment control means 122a becomes large. The contrast is reduced due to the above.

主配向制御手段122aの平面形状は任意であり、上記のような延長形状の他に、例えば、円形状や多角形状とすることができる。ここで、例えば主配向制御手段122aの平面形状が円形である場合には上記幅W1を直径とし、当該平面形状が多角形である場合には最も離間した角同士を結ぶ対角線の長さとする。   The planar shape of the main orientation control means 122a is arbitrary, and can be, for example, a circular shape or a polygonal shape in addition to the extended shape as described above. Here, for example, when the planar shape of the main orientation control means 122a is a circle, the width W1 is the diameter, and when the planar shape is a polygon, it is the length of a diagonal line connecting the farthest corners.

本実施形態では、上記主配向制御手段122aの周囲に、主配向制御手段122aから離間する方向に伸びる形状を有する複数の補助配向制御手段122bが設けられている。これらの補助配向制御手段122bは、主配向制御手段122aから離間するように画素領域Dの外縁に向けて直線的に伸びるように構成されている。図示例の場合、補助配向制御手段122bは主配向制御手段122aに接続された状態で構成されているため、主配向制御手段122aの近傍範囲をも含めて液晶分子131の配向状態を確実に補助配向制御手段122bによって安定化させることができる。ただし、補助配向制御手段122bは主配向制御手段122aとは分離された状態で設けられていても構わない。   In the present embodiment, a plurality of auxiliary orientation control means 122b having a shape extending in a direction away from the main orientation control means 122a is provided around the main orientation control means 122a. These auxiliary alignment control means 122b are configured to extend linearly toward the outer edge of the pixel region D so as to be separated from the main alignment control means 122a. In the illustrated example, since the auxiliary alignment control means 122b is connected to the main alignment control means 122a, the alignment state of the liquid crystal molecules 131 is reliably assisted including the vicinity of the main alignment control means 122a. It can be stabilized by the orientation control means 122b. However, the auxiliary orientation control means 122b may be provided in a state separated from the main orientation control means 122a.

補助配向制御手段122bの幅W2は上記主配向制御手段122aの幅W1より小さい。これは、電界印加状態における液晶分子131の配向方向を補助配向制御手段122bの伸びる方向に沿って安定化させる機能を補助配向制御手段122bに持たせるためである。幅W2が幅W1と同等或いはそれ以上であれば、補助配向制御手段122bによって電界が大きく変化し、主配向制御手段として機能するようになるので、液晶の配向方向が補助配向制御手段122bを中心として制御され、補助配向制御手段122bの延長方向に対して交差する方向に液晶分子131が配向されやすくなるとともに、主配向制御手段として機能する部分の面積が増大することによる表示不良やコントラスト低下が発生しやすくなる。本実施形態の補助配向制御手段122bは、主配向制御手段122aによってほぼ決定された液晶分子131の配向方向を安定化させるためものであり、基本的に液晶分子131の配向方向は補助配向制御手段122bの延長方向に沿った方向となる。   The width W2 of the auxiliary orientation control means 122b is smaller than the width W1 of the main orientation control means 122a. This is because the auxiliary alignment control unit 122b has a function of stabilizing the alignment direction of the liquid crystal molecules 131 in the electric field applied state along the direction in which the auxiliary alignment control unit 122b extends. If the width W2 is equal to or greater than the width W1, the electric field is greatly changed by the auxiliary alignment control means 122b and functions as the main alignment control means. Therefore, the alignment direction of the liquid crystal is centered on the auxiliary alignment control means 122b. The liquid crystal molecules 131 are easily aligned in the direction intersecting the extension direction of the auxiliary alignment control means 122b, and the display area and the contrast decrease due to the increase in the area of the portion functioning as the main alignment control means. It tends to occur. The auxiliary alignment control means 122b of this embodiment is for stabilizing the alignment direction of the liquid crystal molecules 131 substantially determined by the main alignment control means 122a. Basically, the alignment direction of the liquid crystal molecules 131 is the auxiliary alignment control means. The direction is along the extending direction of 122b.

補助配向制御手段122bの幅W2は上記のようにW1より小さいことが要求され、これ以外には特に限定されないが、通常3〜8μm程度であることが好ましい。この範囲を下回ると液晶の配向状態の安定性を高める効果が得られにくくなり、また、上記範囲を上回ると補助配向制御手段としての機能が低下するとともに透過率の低下などを招く。   The width W2 of the auxiliary orientation control means 122b is required to be smaller than W1 as described above, and is not particularly limited, but is usually preferably about 3 to 8 μm. Below this range, it becomes difficult to obtain the effect of improving the stability of the alignment state of the liquid crystal, and when it exceeds the above range, the function as the auxiliary alignment control means is lowered and the transmittance is lowered.

この補助配向制御手段122bは図示例では電極開口部で構成されるが、電極自体、電極上の誘電体、或いは、電極下の絶縁体で構成される突起(錐形状でも柱状でもよい。)として設けられていても構わない。さらに、突起とは逆に窪みによって構成されていてもよい。いずれの場合でも、補助配向制御手段122bは、主配向制御手段122aによる配向制御方向に沿って電界印加状態における液晶分子131の配向安定性を高める機能を備える。すなわち、補助配向制御手段122bは電界印加状態における液晶分子131の配向状態を安定化させるガイド構造として機能するものである。   Although the auxiliary orientation control means 122b is configured by an electrode opening in the illustrated example, the auxiliary alignment control unit 122b is formed as a projection (which may be a cone shape or a column shape) formed of the electrode itself, a dielectric on the electrode, or an insulator under the electrode. It may be provided. Furthermore, it may be constituted by a depression opposite to the protrusion. In any case, the auxiliary alignment control unit 122b has a function of improving the alignment stability of the liquid crystal molecules 131 in the electric field application state along the alignment control direction by the main alignment control unit 122a. That is, the auxiliary alignment control means 122b functions as a guide structure that stabilizes the alignment state of the liquid crystal molecules 131 in an electric field application state.

ただし、補助配向制御手段122bが突起である場合には、微細なパターン形成が困難であり、立体形状の制御性が低いとともに、液晶配向の乱れが生じやすく、しかも、液晶注入を妨げることとなり注入時間が長くなるという問題点があるので、補助配向制御手段122bは図示例のように電極開口部(スリット)で構成されることが最も望ましい。   However, when the auxiliary alignment control means 122b is a projection, it is difficult to form a fine pattern, the controllability of the three-dimensional shape is low, the liquid crystal alignment is easily disturbed, and the liquid crystal injection is hindered. Since there is a problem that the time becomes long, it is most desirable that the auxiliary orientation control means 122b is constituted by an electrode opening (slit) as shown in the illustrated example.

本実施形態の補助配向制御手段122bは、図示例のように、主配向制御手段122aの周囲に放射状になるように配置されることが好ましい。このようにすると、補助配向制御手段122bによる液晶の配向状態の安定性を均一に確保することができる。ここで言う放射状とは、主配向制御手段122aを取り巻くようにその周囲にほぼ均等に配置されることを言う。ただし、本発明の場合、補助配向制御手段122bが主配向制御手段122aの延長方向に沿って当該延長方向と直交する方向に伸びる姿勢で簾状に配列されているだけでもよい。   The auxiliary orientation control means 122b of this embodiment is preferably arranged radially around the main orientation control means 122a as in the illustrated example. In this way, the stability of the alignment state of the liquid crystal by the auxiliary alignment control means 122b can be ensured uniformly. The term “radial” as used herein means that the main orientation control means 122a is arranged almost uniformly around the main orientation control means 122a. However, in the case of the present invention, the auxiliary orientation control means 122b may be arranged in a bowl shape in a posture that extends in the direction orthogonal to the extension direction along the extension direction of the main orientation control means 122a.

また、本実施形態の場合、補助配向制御手段122bは主配向制御手段122aと同じ基板121上に形成されているが、主配向制御手段が一方の基板(例えば第1基板110)に形成され、補助配向制御手段が他方の基板(例えば第2基板120)に形成されていても構わない。   In the case of the present embodiment, the auxiliary alignment control unit 122b is formed on the same substrate 121 as the main alignment control unit 122a, but the main alignment control unit is formed on one substrate (for example, the first substrate 110). The auxiliary orientation control means may be formed on the other substrate (for example, the second substrate 120).

補助配向制御手段122bの間隔G2は、通常5〜30μm程度であることが好ましい。この間隔G2が小さすぎると補助配向制御手段122bが数多くなることにより表示品位の低下(例えば透過率の低下)を招く可能性があり、上記間隔G2が大きすぎると液晶の配向状態の安定性を維持する機能が低下するからである。この間隔G2は、特に10〜25μmの範囲内であることがより望ましい。間隔G2が図示のように均一でない場合には、全ての間隔の平均が上記の範囲内に設定されていればよい。   The interval G2 between the auxiliary orientation control means 122b is preferably about 5 to 30 μm. If the gap G2 is too small, the number of auxiliary alignment control means 122b may increase, leading to a reduction in display quality (for example, a reduction in transmittance). If the gap G2 is too large, the stability of the alignment state of the liquid crystal may be reduced. It is because the function to maintain falls. This distance G2 is more preferably in the range of 10 to 25 μm. If the interval G2 is not uniform as shown in the figure, the average of all intervals may be set within the above range.

以上説明した構成を有する本実施形態では、以下の作用効果を有する。従来構成のように主配向制御手段のみを設ける場合、主配向制御手段の幅や長さは、画素領域Dの形状や寸法に依存した制約を受ける。これは、主配向制御手段を大きくすると、主配向制御手段の構成領域において液晶の配向の乱れが生じ、透過率の低下などをもたらすからである。この影響は低精細度の液晶表示装置ほど大きくなる。また、本実施形態のように画素領域Dの平面形状が長方形である場合、画素領域D内における主配向制御手段から離間した外縁部分において主配向制御手段による配向規制が及ばず、配向不良を起こし易くなる。   The embodiment having the above-described configuration has the following operational effects. When only the main alignment control means is provided as in the conventional configuration, the width and length of the main alignment control means are restricted depending on the shape and dimensions of the pixel region D. This is because if the main alignment control means is enlarged, the alignment of the liquid crystal is disturbed in the constituent region of the main alignment control means, resulting in a decrease in transmittance. This effect becomes greater as the liquid crystal display device has a lower definition. In addition, when the planar shape of the pixel region D is rectangular as in the present embodiment, the alignment restriction by the main alignment control unit is not achieved in the outer edge portion separated from the main alignment control unit in the pixel region D, causing an alignment failure. It becomes easy.

しかし、本実施形態では、複数の補助配向制御手段122bが設けられていることにより、液晶の配向安定性を確保することができる。すなわち、中央の主配向制御手段122aを最低限の大きさにしても液晶の配向安定性が維持され、また、主配向制御手段122aから離間した領域でも液晶の配向不良が生じにくくなる。さらに、液晶分子131は主配向制御手段122aだけでなく補助配向制御手段122bからも配向規制力を受けるため、応答速度がさらに向上する。   However, in the present embodiment, the alignment stability of the liquid crystal can be ensured by providing the plurality of auxiliary alignment control means 122b. That is, even if the central main alignment control means 122a is minimized, the alignment stability of the liquid crystal is maintained, and liquid crystal alignment defects are less likely to occur even in a region away from the main alignment control means 122a. Further, since the liquid crystal molecules 131 receive the alignment regulating force not only from the main alignment control means 122a but also from the auxiliary alignment control means 122b, the response speed is further improved.

また、補助配向制御手段122bの幅W2は主配向制御手段122aよりも小さいため、補助配向制御手段122bを設けても液晶分子131の配向の乱れがほとんど増大せず、単純に同じ面積の主配向制御手段を増設した場合に較べれば格段に高い透過率を得ることができる。したがって、高い配向制御性を維持しつつ、明るく、しかも高速応答が可能で、残像などが生じない高い表示品位を実現できる。   In addition, since the width W2 of the auxiliary alignment control unit 122b is smaller than that of the main alignment control unit 122a, even if the auxiliary alignment control unit 122b is provided, the alignment disorder of the liquid crystal molecules 131 hardly increases, and the main alignment of the same area is simply obtained. A much higher transmittance can be obtained as compared with the case where the control means is added. Accordingly, it is possible to realize a high display quality that is bright and capable of high-speed response while maintaining high orientation controllability and that does not cause an afterimage.

発明者が主配向制御手段122aのみを形成した従来構造の液晶表示装置と、補助配向制御手段122bを備えた本実施形態の液晶表示装置とを他の条件を同様にしてそれぞれ試作し、光学特性を比較した。ここで、主配向制御手段122aの幅W1を約10μm、補助配向制御手段の幅W2を約3μmとした。このとき、従来構成の液晶表示装置では透過率が8%であり、本実施形態では7.5%であって透過率の低下はきわめて小さく抑制されていた。また、従来構造の応答速度が48.6msecであったのに対して、本実施形態では41.2msecと大幅に高くなった。さらに、外力をパネルに加えたときの配向の乱れについても、従来構造では乱れが多少残存する傾向が見られたが、本実施形態では瞬時に乱れがなくなり、元の状態に復帰した。   The inventor prototyped the liquid crystal display device having the conventional structure in which only the main alignment control means 122a is formed and the liquid crystal display device of the present embodiment having the auxiliary alignment control means 122b in the same manner under other conditions. Compared. Here, the width W1 of the main orientation control means 122a is about 10 μm, and the width W2 of the auxiliary orientation control means is about 3 μm. At this time, the transmittance of the liquid crystal display device of the conventional configuration is 8%, and in the present embodiment, it is 7.5%, and the decrease in the transmittance is suppressed to be extremely small. In addition, the response speed of the conventional structure was 48.6 msec, but in this embodiment, the response speed was significantly increased to 41.2 msec. Further, with regard to the disturbance of the orientation when an external force is applied to the panel, there was a tendency for the disturbance to remain to some extent in the conventional structure, but in this embodiment, the disturbance disappeared instantaneously and returned to the original state.

また、従来構造では、主配向制御手段122aの幅W1を8μmにすると画素領域Dの外縁部にて配向の乱れが発生し、透過率が低下し始め、幅W1を5μmにすると放射状配向が崩れ、透過率も実用範囲から逸脱したのに対して、本実施形態では、幅W1が8μmの場合では配向不良はほとんど発生せず、幅W1が8μm未満でも実用範囲に入ることが確認された。   Further, in the conventional structure, when the width W1 of the main alignment control means 122a is 8 μm, disorder of alignment occurs at the outer edge portion of the pixel region D, and the transmittance starts to decrease. When the width W1 is 5 μm, the radial alignment is lost. The transmittance also deviated from the practical range, but in this embodiment, when the width W1 was 8 μm, alignment defects hardly occurred, and it was confirmed that the width W1 was within the practical range even when the width W1 was less than 8 μm.

[第2実施形態]
次に、図2を参照して本発明に係る第2実施形態について説明する。この実施形態は、上記第1実施形態と共通の基本構造を有するので、同一部分には同一符号を付し、それらの説明は省略する。この実施形態は、画素領域の一部に反射領域を形成して透過表示・反射表示併用型(半透過反射型)の液晶表示装置として構成したものである。
[Second Embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIG. Since this embodiment has the same basic structure as the first embodiment, the same reference numerals are given to the same parts, and the description thereof is omitted. In this embodiment, a reflective region is formed in a part of a pixel region to configure a transmissive display / reflective display combined type (semi-transmissive reflective type) liquid crystal display device.

図2に示すように、透過領域Tでは第1実施形態と同様の断面構造を有し、反射領域Rでは、第2基板120′の内面上に反射膜124が形成されている。この反射膜124は、例えば、アルミニウム、銀、クロムなどの金属膜で構成され、図示例の場合、基板121と対向電極122との間に配置されている。ただし、この反射膜は、対向電極を兼ねた反射電極として構成してもよい。反射膜124の下層には液晶層130の厚さを低減させるための下地膜125が形成されている。下地膜125は絶縁樹脂などの絶縁体で構成されることが好ましい。このようにすると、下地膜125の厚さ分だけ液晶層130の厚さが低下する。これは、透過表示を構成する透過光が液晶層130を一回だけ通過するのに対して、反射表示を構成する外光は液晶層130を往復2回通過するので、液晶層130の厚さが透過領域Tと反射領域Rで同じであれば、反射表示を構成する反射光は透過表示を構成する透過光に較べて液晶層130から二倍の複屈折効果を受けるが、これによって反射表示と透過表示を共に最適化することが難しくなるからである。このため、本実施形態では、予め反射領域Rにおける液晶層130の厚さを透過領域Tよりも低減することにより、反射光と透過光に対する複屈折効果の差異を低減している。したがって、反射領域Rにおける液晶層130の厚さは、透過領域Tにおける液晶層130の厚さの半分程度であることが最も望ましい。なお、反射領域Rにおける液晶層130の厚さを透過領域Tにおける液晶層130の厚さよりも小さくした構造は、上記下地膜125を設ける代わりに、第1基板110に設けられる絶縁膜115の厚さを変えることによって実現することもできるなど、図示例の構成に限定されるものではない。   As shown in FIG. 2, the transmissive region T has the same cross-sectional structure as that of the first embodiment, and in the reflective region R, a reflective film 124 is formed on the inner surface of the second substrate 120 ′. The reflective film 124 is made of, for example, a metal film such as aluminum, silver, or chromium, and is disposed between the substrate 121 and the counter electrode 122 in the illustrated example. However, this reflective film may be configured as a reflective electrode that also serves as a counter electrode. A base film 125 for reducing the thickness of the liquid crystal layer 130 is formed below the reflective film 124. The base film 125 is preferably made of an insulator such as an insulating resin. As a result, the thickness of the liquid crystal layer 130 is reduced by the thickness of the base film 125. This is because the transmitted light constituting the transmissive display passes through the liquid crystal layer 130 only once, whereas the external light constituting the reflective display passes through the liquid crystal layer 130 twice, so the thickness of the liquid crystal layer 130 Is the same in the transmissive region T and the reflective region R, the reflected light constituting the reflective display receives a double birefringence effect from the liquid crystal layer 130 as compared with the transmitted light constituting the transmissive display. This is because it becomes difficult to optimize both the transparent display and the transparent display. For this reason, in this embodiment, the thickness of the liquid crystal layer 130 in the reflection region R is reduced in advance than that in the transmission region T, thereby reducing the difference in birefringence effect on reflected light and transmitted light. Therefore, the thickness of the liquid crystal layer 130 in the reflective region R is most desirably about half of the thickness of the liquid crystal layer 130 in the transmissive region T. The structure in which the thickness of the liquid crystal layer 130 in the reflective region R is smaller than the thickness of the liquid crystal layer 130 in the transmissive region T is the thickness of the insulating film 115 provided on the first substrate 110 instead of providing the base film 125. The present invention is not limited to the configuration of the illustrated example, and can be realized by changing the size.

また、下地膜125の表面に微細な凹凸構造が設けられ、反射膜124がこれを反映して粗面化されることによって、反射膜124の表面が光散乱性反射面となるように構成されることが望ましい。これによって、反射表示を行う際の照明光による幻惑や背景の写りこみを防止できる。   Further, a fine concavo-convex structure is provided on the surface of the base film 125, and the reflective film 124 is roughened to reflect this, so that the surface of the reflective film 124 becomes a light scattering reflective surface. It is desirable. As a result, it is possible to prevent illusion due to illumination light and reflection of the background when performing reflective display.

[第3実施形態]
次に、図3を参照して本発明に係る液晶表示装置の第3実施形態について説明する。この実施形態においても、上記第1実施形態と基本的に同様の構造を有し、同一部分には同一符号を付し、それらの説明は省略する。また、第1実施形態の基本構造の代わりに、第2実施形態の構造を元に以下のように構成しても構わない。
[Third Embodiment]
Next, a third embodiment of the liquid crystal display device according to the present invention will be described with reference to FIG. This embodiment also has basically the same structure as that of the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted. Further, instead of the basic structure of the first embodiment, the following structure may be used based on the structure of the second embodiment.

本実施形態では、第1基板110′に設けられた画素電極116′が、第2基板120に設けられた補助配向制御手段122bの先端を結ぶ包絡線Eと実質的に相似形の外縁形状を備えている点で上記実施形態と異なる。すなわち、第1実施形態では、画素領域の平面形状が長方形であるため、補助配向制御手段122bの先端から画素領域の外縁までの距離が画素領域の角部において大きくなることから、画素領域の角部近傍において配向不良が発生する恐れがある。そこで、本実施形態では、画素電極116′の平面形状を第1実施形態の角部をカットした形状とするなど、上記包絡線Eの形状に近づけることにより、配向不良による表示品位への影響を低減したものである。   In this embodiment, the pixel electrode 116 ′ provided on the first substrate 110 ′ has a substantially similar outer edge shape to the envelope E connecting the tips of the auxiliary orientation control means 122 b provided on the second substrate 120. It differs from the above-mentioned embodiment by the point provided. That is, in the first embodiment, since the planar shape of the pixel region is a rectangle, the distance from the tip of the auxiliary orientation control unit 122b to the outer edge of the pixel region is increased at the corner of the pixel region. There is a possibility that orientation failure occurs near the portion. Therefore, in the present embodiment, the planar shape of the pixel electrode 116 ′ is made to have a shape in which the corners of the first embodiment are cut, and the display quality is affected by poor alignment by bringing the shape close to the shape of the envelope E. Reduced.

特に、画素領域の角部に向かう補助配向制御手段122bを角部に向けて外側へ伸ばすと、補助配向制御手段122bの間隔が広がってしまうので、液晶の配向安定性を確保する効果はあまり期待できないが、本実施形態では逆に角部を無くすように画素領域を変形させているので、補助配向制御手段の間隔の増大による液晶の配向安定性の悪化を招くこともない。   In particular, if the auxiliary alignment control means 122b toward the corner of the pixel region is extended outward toward the corner, the interval between the auxiliary alignment control means 122b is widened, so the effect of ensuring the alignment stability of the liquid crystal is not expected much. However, in the present embodiment, since the pixel region is deformed so as to eliminate the corners, the alignment stability of the liquid crystal is not deteriorated due to an increase in the interval of the auxiliary alignment control means.

本実施形態において、実質的な相似形とは、完全な相似形でなくてもよいことを意味し、包絡線Eから画素領域の外縁までの距離の全周に亘るばらつきを低減するように画素領域Dの平面形状が一般的な画素形状である矩形(正方形若しくは長方形)に対して変形されていればよい。   In the present embodiment, the substantially similar shape means that it does not have to be a complete similar shape, and the pixels are arranged so as to reduce the variation over the entire circumference from the envelope E to the outer edge of the pixel region. It is only necessary that the planar shape of the region D is deformed with respect to a rectangle (square or rectangle) which is a general pixel shape.

[第4実施形態]
次に、図4を参照して本発明に係る液晶表示装置の第4実施形態について説明する。この実施形態においても、上記第1実施形態と基本的に同様の構造を有し、同一部分には同一符号を付し、それらの説明は省略する。また、第1実施形態の基本構造の代わりに、第2実施形態の構造を元に以下のように構成しても構わない。
[Fourth Embodiment]
Next, a fourth embodiment of the liquid crystal display device according to the present invention will be described with reference to FIG. This embodiment also has basically the same structure as that of the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted. Further, instead of the basic structure of the first embodiment, the following structure may be used based on the structure of the second embodiment.

本実施形態では、第2基板120″に設けられた複数の補助配向制御手段122b′には、主配向制御手段122aから画素領域の角部へより長く伸びるものが含まれている。この場合、画素領域Dの角部へ向けて伸びる補助配向制御手段を外縁(すなわち角部)寄り、言い換えると外側寄りに配置してもよい。これによって、補助配向制御手段122b′の先端から画素領域の角部までの距離が低減され、配向不良を抑制することが可能になる。   In the present embodiment, the plurality of auxiliary alignment control means 122b ′ provided on the second substrate 120 ″ includes one that extends longer from the main alignment control means 122a to the corner of the pixel region. The auxiliary orientation control means extending toward the corner of the pixel region D may be disposed closer to the outer edge (that is, the corner), in other words, closer to the outer side, whereby the corner of the pixel region from the tip of the auxiliary orientation control means 122b ′. The distance to the portion is reduced, and it becomes possible to suppress alignment defects.

一般的に、主配向制御手段122aから画素領域Dの外縁までの距離が長い部分では、補助配向制御手段122b′の先端を上記外縁側に接近するように設ける。このとき、補助配向制御手段122b′を図示実線で示すように長く形成してもよく、図示点線で示す補助配向制御手段122cのように外側寄りに配置してもよい。また、補助配向制御手段122b′の間隔G2″は、外側に伸びるほど大きくなるが、この場合、図示点線で示す補助配向制御手段122cを補助配向制御手段122b′の間に配置することによって補助配向制御手段間の間隔のばらつきを低減することができるため、液晶の配向安定性の変動を抑制でき、全体に亘って液晶の配向安定性を確保することができる。   Generally, in a portion where the distance from the main alignment control means 122a to the outer edge of the pixel region D is long, the tip of the auxiliary alignment control means 122b 'is provided so as to approach the outer edge side. At this time, the auxiliary orientation control means 122b 'may be formed long as shown by the solid line in the figure, or may be arranged on the outer side like the auxiliary orientation control means 122c shown by the dotted line in the figure. Further, the distance G2 ″ of the auxiliary orientation control means 122b ′ becomes larger as it extends outward. In this case, the auxiliary orientation control means 122c shown by the dotted line in the figure is arranged between the auxiliary orientation control means 122b ′. Since variations in the spacing between the control means can be reduced, fluctuations in the alignment stability of the liquid crystal can be suppressed, and the alignment stability of the liquid crystal can be ensured throughout.

[第5実施形態]
次に、図5を参照して本発明に係る液晶表示装置の第5実施形態について説明する。この実施形態においても、上記第1実施形態と基本的に同様の構造を有し、同一部分には同一符号を付し、それらの説明は省略する。また、第1実施形態の基本構造の代わりに、第2実施形態乃至第4実施形態の各構造を元に以下のように構成しても構わない。
[Fifth Embodiment]
Next, a fifth embodiment of the liquid crystal display device according to the present invention will be described with reference to FIG. This embodiment also has basically the same structure as that of the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted. Further, instead of the basic structure of the first embodiment, the following structures may be configured based on the structures of the second to fourth embodiments.

本実施形態では、画素領域Dを複数のサブ領域DA,DB,DCに分割し、それぞれの内部に主配向制御手段122a″及び補助配向制御手段122b″を設けてある。これらのサブ領域DA〜DCは、幾何学的な中心位置からの回転対称性を画素領域Dよりも高めるように構成されることが好ましい。図示例では、画素領域Dはほぼ長方形状であるのに対して、サブ領域DA〜DCはそれぞれ正方形状(正確に言うと隅丸正方形)に構成されている。もちろん、最も回転対称性の高い形状は円形であるから、各サブ領域の平面形状を円形としてもよい。   In the present embodiment, the pixel region D is divided into a plurality of sub-regions DA, DB, and DC, and a main alignment control unit 122a ″ and an auxiliary alignment control unit 122b ″ are provided in each of the sub regions. These sub-regions DA to DC are preferably configured so that rotational symmetry from the geometric center position is higher than that of the pixel region D. In the illustrated example, the pixel region D is substantially rectangular, whereas the sub-regions DA to DC are each formed in a square shape (more precisely, a rounded corner square). Of course, since the shape having the highest rotational symmetry is a circle, the planar shape of each sub-region may be a circle.

本実施形態の上記サブ領域DA〜DCは、第1基板110Dに設けられた画素電極116Dを3つのサブ電極116A,116B,116Cに分割することによって構成される。これらのサブ電極116A〜116Cは相互に導電接続され、同じ電位が付与されるようになっている。   The sub areas DA to DC of the present embodiment are configured by dividing the pixel electrode 116D provided on the first substrate 110D into three sub electrodes 116A, 116B, and 116C. These sub-electrodes 116A to 116C are conductively connected to each other so that the same potential is applied.

本実施形態の第2基板120Dには、上記サブ領域DA〜DCの中心部に主配向制御手段122a″が形成され、その周囲に複数の補助配向制御手段122b″が設けられている。図示例の主配向制御手段122a″の平面形状は円形(或いは多角形)であり、複数の補助配向制御手段122b″は主配向制御手段122a″の周囲に放射状に配置されている。この実施形態でも、補助配向制御手段122b″の幅は、主配向制御手段122a″の幅(図示例では直径或いは対角線の長さ)よりも小さく設定される。   In the second substrate 120D of the present embodiment, a main alignment control means 122a ″ is formed at the center of the sub-regions DA to DC, and a plurality of auxiliary alignment control means 122b ″ are provided around the main alignment control means 122a ″. The planar shape of the main orientation control means 122a ″ in the illustrated example is circular (or polygonal), and a plurality of auxiliary orientation control means 122b ″ are arranged radially around the main orientation control means 122a ″. However, the width of the auxiliary orientation control means 122b "is set smaller than the width of the main orientation control means 122a" (diameter or diagonal length in the illustrated example).

本実施形態では、画素領域Dを複数のサブ領域DA〜DCに分割することによって個々のサブ領域内の液晶の配向安定性をさらに向上させることができる。すなわち、本実施形態では、先の実施形態に較べて液晶の配向制御距離が小さくなり、しかも配向制御範囲の対称性も高くなっているので、液晶の配向安定性を大幅に向上させることができる。また、従来構造のサブ領域に分割した液晶表示装置に較べても補助配向制御手段122b″を設けることで配向安定性が向上しているので、明るく、高速に応答し、残像の少ない高い表示品位を備えた液晶表示装置を実現できる。   In the present embodiment, the alignment stability of the liquid crystal in each sub-region can be further improved by dividing the pixel region D into a plurality of sub-regions DA to DC. That is, in this embodiment, the alignment control distance of the liquid crystal is smaller than that of the previous embodiment, and the symmetry of the alignment control range is also increased, so that the alignment stability of the liquid crystal can be greatly improved. . Further, since the alignment stability is improved by providing the auxiliary alignment control means 122b ″ as compared with the liquid crystal display device divided into the sub-regions of the conventional structure, it is bright, responds at high speed, and has a high display quality with little afterimage. Can be realized.

[第6実施形態]
最後に、図6及び図7を参照して本発明に係る電気光学装置を搭載した電子機器について説明する。この実施形態では、上述の第1実施形態乃至第5実施形態のいずれかの液晶表示装置100を表示手段として備えた電子機器について説明する。
[Sixth Embodiment]
Finally, an electronic apparatus equipped with the electro-optical device according to the invention will be described with reference to FIGS. In this embodiment, an electronic apparatus including the liquid crystal display device 100 according to any one of the first to fifth embodiments described above as a display unit will be described.

図6は、本実施形態の電子機器における液晶表示装置100に対する制御系(表示制御系)の全体構成を示す概略構成図である。ここに示す電子機器は、表示情報出力源291と、表示情報処理回路292と、電源回路293と、タイミングジェネレータ294と、光源制御回路295とを含む表示制御回路290を有する。また、液晶表示装置100には、上述の構成を有するパネル構造100Pと、このパネル構造100Pを駆動する駆動回路100Dと、光源131及び導光板132を備えたバックライト130とが設けられている。この駆動回路100Dは、パネル構造100Pに直接実装されている電子部品(半導体ICなど)で構成される。ただし、駆動回路100Dは、上記のような態様の他に、パネル構造100Pの基板表面上に形成された回路パターン、或いは、パネル構造100Pに導電接続された回路基板に実装された半導体ICチップ若しくは回路パターンなどによっても構成することができる。   FIG. 6 is a schematic configuration diagram illustrating an overall configuration of a control system (display control system) for the liquid crystal display device 100 in the electronic apparatus of the present embodiment. The electronic device shown here includes a display control circuit 290 including a display information output source 291, a display information processing circuit 292, a power supply circuit 293, a timing generator 294, and a light source control circuit 295. Further, the liquid crystal display device 100 is provided with a panel structure 100P having the above-described configuration, a drive circuit 100D for driving the panel structure 100P, and a backlight 130 including a light source 131 and a light guide plate 132. The drive circuit 100D is composed of electronic components (such as a semiconductor IC) that are directly mounted on the panel structure 100P. However, in addition to the above-described aspect, the drive circuit 100D may be a circuit pattern formed on the substrate surface of the panel structure 100P, or a semiconductor IC chip mounted on a circuit board conductively connected to the panel structure 100P or It can also be configured by a circuit pattern or the like.

表示情報出力源291は、ROM(Read Only Memory)やRAM(Random Access Memory)等からなるメモリと、磁気記録ディスクや光記録ディスク等からなるストレージユニットと、デジタル画像信号を同調出力する同調回路とを備え、タイミングジェネレータ294によって生成された各種のクロック信号に基づいて、所定フォーマットの画像信号等の形で表示情報を表示情報処理回路292に供給するように構成されている。   The display information output source 291 includes a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), a storage unit such as a magnetic recording disk or an optical recording disk, and a tuning circuit that tunes and outputs a digital image signal. The display information is supplied to the display information processing circuit 292 in the form of an image signal or the like of a predetermined format based on various clock signals generated by the timing generator 294.

表示情報処理回路292は、シリアル−パラレル変換回路、増幅・反転回路、ローテーション回路、ガンマ補正回路、クランプ回路等の周知の各種回路を備え、入力した表示情報の処理を実行して、その画像情報をクロック信号CLKと共に駆動回路100Dへ供給する。駆動回路100Dは、走査線駆動回路、信号線駆動回路及び検査回路を含む。また、電源回路293は、上述の各構成要素にそれぞれ所定の電圧を供給する。   The display information processing circuit 292 includes various known circuits such as a serial-parallel conversion circuit, an amplification / inversion circuit, a rotation circuit, a gamma correction circuit, and a clamp circuit, and executes processing of input display information to obtain image information. Are supplied to the driving circuit 100D together with the clock signal CLK. The drive circuit 100D includes a scanning line drive circuit, a signal line drive circuit, and an inspection circuit. The power supply circuit 293 supplies a predetermined voltage to each of the above-described components.

光源制御回路295は、外部から導入される制御信号に基づいて、電源回路293から供給される電力をバックライト130の光源131に供給する。光源131から放出された光は導光板132に入射され、導光板132からパネル構造に照射される。この光源制御回路295は、上記制御信号に応じて光源131の点灯/非点灯を制御する。また、各光源の輝度を制御することも可能である。   The light source control circuit 295 supplies power supplied from the power supply circuit 293 to the light source 131 of the backlight 130 based on a control signal introduced from the outside. The light emitted from the light source 131 is incident on the light guide plate 132 and irradiated from the light guide plate 132 to the panel structure. The light source control circuit 295 controls lighting / non-lighting of the light source 131 according to the control signal. It is also possible to control the luminance of each light source.

図7は、本発明に係る電子機器の一実施形態である携帯電話の外観を示す。この電子機器1000は、操作部1001と、表示部1002とを有し、表示部1002の筐体内部に回路基板1003が配置されている。回路基板1003上には上記の液晶表示装置100が実装されている。そして、表示部1002の表面において上記パネル構造100Pの表示領域を視認できるように構成されている。   FIG. 7 shows an appearance of a mobile phone which is an embodiment of the electronic apparatus according to the present invention. The electronic device 1000 includes an operation unit 1001 and a display unit 1002, and a circuit board 1003 is disposed inside a housing of the display unit 1002. The liquid crystal display device 100 is mounted on the circuit board 1003. And it is comprised so that the display area of the said panel structure 100P can be visually recognized in the surface of the display part 1002. FIG.

本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う液晶表示装置もまた、本発明の技術的範囲に含まれるものである。例えば、上記実施形態ではTFTやTFDなどのスイッチング素子を備えたアクティブマトリクス型の液晶表示装置を想定して説明したが、本発明は、スイッチング素子を持たない装置構成、例えば、パッシブマトリクス型の装置構成に適用することも可能である。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention which can be read from the claims and the entire specification, and a liquid crystal display device with such a change Is also included in the technical scope of the present invention. For example, in the above embodiment, the active matrix type liquid crystal display device provided with switching elements such as TFT and TFD has been described. However, the present invention is a device configuration having no switching elements, for example, a passive matrix type device. It is also possible to apply to the configuration.

第1実施形態の第1基板の内面図、パネルの縦断面図及び第2基板の内面図。The inner surface figure of the 1st board | substrate of 1st Embodiment, the longitudinal cross-sectional view of a panel, and the inner surface figure of a 2nd board | substrate. 第2実施形態の第1基板の内面図、パネルの縦断面図及び第2基板の内面図。The inner surface figure of the 1st board | substrate of 2nd Embodiment, the longitudinal cross-sectional view of a panel, and the inner side figure of a 2nd board | substrate. 第3実施形態の第1基板の内面図、パネルの縦断面図及び第2基板の内面図。The inner surface figure of the 1st board | substrate of 3rd Embodiment, the longitudinal cross-sectional view of a panel, and the inner side figure of a 2nd board | substrate. 第4実施形態の第1基板の内面図、パネルの縦断面図及び第2基板の内面図。The inner surface figure of the 1st board | substrate of 4th Embodiment, the longitudinal cross-sectional view of a panel, and the inner surface figure of a 2nd board | substrate. 第5実施形態の第1基板の内面図、パネルの縦断面図及び第2基板の内面図。The inner surface figure of the 1st board | substrate of 5th Embodiment, the longitudinal cross-sectional view of a panel, and the inner surface figure of a 2nd board | substrate. 第6実施形態の概略構成図。The schematic block diagram of 6th Embodiment. 第7実施形態の概略斜視図。The schematic perspective view of 7th Embodiment.

符号の説明Explanation of symbols

100…液晶表示装置、110…第1基板、111…基板、112…信号線、113…接続部、114…コンタクト部、115…絶縁膜、115a…コンタクトホール、116…画素電極、117…垂直配向膜、120…第2基板、121…基板、122…対向電極、122a…主配向制御手段、122b…補助配向制御手段、123…垂直配向膜、100P…パネル構造、100D…駆動回路、130…バックライト、290…表示制御回路、1000…電子機器(携帯電話) DESCRIPTION OF SYMBOLS 100 ... Liquid crystal display device 110 ... 1st board | substrate, 111 ... Board | substrate, 112 ... Signal line, 113 ... Connection part, 114 ... Contact part, 115 ... Insulating film, 115a ... Contact hole, 116 ... Pixel electrode, 117 ... Vertical alignment Film 120, second substrate 121, substrate 122, counter electrode 122a, main alignment control means 122b, auxiliary alignment control means 123, vertical alignment film, 100P, panel structure, 100D, drive circuit, 130, back Light, 290 ... Display control circuit, 1000 ... Electronic equipment (cell phone)

Claims (8)

一対の基板の間に、電界無印加状態で基板の内面に対して実質的に垂直な方向に配向される液晶を配置して複数の画素領域を構成した液晶表示装置であって、
前記画素領域内の前記一対の基板のうち一方の前記基板の内面に形成された主配向制御手段と、
前記画素領域内の前記一方の基板若しくは他方の前記基板の内面に形成され、前記主配向制御手段の周囲にて前記主配向制御手段から離間する方向に伸びるように設けられ、前記主配向制御手段の幅より小さい幅を有する複数の補助配向制御手段と、
を具備することを特徴とする液晶表示装置。
A liquid crystal display device in which a plurality of pixel regions are configured by arranging liquid crystal aligned in a direction substantially perpendicular to the inner surface of a substrate in a state where no electric field is applied between a pair of substrates,
Main orientation control means formed on the inner surface of one of the pair of substrates in the pixel region;
The main alignment control means is formed on an inner surface of the one substrate or the other substrate in the pixel region, and is provided to extend in a direction away from the main alignment control means around the main alignment control means. A plurality of auxiliary orientation control means having a width smaller than the width of
A liquid crystal display device comprising:
前記複数の補助配向制御手段は、前記主配向制御手段の周囲に放射状に配置されていることを特徴とする請求項1に記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the plurality of auxiliary alignment control means are arranged radially around the main alignment control means. 前記主配向制御手段及び前記補助配向制御手段は、前記液晶に電圧を印加するための電極に形成された開口部で構成されていることを特徴とする請求項1又は2に記載の液晶表示装置。   3. The liquid crystal display device according to claim 1, wherein the main alignment control unit and the auxiliary alignment control unit include an opening formed in an electrode for applying a voltage to the liquid crystal. . 前記補助配向制御手段の幅が3〜8μmの範囲内にあることを特徴とする請求項1乃至3のいずれか一項に記載の液晶表示装置。   4. The liquid crystal display device according to claim 1, wherein a width of the auxiliary alignment control means is in a range of 3 to 8 μm. 前記複数の補助配向制御手段の間隔が5〜30μmの範囲内にあることを特徴とする請求項1乃至4のいずれか一項に記載の液晶表示装置。   5. The liquid crystal display device according to claim 1, wherein an interval between the plurality of auxiliary alignment control means is in a range of 5 to 30 μm. 前記補助配向制御手段の先端同士を結ぶ包絡線の形状と、前記画素領域の外縁形状とが実質的に相似形であることを特徴とする請求項1乃至5のいずれか一項に記載の液晶表示装置。   6. The liquid crystal according to claim 1, wherein the shape of an envelope connecting the tips of the auxiliary orientation control means is substantially similar to an outer edge shape of the pixel region. Display device. 前記画素領域内に複数のサブ領域が構成され、前記主配向制御手段及び前記複数の補助配向制御手段が前記サブ領域毎に設けられていることを特徴とする請求項1乃至6のいずれか一項に記載の液晶表示装置。   7. A plurality of sub-regions are formed in the pixel region, and the main orientation control means and the plurality of auxiliary orientation control means are provided for each of the sub-regions. The liquid crystal display device according to item. 請求項1乃至7のいずれか一項に記載の液晶表示装置と、該液晶表示装置を制御する制御手段とを有することを特徴とする電子機器。
An electronic apparatus comprising: the liquid crystal display device according to claim 1; and a control unit that controls the liquid crystal display device.
JP2004307752A 2004-10-22 2004-10-22 Liquid crystal display device and electronic device Expired - Fee Related JP4604645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307752A JP4604645B2 (en) 2004-10-22 2004-10-22 Liquid crystal display device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307752A JP4604645B2 (en) 2004-10-22 2004-10-22 Liquid crystal display device and electronic device

Publications (3)

Publication Number Publication Date
JP2006119405A true JP2006119405A (en) 2006-05-11
JP2006119405A5 JP2006119405A5 (en) 2007-03-15
JP4604645B2 JP4604645B2 (en) 2011-01-05

Family

ID=36537342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307752A Expired - Fee Related JP4604645B2 (en) 2004-10-22 2004-10-22 Liquid crystal display device and electronic device

Country Status (1)

Country Link
JP (1) JP4604645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978401A1 (en) * 2007-04-05 2008-10-08 Samsung Electronics Co., Ltd. Liquid crystal display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303869A (en) * 2001-04-04 2002-10-18 Fujitsu Ltd Liquid crystal display device
JP2003084266A (en) * 2001-06-29 2003-03-19 Fujitsu Display Technologies Corp Substrate for liquid crystal display device, liquid crystal display device provided with the same and method for manufacturing the same
JP2003156855A (en) * 2001-11-21 2003-05-30 Fujitsu Display Technologies Corp Fine pattern forming method and liquid crystal display panel
JP2003186017A (en) * 2001-10-12 2003-07-03 Fujitsu Display Technologies Corp Liquid crystal display device
JP2004029241A (en) * 2002-06-24 2004-01-29 Sharp Corp Liquid crystal display device
JP2004038166A (en) * 2002-06-29 2004-02-05 Boe-Hydis Technology Co Ltd Liquid crystal display device in vertical alignment mode
JP2004038164A (en) * 2002-06-29 2004-02-05 Boe-Hydis Technology Co Ltd Liquid crystal display device of vertical alignment mode
JP2004288941A (en) * 2003-03-24 2004-10-14 Hitachi Metals Ltd Noise suppression sheet
JP2006106101A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Liquid crystal display panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303869A (en) * 2001-04-04 2002-10-18 Fujitsu Ltd Liquid crystal display device
JP2003084266A (en) * 2001-06-29 2003-03-19 Fujitsu Display Technologies Corp Substrate for liquid crystal display device, liquid crystal display device provided with the same and method for manufacturing the same
JP2003186017A (en) * 2001-10-12 2003-07-03 Fujitsu Display Technologies Corp Liquid crystal display device
JP2003156855A (en) * 2001-11-21 2003-05-30 Fujitsu Display Technologies Corp Fine pattern forming method and liquid crystal display panel
JP2004029241A (en) * 2002-06-24 2004-01-29 Sharp Corp Liquid crystal display device
JP2004038166A (en) * 2002-06-29 2004-02-05 Boe-Hydis Technology Co Ltd Liquid crystal display device in vertical alignment mode
JP2004038164A (en) * 2002-06-29 2004-02-05 Boe-Hydis Technology Co Ltd Liquid crystal display device of vertical alignment mode
JP2004288941A (en) * 2003-03-24 2004-10-14 Hitachi Metals Ltd Noise suppression sheet
JP2006106101A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Liquid crystal display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1978401A1 (en) * 2007-04-05 2008-10-08 Samsung Electronics Co., Ltd. Liquid crystal display device
US8081282B2 (en) 2007-04-05 2011-12-20 Samsung Electronics Co., Ltd. Liquid crystal display device
KR101393634B1 (en) 2007-04-05 2014-05-12 전북대학교산학협력단 Liquid crystal display device

Also Published As

Publication number Publication date
JP4604645B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US7724326B2 (en) Liquid crystal display device comprising a shading conductive layer formed at least near an opening or cut of an electrode
JP4016977B2 (en) Liquid crystal display device, electronic equipment
JPWO2005111708A1 (en) Liquid crystal display device and electronic apparatus including the same
KR20050025575A (en) Liquid crystal display device
JP2006003830A (en) Liquid crystal display
JP3900141B2 (en) Liquid crystal display device and electronic device
JP2004219996A (en) Liquid crystal display device and electronic equipment
JPWO2008090856A1 (en) Liquid crystal display
JP2004198919A (en) Liquid crystal display device and electronic equipment
JP3915792B2 (en) Liquid crystal display device and electronic device
JP3901172B2 (en) Liquid crystal display device and electronic device
JP4111929B2 (en) Liquid crystal display
JP4604645B2 (en) Liquid crystal display device and electronic device
JP2005173105A (en) Liquid crystal display and electronic device
JP4420698B2 (en) Liquid crystal display
JP4248381B2 (en) Liquid crystal display
JP2005266195A (en) Liquid crystal display device
JP4245473B2 (en) Liquid crystal display
JP2004205903A (en) Liquid crystal display and electronic equipment
JP4349961B2 (en) Liquid crystal display
JP4525259B2 (en) Liquid crystal display device and electronic device
JP2004004938A (en) Liquid crystal display device and electronic equipment
JP4067026B2 (en) Liquid crystal display device and electronic device
JP4645628B2 (en) Liquid crystal display device, electronic equipment
JP4001154B2 (en) Liquid crystal display device and electronic device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4604645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees