JP2006118860A - Gas chromatograph - Google Patents

Gas chromatograph Download PDF

Info

Publication number
JP2006118860A
JP2006118860A JP2004303742A JP2004303742A JP2006118860A JP 2006118860 A JP2006118860 A JP 2006118860A JP 2004303742 A JP2004303742 A JP 2004303742A JP 2004303742 A JP2004303742 A JP 2004303742A JP 2006118860 A JP2006118860 A JP 2006118860A
Authority
JP
Japan
Prior art keywords
gas
ecd
helium
sensitivity
makeup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303742A
Other languages
Japanese (ja)
Inventor
Shozo Tanabe
省三 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004303742A priority Critical patent/JP2006118860A/en
Publication of JP2006118860A publication Critical patent/JP2006118860A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas chromatograph which is constituted so as to stably keep and reproduce a state similar to ECD raised in sensitivity by proper contamination and enables the analysis of high sensitivity due to the ECD. <P>SOLUTION: A separate kind of gas is mixed with the carrier gas or makeup gas flowing to the ECD 2 and the compositional ratio of both gasses is made variable, More concretely, helium is mixed with nitrogen widely used heretofore as the carrier gas or the makeup gas. By this constitution, analysis can be performed with a rise in sensitivity in the same way as a detector is properly contaminated in a conventional apparatus and the rise in sensitivity can be kept or reproduced by appropriately regulating the mixing ratio of helium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はガスクロマトグラフに関し、特に電子捕獲形検出器(以下ECDという)を備えたガスクロマトグラフに関する。   The present invention relates to a gas chromatograph, and more particularly to a gas chromatograph equipped with an electron capture detector (hereinafter referred to as ECD).

ガスクロマトグラフ用検出器の一種であるECDは、電子親和性物質(ハロゲン化合物やニトロ化合物等)の選択的検出に適している検出器である。
図4に、従来のECDの構造例を、これを備えたガスクロマトグラフの概略流路図と共に示す。同図において、1は試料導入部、2はECD、3はカラム(この場合はキャピラリカラム)であり、キャリアガス(通常、ヘリウム)はボンベ10から供給されて流量(または圧力)制御用の調整弁4で調整されて試料導入部1とカラム3を経てECD2へ流れる。途中でスプリット流路7からその一部が排出される。メークアップガスとしてボンベ11から窒素が供給され、調整弁8で流量が調整されてメークアップガス導入路25からECD2に導入される。
なお、キャリアガス等の流量制御には、最近はコンピュータ化された電子式流量制御装置が多く用いられるが、ここでは最も簡単な構成例として、調整弁4、8を用いる場合を例示する。
ECD, which is a kind of detector for gas chromatography, is a detector suitable for selective detection of electron affinity substances (halogen compounds, nitro compounds, etc.).
FIG. 4 shows an example of the structure of a conventional ECD together with a schematic flow chart of a gas chromatograph equipped with the same. In the figure, 1 is a sample introduction part, 2 is an ECD, 3 is a column (in this case, a capillary column), and a carrier gas (usually helium) is supplied from a cylinder 10 to adjust for flow rate (or pressure) control. It is adjusted by the valve 4 and flows to the ECD 2 through the sample introduction part 1 and the column 3. A part of it is discharged from the split flow path 7 on the way. Nitrogen is supplied as a make-up gas from the cylinder 11, the flow rate is adjusted by the regulating valve 8, and introduced into the ECD 2 from the make-up gas introduction path 25.
In recent years, computerized electronic flow control devices are often used for flow control of carrier gas or the like, but here, the case where the regulating valves 4 and 8 are used is illustrated as the simplest configuration example.

ECD2は、63Niなどの放射性同位元素の線源21を陰極、棒状のコレクタ電極22を陽極として封入した小容積のセル23の下部にあるガス入口24にカラム3の末端部が接続され、該カラム3からキャリアガスと共にセル23内に流入する試料成分が上方へ送られるような構造のものが知られている(例えば、特許文献1参照)。
セル23内にメークアップガスとして導入された窒素ガスが線源21から放射されるβ線によって電離し、セル23内に電子が生成する。この電子は陽極であるコレクタ電極22に引き寄せられるので、コレクタ電極22と線源21の間に定常電流が流れる。
The ECD 2 is connected to the gas inlet 24 at the bottom of a small volume cell 23 in which a radioactive isotope radiation source 21 such as 63 Ni is used as a cathode and a rod-shaped collector electrode 22 is used as an anode. A structure in which the sample component flowing into the cell 23 together with the carrier gas from the column 3 is sent upward is known (for example, see Patent Document 1).
Nitrogen gas introduced as a makeup gas into the cell 23 is ionized by β rays emitted from the radiation source 21, and electrons are generated in the cell 23. Since these electrons are attracted to the collector electrode 22 which is an anode, a steady current flows between the collector electrode 22 and the radiation source 21.

カラム3から流出するガス中に試料成分として電子親和性物質がある場合、当該電子親和性物質はセル23内の電子を取り込んで負イオンを形成する。当該負イオンもコレクタ電極22に引き寄せられて動くが、電子に比べ移動速度が遅いため再結合の確率が高く、結果的に定常電流の流れが減少するが、実際は電流の減少を補償してコレクタ電極22に流れる電流を一定に保つように電極間に印加する電圧を制御する。その電圧変化は、負イオン濃度、即ちカラム3から流出する電子親和性物質の濃度に比例するので、これを取り出して出力信号とするように構成されている。
なお、26は排出流路であり、セル23内に流入したガスが排出流路26を通って排出される。
When there is an electron affinity substance as a sample component in the gas flowing out from the column 3, the electron affinity substance takes in the electrons in the cell 23 and forms negative ions. Although the negative ions are also attracted to the collector electrode 22 and moved, the moving speed is slower than that of the electrons, so the probability of recombination is high. As a result, the steady-state current flow is reduced. The voltage applied between the electrodes is controlled so as to keep the current flowing through the electrodes 22 constant. Since the voltage change is proportional to the negative ion concentration, that is, the concentration of the electron affinity substance flowing out from the column 3, it is configured to take this as an output signal.
Reference numeral 26 denotes a discharge flow path, and the gas flowing into the cell 23 is discharged through the discharge flow path 26.

近年は、電極間にパルス電圧を印加し、そのパルス周波数を変化させて定電流を保つように制御し、周波数変化を出力信号として取り出すようにした定電流パルス制御方式ECDが広く用いられるようになっている(例えば、非特許文献1参照)。   In recent years, a constant current pulse control system ECD in which a pulse voltage is applied between electrodes, the pulse frequency is controlled to maintain a constant current, and the frequency change is extracted as an output signal has been widely used. (For example, refer nonpatent literature 1).

特開平11−153579号公報JP-A-11-153579 R.J.マグス他「アナリティカル・ケミストリー(Analytical Chemistry)」1971年、43号、p1966(米国)R. J. et al. Magus et al. “Analytical Chemistry” 1971, 43, p1966 (USA)

ガスクロマトグラフの検出器は、一般に使用を重ねるにつれて試料成分等が内部に付着蓄積することによってノイズが増えたり感度が低下する等の障害が現れる。しかし、ECDの場合は、電極が汚染されることによりかえって感度が増加する傾向が認められる。感度増加の機序については解明されていないが、検出限界に近い極微量の残留農薬の分析等においては、検出器感度は少しでも高いことが望まれるので、適度に汚染された状態の検出器が好んで用いられることさえある。しかし、汚染された状態は安定性に乏しく、これを安定的に維持し、或いは再現することは困難である。
本発明は、このような事情に鑑みてなされたものであり、適度の汚染により感度の上昇したECDと同等の状態を安定的に維持再現し、以てECDによる高感度分析を可能にするガスクロマトグラフを提供することを目的とする。
In general, as a gas chromatograph detector is used repeatedly, troubles such as noise increase and sensitivity decrease due to sample components adhering and accumulating inside. However, in the case of ECD, there is a tendency that sensitivity is increased due to contamination of the electrode. Although the mechanism of sensitivity increase has not been elucidated, it is desired that the detector sensitivity be as high as possible when analyzing trace amounts of residual agricultural chemicals that are close to the detection limit. Is even preferred. However, the contaminated state is poorly stable, and it is difficult to maintain or reproduce it stably.
The present invention has been made in view of such circumstances, and is a gas chromatograph that stably maintains and reproduces a state equivalent to ECD whose sensitivity has been increased by moderate contamination, thereby enabling high-sensitivity analysis by ECD. The purpose is to provide a graph.

本発明は、上記課題を解決するために、ECDに流れるキャリアガスまたはメークアップガスに不純物として別種のガスを混ぜ、その組成比を可変とするように構成した。より具体的には、キャリアガスまたはメークアップガスとして従来から広く用いられる窒素にヘリウムを混合するようにした。これにより、従来の装置においてECDが適度に汚染された場合と同様に、感度の上昇した状態で分析を行うことが可能となり、しかも、ヘリウムの混合比率を適宜調節することでその状態を維持し、或いは再現することが可能となる。   In order to solve the above-mentioned problems, the present invention is configured such that a carrier gas or a makeup gas flowing in the ECD is mixed with another type of gas as an impurity, and the composition ratio is variable. More specifically, helium was mixed with nitrogen that has been widely used as a carrier gas or a makeup gas. As a result, analysis can be performed with increased sensitivity as in the case where the ECD is moderately contaminated in the conventional apparatus, and the state is maintained by appropriately adjusting the mixing ratio of helium. Or can be reproduced.

上記のように構成された本発明装置によれば、従来の通常の分析に比べて検出器感度の高い状態で分析を行うことができ、しかもその状態を維持再現することも容易に可能となるので、残留農薬や自然環境中の汚染物質などの検出下限近辺の濃度レベルの分析に極めて有効である。   According to the apparatus of the present invention configured as described above, analysis can be performed in a state where the detector sensitivity is higher than that of conventional normal analysis, and the state can be easily maintained and reproduced. Therefore, it is extremely effective for analysis of concentration levels near the lower detection limit for pesticide residues and pollutants in the natural environment.

図1に本発明の一実施形態として、キャピラリカラムを用いるガスクロマトグラフの流路構成を示す。同図において、図4と同一の構成要素には同一符号を付すことで再度の説明を省く。また、図1におけるECD2は内部構造を省略してブロックで示されているが、これは図4に示すECD2と同様の構造を有するものとする。   FIG. 1 shows a flow channel configuration of a gas chromatograph using a capillary column as one embodiment of the present invention. In the figure, the same components as those in FIG. Further, although ECD2 in FIG. 1 is shown as a block with the internal structure omitted, it is assumed that this has the same structure as ECD2 shown in FIG.

本実施形態が図4に示す従来例と異なる点は、メークアップガスとして窒素に適当な割合でヘリウムを加えた混合ガスを供給できるようにした流量制御手段6を備えたことである。このような流量制御手段6の最も簡単な例は、窒素とヘリウムそれぞれの流量制御用の調整弁5を並置し、各々の出口側流路を連結して両ガスを合流させるように構成すれば容易に実現できる。
このような装置構成において、窒素に適当な割合でヘリウムが混入したメークアップガスをECD2に供給すると、ヘリウムはECD2内部で窒素と同様にβ線によって電離するが、ヘリウムは窒素よりも再結合の確率が高いため電極に流れる電流は減少する。これは恰も汚染された検出器において電流が流れにくくなった状態と同じ現象として観測される。どちらの場合も実際には、先述したように、電極に印加する電圧、または印加するパルスの周波数を制御して電流の減少を補償し、電流を一定に保つようにするので、電流が減少する代わりに出力信号のベースレベルが上昇する。次に、これを定電流パルス制御方式ECDの場合について更に詳しく解析する。
This embodiment is different from the conventional example shown in FIG. 4 in that a flow rate control means 6 is provided which can supply a mixed gas obtained by adding helium to nitrogen at an appropriate ratio as a makeup gas. The simplest example of such a flow rate control means 6 is that the control valves 5 for controlling the flow rates of nitrogen and helium are juxtaposed, and the respective outlet side flow paths are connected to join both gases together. It can be easily realized.
In such an apparatus configuration, when makeup gas mixed with helium at an appropriate ratio to nitrogen is supplied to ECD2, helium is ionized by β rays in the same manner as nitrogen inside ECD2, but helium recombines more than nitrogen. Since the probability is high, the current flowing through the electrode decreases. This is observed as the same phenomenon as when the current hardly flows in the contaminated detector. In either case, as described above, the voltage is applied to the electrode or the frequency of the pulse to be applied is controlled to compensate for the decrease in the current so as to keep the current constant. Instead, the base level of the output signal increases. Next, this will be analyzed in more detail in the case of the constant current pulse control system ECD.

前掲の非特許文献1によれば、定電流パルス制御方式ECDの出力信号Δfは次式で表わされる。
Δf=f−f=KC ……………(1)
f:パルス周波数
:基本周波数(キャリアガスが試料成分を含まないときのパルス周波数)
K:比例定数
C:測定対象物質の濃度
検出器が汚染されて電流が流れにくくなると、定電流値を保つために基本周波数が大きくなる。メークアップガスにヘリウムを加えた場合も、ヘリウムの割合に応じて基本周波数が上昇する。このことは、メークアップガスにヘリウムを加え、またその割合を調節することで検出器の汚れた状態を再現できることを示唆している。即ち、検出器が適度に汚れて好ましい感度状態が得られているときの基本周波数と同じ基本周波数となるようにヘリウムの混合比を調整すれば、所要の感度状態を再現することができる。また、汚染が進行して感度状態が変化した場合でも、同様の調整により所要の感度状態を維持することができる。
According to the aforementioned non-patent document 1, the output signal Δf of the constant current pulse control system ECD is expressed by the following equation.
Δf = f−f 0 = KC (1)
f: Pulse frequency
f 0 : fundamental frequency (pulse frequency when the carrier gas does not contain a sample component)
K: Proportional constant
C: Concentration of substance to be measured When the detector is contaminated and it becomes difficult for current to flow, the fundamental frequency increases in order to maintain a constant current value. When helium is added to the makeup gas, the fundamental frequency increases according to the proportion of helium. This suggests that the unclean state of the detector can be reproduced by adding helium to the makeup gas and adjusting the ratio. That is, the required sensitivity state can be reproduced by adjusting the mixing ratio of helium so that the fundamental frequency is the same as the fundamental frequency when the detector is moderately soiled and a desirable sensitivity state is obtained. Moreover, even if the contamination progresses and the sensitivity state changes, the required sensitivity state can be maintained by the same adjustment.

メークアップガスにヘリウムを加えた場合に実際に検出感度が向上することを確かめるための実験を行った。実験は、図1と同様の装置構成において、窒素とヘリウムの混合メークアップガスの合計流量を60ml/minに保ちながら、その組成比を変えたときのγ−BHCの応答を測定した。
図3はその実験結果を示すもので、100%窒素をメークアップガスとした場合(従来と同じ)の応答を1とする応答比を縦軸に、窒素およびヘリウムの流量を横軸にとってグラフ化した図である。この結果から、メークアップガスに加えるヘリウムの割合を増加させることにより、最高10倍以上の感度増加が可能であることがわかる。
An experiment was conducted to confirm that the detection sensitivity actually improved when helium was added to the makeup gas. The experiment measured the response of γ-BHC when the composition ratio was changed while maintaining the total flow rate of the mixed makeup gas of nitrogen and helium at 60 ml / min in the same apparatus configuration as in FIG.
FIG. 3 shows the experimental results, and graphed with the response ratio taken as 1 on the vertical axis and the flow rates of nitrogen and helium on the horizontal axis when 100% nitrogen was used as the makeup gas (same as before). FIG. From this result, it is understood that the sensitivity can be increased up to 10 times or more by increasing the ratio of helium added to the makeup gas.

図2は本発明の他の実施形態として、充填カラムを用いるガスクロマトグラフに本発明を適用した場合の流路構成例を示す。同図において、図1と同一機能の構成要素には同符号を付す。
充填カラムの場合はメークアップガスは必要ないので、本実施形態ではキャリアガスの窒素にヘリウムを加えるように構成されている。即ち、図1と同様の流量制御手段6において2つの調整弁5により所要の流量に調整された窒素及びヘリウムが混合されてキャリアガスとして試料導入部1からカラム3を経てECD2へ流れる。ECD2の内部では図1の場合と同様に窒素とヘリウムが共存することになるので、図1の場合と同様の作用で検出感度の向上がもたらされる。
FIG. 2 shows a flow path configuration example when the present invention is applied to a gas chromatograph using a packed column as another embodiment of the present invention. In the figure, components having the same functions as those in FIG.
In the case of a packed column, no makeup gas is required, so in this embodiment, helium is added to nitrogen as a carrier gas. That is, in the flow rate control means 6 similar to FIG. 1, nitrogen and helium adjusted to a required flow rate by the two regulating valves 5 are mixed and flow from the sample introduction unit 1 through the column 3 to the ECD 2 as a carrier gas. Since nitrogen and helium coexist in the ECD2 as in the case of FIG. 1, the detection sensitivity is improved by the same action as in the case of FIG.

なお、以上はメークアップガスまたはキャリアガスとしての窒素にヘリウムを加える場合を例示して説明したが、他のガス種を用いても同様ないし類似の作用および効果が得られる可能性がある。また、上記は主に定電流パルス制御方式ECDについて説明したが、検出器の基本構造を同じくする他の制御方式によるECDを備えるガスクロマトグラフに対する本発明の適用可能性を否定するものではない。   In the above, the case where helium is added to nitrogen as a makeup gas or carrier gas has been described as an example. However, similar or similar actions and effects may be obtained even if other gas types are used. Further, the above has mainly described the constant current pulse control system ECD, but it does not deny the applicability of the present invention to a gas chromatograph equipped with an ECD by another control system having the same basic structure of the detector.

本発明はECDを備えたガスクロマトグラフに利用できる。   The present invention can be used for a gas chromatograph equipped with an ECD.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 本発明の効果を示す実験結果である。It is an experimental result which shows the effect of this invention. 従来のECDの構造例とこれを備えたガスクロマトグラフの概略流路を示す図である。It is a figure which shows the structural example of the conventional ECD, and the schematic flow path of a gas chromatograph provided with the same.

符号の説明Explanation of symbols

1 試料導入部
2 ECD
3 カラム
4 調整弁
5 調整弁
6 流量制御手段
7 スプリット流路
8 調整弁
10 ボンベ
11 ボンベ
21 線源
22 コレクタ電極
23 セル
24 ガス入口
25 メークアップガス導入路
26 排出流路
1 Sample introduction part 2 ECD
3 Column 4 Regulating Valve 5 Regulating Valve 6 Flow Control Means 7 Split Flow 8 Regulating Valve 10 Cylinder 11 Cylinder 21 Source 22 Collector Electrode 23 Cell 24 Gas Inlet 25 Makeup Gas Inlet 26 Discharge Channel

Claims (2)

試料成分を含むキャリアガス及び/又はメークアップガスが電子捕獲形検出器に流れるように構成されたガスクロマトグラフにおいて、前記キャリアガスまたは前記メークアップガスとして複数のガス種を混合して供給すると共に、その組成比を可変とする流量制御手段を備えて成るガスクロマトグラフ。   In a gas chromatograph configured such that a carrier gas and / or makeup gas containing a sample component flows to the electron capture detector, a plurality of gas species are mixed and supplied as the carrier gas or the makeup gas, and A gas chromatograph comprising flow rate control means for making the composition ratio variable. 複数のガス種が窒素とヘリウムである請求項1記載のガスクロマトグラフ。   The gas chromatograph according to claim 1, wherein the plurality of gas species are nitrogen and helium.
JP2004303742A 2004-10-19 2004-10-19 Gas chromatograph Pending JP2006118860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303742A JP2006118860A (en) 2004-10-19 2004-10-19 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303742A JP2006118860A (en) 2004-10-19 2004-10-19 Gas chromatograph

Publications (1)

Publication Number Publication Date
JP2006118860A true JP2006118860A (en) 2006-05-11

Family

ID=36536900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303742A Pending JP2006118860A (en) 2004-10-19 2004-10-19 Gas chromatograph

Country Status (1)

Country Link
JP (1) JP2006118860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568335A (en) * 2014-12-18 2015-04-29 四川安东油气工程技术服务有限公司 Helium and nitrogen mixing device for high pressure gas leak detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156555A (en) * 1981-03-20 1982-09-27 Shimadzu Corp Gas chromatography
JPS62115657U (en) * 1986-01-16 1987-07-23
JPH04303759A (en) * 1991-03-30 1992-10-27 Jeol Ltd Electron capture detector
JP2001056315A (en) * 1999-08-19 2001-02-27 Shimadzu Corp Electron capturing type detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156555A (en) * 1981-03-20 1982-09-27 Shimadzu Corp Gas chromatography
JPS62115657U (en) * 1986-01-16 1987-07-23
JPH04303759A (en) * 1991-03-30 1992-10-27 Jeol Ltd Electron capture detector
JP2001056315A (en) * 1999-08-19 2001-02-27 Shimadzu Corp Electron capturing type detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568335A (en) * 2014-12-18 2015-04-29 四川安东油气工程技术服务有限公司 Helium and nitrogen mixing device for high pressure gas leak detection

Similar Documents

Publication Publication Date Title
US8513593B2 (en) In-situ conditioning in mass spectrometer systems
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
Zhang et al. Determination of trace heavy metals in environmental and biological samples by solution cathode glow discharge-atomic emission spectrometry and addition of ionic surfactants for improved sensitivity
US5491337A (en) Ion trap mobility spectrometer and method of operation for enhanced detection of narcotics
Gelaude et al. Direct determination of methylmercury and inorganic mercury in biological materials by solid sampling-electrothermal vaporization-inductively coupled plasma-isotope dilution-mass spectrometry
EP2296791A1 (en) &#34;droplet pickup ion source&#34; coupled to mobility analyzer apparatus and method
US20040245457A1 (en) Porous electrospray emitter
JP2011128171A (en) Electron capture detector
JP2006118860A (en) Gas chromatograph
JP4262709B2 (en) An X-ray analyzer equipped with an X-ray gas flow proportional counter and a method of using the X-ray gas flow proportional counter.
KR20170086055A (en) Process and system for facilitating chemical identification in a detector
de Wit et al. Photoionization detector for open-tubular liquid chromatography
Aguilera-Herrador et al. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns
JPH11160280A (en) Ionization detector
JP2006145383A (en) Atmospheric pressure chemical ionization mass spectrograph, and calibration method therefor
JPS60209167A (en) Method and device for capturing and detecting electron
JP7471141B2 (en) Ionization promoter supply member, dehumidifier, and analyzer
Yin et al. Development of a liquid chromatography/tandem mass spectrometry assay for the quantification of Aplidin®, a novel marine‐derived antineoplastic agent, in human plasma
JP2009236928A (en) Electron capture detector
JP3143800U (en) Electron capture detector
US11862426B1 (en) Electron source devices, electron source assemblies, and methods for generating electrons
Brogioli Electrothermal treatment of laser generated aerosols: online suppression of interferences for laser ablation-inductively coupled plasma mass spectrometry
JP2004061321A (en) Method and apparatus for analyzing a very small quantity of impurity in gas
JP2021096130A (en) Gas analysis system
JP4156579B2 (en) Electron capture detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511