JP2006118835A - Frozen matter dryer - Google Patents

Frozen matter dryer Download PDF

Info

Publication number
JP2006118835A
JP2006118835A JP2004310081A JP2004310081A JP2006118835A JP 2006118835 A JP2006118835 A JP 2006118835A JP 2004310081 A JP2004310081 A JP 2004310081A JP 2004310081 A JP2004310081 A JP 2004310081A JP 2006118835 A JP2006118835 A JP 2006118835A
Authority
JP
Japan
Prior art keywords
condenser
evaporator
drying
air passage
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310081A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文雄 松岡
Takeshi Sugimoto
猛 杉本
Hiroaki Yamamoto
裕章 山本
Tadaaki Kawaguchi
忠明 川口
Toshiyuki Nakamura
利之 中村
Masao Kawasaki
雅夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004310081A priority Critical patent/JP2006118835A/en
Publication of JP2006118835A publication Critical patent/JP2006118835A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frozen matter dryer capable of controlling the temperature and humidity of drying air to be supplied to a drying chamber according to fluctuation of a load, and extending the set value zones of drying temperature and humidity. <P>SOLUTION: The dryer comprises the drying chamber 1 storing a frozen object to be dried 12, a circulating air passage 3 communicating with the drying chamber, a condenser 3 and an evaporator 4 arranged on the upstream side from the drying chamber within the circulating air passage, a refrigerant circuit A formed by connecting a variable-speed compressor 15 to the condenser and the evaporator, an auxiliary condenser 21 connected to the condenser of the refrigerant circuit in parallel to form an auxiliary refrigerant circuit B with the compressor and the evaporator, a flow-adjustable decompressing means 9 connected to the liquid side of the condenser and the auxiliary condenser, respectively, a flow regulating valve 7 connected to the gas side of the condenser, and a variable-speed blower 5 arranged in the vicinity of the evaporator and blowing drying air into the drying chamber from under to above to make the object to be dried flow. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、凍結物乾燥装置、例えば凍結されたジャガイモ、人参などの食品等を乾燥させる凍結物乾燥装置に関するものである。   The present invention relates to a frozen material drying apparatus, for example, a frozen material drying apparatus for drying food such as frozen potatoes and carrots.

従来の凍結物乾燥装置は、凍結した被乾燥物を収容する乾燥室と、この乾燥室に連通した循環風路とを設け、この循環風路内の上記乾燥室より上流側に凝縮器及び蒸発器を設けると共に、上記凝縮器及び蒸発器に循環風路外で冷媒配管を介して圧縮機を接続することによって冷媒回路を形成する一方、循環風路外で上記凝縮器と並列関係に補助凝縮器を接続することによって補助冷媒回路を形成し、上記凝縮器と蒸発器との間に設けた送風機によって上記乾燥室の下方から上方に向けて乾燥用空気を吹き込み、凍結した被乾燥物を対流によって流動させ、上記凝縮器の吹き出し温度が所定値以上になると補助冷媒回路を動作させて乾燥室の温度を制御し、乾燥させるようにしていた。(例えば特許文献1参照)。   A conventional frozen material drying apparatus is provided with a drying chamber for storing a frozen material to be dried, and a circulation air passage communicating with the drying chamber, and a condenser and evaporation upstream of the drying chamber in the circulation air passage. A refrigerant circuit is formed by connecting a compressor to the condenser and the evaporator via a refrigerant pipe outside the circulation air passage, while forming a refrigerant circuit in parallel with the condenser outside the circulation air passage. An auxiliary refrigerant circuit is formed by connecting a condenser, and drying air is blown upward from the bottom of the drying chamber by a blower provided between the condenser and the evaporator, and the frozen material to be dried is convected. When the blowout temperature of the condenser becomes a predetermined value or more, the auxiliary refrigerant circuit is operated to control the temperature of the drying chamber and dry. (For example, refer to Patent Document 1).

特表平3−504634号公報(2p下段左欄1行−3p上段左欄3行、図面)JP-T-3-504634 (2p lower left column 1 line-3p upper left column 3 line, drawing)

従来の凍結物乾燥装置は上記のように構成され、圧縮機及び送風機が定速運転されるものであるため、負荷変動、即ち被乾燥物の量や重量の大小に応じて乾燥用空気の量と温度と湿度を的確に制御することができず、乾燥温度及び湿度の設定値が制限されるという問題点があった。   Since the conventional frozen material drying apparatus is configured as described above, and the compressor and the blower are operated at a constant speed, the amount of drying air depends on the load fluctuation, that is, the amount of the material to be dried and the size of the weight. However, the temperature and humidity cannot be accurately controlled, and there are problems that the set values of the drying temperature and humidity are limited.

これは、定速の圧縮機を使用した場合、乾燥初期の段階では蒸発器と凝縮器の中間部分におけるコールド空気の初期温度及び初期蒸発温度が確保されていても、乾燥が進むにつれて負荷が減ってきた場合には、コールド空気温度、蒸発温度が下がり、供給温度がずれてしまう場合があり、また、蒸発温度が下がりすぎた場合には、圧縮機の使用限界(下限)を下回ってしまう場合もあるためである。   This is because, when a constant speed compressor is used, the load decreases as drying progresses even if the initial temperature and the initial evaporation temperature of cold air in the middle part of the evaporator and the condenser are secured in the initial stage of drying. If cold air temperature and evaporation temperature fall, supply temperature may shift, and if the evaporation temperature falls too much, it will fall below the compressor use limit (lower limit). Because there is also.

また、乾燥用空気の温度と湿度は冷媒回路と補助冷媒回路とを切り替えて制御しているが、循環風路内に設けられた凝縮器の加熱量は凝縮器のサイズで決定されるため、乾燥室へ供給する乾燥用空気の温度、湿度を所定値に制御するのは困難という問題点があった。   In addition, the temperature and humidity of the drying air are controlled by switching between the refrigerant circuit and the auxiliary refrigerant circuit, but the amount of heating of the condenser provided in the circulation air passage is determined by the size of the condenser, There is a problem that it is difficult to control the temperature and humidity of the drying air supplied to the drying chamber to predetermined values.

この発明は、上記のような問題点に対処するためになされたもので、乾燥室に供給する乾燥用空気の温度と湿度を負荷の変動に対応して制御し得るようにすると共に、乾燥温度及び湿度の設定値ゾーンを広くすることができる凍結物乾燥装置を提供することを目的とする。   The present invention has been made in order to cope with the above-described problems, and enables the temperature and humidity of the drying air supplied to the drying chamber to be controlled in accordance with load fluctuations, and the drying temperature. Another object of the present invention is to provide a frozen material drying apparatus capable of widening the set value zone of humidity.

この発明に係る凍結物乾燥装置は、凍結した被乾燥物を収容する乾燥室と、この乾燥室に連通した循環風路と、この循環風路内で上記乾燥室より上流側に配設された凝縮器及び蒸発器と、上記凝縮器及び蒸発器に上記循環風路外に配設された可変速の圧縮機を冷媒配管を介して接続して形成された冷媒回路と、上記冷媒回路の凝縮器に上記循環風路外で並列関係に接続され、上記圧縮機及び蒸発器と共に補助冷媒回路を形成する補助凝縮器と、上記凝縮器及び補助凝縮器の液側にそれぞれ接続された流量調整可能な減圧手段と、上記凝縮器のガス側に接続された流量調整弁と、上記循環風路内で上記蒸発器の近傍に配設され、上記乾燥室に下方から上方に向けた乾燥用気体を吹き込んで上記被乾燥物を流動させる可変速の送風機とを備えたものである。   A frozen material drying apparatus according to the present invention is provided with a drying chamber for storing a frozen material to be dried, a circulation air passage communicating with the drying chamber, and an upstream side of the drying chamber in the circulation air passage. A condenser and an evaporator; a refrigerant circuit formed by connecting a variable speed compressor disposed outside the circulation air passage to the condenser and the evaporator through a refrigerant pipe; and condensation of the refrigerant circuit Connected to the condenser in parallel outside the circulation air passage, and forms an auxiliary refrigerant circuit together with the compressor and the evaporator, and the flow rate can be adjusted respectively connected to the liquid side of the condenser and the auxiliary condenser. Pressure reducing means, a flow rate adjusting valve connected to the gas side of the condenser, and the evaporator in the circulation air passage, and a drying gas directed from below to above in the drying chamber. A variable speed blower that blows and flows the material to be dried It is.

この発明に係る凍結物乾燥装置は上記のように構成されているため、乾燥初期の重い被乾燥物から乾燥終期の軽い被乾燥物に対して蒸発器の吸込みの湿度状態、風速状態が変化しても、それに対応して圧縮機の速度が変化するため蒸発器の蒸発温度を最適に制御することができる。また、凍結乾燥の温度、湿度の設定値ゾーンを広くすることができる。
更に、蒸発器の吸込側に送風機を設け、押し込み通風方式としているため、循環風路内における最低温度部分(蒸発器と凝縮器の中間部分)が正圧となり、循環風路外からの熱侵入(熱ロス)を少なくすることができる。
Since the frozen material drying apparatus according to the present invention is configured as described above, the humidity state and the wind speed state of the suction of the evaporator change from the heavy to-be-dried product at the initial drying stage to the light to-be-dried product at the final drying stage. However, since the speed of the compressor changes correspondingly, the evaporation temperature of the evaporator can be optimally controlled. Further, the set value zones for the temperature and humidity for freeze-drying can be widened.
In addition, a blower is provided on the suction side of the evaporator, and a forced draft system is used. Therefore, the lowest temperature part in the circulation air passage (the middle part between the evaporator and the condenser) becomes positive pressure, and heat enters from outside the circulation air passage. (Heat loss) can be reduced.

更にまた、供給空気の温度と相対湿度、リターン空気の温度と相対湿度を検出する検出センサを設けているため、初期におけるリターン空気の湿度の湿潤状態、高温度状態から被乾燥物の乾燥の進行と共にリターン空気の温度及び相対湿度が下がった場合、リターン空気の変化に対応した流量調整及び圧縮機、送風機の回転数制御により凝縮器からの供給空気温度及び蒸発器と凝縮器の中間部分におけるコールド空気温度を所定値に制御することができる。   Furthermore, since detection sensors are provided to detect the temperature and relative humidity of the supply air and the temperature and relative humidity of the return air, the drying of the object to be dried progresses from the humidity state of the return air in the initial stage to the humidity state. When the temperature and relative humidity of the return air drop, the flow rate adjustment corresponding to the change of the return air, the compressor, the temperature of the supply air from the condenser by controlling the rotation speed of the blower, and the cold in the middle part of the evaporator and the condenser The air temperature can be controlled to a predetermined value.

実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1の構成を示す概略図である。図1に示すように、乾燥室1と、この乾燥室1に連通した循環風路2とが形成され、乾燥室1には多孔板からなる床板11が設けられ、この床板11上に凍結された食品等の被乾燥物12が収容されている。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of the first embodiment. As shown in FIG. 1, a drying chamber 1 and a circulation air passage 2 communicating with the drying chamber 1 are formed. A floor plate 11 made of a porous plate is provided in the drying chamber 1 and is frozen on the floor plate 11. A to-be-dried object 12 such as food is stored.

循環風路2内には乾燥室1の上流側に凝縮器3と蒸発器4が配設され、更に蒸発器4の吸込側に可変速の送風機5が配設されている。
この送風機5からの送風は後述するように、凝縮器3と蒸発器4を経て上記乾燥室1の床板11の下方から上方に向けて乾燥用空気を吹き込み、乾燥室1内で対流を形成して被乾燥物12を乾燥室1内で流動させて乾燥させるものである。
In the circulation air passage 2, a condenser 3 and an evaporator 4 are disposed on the upstream side of the drying chamber 1, and a variable speed blower 5 is disposed on the suction side of the evaporator 4.
As will be described later, the air blown from the blower 5 blows drying air from below the floor plate 11 of the drying chamber 1 through the condenser 3 and the evaporator 4 to form convection in the drying chamber 1. Thus, the material to be dried 12 is made to flow in the drying chamber 1 and dried.

また、凝縮器3及び蒸発器4は循環風路2外に配設された可変速の圧縮機15、アキュムレータ6及び凝縮器3のガス側に位置する流量制御弁7、その更に上流側に設けられる電磁弁8並びに凝縮器3の液側に位置する電動膨張弁等の流量調整可能な減圧手段9及び逆止弁10と共に冷媒配管20によって接続され、周知の冷媒回路Aを形成している。   Further, the condenser 3 and the evaporator 4 are provided on the further upstream side of the variable speed compressor 15 disposed outside the circulation air passage 2, the accumulator 6 and the flow rate control valve 7 located on the gas side of the condenser 3. A well-known refrigerant circuit A is formed by a refrigerant pipe 20 together with a solenoid valve 8 and a decompression means 9 such as an electric expansion valve located on the liquid side of the condenser 3 and a check valve 10 capable of adjusting the flow rate.

更に、循環風路2外に配設された補助凝縮器21、電動膨張弁等の流量調整可能な減圧手段22及び逆止弁23を図示のように凝縮器3と並列関係に接続し、蒸発器4、アキュムレータ6、可変速の圧縮機15と共に補助冷媒回路Bを形成している。
なお、24は補助凝縮器21に設けられた可変速の送風機である。
Further, an auxiliary condenser 21 arranged outside the circulation air passage 2, a pressure reducing means 22 such as an electric expansion valve, which can adjust the flow rate, and a check valve 23 are connected in parallel with the condenser 3 as shown in FIG. The auxiliary refrigerant circuit B is formed together with the container 4, the accumulator 6, and the variable speed compressor 15.
Reference numeral 24 denotes a variable speed blower provided in the auxiliary condenser 21.

また、循環風路2内の凝縮器3の乾燥室1側には供給温度と相対湿度の検出センサ25が設けられ、供給温度及び湿度の目標値をそれぞれ独立的に設定することができるようにされている。更に、蒸発器4の吸込側にはリターン空気の温度及び相対湿度を検出する検出センサ26が設けられている。   Further, a supply temperature and relative humidity detection sensor 25 is provided on the drying chamber 1 side of the condenser 3 in the circulation air path 2 so that the supply temperature and humidity target values can be set independently. Has been. Further, a detection sensor 26 for detecting the temperature and relative humidity of the return air is provided on the suction side of the evaporator 4.

このような構成において、乾燥室1内の被乾燥物12を乾燥させる場合には、冷媒回路A及び補助冷媒回路Bを運転し、送風機5からの送風を乾燥室1に向けて供給する。
送風機5からの送風は蒸発器4で冷却され、凝縮器3で加熱されて−5℃以下の乾燥用空気として乾燥室1に下方から供給され、多孔板からなる床板11を経て乾燥室1内で対流を形成し、凍結された被乾燥物12を流動させながら乾燥する。
In such a configuration, when the object to be dried 12 in the drying chamber 1 is dried, the refrigerant circuit A and the auxiliary refrigerant circuit B are operated, and air from the blower 5 is supplied toward the drying chamber 1.
The air blown from the blower 5 is cooled by the evaporator 4, heated by the condenser 3, supplied from below to the drying chamber 1 as drying air of −5 ° C. or less, and passes through the floor plate 11 made of a perforated plate to enter the drying chamber 1. Then, convection is formed, and the frozen material to be dried 12 is dried while flowing.

送風機5は押し込み通風となるため、循環風路2内の最低温度部分(蒸発器4と凝縮器3との中間部分)は正圧となり、循環風路外からの熱侵入(熱ロス)を少なくしている。   Since the blower 5 is forced air flow, the lowest temperature portion in the circulation air passage 2 (intermediate portion between the evaporator 4 and the condenser 3) has a positive pressure, and heat intrusion (heat loss) from outside the circulation air passage is reduced. is doing.

乾燥室1における乾燥初期の状態においては被乾燥物12は重いが、乾燥終期には軽くなり負荷状態が変動する。これに伴ってリターン空気の温度及び湿度が変動するが、これを検出センサ26で読み取り、リターン空気の温度と湿度から乾燥室1における乾燥状態を推定し、リターン温度及び湿度の変化に関わらず供給温度及び湿度が目標設定値となるように蒸発器4の蒸発温度と凝縮器3の凝縮温度を制御する。   In the drying chamber 1 in the initial drying state, the material to be dried 12 is heavy, but at the end of drying, it becomes light and the load state varies. Along with this, the temperature and humidity of the return air fluctuate. This is read by the detection sensor 26, the drying state in the drying chamber 1 is estimated from the temperature and humidity of the return air, and supplied regardless of changes in the return temperature and humidity. The evaporation temperature of the evaporator 4 and the condensation temperature of the condenser 3 are controlled so that the temperature and humidity become the target set values.

そのために、圧縮機15と送風機5及び24の回転数を制御すると共に、流量制御弁7及び減圧手段9、22の開度が最適値に調整される。
例えば、補助凝縮器21の周囲温度を25℃、凝縮温度を40℃、凝縮器3の吸込温度を-40℃、凝縮温度を0℃とすると、多くの冷媒が温度の低い凝縮器3側に流入し、再熱量過大とか冷媒量不足におちいることがあるため、流量調整弁7の調整により、凝縮器3の凝縮温度を変化させて上記の不具合を解消している。
この結果、乾燥室1内の風速も最適値に調整されることになる。
For this purpose, the rotational speeds of the compressor 15 and the blowers 5 and 24 are controlled, and the openings of the flow control valve 7 and the decompression means 9 and 22 are adjusted to optimum values.
For example, if the ambient temperature of the auxiliary condenser 21 is 25 ° C., the condensation temperature is 40 ° C., the suction temperature of the condenser 3 is −40 ° C., and the condensation temperature is 0 ° C., a large amount of refrigerant moves to the condenser 3 side where the temperature is low. Inflow may cause an excessive reheat amount or a shortage of the refrigerant amount. Therefore, adjustment of the flow rate adjustment valve 7 changes the condensation temperature of the condenser 3 to eliminate the above-described problem.
As a result, the wind speed in the drying chamber 1 is also adjusted to an optimum value.

なお、冷媒回路Aの電磁弁8を閉塞して凝縮器3を停止させ、補助冷媒回路Bのみを運転すると、乾燥用空気は蒸発器4によって冷却されるのみとなるため、乾燥室1内の被乾燥物12は凍結されることになる。即ち、電磁弁8の開閉により乾燥と凍結を切り替えることができる。   If the condenser 3 is stopped by closing the solenoid valve 8 of the refrigerant circuit A and only the auxiliary refrigerant circuit B is operated, the drying air is only cooled by the evaporator 4. The to-be-dried object 12 is frozen. That is, drying and freezing can be switched by opening and closing the electromagnetic valve 8.

また、冷媒回路A、補助冷媒回路Bの冷媒としてCO2を使用すれば、通常の冷媒、例えばR404A等に比して凝縮温度の上限値が上がるため、供給空気の温度設定の上限を通常の冷媒の50℃程度から100℃程度にすることが可能であり、温度の設定ゾーンを広くすることができるため、被乾燥物の対象範囲を拡大することができると共に、乾燥速度を上げることができるため乾燥時間を短縮することが可能となる。 Further, if CO 2 is used as the refrigerant in the refrigerant circuit A and the auxiliary refrigerant circuit B, the upper limit value of the condensation temperature is increased as compared with a normal refrigerant such as R404A. The temperature of the refrigerant can be set to about 50 ° C. to about 100 ° C., and the temperature setting zone can be widened, so that the target range of the object to be dried can be expanded and the drying speed can be increased. Therefore, the drying time can be shortened.

この実施の形態においては、圧縮機15及び送風機5、24を可変速としているため、検出センサ26の出力に応じて速度調整ができる結果、冷媒回路の流量調整と合わせて蒸発器の蒸発温度及び凝縮器の凝縮温度を容易に最適値に制御することができるものである。   In this embodiment, since the compressor 15 and the blowers 5 and 24 are variable speeds, the speed can be adjusted according to the output of the detection sensor 26. As a result, the evaporation temperature of the evaporator and the flow rate adjustment of the refrigerant circuit can be adjusted. The condensation temperature of the condenser can be easily controlled to an optimum value.

実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図2は、実施の形態2の構成を示す概略図である。この図において、図1と同一または相当部分には同一符号を付して説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic diagram showing the configuration of the second embodiment. In this figure, the same or corresponding parts as in FIG.

図1と異なる点は、循環風路2の一部である凝縮器3と送風機5との間に循環風路2を複数経路、図2では2つの経路に仕切る仕切り板30を設け、各経路に蒸発器41、42を設けると共に、流量調整可能な減圧手段9、22及び逆止弁10、23からなる減圧回路と同構成の回路を更に1つ設け、これを図示のように並列接続し、一方の減圧回路の逆止弁10と23との接続点を一方の蒸発器41に接続し、他方の減圧回路の逆止弁10と23との接続点を他方の蒸発器42に接続した点である。   A difference from FIG. 1 is that a partition plate 30 is provided between the condenser 3 and the blower 5 which are a part of the circulation air passage 2 and the circulation air passage 2 is divided into two routes in FIG. In addition to the evaporators 41 and 42, one further circuit having the same configuration as the pressure reducing circuit comprising the pressure reducing means 9 and 22 and the check valves 10 and 23 capable of adjusting the flow rate is provided and connected in parallel as shown in the figure. The connection point between the check valves 10 and 23 of one decompression circuit is connected to one evaporator 41, and the connection point between the check valves 10 and 23 of the other decompression circuit is connected to the other evaporator 42. Is a point.

また、各蒸発器41、42を設けた経路には各蒸発器の吸込側にそれぞれダンパ31、32を設け、各ダンパを90度回転させることによって送風機5からの送風を通流または遮断できるようになっている。図2ではダンパ31は送風を通流させ、ダンパ32は遮断している状態を示している。   Further, the paths provided with the respective evaporators 41 and 42 are provided with dampers 31 and 32 on the suction side of the respective evaporators so that the air from the blower 5 can be passed or blocked by rotating each damper by 90 degrees. It has become. FIG. 2 shows a state where the damper 31 allows air flow and the damper 32 is shut off.

また、ダンパ31、32の通流、遮断に合わせて減圧回路の減圧手段9、22の絞り方を調整することにより蒸発器41、42の動作、停止を切り替えるようにしている。
このように構成することにより、蒸発器の一方が着霜した場合には、別の蒸発器を動作させるように切り替えた状態で例えばホットガスをリバースすることにより加熱して除霜を行なうことができる。
従って蒸発器に着霜があっても乾燥室1における凍結乾燥を連続的に行なうことができ、食品品質の低下を防止すると共に、乾燥時間を短縮することができる。
Further, the operation of the evaporators 41 and 42 is switched between the operation and the stop by adjusting the method of throttling the decompression means 9 and 22 of the decompression circuit in accordance with the flow and interruption of the dampers 31 and 32.
By configuring in this way, when one of the evaporators is frosted, it can be defrosted by heating, for example, by reversing hot gas in a state where it is switched to operate another evaporator. it can.
Therefore, even if the evaporator has frost formation, freeze-drying in the drying chamber 1 can be performed continuously, preventing deterioration of food quality and shortening the drying time.

この発明の凍結物乾燥装置は上記のように構成されているため、上述した各実施の形態の作用効果に加えて以下のような特徴を有するものである。   Since the frozen material drying apparatus of the present invention is configured as described above, it has the following characteristics in addition to the effects of the above-described embodiments.

1.凍結状態で昇華乾燥が行なわれるため、食品等の成分の変化がほとんどなく、揮発性成分の損失も少なく、本来の機能と活性及び形態をそのまま保存することができる。
2.凍結固化状態で取り扱われるため、容積が不変で泡立ち、分離、表面硬化、組織の変化などが起こらず、多孔質の製品が得られるため、水を加えた時の復元性が極めてよい。
3.多孔質で三次元的な構造を保ったまま乾燥されるので、内部からも均一に良く脱水され、乾燥度がよい。
4.真空凍結乾燥の方法もあるが、0.8Torr以下に気圧を下げるため、真空ポンプが必要であり、エネルギー消費量が大きくなる。この発明のように冷媒方式にすれば真空乾燥に比べて20〜30%のエネルギー消費量ですませることができる。
1. Sublimation drying is performed in a frozen state, so there is almost no change in ingredients such as foods, loss of volatile components is small, and the original function, activity and form can be preserved as they are.
2. Since it is handled in a frozen and solidified state, the volume remains unchanged, foaming, separation, surface hardening, and tissue change do not occur, and a porous product is obtained. Therefore, the resilience when water is added is extremely good.
3. Since it is dried while maintaining a porous and three-dimensional structure, it is dehydrated uniformly and well from the inside, and the dryness is good.
4). There is also a method of vacuum freeze-drying, but since the atmospheric pressure is lowered to 0.8 Torr or less, a vacuum pump is necessary, and energy consumption is increased. If the refrigerant system is used as in the present invention, the energy consumption can be reduced by 20 to 30% compared to vacuum drying.

この発明の実施の形態1の構成を示す概略図である。It is the schematic which shows the structure of Embodiment 1 of this invention. この発明の実施の形態2の構成を示す概略図である。It is the schematic which shows the structure of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 乾燥室、 2 循環風路、 3 凝縮器、 4 蒸発器、 5 送風機、
7 流量調整弁、 8 電磁弁、 11 床板、 12 被乾燥物、
9、22 流量調整可能な減圧手段、 15 圧縮機、 21 補助凝縮器、
A 冷媒回路、 B 補助冷媒回路。
1 Drying room, 2 Circulating air path, 3 Condenser, 4 Evaporator, 5 Blower,
7 Flow control valve, 8 Solenoid valve, 11 Floor plate, 12 Dried object,
9, 22 Depressurizing means with adjustable flow rate, 15 Compressor, 21 Auxiliary condenser,
A refrigerant circuit, B auxiliary refrigerant circuit.

Claims (6)

凍結した被乾燥物を収容する乾燥室と、この乾燥室に連通した循環風路と、この循環風路内で上記乾燥室より上流側に配設された凝縮器及び蒸発器と、上記凝縮器及び蒸発器に上記循環風路外に配設された可変速の圧縮機を冷媒配管を介して接続して形成された冷媒回路と、上記冷媒回路の凝縮器に上記循環風路外で並列関係に接続され、上記圧縮機及び蒸発器と共に補助冷媒回路を形成する補助凝縮器と、上記凝縮器及び補助凝縮器の液側にそれぞれ接続された流量調整可能な減圧手段と、上記凝縮器のガス側に接続された流量調整弁と、上記循環風路内で上記蒸発器の近傍に配設され、上記乾燥室に下方から上方に向けた乾燥用気体を吹き込んで上記被乾燥物を流動させる可変速の送風機とを備えた凍結物乾燥装置。   A drying chamber for storing the object to be dried, a circulation air passage communicating with the drying chamber, a condenser and an evaporator disposed upstream of the drying chamber in the circulation air passage, and the condenser And a refrigerant circuit formed by connecting a variable speed compressor disposed outside the circulation air passage to the evaporator via a refrigerant pipe, and a condenser of the refrigerant circuit in parallel outside the circulation air passage. An auxiliary condenser that forms an auxiliary refrigerant circuit together with the compressor and the evaporator, a pressure-reducing means connected to the condenser and the liquid side of the auxiliary condenser, respectively, and a gas of the condenser And a flow regulating valve connected to the side, and disposed in the circulation air passage in the vicinity of the evaporator, allowing a drying gas to be blown into the drying chamber from below to allow the material to be dried to flow. A frozen material drying apparatus comprising a variable speed blower. 上記送風機を上記蒸発器の吸込側に配設したことを特徴とする請求項1記載の凍結物乾燥装置。   The frozen material drying apparatus according to claim 1, wherein the blower is disposed on a suction side of the evaporator. 上記凝縮器のガス側に接続された流量調整弁の上流側に電磁弁を接続したことを特徴とする請求項1または請求項2記載の凍結物乾燥装置。   3. The frozen matter drying apparatus according to claim 1, wherein an electromagnetic valve is connected upstream of a flow rate adjusting valve connected to the gas side of the condenser. 上記循環風路内において、上記凝縮器の乾燥室側に供給空気の温度及び相対湿度を検出する検出センサを設けると共に、上記蒸発器の吸込側にリターン空気の温度及び相対湿度を検出する検出センサを設け、上記各検出センサの出力にもとづいて上記圧縮機または送風機の回転数あるいは流量調整弁の開度を制御することを特徴とする請求項1〜請求項3のいずれか1項記載の凍結物乾燥装置。   In the circulation air passage, a detection sensor for detecting the temperature and relative humidity of the supply air is provided on the drying chamber side of the condenser, and a detection sensor for detecting the temperature and relative humidity of the return air on the suction side of the evaporator The freezing according to any one of claims 1 to 3, wherein the number of revolutions of the compressor or the blower or the opening of the flow rate adjusting valve is controlled based on the output of each detection sensor. Product drying equipment. 上記循環風路の一部を複数経路に仕切り、各経路にそれぞれ蒸発器を配設して並列関係に接続すると共に、上記各蒸発器に流量調整可能な減圧手段を接続し、この流量調整可能な減圧手段の制御により上記各蒸発器の1つを選択的に使用し得るようにしたことを特徴とする請求項1〜請求項4のいずれか1項記載の凍結物乾燥装置。   A part of the circulation air passage is divided into a plurality of paths, and an evaporator is arranged in each path and connected in parallel, and a pressure reducing means capable of adjusting the flow rate is connected to each of the evaporators, and the flow rate can be adjusted. 5. The frozen matter drying apparatus according to claim 1, wherein one of the evaporators can be selectively used by controlling the pressure reducing means. 上記冷媒回路及び補助冷媒回路の冷媒としてCO2を使用することを特徴とする請求項1記載の凍結物乾燥装置。
2. The frozen material drying apparatus according to claim 1, wherein CO 2 is used as a refrigerant in the refrigerant circuit and the auxiliary refrigerant circuit.
JP2004310081A 2004-10-25 2004-10-25 Frozen matter dryer Pending JP2006118835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310081A JP2006118835A (en) 2004-10-25 2004-10-25 Frozen matter dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310081A JP2006118835A (en) 2004-10-25 2004-10-25 Frozen matter dryer

Publications (1)

Publication Number Publication Date
JP2006118835A true JP2006118835A (en) 2006-05-11

Family

ID=36536880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310081A Pending JP2006118835A (en) 2004-10-25 2004-10-25 Frozen matter dryer

Country Status (1)

Country Link
JP (1) JP2006118835A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869425B1 (en) 2007-05-29 2008-11-21 오병호 Dehumidification type drying machine
WO2011074746A1 (en) * 2009-12-16 2011-06-23 (주)에프티이앤이 Drying device
KR101069827B1 (en) 2008-09-17 2011-10-04 제주특별자치도(농업기술원) Dryer using heat pump
JP2012198007A (en) * 2011-03-23 2012-10-18 Mitsubishi Electric Corp Air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869425B1 (en) 2007-05-29 2008-11-21 오병호 Dehumidification type drying machine
KR101069827B1 (en) 2008-09-17 2011-10-04 제주특별자치도(농업기술원) Dryer using heat pump
WO2011074746A1 (en) * 2009-12-16 2011-06-23 (주)에프티이앤이 Drying device
JP2012198007A (en) * 2011-03-23 2012-10-18 Mitsubishi Electric Corp Air conditioning system

Similar Documents

Publication Publication Date Title
US7975495B2 (en) Control scheme for coordinating variable capacity components of a refrigerant system
JP5472391B2 (en) Container refrigeration equipment
KR101761996B1 (en) A refrigerator and a control method the same
CN103988031B (en) Freezer for container
KR102191582B1 (en) A refrigerator and a control method the same
KR20070048235A (en) Compressor loading control
KR102144486B1 (en) A refrigerator and a control method the same
JP6374807B2 (en) Dehumidifying and drying equipment
CN204027078U (en) Air cooling heat pump unit
EP1418392A2 (en) Cooling apparatus
US20220228757A1 (en) Variable refrigerant flow (vrf) dehumidification system
JP5370551B1 (en) Container refrigeration equipment
JP2009236483A (en) Hot water supply device using co2 refrigerant and its operating method
US20190032985A1 (en) Refrigeration device comprising multiple storage chambers
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP2006118835A (en) Frozen matter dryer
KR101750911B1 (en) drying machine using heat pump
JP2008075987A (en) Dryer
CA2530567C (en) Multi-range cross defrosting heat pump system
JP2000205672A (en) Refrigerating system
JP2008014545A (en) Cooling device
KR20070026714A (en) Drying system using heat pump
KR101795770B1 (en) vacuum dryer using heat pump and drying method
KR102153056B1 (en) A refrigerator and a control method the same
JP2653298B2 (en) Cooling system