JP2006118724A - Humidity control device and its operation method - Google Patents
Humidity control device and its operation method Download PDFInfo
- Publication number
- JP2006118724A JP2006118724A JP2004303804A JP2004303804A JP2006118724A JP 2006118724 A JP2006118724 A JP 2006118724A JP 2004303804 A JP2004303804 A JP 2004303804A JP 2004303804 A JP2004303804 A JP 2004303804A JP 2006118724 A JP2006118724 A JP 2006118724A
- Authority
- JP
- Japan
- Prior art keywords
- humidity
- air
- humidity control
- water
- control apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
- F24F2006/006—Air-humidification, e.g. cooling by humidification with water treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Humidification (AREA)
- Air Conditioning Control Device (AREA)
- Drying Of Gases (AREA)
Abstract
Description
本発明は、湿度制御性が高く、節水能力に優れる気化式の湿度制御装置及びその運転方法に関するものである。 The present invention relates to a vaporization-type humidity control device having high humidity controllability and excellent water-saving ability, and an operation method thereof.
クリーン加湿が可能で結露の危険がない気化式加湿器としては、滴下式、透湿膜式、流下式、回転式、吸い上げ式などの各方式がある。いずれの方式も、オンオフ制御の際、給水を停止すると保水量が多い加湿材が乾くまで加湿が続く、いわゆるオーバーシュート現象が発生し、正確な湿度制御ができないという問題がある。 There are various types of vaporizing humidifiers that allow clean humidification and no risk of condensation, such as dripping type, moisture permeable membrane type, flow down type, rotary type, and suction type. Both methods have a problem in that when the water supply is stopped during the on / off control, humidification continues until the humidifying material having a large water retention amount dries, so-called overshoot phenomenon occurs, and accurate humidity control cannot be performed.
これを解決するものとして、特開平5−296536号公報には、空調用空気の湿度を検出する湿度検出手段を設け、その湿度検出手段の検出結果に基づいて湿度が設定値に維持されるように気化式加湿器を発停する制御手段を設けた空調設備の湿度制御装置であって、該制御手段を構成するに、該湿度検出手段の検出結果に基づいて湿度が回復傾向にあるか否かを判定する判定部と、その判定部の判定結果が湿度不足からの回復傾向のときは停止信号を前記気化式加湿器に出力する制御部とを設けた空調設備の湿度制御装置が開示されている。 In order to solve this problem, Japanese Patent Application Laid-Open No. 5-296536 provides humidity detection means for detecting the humidity of air for air conditioning so that the humidity is maintained at a set value based on the detection result of the humidity detection means. A humidity control apparatus for an air conditioning facility provided with a control means for starting and stopping a vaporizing humidifier, and whether or not the humidity tends to recover based on the detection result of the humidity detection means to constitute the control means. A humidity control apparatus for an air conditioning facility is provided that includes a determination unit that determines whether or not and a control unit that outputs a stop signal to the vaporizing humidifier when the determination result of the determination unit is a recovery tendency from insufficient humidity. ing.
一方、特表平5−506002号公報には、斜行ハニカムを加湿素子とした気化式の加湿器を備える接触ボディーが開示されており、この接触ボディーは冷却装置や給湿器に適用できることが開示されている。一般的に、斜行ハニカムを加湿素子とした気化式の加湿器を用いる場合、該加湿器だけでは正確な湿度制御ができないことから、通常加湿素子への散水は連続的に行い、加湿器の後段に冷却器を入れて湿度調整を行い、更に低下した温度を上昇させるため、冷却器の後段に加熱器を設置して温度調整をしている。
しかしながら、特開平5−296536号公報記載の湿度制御装置は、オーバーシュート現象を機械的な制御面から解決しようとするものであって、オーバーシュート現象を緩和しているものの、十分には解決していない。また、気化式加湿器の加湿素子の材料に係る記載は一切ない。特表平5−506002号公報記載の接触ボディーは、給湿器に適用できることが開示されているものの、気化式加湿器の加湿素子の材料に係る記載は一切なく、湿度制御方法も記載されていない。一般的に用いられている斜行ハニカムを加湿素子とした気化式の加湿器の場合、連続給水であるため、水の使用量が多く、更に冷却器や加温器などエネルギー消費も多く、設置コストも高いという問題がある。 However, the humidity control device described in Japanese Patent Laid-Open No. 5-296536 is intended to solve the overshoot phenomenon from the mechanical control side, and although the overshoot phenomenon is mitigated, it is sufficiently solved. Not. Moreover, there is no description regarding the material of the humidification element of a vaporization type humidifier. Although it is disclosed that the contact body described in JP-T-5-506002 can be applied to a humidifier, there is no description relating to the material of the humidifying element of the vaporizing humidifier, and a humidity control method is also described. Absent. In the case of a vaporizer-type humidifier using a slanted honeycomb as a humidifying element, which is generally used, because it is continuous water supply, it uses a large amount of water, and also consumes a lot of energy, such as a cooler and a heater. There is a problem of high cost.
従って、本発明の目的は、オーバーシュート現象を加湿素子の形状や材料面から解決し、節水及び省エネルギー型の湿度制御装置及びその運転方法を提供することにある。 Accordingly, an object of the present invention is to solve the overshoot phenomenon in terms of the shape and material of the humidifying element, and to provide a water-saving and energy-saving humidity control device and its operating method.
かかる実情において、本発明者らは鋭意検討を行った結果、加湿素子として、前後両面と上下両面とが開口して配置され、無機繊維吸湿材から作成される前後方向における厚みが特定範囲の斜行ハニカムを用い、該斜行ハニカムに流す散水をオンオフ制御すれば、加湿素子が濡れ易く乾き易いため、オーバーシュート現象がなくなり、節水のみならず、省エネルギー化を図ることができること等を見出し、本発明を完成するに至った。 In such a situation, the present inventors have intensively studied, and as a humidifying element, both the front and rear surfaces and the upper and lower surfaces are arranged to be open, and the thickness in the front and rear direction made from the inorganic fiber hygroscopic material has a specific range. It is found that if a watering honeycomb is used and the water sprinkled on the slanting honeycomb is controlled on and off, the humidifying element is easy to get wet and dry easily, so there is no overshoot phenomenon, and not only water saving but also energy saving can be achieved. The invention has been completed.
すなわち、本発明(1)は、前後両面と上下両面とが開口して配置され、無機繊維吸湿材から作成される前後方向における厚みが20〜100mmの斜行ハニカムと、該斜行ハニカムの上面開口の上から散水する散水管とを備える加湿器と、 該加湿器を通った空調用空気の湿度を検出する露点センサーと、該露点センサーの検出結果に基づいて空調用空気の湿度が所定値に維持されるよう散水を作動停止させるオンオフ制御弁と、を有する湿度制御装置を提供するものである。 That is, the present invention (1) is a skewed honeycomb having a thickness of 20 to 100 mm in the front-rear direction and formed from an inorganic fiber hygroscopic material, with the front and rear surfaces and the upper and lower surfaces being opened, and the upper surface of the skewed honeycomb. A humidifier comprising a watering pipe that sprinkles from above the opening, a dew point sensor that detects the humidity of the air-conditioning air that has passed through the humidifier, and the humidity of the air-conditioning air is a predetermined value based on the detection result of the dew point sensor And a humidity control device having an on / off control valve for stopping the water spray so as to be maintained.
また、本発明(2)は、2以上の加湿器を併設し、それぞれの斜行ハニカムへの散水の作動停止をオンオフ制御する前記湿度制御装置を提供するものである。 Moreover, this invention (2) provides the said humidity control apparatus which is equipped with two or more humidifiers, and performs on-off control of the stop of the watering to each skewed honeycomb.
また、本発明(3)は、斜行ハニカムの前後方向における厚みが35〜60mmである前記湿度制御装置を提供するものである。 Moreover, this invention (3) provides the said humidity control apparatus whose thickness in the front-back direction of a skewed honeycomb is 35-60 mm.
また、本発明(4)は、前記無機繊維吸湿材が、アルミナ、シリカ及びチタニアから選ばれる1又は2以上の結合材を含有するガラス繊維、セラミック繊維又はアルミナ繊維基材である前記湿度制御装置を提供するものである。 Moreover, this invention (4) is the said humidity control apparatus whose said inorganic fiber hygroscopic material is a glass fiber, ceramic fiber, or alumina fiber base material containing 1 or 2 or more binders chosen from an alumina, a silica, and a titania. Is to provide.
また、本発明(5)は、前記無機繊維吸湿材は、乾燥速度が0.01〜0.3g水分/g素子・分、吸水時間が25秒以下、単位質量当りの保水量が0.3〜1.5g水分/g素子である前記湿度制御装置を提供するものである。 In the invention (5), the inorganic fiber hygroscopic material has a drying rate of 0.01 to 0.3 g water / g element / minute, a water absorption time of 25 seconds or less, and a water retention amount per unit mass of 0.3. The humidity control device is provided with a ˜1.5 g moisture / g element.
また、本発明(6)は、無機繊維吸湿材から作成される前後方向における厚みが20〜100mmの1又は2以上の斜行ハニカムの上面開口の上から散水し、前面開口から供給空気を流通させて空調用空気を得、該空調用空気の湿度を検出し、該露点センサーの検出結果に基づいて空調用空気の湿度が所定値に維持されるよう散水をオンオフ制御により作動停止させる湿度制御装置の運転方法を提供するものである。 Moreover, this invention (6) sprinkles water from the upper surface opening of the 1 or 2 or more skewed honeycomb with the thickness in the front-back direction produced from an inorganic fiber hygroscopic material, and distribute | circulates supply air from a front surface opening Humidity control to obtain air conditioning air, detect the humidity of the air conditioning air, and stop the watering by on / off control so that the humidity of the air conditioning air is maintained at a predetermined value based on the detection result of the dew point sensor A method for operating the apparatus is provided.
また、本発明(7)は、斜行ハニカムの前後方向における厚みが35〜60mmである前記湿度制御装置の運転方法を提供するものである。 Moreover, this invention (7) provides the operating method of the said humidity control apparatus whose thickness in the front-back direction of a skewed honeycomb is 35-60 mm.
また、本発明(8)は、前記無機繊維吸湿材が、アルミナ、シリカ及びチタニアから選ばれる1又は2以上の結合材を含有するガラス繊維、セラミック繊維又はアルミナ繊維基材である前記湿度制御装置の運転方法を提供するものである。 Moreover, this invention (8) is the said humidity control apparatus whose said inorganic fiber hygroscopic material is a glass fiber, ceramic fiber, or alumina fiber base material containing 1 or 2 or more binders chosen from an alumina, a silica, and a titania. The driving method is provided.
また、本発明(9)は、前記無機繊維吸湿材は、乾燥速度が0.01〜0.3g水分/g素子・分、吸水速度が25秒以下、単位質量当りの保水量が0.3〜1.5g水分/g素子である前記湿度制御装置の運転方法を提供するものである。 In the invention (9), the inorganic fiber hygroscopic material has a drying rate of 0.01 to 0.3 g moisture / g element / minute, a water absorption rate of 25 seconds or less, and a water retention amount per unit mass of 0.3. An operation method of the humidity control device which is ˜1.5 g moisture / g element is provided.
本発明によれば、前後両面と上下両面とが開口して配置され、無機繊維吸湿材から作成される前後方向における厚みが薄い斜行ハニカムを用い、該斜行ハニカムに流す散水をオンオフ制御するため、加湿素子が、濡れ易く乾き易くなるため、オーバーシュート現象がなくなり、正確な湿度制御が可能となる。また、連続散水ではないため節水でき、更に冷却器や加温器が不要であるため、設置コストを低減すると共に、省エネルギー化が図れる。 According to the present invention, the front and rear both surfaces and the upper and lower surfaces are arranged to be open, and a skewed honeycomb having a small thickness in the front and rear direction made from an inorganic fiber hygroscopic material is used, and on / off control of water sprayed to the skewed honeycomb is performed. For this reason, the humidifying element is easily wetted and easily dried, so that the overshoot phenomenon is eliminated and accurate humidity control is possible. Moreover, since it is not continuous watering, it can save water, and since a cooler and a heater are unnecessary, installation cost can be reduced and energy saving can be achieved.
本発明の湿度制御装置で用いる加湿器は、図1の模式図に示すように、加湿素子として用いる斜行ハニカム1と散水管5を備える。斜行ハニカム1は、前面103、後面102、上面101及び下面104とが開口して配置された公知の斜行ハニカムを用いることができる。斜行ハニカム1は、一方向に向かって伝播する波形形状を有する波形シート2、3(以下、「コルゲート状シート」ともいう。)が複数積層されてハニカム形状を呈するものであって、隣接するコルゲート状シート2、3は波の伝播方向が斜めに交差するように積層され、且つ、一枚おきのシートの波の伝播方向がそれぞれ略同一方向になるように配置されたハニカム状体である。このような斜行ハニカム1の構造は、例えば特開2003−202191に開示されたものである。
As shown in the schematic diagram of FIG. 1, the humidifier used in the humidity control device of the present invention includes a
本発明において、斜行ハニカムの前後方向(供給空気の流通方向)における厚さ(t)は、20〜100mm、好ましくは35〜60mm、特に好ましくは45〜55mmである。該厚さが20mm未満であると、加湿効率が低下するため好ましくなく、厚さが100mmを越えると、濡れ難く乾き難くなり、オーバーシュート現象が発生し易くなるため好ましくない。従来、加湿器あるいは空気清浄器として使用されている斜行ハニカムの厚さは、100mm以上、通常200mm程度であるため、斜行ハニカム全体を濡らすのに時間がかかり、また乾き難いものであった。これに対して本発明で用いる斜行ハニカムは上記厚さの如く薄く且つ材質面でも濡れ易く乾き易いため、オーバーシュート現象を確実に防止することができる。 In the present invention, the thickness (t) of the skewed honeycomb in the front-rear direction (circulation direction of the supply air) is 20 to 100 mm, preferably 35 to 60 mm, particularly preferably 45 to 55 mm. When the thickness is less than 20 mm, the humidification efficiency is lowered, which is not preferable. When the thickness exceeds 100 mm, it is difficult to wet and difficult to dry, and an overshoot phenomenon is likely to occur. Conventionally, the thickness of a skewed honeycomb used as a humidifier or an air purifier is 100 mm or more, usually about 200 mm. Therefore, it takes time to wet the entire skewed honeycomb and is difficult to dry. . On the other hand, the skew honeycomb used in the present invention is as thin as the above-mentioned thickness and easily wets and dries even on the material surface, so that the overshoot phenomenon can be surely prevented.
斜行ハニカムのセルの高さ、すなわち、波形の山と谷間の寸法を示すセルの山高寸法は、通常2〜8mm、好ましくは3〜5mmである。セル寸法が2mm未満であると製造が困難であり、圧力損失が大きくなるため好ましくない。また、セル寸法が8mmを越えると加湿効率が低下するため好ましくない。斜行ハニカムのコルゲート状シートの状態におけるセルの幅、すなわち、セルピッチは、通常2.5〜12.0mm、好ましくは5〜10.0mmである。 The height of the cells of the skewed honeycomb, that is, the height of the cell indicating the dimension between the ridges and valleys of the corrugation is usually 2 to 8 mm, preferably 3 to 5 mm. If the cell size is less than 2 mm, the production is difficult and the pressure loss increases, which is not preferable. Further, if the cell size exceeds 8 mm, the humidification efficiency is lowered, which is not preferable. The cell width in the state of the corrugated sheet of the skewed honeycomb, that is, the cell pitch is usually 2.5 to 12.0 mm, preferably 5 to 10.0 mm.
斜行ハニカムの材質は表面に凹凸があり、内部が多孔質である材料を使用する
ことが、エレメントの表面積が大きく採れ、エレメントに浸透して流下する水が適度の保水性を示すと共に濡れ易く且つ乾き易い点で好ましい。このような材質としては、例えば、3次元網目構造を有して所定の繊維間空隙率を有するものが挙げられ、具体的には、アルミナ、シリカ及びチタニアからなる群より選択される1又は2以上の結合材を含有する無機繊維吸湿材が使用できる。なお、無機繊維吸湿材は、公知の方法で作製でき、例えば、ガラス繊維、セラミック繊維又はアルミナ繊維で作製されたペーパーを、アルミナゾル等の結合材あるいはアルミナ水和物などの充填材を混合したスラリーに浸漬又は塗工した後、乾燥し、コルゲート加工し、その後、乾燥処理と熱処理を行い、必要に応じて更に上記スラリーに浸漬又は塗工した後、乾燥処理と熱処理を行い、水分と有機分を除去する。アルミナ以外にシリカやチタニアを含有する場合、例えばシリカ及びチタニアの配合量は、アルミナ100重量部に対してそれぞれ通常5〜40重量部である。
The material of the slanted honeycomb has irregularities on the surface, and the use of a material with a porous inside allows the surface area of the element to be increased, and the water that permeates and flows down to the element exhibits appropriate water retention and is easy to get wet. And it is preferable at the point which is easy to dry. Examples of such a material include a material having a three-dimensional network structure and a predetermined inter-fiber porosity, and specifically, 1 or 2 selected from the group consisting of alumina, silica and titania. An inorganic fiber hygroscopic material containing the above binder can be used. The inorganic fiber hygroscopic material can be produced by a known method. For example, a paper made of glass fiber, ceramic fiber or alumina fiber is mixed with a binder such as alumina sol or a filler such as alumina hydrate. After being dipped or coated, dried and corrugated, then subjected to drying treatment and heat treatment, and further dipped or coated in the slurry as necessary, followed by drying treatment and heat treatment to obtain moisture and organic content. Remove. When silica or titania is contained in addition to alumina, for example, the blending amount of silica and titania is usually 5 to 40 parts by weight with respect to 100 parts by weight of alumina.
また、無機繊維吸湿材の繊維間空隙率は、通常65〜85%、好ましくは75〜82%である。繊維間空隙率を該範囲内とすることにより、濡れ易く且つ乾き易くできる。また、無機繊維吸湿材厚さ、すなわち、壁の厚さが通常200〜1000μm 、好ましくは300〜800μm である。無機繊維吸湿材が、上記空隙率と上記厚さを有すると、水と空気の接触効率を高めると共に、強度的にも十分となる。 Moreover, the inter-fiber porosity of the inorganic fiber hygroscopic material is usually 65 to 85%, preferably 75 to 82%. By making the inter-fiber porosity within this range, it is easy to wet and dry. Moreover, the inorganic fiber hygroscopic material thickness, that is, the wall thickness is usually 200 to 1000 μm, preferably 300 to 800 μm. When the inorganic fiber hygroscopic material has the porosity and the thickness, the contact efficiency between water and air is increased and the strength is sufficient.
無機繊維吸湿材は、乾燥速度が0.01〜0.3g水分/g素子・分、が好ましく、更に0.05〜0.2g水分/g素子・分が好ましい。素子は無機繊維吸湿材を言う。乾燥速度が0.01g水分/g素子・分未満であると、散水をオフとしても、加湿が相当時間継続されて湿度の上昇が継続するオーバーシュート現象が生じ易くなる。また乾燥速度が0.3g水分/g素子・分を超えると、乾燥が速すぎ、散水をオフにしたとき急激に湿度の低下が生じ、目標露点範囲以下に達してしまうため好ましくない。乾燥速度を測定するには、先ず、乾燥した無機繊維吸湿材及び保水した無機繊維吸湿材の質量をそれぞれ秤量する。次いで保水した無機繊維吸湿材を105℃の乾燥機に入れ、定期的に且つ定常状態になるまで重量を測り、定常に達するまでの所要時間を測定し、次式(1);
乾燥速度(g/分)=(W2−W1)/W1×T (1)
(式中、W1は定常状態時の無機繊維吸湿材の質量g、W2は保水時の無機繊維吸湿材の質量g、Tは定常状態に達するまでの所要時間分を示す。)から求める。
The inorganic fiber hygroscopic material preferably has a drying rate of 0.01 to 0.3 g moisture / g element · min, and more preferably 0.05 to 0.2 g moisture / g element · min. The element refers to an inorganic fiber hygroscopic material. When the drying rate is less than 0.01 g water / g element · minute, an overshoot phenomenon in which humidification is continued for a considerable period of time and the humidity rises easily occurs even when watering is turned off. Further, if the drying rate exceeds 0.3 g moisture / g element · minute, drying is too fast, and when the watering is turned off, the humidity is suddenly lowered and reaches the target dew point range or less. In order to measure the drying speed, first, the masses of the dried inorganic fiber hygroscopic material and the retained inorganic fiber hygroscopic material are weighed, respectively. Next, the water-absorbing inorganic fiber hygroscopic material is placed in a dryer at 105 ° C., and weighed regularly until it reaches a steady state, and the time required to reach a steady state is measured.
Drying rate (g / min) = (W 2 −W 1 ) / W 1 × T (1)
Obtained from (wherein, W 1 is the mass g of the inorganic fiber absorbent material in the steady state, W 2 is weight g, T inorganic fiber absorbent material water-retaining shows the required time period to reach steady state.) .
無機繊維吸湿材は、吸水時間が25秒以下が好ましく、更に10秒以下が好ましい。吸水時間が25秒を超えると、散水をオンしても直ちに加湿が開始されず、加湿応答時間が長くなる点で好ましくない。吸水時間は、無機繊維吸湿材にスポイドで50μlの水を滴下し、該水が無機繊維吸湿材に吸収されるまでの時間(秒)を測定することで得られる。 The inorganic fiber hygroscopic material preferably has a water absorption time of 25 seconds or less, more preferably 10 seconds or less. If the water absorption time exceeds 25 seconds, humidification is not immediately started even when watering is turned on, which is not preferable in that the humidification response time becomes long. The water absorption time is obtained by dropping 50 μl of water with a dropper onto the inorganic fiber hygroscopic material and measuring the time (seconds) until the water is absorbed by the inorganic fiber hygroscopic material.
また、無機繊維吸湿材は、単位質量当りの保水量が0.3〜1.5g水分/g素子が好ましく、更に0.5〜1.3g水分/g素子が好ましい。保水量が0.3g水分/g素子未満であると、乾き易くなる反面加湿が不十分となり、1.5g水分/g素子を超えると乾き難く加湿しすぎる点で好ましくない。保水量を測定するには、先ず、乾燥した無機繊維吸湿材の質量を秤量する。次いで無機繊維吸湿材を水槽に入れ、浸漬する。無機繊維吸湿材を水槽より取り出し、秤量し、次式(2);
単位質量当りの保水量(g/g素子)=(W3−W1)/W1 (2)
(式中、W1は乾燥時の無機繊維吸湿材の質量g、W3は保水後の無機繊維吸湿材の質量gを示す。)から求める。
The inorganic fiber hygroscopic material preferably has a water retention per unit mass of 0.3 to 1.5 g moisture / g element, more preferably 0.5 to 1.3 g moisture / g element. If the water retention amount is less than 0.3 g moisture / g element, it will be easy to dry, while the humidification will be insufficient, and if it exceeds 1.5 g moisture / g element, it will be difficult to dry and it will be too humid. To measure the water retention amount, first, the mass of the dried inorganic fiber hygroscopic material is weighed. Next, the inorganic fiber hygroscopic material is placed in a water bath and immersed. The inorganic fiber hygroscopic material is taken out from the water tank, weighed, and the following formula (2);
Water retention amount per unit mass (g / g element) = (W 3 −W 1 ) / W 1 (2)
(Wherein, W 1 is weight g of dry inorganic fibers hygroscopic material, W 3 in. Which shows the mass g of the inorganic fibers hygroscopic material after water retention) obtained from.
次に、本発明の実施の形態における湿度制御装置を図2を参照して説明する。図2は本例の湿度制御装置の運転方法を説明するフロー図である。図2において、湿度制御装置10は、斜行ハニカム1と、斜行ハニカム1の上面開口の上から散水する散水管5とを備える加湿器6と、加湿器6を通った空調用空気の湿度を検出する露点センサー7と、露点センサー7の検出結果に基づいて空調用空気の湿度が所定値に維持されるよう散水を作動停止させるオンオフ制御弁8とを有する。斜行ハニカム1はダクト11内に設置され、斜行ハニカム1の上流側には入口温度及び露点を計測する入口温度・露点計12を設置し、斜行ハニカム1の下流側には出口温度及び露点を計測する出口温度・露点計13を設置している。また、斜行ハニカム1の下流側であって出口温度・露点計13の上流側には整流板14を設置している。制御部9は露点センサー7の検出信号を受信すると共に、該検出信号に基づきオンオフ制御弁8に作動信号又は停止信号を送信する。なお、露点センサー7は、湿度センサーであってもよい。
Next, a humidity control apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a flowchart for explaining the operation method of the humidity control apparatus of this example. In FIG. 2, the
オンオフ制御方法は、公知の方法が適用できる。その一例を示すと、空調用空気の目標露点T1が設定され、目標露点T1に対して許容される制御幅±αが決定される。例えば冬場の立ち上げ時、通常露点は低いため、オンオフ制御弁8がオンとなり散水が始まる。加湿素子である斜行ハニカム1は数分から5分間程度で制御幅の上限値T1+αとなると、露点センサー7及び制御部9の信号によりオンオフ制御弁8がオフとなり、散水が停止する。散水が停止すると加湿素子は乾き易い素材であるためほぼ同時に露点は低下傾向となる。低下傾向が数分間継続して下限値のT1−αとなると、制御部9からの信号に基づきオンオフ制御弁8が作動し散水が始まる。散水が始まると加湿素子は濡れ易い素材であるためほぼ同時に露点は上昇傾向となる。上昇傾向が数分間継続して上限値のT1+αとなると、オンオフ制御弁8がオフとなり、散水が停止する。以降、上記作動状態が順次繰り返され、空調用空気は目標湿度のT1±αの範囲で連続して得られる。
As the on / off control method, a known method can be applied. As an example, a target dew point T 1 for air-conditioning air is set, and an allowable control width ± α is determined for the target dew point T 1 . For example, when starting up in winter, the dew point is usually low, so the on / off
また、本発明の湿度制御装置は、図3に示すように、2つ以上(本例では2つ)の加湿器6、6を併設し、それぞれの斜行ハニカム1、1への散水の作動停止をオンオフ制御してもよい。この場合、それぞれの斜行ハニカム1、1の厚みは上記範囲のものであり、それぞれ単独で散水のオンオフ制御がされるため、供給空気へ与える加湿の量が多くなっても、オーバーシュート現象を発生させることなく、正確な湿度制御が可能となる。図3に示す湿度制御装置10aによれば、冬場の乾燥空気を供給空気とする場合に好適である。
Further, as shown in FIG. 3, the humidity control device of the present invention includes two or more (two in this example)
本発明の湿度制御装置において、供給空気は通常除塵フィルターを通過したものが使用される。これにより、加湿素子である斜行ハニカムの濡れ及び乾き特性をより有効に引き出すことができる。また、斜行ハニカムを通過した空調用空気は加熱器により温度調整してもよい。斜行ハニカムの上面から散水され流下した水は、ドレーンとして排水してもよく、また循環使用してもよい。 In the humidity control apparatus of the present invention, the supply air that normally passes through the dust filter is used. Thereby, the wetting and drying characteristics of the skewed honeycomb as the humidifying element can be more effectively brought out. The temperature of the air-conditioning air that has passed through the skew honeycomb may be adjusted by a heater. The water sprinkled down from the upper surface of the skewed honeycomb may be drained as a drain or may be used in a circulating manner.
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
下記斜行ハニカムを加湿素子として組み込んだ図2に示す湿度制御装置10を用い、次に示す運転条件において運転を行い、運転時間の経過と共に変化する供給空気の露点及び温度、出口空気(空調用空気)の露点及び温度の観察を行った。なお、実施例1は低湿度、すなわち冬場の1月を想定したものである。その結果を図4に示す。
The
(斜行ハニカムの製造)
Eガラス繊維製紙を、水酸化アルミニウム及びアルミナゾルを混合したスラリーに浸漬した後乾燥し、ピッチ11mm、山高さ6mm、斜行角度30度に波付け加工を行い、波状成形体を得た。該波状成形体を波型が交互に交差するように積層し、700℃で焼成した。この焼成体を幅200mm、高さ400mm、厚さ50mmにカットして無機繊維吸湿材を得、この無機繊維吸湿材をステンレスの外枠に嵌め込んで加湿素子体とした。得られた無機繊維吸湿材はアルミナ化合物の合計量が90重量%、およびEガラス繊維20重量%からなり、アルキメデス法によるかさ比重1.1、アルキメデス法による気孔率80%であった。
(Manufacture of skewed honeycomb)
The E glass fiber paper was dipped in a slurry in which aluminum hydroxide and alumina sol were mixed and then dried, and was subjected to corrugation processing at a pitch of 11 mm, a peak height of 6 mm, and a skew angle of 30 degrees to obtain a corrugated molded body. The corrugated compacts were laminated so that the corrugations crossed alternately and fired at 700 ° C. The fired body was cut into a width of 200 mm, a height of 400 mm, and a thickness of 50 mm to obtain an inorganic fiber hygroscopic material. The inorganic fiber hygroscopic material was fitted into a stainless outer frame to obtain a humidifying element body. The obtained inorganic fiber hygroscopic material was composed of 90% by weight of the alumina compound and 20% by weight of E glass fiber, and had a bulk specific gravity of 1.1 by Archimedes method and a porosity of 80% by Archimedes method.
(運転条件)
・ 制御目標露点値;外気導入比率20%を想定し、13.9±1.5℃とする
・ 制御方法;露点13.5℃以下になったらオンオフ制御弁8をオン、露点13.9℃ 以上になったらオンオフ制御弁8をオフとするオンオフ制御
・ 供給空気;除塵フィルターを通過した温度21℃、露点11.0℃の空気
・ 処理風量;12m3/分試験装置(処理面速2.5m/秒)
・ 散水方法;流量1.2リットル/分で散水管5から散水し、排水は循環しない
・ 温度;成り行き制御
(Operating conditions)
・ Control target dew point value: 13.9 ± 1.5 ℃ assuming 20% outside air introduction ratio ・ Control method: ON /
・ Watering method: Water is sprayed from the watering
図4から明らかなように、実施例1は、散水開始(図中、立ち上げ時の「散水オン」で示す)後、約5分後に出口空気の露点は制御目標値に到達し、その後、3〜5分の周期でオンオフ制御弁の作動停止が繰り返えされ、オーバーシュート現象を発生させることなく、目標制御範囲内に精度よく湿度制御できた。 As is clear from FIG. 4, in Example 1, the dew point of the outlet air reaches the control target value after about 5 minutes after the start of watering (indicated by “watering on” at the time of start-up in the figure). The operation of the on / off control valve was repeatedly stopped in a cycle of 3 to 5 minutes, and the humidity could be accurately controlled within the target control range without causing an overshoot phenomenon.
供給空気を、除塵フィルターを通過した温度21℃、露点13.0℃の空気とした以外は、実施例1と同様の方法で行った。すなわち、実施例2は4月の中間期を想定したものである。その結果を図5に示す。 The same procedure as in Example 1 was performed except that the supply air was air having a temperature of 21 ° C. and a dew point of 13.0 ° C. that passed through the dust removal filter. That is, Example 2 assumes the interim period of April. The result is shown in FIG.
図5から明らかなように、実施例2は、約30分の周期でオンオフ制御弁の作動停止が繰り返えされ、オーバーシュート現象を発生させることなく、目標制御範囲内に精度よく湿度制御できた。実施例1に比べて散水停止後、散水開始までの時間が長い理由は、供給空気が湿っているため、加湿素子の乾く時間が遅くなったためである。 As is apparent from FIG. 5, in Example 2, the on / off control valve is repeatedly stopped in a cycle of about 30 minutes, and humidity control can be accurately performed within the target control range without causing an overshoot phenomenon. It was. The reason why the time until the start of watering is longer than that in Example 1 is that the time for drying the humidifying element is delayed because the supply air is moist.
供給空気を、除塵フィルターを通過した温度18.2℃、露点が10〜12℃の範囲で変動する空気とした以外は、実施例1と同様の方法で行った。すなわち、実施例3入口露点変動時を想定したものである。その結果を図6に示す。 This was performed in the same manner as in Example 1 except that the supply air was changed to an air whose temperature passed through the dust removal filter was 18.2 ° C. and the dew point was 10 to 12 ° C. That is, it is assumed that the inlet dew point fluctuates in Example 3. The result is shown in FIG.
図6から明らかなように、実施例3は、約3〜5分の周期でオンオフ制御弁の作動停止が繰り返えされ、オーバーシュート現象を発生させることなく、目標制御範囲内に精度よく湿度制御できた。 As is apparent from FIG. 6, in the third embodiment, the on / off control valve is repeatedly stopped in a cycle of about 3 to 5 minutes, and the humidity is accurately within the target control range without causing an overshoot phenomenon. I was able to control it.
比較例1
斜行ハニカムの厚み50mmに代えて、130mmとした以外は、実施例1と同様の方法で行った。その結果を図7に示す。
Comparative Example 1
The same method as in Example 1 was performed except that the thickness of the skewed honeycomb was changed to 50 mm instead of 50 mm. The result is shown in FIG.
図7から明らかなように、比較例1は、約10〜15分の周期でオンオフ制御弁の作動停止が繰り返えされたものの、散水がオフになった後も露点が上がりつづけ、保水した水分の影響で10分以上もオーバーシュートの状態が続き、目標制御範囲内に精度よく湿度制御することができなかった。 As is clear from FIG. 7, in Comparative Example 1, although the on / off control valve was repeatedly stopped in a cycle of about 10 to 15 minutes, the dew point continued to rise and water was retained even after the watering was turned off. Overshoot continued for more than 10 minutes due to the influence of moisture, and the humidity could not be accurately controlled within the target control range.
比較例2
斜行ハニカムの厚み50mmに代えて、ステンレス箔を実施例1と同じ形状と寸法のmmに加工した素子とした以外は、実施例1と同様の方法で行った。その結果を図8に示す。
Comparative Example 2
The same procedure as in Example 1 was performed except that the element was processed with a stainless foil having the same shape and dimensions as in Example 1 instead of the thickness of the skewed honeycomb of 50 mm. The result is shown in FIG.
図8から明らかなように、比較例2は、制御開始(図中、時間軸の7分の時点)から出口露点が上がり始めるまでの応答時間が長く、また、30分を経過しても目標範囲に達しなかった。吸水性の低い材料では、低水量のため目標とする露点に達することはできなかった。 As is clear from FIG. 8, in Comparative Example 2, the response time from the start of control (in the figure, at 7 minutes on the time axis) until the outlet dew point starts to increase is long, and the target is reached even after 30 minutes. The range was not reached. For materials with low water absorption, the target dew point could not be reached due to the low water content.
1 斜行ハニカム
2、3 波形シート
5 散水管
6 加湿器
7 露点センサー
8 オンオフ制御弁
9 制御部
10 湿度制御装置
11 ダクト
12 入口温度・露点計
13 出口温度・露点
DESCRIPTION OF
Claims (9)
該加湿器を通った空調用空気の湿度を検出する露点センサーと、
該露点センサーの検出結果に基づいて空調用空気の湿度が所定値に維持されるよう散水を作動停止させるオンオフ制御弁と、を有することを特徴とする湿度制御装置。 A skewed honeycomb having a thickness of 20 to 100 mm in the front-rear direction and made of an inorganic fiber hygroscopic material, the front and rear surfaces and the upper and lower surfaces being opened, and a water spray pipe that sprinkles water from above the upper surface opening of the skewed honeycomb. A humidifier comprising:
A dew point sensor that detects the humidity of the air-conditioning air that has passed through the humidifier;
A humidity control apparatus comprising: an on / off control valve that stops the operation of watering so that the humidity of the air-conditioning air is maintained at a predetermined value based on a detection result of the dew point sensor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004303804A JP2006118724A (en) | 2004-10-19 | 2004-10-19 | Humidity control device and its operation method |
KR1020050097398A KR20060054037A (en) | 2004-10-19 | 2005-10-17 | Humidity control apparatus and operating method thereof |
CNA200510114072XA CN1766772A (en) | 2004-10-19 | 2005-10-18 | Humidity control device and its operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004303804A JP2006118724A (en) | 2004-10-19 | 2004-10-19 | Humidity control device and its operation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006118724A true JP2006118724A (en) | 2006-05-11 |
Family
ID=36536773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004303804A Pending JP2006118724A (en) | 2004-10-19 | 2004-10-19 | Humidity control device and its operation method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2006118724A (en) |
KR (1) | KR20060054037A (en) |
CN (1) | CN1766772A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008142866A1 (en) * | 2007-05-21 | 2008-11-27 | Panasonic Corporation | Humidification device and air purifier with humidification function |
JP2010038515A (en) * | 2008-08-08 | 2010-02-18 | Hitachi Plant Technologies Ltd | Water spray pipe, humidifier and water spraying method of humidifier |
CN102759178A (en) * | 2011-04-28 | 2012-10-31 | 方雪松 | Light induction device for air humidification and aroma diffusion device |
CN102759180A (en) * | 2011-04-28 | 2012-10-31 | 冯红连 | Light induction device for air humidifier |
JP2016044915A (en) * | 2014-08-25 | 2016-04-04 | 中部電力株式会社 | Vaporization type humidifier and operation method thereof |
CN108355839A (en) * | 2018-03-16 | 2018-08-03 | 佛山市科蓝环保科技股份有限公司 | A kind of honeycomb electric field with cleaning function |
JP6427648B1 (en) * | 2017-09-28 | 2018-11-21 | ニチアス株式会社 | Air-liquid contactor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102163044B (en) * | 2010-12-22 | 2012-07-25 | 浙江工业大学 | Variable-frequency controller of air compressor-refrigeration drier system |
CN108426754B (en) * | 2018-01-25 | 2022-04-22 | 河南平高电气股份有限公司 | Method and device for generating gas sample with specific humidity |
CN116857737A (en) * | 2019-04-09 | 2023-10-10 | 松下知识产权经营株式会社 | Liquid micronizing device |
-
2004
- 2004-10-19 JP JP2004303804A patent/JP2006118724A/en active Pending
-
2005
- 2005-10-17 KR KR1020050097398A patent/KR20060054037A/en not_active Application Discontinuation
- 2005-10-18 CN CNA200510114072XA patent/CN1766772A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008142866A1 (en) * | 2007-05-21 | 2008-11-27 | Panasonic Corporation | Humidification device and air purifier with humidification function |
JP2010169394A (en) * | 2007-05-21 | 2010-08-05 | Panasonic Corp | Humidification device and air purifier with humidification function |
JPWO2008142866A1 (en) * | 2007-05-21 | 2010-08-05 | パナソニック株式会社 | Humidifier and air purifier with humidification function |
JP4698753B2 (en) * | 2007-05-21 | 2011-06-08 | パナソニック株式会社 | Humidifier and air purifier with humidification function |
JP2010038515A (en) * | 2008-08-08 | 2010-02-18 | Hitachi Plant Technologies Ltd | Water spray pipe, humidifier and water spraying method of humidifier |
CN102759178A (en) * | 2011-04-28 | 2012-10-31 | 方雪松 | Light induction device for air humidification and aroma diffusion device |
CN102759180A (en) * | 2011-04-28 | 2012-10-31 | 冯红连 | Light induction device for air humidifier |
JP2016044915A (en) * | 2014-08-25 | 2016-04-04 | 中部電力株式会社 | Vaporization type humidifier and operation method thereof |
JP6427648B1 (en) * | 2017-09-28 | 2018-11-21 | ニチアス株式会社 | Air-liquid contactor |
JP2019058888A (en) * | 2017-09-28 | 2019-04-18 | ニチアス株式会社 | Gas-liquid contact body |
CN108355839A (en) * | 2018-03-16 | 2018-08-03 | 佛山市科蓝环保科技股份有限公司 | A kind of honeycomb electric field with cleaning function |
CN108355839B (en) * | 2018-03-16 | 2024-03-12 | 佛山市科蓝环保科技股份有限公司 | Honeycomb electric field with cleaning function |
Also Published As
Publication number | Publication date |
---|---|
CN1766772A (en) | 2006-05-03 |
KR20060054037A (en) | 2006-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20060054037A (en) | Humidity control apparatus and operating method thereof | |
EP2820355B1 (en) | An apparatus for gas cleaning | |
EP1400761A1 (en) | Method and device for cleaning air | |
JP5302931B2 (en) | Air purification humidifier | |
JP2009180433A (en) | Wet desiccant air conditioner | |
US20030150234A1 (en) | Air cooling device and air cooling method | |
JP2009180402A (en) | Humidifier, heat exchanger, and humidifying method | |
JP2011247454A5 (en) | ||
US4500479A (en) | Humidifier | |
JP2002061903A (en) | Wet film coil tape air conditioner | |
JP4629603B2 (en) | Separation membrane and composite membrane comprising the separation membrane, humidifying element, dehumidifying element, humidifier, dehumidifier, and humidity control system | |
CN206420040U (en) | A kind of solution dehumidification device of dehumidifying, air cleaning and sterilization one | |
TWI683076B (en) | Gas humidity regulating method and regulator | |
JPH04136641A (en) | Evaporative humidifier and humidifying system using the same | |
JP2008175525A (en) | Wet film coil, and wet film forming device for coil | |
JP2008304073A (en) | Air conditioner | |
CN103752112A (en) | Wet smoke processing device | |
JP2001280657A (en) | Air conditioner | |
JP3750800B2 (en) | Air purifier | |
CN203678187U (en) | Wet-type smoke dust processing device | |
CN218065208U (en) | Wet film humidifier | |
JP4978899B2 (en) | Sprinkling pipe, humidifier and watering method for humidifier | |
CN209165628U (en) | Thermoelectric (al) cooling formula air purifier | |
JP4134771B2 (en) | Humidity control device | |
JP2009168413A (en) | Humidifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100216 |