JP2006118353A - Method of designing concrete structure - Google Patents

Method of designing concrete structure Download PDF

Info

Publication number
JP2006118353A
JP2006118353A JP2006000878A JP2006000878A JP2006118353A JP 2006118353 A JP2006118353 A JP 2006118353A JP 2006000878 A JP2006000878 A JP 2006000878A JP 2006000878 A JP2006000878 A JP 2006000878A JP 2006118353 A JP2006118353 A JP 2006118353A
Authority
JP
Japan
Prior art keywords
concrete
concrete structure
steel material
bending moment
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000878A
Other languages
Japanese (ja)
Other versions
JP3809183B2 (en
Inventor
Shiyougo Miura
三浦正悟
Kiyoshi Numagami
沼上清
Chihiro Kato
加藤千博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP2006000878A priority Critical patent/JP3809183B2/en
Publication of JP2006118353A publication Critical patent/JP2006118353A/en
Application granted granted Critical
Publication of JP3809183B2 publication Critical patent/JP3809183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Retaining Walls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an appropriately designed concrete structure. <P>SOLUTION: A method of designing the concrete structure having a joint part where a first concrete layer and a second concrete layer cross, a steel material arranged on the outer surfaces of the first concrete layer and joint part, and a holding material disposed within the joint part and mounted to the steel material to integrate the steel material and the joint part, is characterized by computing bending moment and axial force applied to the steel material integrated with the joint part, and computing shearing force and tensile force applied to the holding material, from the bending moment and axial force to design the concrete structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンクリート構造物の設計方法に関するものである。
The present invention relates to a method for designing a concrete structure.

従来、合成地下RC壁dを有する二重床(最下地下床版fと基礎床版b)のコンクリート構造物では、図5(A)のような曲げモーメント分布となり、基礎梁eの部分で合成地下RC壁d(一体化した地下RC壁aと鋼材c)の端部の曲げモーメントM0の処理が可能であった。しかし、図5(B)のような地下階の基礎床版bがそのまま地盤に接するマットスラブ構造や免震構造の擁壁、ドライエリアなどのコンクリート構造物の場合、合成地下RC壁dの端部の曲げモーメントが基礎床版bへ直接伝達されるため、地下RC壁aと基礎床版bとの接合部の曲げモーメントM1の伝達機構を明らかにする必要がある。これらの接合部には、せん断力のみならず引張力も同時に作用するために、頭つきスタッドのみの適用では、引張力を基礎床版bの下端鉄筋に伝達させる機構が明確ではなかった。
Conventionally, in a double floor concrete structure having a composite underground RC wall d (the lowermost floor slab f and the foundation floor slab b), the bending moment distribution as shown in FIG. The bending moment M 0 at the end of the synthetic underground RC wall d (integrated underground RC wall a and steel material c) could be processed. However, in the case of a concrete structure such as a mat slab structure, a seismic isolation structure retaining wall, or a dry area where the base floor slab b of the underground floor is in direct contact with the ground as shown in FIG. 5B, the end of the composite underground RC wall d Since the bending moment of the part is directly transmitted to the foundation floor slab b, it is necessary to clarify the transmission mechanism of the bending moment M 1 at the joint between the underground RC wall a and the foundation floor slab b. Since not only the shearing force but also the tensile force acts simultaneously on these joints, the mechanism for transmitting the tensile force to the lower end reinforcing bar of the foundation floor slab b is not clear when only the headed stud is applied.

<イ>本発明は、適切に設計されたコンクリート構造物を提供することにある。
<ロ>また、本発明は、合成壁の隅部の強度が適切に設計されたコンクリート構造物を提供することにある。
<ハ>また、本発明は、コンクリート構造物の強度を適切に設計することにある。
<ニ>また、本発明は、コンクリート構造物の合成壁隅部の強度を適切に設計することにある。
<I> An object of the present invention is to provide an appropriately designed concrete structure.
<B> Further, the present invention is to provide a concrete structure in which the strength of the corners of the composite wall is appropriately designed.
<C> Further, the present invention is to appropriately design the strength of the concrete structure.
<D> Moreover, this invention exists in designing the intensity | strength of the synthetic | combination wall corner part of a concrete structure appropriately.

本願発明は、第1コンクリート層と第2コンクリート層が交わる接合部と、第1コンクリート層と接合部の外面に配置される鋼材と、鋼材と接合部とを一体化するために鋼材に取り付けられ、接合部内に配置される保持材とを有するコンクリート構造物の設計方法において、接合部と一体化された鋼材に作用する曲げモーメントと軸力とを算定し、該曲げモーメントと軸力から保持材に作用するせん断力と引張力を算定し、コンクリート構造物を設計することを特徴とする、コンクリート構造物の設計方法にある。
The present invention is attached to a steel material in order to integrate the joint portion where the first concrete layer and the second concrete layer intersect, the steel material disposed on the outer surface of the first concrete layer and the joint portion, and the steel material and the joint portion. In a design method of a concrete structure having a holding material disposed in a joint, a bending moment and an axial force acting on a steel material integrated with the joint are calculated, and the holding material is calculated from the bending moment and the axial force. The method for designing a concrete structure is characterized in that a concrete structure is designed by calculating a shearing force and a tensile force acting on the structure.

本発明は、次のような効果を得ることができる。
<イ>本発明は、適切に設計されたコンクリート構造物を得ることができる。
<ロ>また、本発明は、合成壁の隅部の強度が適切に設計されたコンクリート構造物を得ることができる。
<ハ>また、本発明は、コンクリート構造物の強度を適切に設計することができる。
<ニ>また、本発明は、コンクリート構造物の合成壁隅部の強度を適切に設計することができる。
The present invention can obtain the following effects.
<I> The present invention can obtain a suitably designed concrete structure.
<B> Further, according to the present invention, a concrete structure in which the strength of the corners of the composite wall is appropriately designed can be obtained.
<C> In addition, the present invention can appropriately design the strength of the concrete structure.
<D> Moreover, this invention can design appropriately the intensity | strength of the synthetic | combination wall corner part of a concrete structure.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

<イ>コンクリート構造物
コンクリート構造物は、第1コンクリート層1と第2コンクリート層2が交わる接合部12を備え、第1コンクリート層1の外側に鋼材3を一体に配置した合成構造体13を有するものである。このコンクリート構造物の例としては、例えば図1〜図2に示すように、山留め壁と一体化した合成地下RC壁と基礎床版からなる構造物があり、合成地下RC壁が鋼材3と第1コンクリート層1の合成構造体13に対応し、基礎床版が第2コンクリート層2に対応し、合成地下RC壁と基礎床版が接合部12で接合している。また、他のコンクリート構造物の例としては、鋼材と一体化された屋上のコンクリート屋根とコンクリート壁からなる構造物があり、屋上のコンクリート屋根が鋼材3と第1コンクリート層1の合成構造体13に対応し、コンクリート壁が第2コンクリート層2に対応し、屋上のコンクリート屋根とコンクリート壁が接合部12で接合している。なお、コンクリート層1、2は、圧縮強度が大きいものであればよく、例えば鉄筋コンクリート、鉄骨コンクリート、鉄筋鉄骨コンクリートなどを使用する。また、鋼材3は、引張強度の大きなものであればよく、例えばH形鋼を使用する。
<I> Concrete structure The concrete structure includes a joint structure 12 including a joint 12 where the first concrete layer 1 and the second concrete layer 2 intersect, and a steel material 3 integrally disposed on the outside of the first concrete layer 1. It is what you have. As an example of this concrete structure, for example, as shown in FIGS. 1 to 2, there is a structure composed of a synthetic underground RC wall and a foundation floor slab integrated with a retaining wall. Corresponding to the composite structure 13 of one concrete layer 1, the foundation floor slab corresponds to the second concrete layer 2, and the synthetic underground RC wall and the foundation floor slab are joined at the joint 12. As another example of the concrete structure, there is a structure composed of a rooftop concrete roof and a concrete wall integrated with a steel material, and the rooftop concrete roof is a composite structure 13 of the steel material 3 and the first concrete layer 1. The concrete wall corresponds to the second concrete layer 2, and the rooftop concrete roof and the concrete wall are joined at the joint portion 12. In addition, the concrete layers 1 and 2 should just have a large compressive strength, for example, reinforced concrete, steel concrete, reinforced steel concrete, etc. are used. Moreover, the steel material 3 should just be a thing with big tensile strength, for example, uses H-section steel.

<ロ>接合部
第1コンクリート層1と第2コンクリート層2が交わる接合部12は、例えば図1〜図2の例では、第1コンクリート層1の地下RC壁と第2コンクリート層2の基礎床版との接合個所である。第1コンクリート層1は、鋼材3の山留め壁と保持材4、5で一体化され、合成地下RC壁の合成構造体13を形成している。保持材4、5は、第1コンクリート層1と鋼材3を一体化するもので、せん断力や引張り力に抗するものであれば良い。保持材4、5は、例えば図3に示すように、頭付きスタッドなどの第1保持材4と、例えば異形棒鋼スタッドなど第1保持材4より引張強度の大きな第2保持材5を鋼材3に固定するなどして取り付けられる。なお、図1には、上方に1階床版6を示している。図2は、図1の接合部12の拡大図であり、図3は、図2の第1コンクリート層1と第2コンクリート層2を形成していない状態であり、立体的に模式的に示したものである。接合部12の下端の隅部に第2保持材5を配置する。第2保持材5の数は、引張力やせん断力に抗する本数とし、例えば図3では、各鋼材3に付着長の長い異形棒鋼スタッドを取り付ける。第1保持材4の数は、引張力やせん断力に抗する本数とし、図3では、各鋼材3に頭付きスタッドを取り付け、高さ方向に所定間隔で取り付ける。
<B> Joint part The joint part 12 where the first concrete layer 1 and the second concrete layer 2 intersect is, for example, in the example of FIGS. 1 to 2, the underground RC wall of the first concrete layer 1 and the foundation of the second concrete layer 2. This is the junction with the floor slab. The first concrete layer 1 is integrated with a retaining wall 4 and a retaining material 4 and 5 of a steel material 3 to form a composite structure 13 of a synthetic underground RC wall. The holding materials 4 and 5 integrate the 1st concrete layer 1 and the steel material 3, and should just resist a shear force and a tensile force. For example, as shown in FIG. 3, the holding members 4 and 5 include a first holding member 4 such as a headed stud and a second holding member 5 having a tensile strength higher than that of the first holding member 4 such as a deformed steel stud. It is attached by fixing to In FIG. 1, the first floor slab 6 is shown above. FIG. 2 is an enlarged view of the joint portion 12 of FIG. 1, and FIG. 3 is a state in which the first concrete layer 1 and the second concrete layer 2 of FIG. It is a thing. The second holding member 5 is arranged at the lower corner of the joint 12. The number of the second holding members 5 is the number that resists the tensile force and the shearing force. For example, in FIG. 3, a deformed steel bar stud with a long adhesion length is attached to each steel member 3. The number of the 1st holding | maintenance material 4 shall be the number resisting a tensile force and a shear force, and in FIG. 3, a stud with a head is attached to each steel material 3, and it attaches at a predetermined interval in the height direction.

図1のコンクリート構造物の場合、鋼材3と第1コンクリート層1の合成構造体13に土圧や水圧などの力が作用する。その結果、鋼材3と第1コンクリート層1の合成構造体13は図1のような第1曲げモーメント分布となる。合成構造体13の接合部12に作用する曲げモーメントは大きく、M1となる。接合部12の端部の第1曲げモーメント分布のM1は、接合部12で確実に第2コンクリート層2に直接伝達するように構成する。図1〜図3のように第2保持材5を接合部12の端部に配置することにより、鋼材3と第1コンクリート層1の合成構造体13に作用する曲げモーメントM1を第2コンクリート層2に直接伝達することができる。
In the case of the concrete structure of FIG. 1, forces such as earth pressure and water pressure act on the composite structure 13 of the steel material 3 and the first concrete layer 1. As a result, the composite structure 13 of the steel material 3 and the first concrete layer 1 has a first bending moment distribution as shown in FIG. The bending moment acting on the joint 12 of the composite structure 13 is large and becomes M 1 . M 1 of the first bending moment distribution at the end of the joint portion 12 is configured to be surely transmitted directly to the second concrete layer 2 at the joint portion 12. As shown in FIGS. 1 to 3, by arranging the second holding member 5 at the end of the joint portion 12, the bending moment M 1 acting on the composite structure 13 of the steel material 3 and the first concrete layer 1 is changed to the second concrete. It can be transmitted directly to layer 2.

以下に、図面を用いてコンクリート構造物の設計方法を説明する。   Below, the design method of a concrete structure is demonstrated using drawing.

<イ>鋼材に作用する力の算定例
鋼材3に作用する応力の算定例は、図4に示されているように、先ず、土圧や水圧と鋼材3と第1コンクリート層1の合成構造体13などから、接合部12の鋼材3と第1コンクリート層1とに作用する曲げモーメントM1を求める(S1)。
<A> Calculation example of force acting on steel material As shown in FIG. 4, the calculation example of the stress acting on the steel material 3 is first a composite structure of earth pressure or water pressure, the steel material 3 and the first concrete layer 1. A bending moment M 1 acting on the steel material 3 and the first concrete layer 1 of the joint 12 is obtained from the body 13 or the like (S1).

次に、鋼材3と第1コンクリート層1の合成構造体13の断面係数Zと曲げモーメントM1から鋼材3の分担応力σH0をσH0=M1/Zにより算定する。また、中立軸xnw、第1コンクリート層の厚さD1、鋼材の厚さDHより、幾何学的に、σHiをσHi=σH0(D1−xnw)/(DH+D1−xnw)により算定する(S2)。 Then, from the moment M 1 and bending section modulus Z of the steel 3 and the first concrete layer 1 of the composite structure 13 a sharing stress sigma H0 of the steel material 3 is calculated by sigma H0 = M 1 / Z. Further, from the neutral axis x nw , the thickness D 1 of the first concrete layer, and the thickness D H of the steel material, σ Hi is geometrically determined as σ Hi = σ H0 (D 1 −x nw ) / (D H + D 1− x nw ) (S2).

次に、接合部12にある鋼材3の曲げモーメントMjを算定する。先ず、鋼材3の応力度の平均((σHi+σH0)/2)と鋼材3の断面積Sにより、軸力NをN=S×(σHi+σH0)/2により算定する。また、応力度の差分(σH0−σHi)と鋼材の断面係数ZHより鋼材3の曲げモーメントMHをMH=(σH0−σHi)×ZHにより算定する。鋼材3と第1コンクリート層1の境界の曲げモーメントMjは、Mj=N×DH/2+MHにより算定する(S3)。
Next, the bending moment M j of the steel material 3 at the joint 12 is calculated. First, the axial force N is calculated from N = S × (σ Hi + σ H0 ) / 2 based on the average stress level ((σ Hi + σ H0 ) / 2) of the steel material 3 and the cross-sectional area S of the steel material 3. Further, the bending moment M H of the steel material 3 is calculated from the difference in stress degree (σ H0 −σ Hi ) and the section modulus Z H of the steel material by M H = (σ H0 −σ Hi ) × Z H. The bending moment M j at the boundary between the steel material 3 and the first concrete layer 1 is calculated by M j = N × D H / 2 + M H (S3).

<ロ>接合部モデルの作成
接合部12の鋼材3と第1コンクリート層1との境界における鋼材3にかかる曲げモーメントMjは、鋼材3から接合部12に100%伝達されるので、接合部12の鋼材3にかかる曲げモーメントと等しい。そこで、鋼材3にかかる曲げモーメントMjを用いて、接合部12の鋼材3の各部分にかかる曲げモーメントを求める。そのために、接合部内に頭付きスタッドの第1保持材4と異形棒鋼スタッドの第2保持材5を張力やせん断力を考慮して配置して、接合部モデルを作成する(S4)。接合部モデルは、スタッドなどの保持材4、5の断面積、本数、設置寸法を決めて、鋼材3に保持材4、5を配置して行う。その際、引張り力が大きくなると、第2コンクリート層2の下端筋への引張り力の伝達を考慮し、異形棒鋼スタッドを配置する。
<B> and steel 3 Creating junction 12 of the junction model bending moment M j according to the steel 3 at the boundary of the first concrete layer 1, since it is transmitted 100% to the junction 12 of a steel material 3, the joint It is equal to the bending moment applied to 12 steel materials 3. Therefore, by using the bending moment M j according to the steel 3, seeking the bending moment at each portion of the steel material 3 of the joint 12. For this purpose, the first holding member 4 of the headed stud and the second holding member 5 of the deformed steel bar stud are arranged in the joint in consideration of the tension and shearing force to create a joint model (S4). The joint model is determined by determining the cross-sectional area, the number, and installation dimensions of the holding members 4 and 5 such as studs and arranging the holding materials 4 and 5 on the steel material 3. At that time, when the tensile force increases, the deformed steel bar stud is disposed in consideration of transmission of the tensile force to the lower end reinforcement of the second concrete layer 2.

<ハ>保持材の配置と設計
接合部12の鋼材3に作用する軸力Nに対して、頭付きスタッドと異形棒鋼スタッドなどのスタッドのせん断力(qi)で抵抗させる。即ち、スタッドのせん断力の合計Q=Σqi≧Nとなるようにスタッドの種類や個数を決める。また、接合部12の鋼材3に作用する曲げモーメントMjに対して、頭付きスタッドと異形棒鋼スタッドなどのスタッドの引張り力(pi)により抵抗させる。この場合、中立軸Xnjは、鋼材3の軸に直角に作用する力の釣り合いにより求められ、鋼材3に作用する応力度の大きさは、曲げモーメントの大きさがMjとなる条件で決まる(S5)。
<C> Arrangement and design of holding material The axial force N acting on the steel material 3 of the joint 12 is resisted by the shear force (q i ) of a stud such as a headed stud and a deformed steel bar stud. That is, the type and number of studs are determined so that the total shearing force Q = Σq i ≧ N. Further, the bending moment M j acting on the steel material 3 of the joint portion 12 is resisted by a tensile force ( pi ) of a stud such as a headed stud and a deformed steel bar stud. In this case, the neutral axis X nj is obtained by balancing the forces acting at right angles to the axis of the steel material 3, and the magnitude of the stress acting on the steel material 3 is determined by the condition that the magnitude of the bending moment is M j. (S5).

<ニ>接合部モデルの判定
各スタッドに対し、軸力Nと曲げモーメントMjにより求められたqiとpiを数式1の評価式に代入し、左辺が1を下回れば、ステップS4で設定した許容応力度以内の設計である。また、左辺が1を上回った場合、ステップS4に戻り、スタッドの再配置を行う。これらの操作を繰り返して、最適な接合部モデルを作成する(S6)。
<D> Judgment of joint model For each stud, q i and p i obtained from the axial force N and bending moment M j are substituted into the evaluation formula of Formula 1, and if the left side is less than 1, step S4 The design is within the set allowable stress level. If the left side exceeds 1, the process returns to step S4 and the studs are rearranged. These operations are repeated to create an optimal joint model (S6).

山留め壁と一体化した合成地下RC壁と基礎床版とからなるコンクリート構造物の場合、図2〜図3のように、合成地下RC壁の接合部12の端部付近に異形棒鋼スタッドなどの第2保持材を取り付け、その上方に所定の間隔で頭付きスタッドなどの第1保持材1を取り付け、最適な接合モデルを作成することができる。   In the case of a concrete structure composed of a synthetic underground RC wall and a foundation floor slab integrated with a retaining wall, as shown in FIGS. The second holding member is attached, and the first holding member 1 such as a headed stud is attached at a predetermined interval above the second holding member, so that an optimum joining model can be created.

Figure 2006118353
Figure 2006118353

コンクリート構造物の説明図Illustration of concrete structure コンクリート構造物接合部付近の説明図Explanatory drawing near the joint part of concrete structure コンクリート構造物接合部付近の保持材の取付図Installation drawing of retaining material near the joint of concrete structure コンクリート構造物の設計方法の流れ図Flow chart of concrete structure design method 従来技術を説明するコンクリート構造物の説明図Explanatory drawing of concrete structure explaining the prior art

符号の説明Explanation of symbols

1・・・第1コンクリート層
11・・基礎梁
12・・接合部
13・・合成構造体
2・・・第2コンクリート層
3・・・鋼材
4・・・第1保持材
5・・・第2保持材
6・・・1階床版
DESCRIPTION OF SYMBOLS 1 ... 1st concrete layer 11 ... Foundation beam 12 ... Joint part 13 ... Composite structure 2 ... 2nd concrete layer 3 ... Steel material 4 ... 1st holding material 5 ... 1st 2 Holding material 6 ... 1st floor

Claims (4)

第1コンクリート層と第2コンクリート層が交わる接合部と、第1コンクリート層と接合部の外面に配置される鋼材と、鋼材と接合部とを一体化するために鋼材に取り付けられ、接合部内に配置される保持材とを有するコンクリート構造物の設計方法において、
接合部と一体化された鋼材に作用する曲げモーメントと軸力とを算定し、該曲げモーメントと軸力から保持材に作用するせん断力と引張力を算定し、コンクリート構造物を設計することを特徴とする、コンクリート構造物の設計方法。
The first concrete layer and the second concrete layer intersect with each other, the steel material disposed on the outer surface of the first concrete layer and the joint portion, and the steel material and the joint portion are attached to the steel material and integrated in the joint portion. In a method for designing a concrete structure having a holding material to be arranged,
Calculate the bending moment and axial force acting on the steel integrated with the joint, calculate the shearing force and tensile force acting on the holding material from the bending moment and axial force, and design the concrete structure. A method for designing a concrete structure, characterized.
請求項1に記載のコンクリート構造物の設計方法において、
接合部と一体化された鋼材に作用する曲げモーメントは、鋼材と第1コンクリートの接合部にかかる曲げモーメントを算定し、該曲げモーメントのうち鋼材の分担応力を算定し、該分担応力と鋼材の断面係数から算定することを特徴とする、コンクリート構造物の設計方法。
In the design method of the concrete structure of Claim 1,
The bending moment acting on the steel integrated with the joint is calculated by calculating the bending moment applied to the joint between the steel and the first concrete, and by calculating the share stress of the steel among the bending moment. A method for designing a concrete structure, characterized by calculating from a section modulus.
請求項1に記載のコンクリート構造物の設計方法において、
保持材に作用するせん断力qと引張力pは、下記の式を満足するように設計することを特徴とする、コンクリート構造物の設計方法。
Figure 2006118353
In the design method of the concrete structure of Claim 1,
A method for designing a concrete structure, wherein the shearing force q and the tensile force p acting on the holding material are designed to satisfy the following formula.
Figure 2006118353
請求項1に記載のコンクリート構造物の設計方法において、
鋼材と第1コンクリート層は、合成地下RC壁であり、第2コンクリート層は、基礎床版であることを特徴とする、コンクリート構造物の設計方法。
In the design method of the concrete structure of Claim 1,
A method for designing a concrete structure, wherein the steel material and the first concrete layer are synthetic underground RC walls, and the second concrete layer is a foundation floor slab.
JP2006000878A 2006-01-05 2006-01-05 Design method for concrete structures Expired - Lifetime JP3809183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000878A JP3809183B2 (en) 2006-01-05 2006-01-05 Design method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000878A JP3809183B2 (en) 2006-01-05 2006-01-05 Design method for concrete structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001352032A Division JP3785351B2 (en) 2001-11-16 2001-11-16 Concrete structures

Publications (2)

Publication Number Publication Date
JP2006118353A true JP2006118353A (en) 2006-05-11
JP3809183B2 JP3809183B2 (en) 2006-08-16

Family

ID=36536476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000878A Expired - Lifetime JP3809183B2 (en) 2006-01-05 2006-01-05 Design method for concrete structures

Country Status (1)

Country Link
JP (1) JP3809183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036272A (en) * 2011-08-10 2013-02-21 Kumagai Gumi Co Ltd Method of evaluating bending moment borne by coupling means which couples earth retaining wall and foundation slab
JP7444397B2 (en) 2019-10-15 2024-03-06 株式会社神戸製鋼所 Construction method for retaining wall blocks, retaining wall members, and retaining wall blocks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036272A (en) * 2011-08-10 2013-02-21 Kumagai Gumi Co Ltd Method of evaluating bending moment borne by coupling means which couples earth retaining wall and foundation slab
JP7444397B2 (en) 2019-10-15 2024-03-06 株式会社神戸製鋼所 Construction method for retaining wall blocks, retaining wall members, and retaining wall blocks

Also Published As

Publication number Publication date
JP3809183B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
CN101939492B (en) Precast temporary facility structure and construction method for the same
US8671641B2 (en) Half precast slab and method for structuring half precast slab
JP4735223B2 (en) Reinforcement structure of existing wall body
JP4247496B2 (en) Seismic reinforcement structure
JP2008223427A (en) Concrete-filled steel segment
JP3809183B2 (en) Design method for concrete structures
JP3785351B2 (en) Concrete structures
US11332928B2 (en) Panel of compound sheets for the construction of light-weight one-way joist slabs
JP7274332B2 (en) junction structure
KR101736594B1 (en) Connecting sturcture between column and beam
JP2004285823A (en) Floor slab bridge and floor slab unit
Vellasco et al. A parametric analysis of steel and composite portal frames with semi-rigid connections
JP6261964B2 (en) Seismic reinforcement structure
JP2013142275A (en) Steel sheet pile underground wall structure
JP4137037B2 (en) Shear strength evaluation method of reinforced concrete beam and reinforced concrete beam structure
CN215330734U (en) A damper and concrete shock attenuation infilled wall for infilled wall
CN211369156U (en) Assembled steel concrete shear force wall
Stallbaumer Design comparison of hybrid masonry types for seismic lateral force resistance for low-rise buildings
CN211369159U (en) Assembled shear force wall of area restraint edge node module
JP6152973B2 (en) Joint structure of reinforced concrete member and steel member
Senthil et al. Evaluation of RC Frames in Shifting on Seismic Zone 3 to 5 and Retrofitting Techniques using ETABS
CN209523304U (en) A kind of shear wall and floor connection structure
JP4674721B2 (en) Method for joining concrete members
EP3498931A1 (en) Panel of compound sheets for the construction of light-weight one-way joist slabs
Kvočák et al. Design and realization of composite timber-concrete beams

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

R150 Certificate of patent or registration of utility model

Ref document number: 3809183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term