JP2006117987A - High pressure hydrogen production apparatus - Google Patents

High pressure hydrogen production apparatus Download PDF

Info

Publication number
JP2006117987A
JP2006117987A JP2004305934A JP2004305934A JP2006117987A JP 2006117987 A JP2006117987 A JP 2006117987A JP 2004305934 A JP2004305934 A JP 2004305934A JP 2004305934 A JP2004305934 A JP 2004305934A JP 2006117987 A JP2006117987 A JP 2006117987A
Authority
JP
Japan
Prior art keywords
chamber
power supply
fluid passage
cathode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004305934A
Other languages
Japanese (ja)
Other versions
JP4554328B2 (en
Inventor
Kenji Taruie
憲司 樽家
Koji Nakazawa
孝治 中沢
Masanori Okabe
昌規 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004305934A priority Critical patent/JP4554328B2/en
Publication of JP2006117987A publication Critical patent/JP2006117987A/en
Application granted granted Critical
Publication of JP4554328B2 publication Critical patent/JP4554328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure hydrogen production apparatus where, even when the thicknesses of a solid high polymer electrolytic membrane and an anode power feeder are reduced by hydrogen pressure, there occurs no gas between the solid high polymer electrolytic membrane and the cathode power feeder. <P>SOLUTION: The high pressure hydrogen production apparatus is equipped with power feeders 3, 4 provided on both the sides of a solid high polymer electrolytic membrane 2, separators 5, 6, and fluid passages 10, 12. The respective power feeders 3, 4 are energized, and water fed to the fluid passage 12 in the separator 6 is electrolyzed, thus high pressure gaseous hydrogen is obtained at the fluid passage 10 in the separator 5. The separator 5 is equipped with a first chamber 7, a second chamber 8 having a cross-sectional area larger than that of the first chamber 7, a shielding member 9 airtightly shielding both the chambers 7, 8, movably provided freely forwards and backwards along the inner wall of both the chambers 7, 8 and provided with the fluid passage 10, and a communication passage 11 bypassing the shielding member 9 and enabling both the chambers 7, 8 to communicate with each other. The shielding member 9 is made forward in the direction of the power feeder 3 by the pressure of hydrogen fed to the second chamber 8 via the communication path 11, and the power feeder 3 is pressed against the solid high polymer electrolytic membrane 2. The power feeders 3, 4 are composed of a porous sintered compact made of titanium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高圧水素製造装置に関するものである。   The present invention relates to a high-pressure hydrogen production apparatus.

従来、図3(a)に示すように、固体高分子電解質膜2と、その両側に相対向して設けられたカソード給電体22、アノード給電体23と、各給電体22,23に積層されたセパレータ5,6とを備え、各給電体22,23が多孔質部材からなる高圧水素製造装置21が知られている。前記多孔質部材としては、例えばチタン粉末等の導電性粒子が焼結されてなる部材が用いられている(例えば特許文献1参照)。   Conventionally, as shown in FIG. 3 (a), the polymer electrolyte membrane 2 is laminated on a cathode power supply body 22, an anode power supply body 23, and power supply bodies 22 and 23 provided opposite to each other on both sides thereof. There is known a high-pressure hydrogen production apparatus 21 that includes the separators 5 and 6 and each of the power feeding bodies 22 and 23 is made of a porous member. As the porous member, for example, a member obtained by sintering conductive particles such as titanium powder is used (see, for example, Patent Document 1).

高圧水素製造装置21では、例えば各セパレータ5,6に各給電体22,23が露出する流体通路7,8を設けると共に、各給電体22,23は、それぞれセパレータ5,6を介して通電されるようになっている。そこで、高圧水素製造装置21では、アノード側セパレータ6の流体通路8に水を供給すると共に、セパレータ5,6を介してカソード給電体22とアノード給電体23とに通電すると、流体通路8に供給された水がアノード給電体23で電気分解され、水素イオンと酸素ガスとが生成する。   In the high-pressure hydrogen production apparatus 21, for example, the fluid passages 7 and 8 in which the power feeding bodies 22 and 23 are exposed are provided in the separators 5 and 6, and the power feeding bodies 22 and 23 are energized through the separators 5 and 6, respectively. It has become so. Therefore, in the high-pressure hydrogen production device 21, water is supplied to the fluid passage 8 of the anode-side separator 6, and when the cathode power supply 22 and the anode power supply 23 are energized via the separators 5, 6, the fluid is supplied to the fluid passage 8. The water is electrolyzed by the anode power supply 23, and hydrogen ions and oxygen gas are generated.

このとき、アノード給電体23は前記多孔質部材からなるので、流体通路8に供給された水はアノード給電体23の内部で前記のように電気分解され、生成した水素イオンはアノード給電体23内を通過して固体高分子電解質膜2に接触する。さらに、前記水素イオンは、固体高分子電解質膜2を透過してカソード給電体22側に移動し、カソード給電体22から電子を受け取って水素ガスとなる。   At this time, since the anode power supply 23 is made of the porous member, the water supplied to the fluid passage 8 is electrolyzed in the anode power supply 23 as described above, and the generated hydrogen ions are contained in the anode power supply 23. And the solid polymer electrolyte membrane 2 is contacted. Further, the hydrogen ions permeate the solid polymer electrolyte membrane 2 and move to the cathode power supply 22 side, receive electrons from the cathode power supply 22 and become hydrogen gas.

高圧水素製造装置21では、カソード給電体22もまた前記多孔質部材からなるので、前記水素ガスは、カソード給電体22内を通過して、カソード側セパレータ5の流体通路7に至る。この結果、高圧水素製造装置21では、カソード側セパレータ5の流体通路7に高圧の水素を得ることができる。一方、アノード側セパレータ6の流体通路8で生成した酸素は、前記水と共に流体通路8に設けられた排水口19から排出される。   In the high-pressure hydrogen production apparatus 21, the cathode power supply 22 is also made of the porous member, so that the hydrogen gas passes through the cathode power supply 22 and reaches the fluid passage 7 of the cathode separator 5. As a result, in the high-pressure hydrogen production device 21, high-pressure hydrogen can be obtained in the fluid passage 7 of the cathode-side separator 5. On the other hand, oxygen generated in the fluid passage 8 of the anode-side separator 6 is discharged from a drain port 19 provided in the fluid passage 8 together with the water.

しかしながら、高圧水素製造装置21では、前記のように酸素を排出すると、固体高分子電解質膜2の両側で圧力のバランスが崩れ、カソード側セパレータ5の流体通路7で生成した水素の圧力により固体高分子電解質膜2とアノード給電体23とがセパレータ6方向に圧縮されて厚さが低減するという不都合がある。固体高分子電解質膜2とアノード給電体23との厚さが低減すると、図3(b)に示すように、固体高分子電解質膜2とカソード給電体22との間に間隙24を生じて両者の接触抵抗が増大し、高圧水素製造装置21の性能が低下する。
特表2003−515237号公報
However, in the high-pressure hydrogen production apparatus 21, when oxygen is discharged as described above, the pressure balance is lost on both sides of the solid polymer electrolyte membrane 2, and the solid pressure is increased by the pressure of hydrogen generated in the fluid passage 7 of the cathode-side separator 5. There is an inconvenience that the molecular electrolyte membrane 2 and the anode feeder 23 are compressed in the direction of the separator 6 to reduce the thickness. When the thickness of the solid polymer electrolyte membrane 2 and the anode power supply 23 is reduced, a gap 24 is generated between the solid polymer electrolyte membrane 2 and the cathode power supply 22 as shown in FIG. The contact resistance increases, and the performance of the high-pressure hydrogen production apparatus 21 decreases.
Special table 2003-515237 gazette

本発明は、かかる不都合を解消して、カソード側で生成した水素の圧力により固体高分子電解質膜とアノード給電体との厚さが低減したときにも、固体高分子電解質膜とカソード給電体との間に間隙を生じることのない高圧水素製造装置を提供することを目的とする。   The present invention eliminates such inconvenience, and even when the thickness of the solid polymer electrolyte membrane and the anode feeder is reduced by the pressure of hydrogen generated on the cathode side, the solid polymer electrolyte membrane and the cathode feeder are An object of the present invention is to provide a high-pressure hydrogen production apparatus that does not cause a gap between the two.

かかる目的を達成するために、本発明は、固体高分子電解質膜と、該固体高分子電解質膜の両側に相対向して設けられたカソード給電体と、アノード給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る高圧水素製造装置において、カソード側セパレータは、該カソード給電体を収容する第1室と、該カソード給電体と反対側で第1室に連通すると共に該カソード給電体と平行な方向の断面積が第1室より大きい第2室と、第1室と第2室とを気密に遮断すると共に両室の内壁に沿って該カソード給電体方向に進退自在に備えられ該流体通路を備える遮断部材と、該遮断部材を迂回して第1室と第2室とを連通する連通路とを備え、該電気分解により該流体通路に生成し第1室から該連通路を介して第2室に供給される水素の圧力により該遮断部材を該給電体方向に前進せしめ、該給電体を該固体高分子電解質膜に押圧することを特徴とする。   In order to achieve such an object, the present invention provides a solid polymer electrolyte membrane, a cathode power supply provided opposite to both sides of the solid polymer electrolyte membrane, an anode power supply, and a laminate on each power supply Each of the separators and a fluid passage provided in each separator and exposing each power supply body. Water is supplied to the fluid passage of the anode separator and energized to each power supply body, whereby the fluid passage of the anode separator is provided. In the high-pressure hydrogen production apparatus that electrolyzes the supplied water and obtains high-pressure hydrogen gas in the fluid passage of the cathode-side separator, the cathode-side separator includes a first chamber that houses the cathode power supply, the cathode power supply, The second chamber communicates with the first chamber on the opposite side and has a cross-sectional area in a direction parallel to the cathode power supply body larger than the first chamber, and the first chamber and the second chamber are hermetically shut off, and both chambers A blocking member provided along the inner wall so as to be capable of moving forward and backward in the direction of the cathode power supply body, and including the fluid passage; and a communication passage that bypasses the blocking member and communicates the first chamber and the second chamber. The blocking member is advanced in the direction of the power supply body by the pressure of hydrogen generated in the fluid passage by decomposition and supplied to the second chamber from the first chamber through the communication passage, and the power supply body is moved to the solid polymer electrolyte. It is characterized by pressing against the membrane.

本発明の高圧水素製造装置では、カソード給電体と、アノード給電体とに給電して、アノード側セパレータの流体通路に供給された水を電気分解すると、カソード側セパレータの流体通路に高圧の水素ガスが生成する。一方、アノード側セパレータの流体通路には酸素が生成するが、該酸素を排出すると、固体高分子電解質膜の両側で圧力のバランスが崩れ、該固体高分子電解質膜とアノード給電体とがアノード側セパレータ方向に圧縮される。   In the high-pressure hydrogen production apparatus of the present invention, when the cathode power feeder and the anode power feeder are fed and the water supplied to the fluid passage of the anode separator is electrolyzed, the high-pressure hydrogen gas is supplied to the fluid passage of the cathode separator. Produces. On the other hand, oxygen is generated in the fluid passage of the anode-side separator. When the oxygen is discharged, the pressure balance is lost on both sides of the solid polymer electrolyte membrane, and the solid polymer electrolyte membrane and the anode power feeder are connected to the anode side. Compressed in the separator direction.

このとき、前記カソード側セパレータは、カソード給電体を収容する第1室と、該カソード給電体と反対側で第1室に連通する第2室とを備え、前記第1室と第2室とは遮断部材により気密に遮断される一方、該遮断部材を迂回する連通路によって連通している。そこで、カソード側セパレータの流体通路に生成した高圧水素ガスは、前記連通路を介して第2室に供給される。   At this time, the cathode separator includes a first chamber that accommodates the cathode power feeder, and a second chamber that communicates with the first chamber on the opposite side of the cathode power feeder, and the first chamber and the second chamber; Is shut off hermetically by the shut-off member, and is communicated by a communication path that bypasses the shut-off member. Therefore, the high-pressure hydrogen gas generated in the fluid passage of the cathode side separator is supplied to the second chamber via the communication passage.

このようにすると、前記第1室と第2室とでは内部の水素圧が同圧になる。しかし、前記第2室は、前記カソード給電体と平行な方向の断面積が前記第1室より大きくなっている。このため、前記第1室と第2室との内壁に沿って前記カソード給電体方向に進退自在に備えられた前記遮断部材が、第2室内の水素圧によりカソード給電体方向に前進せしめられ、該カソード給電体に圧接される。   In this case, the internal hydrogen pressure is the same in the first chamber and the second chamber. However, the second chamber has a larger cross-sectional area in a direction parallel to the cathode power supply body than the first chamber. For this reason, the blocking member that is provided so as to be able to advance and retract in the cathode power supply direction along the inner wall of the first chamber and the second chamber is advanced in the cathode power supply direction by the hydrogen pressure in the second chamber, It is press-contacted to this cathode electric power feeder.

従って、本発明の高圧水素製造装置によれば、前記カソード給電体とアノード給電体とがアノード側セパレータ方向に圧縮されても、該カソード給電体が前記遮断部材により前記固体高分子電解質膜に押圧されるので、該カソード給電体と該固体高分子電解質膜との間に間隙が生じることを防止することができる。   Therefore, according to the high-pressure hydrogen production apparatus of the present invention, even when the cathode feeder and the anode feeder are compressed in the anode separator direction, the cathode feeder is pressed against the solid polymer electrolyte membrane by the blocking member. Therefore, it is possible to prevent a gap from being generated between the cathode power supply body and the solid polymer electrolyte membrane.

本発明の高圧水素製造装置では、前記各給電体は、例えばチタン製の多孔質焼結体により形成することができる。   In the high-pressure hydrogen production apparatus of the present invention, each of the power supply bodies can be formed of a porous sintered body made of titanium, for example.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の高圧水素製造装置の構成を示す説明的断面図、図2は図1に示す高圧水素製造装置の作動を示す説明的断面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the high-pressure hydrogen production apparatus of the present embodiment, and FIG. 2 is an explanatory cross-sectional view showing the operation of the high-pressure hydrogen production apparatus shown in FIG.

図1に示すように、本実施形態の高圧水素製造装置1は、固体高分子電解質膜2と、その両側に相対向して設けられたカソード給電体3、アノード給電体4と、各給電体3,4に積層されたセパレータ5,6とを備えている。   As shown in FIG. 1, the high-pressure hydrogen production apparatus 1 of the present embodiment includes a solid polymer electrolyte membrane 2, a cathode power supply 3, an anode power supply 4 provided opposite to each other, and each power supply. Separator 5 and 6 laminated on 3 and 4 are provided.

カソード側セパレータ5は、カソード給電体3を収容する第1室7と、カソード給電体3の反対側で第1室7に連通する第2室8とを備え、第2室8はカソード給電体3と平行な方向の断面積が第1室7より大きくなっている。第1室7と第2室8とは遮断部材9により気密に遮断されており、遮断部材9は両室7,8の内壁に沿ってカソード給電体3方向に進退自在に備えられると共に、カソード給電体3が露出する流体通路10を備えている。また、カソード側セパレータ5は、遮断部材9を迂回して第1室7と第2室8とを連通する連通路11を備えている。   The cathode-side separator 5 includes a first chamber 7 that houses the cathode power feeder 3 and a second chamber 8 that communicates with the first chamber 7 on the opposite side of the cathode power feeder 3. The second chamber 8 is a cathode power feeder. The cross-sectional area in the direction parallel to 3 is larger than that of the first chamber 7. The first chamber 7 and the second chamber 8 are hermetically shut off by a shut-off member 9, and the shut-off member 9 is provided along the inner walls of both the chambers 7, 8 so as to be movable forward and backward in the direction of the cathode power supply 3. A fluid passage 10 through which the power feeding body 3 is exposed is provided. The cathode-side separator 5 includes a communication passage 11 that bypasses the blocking member 9 and communicates the first chamber 7 and the second chamber 8.

一方、アノード側セパレータ6は、アノード各給電体4が露出する流体通路12を備えている。   On the other hand, the anode-side separator 6 includes a fluid passage 12 through which each anode power supply 4 is exposed.

固体高分子電解質膜2、各給電体3,4、各セパレータ5,6は、セパレータ5,6に積層された絶縁部材13,13を介してエンドプレート14,14に挟持されており、エンドプレート14,14に取着されたボルト15とナット16とにより押圧されて相互に密着せしめられている。また、カソード側セパレータ5は連通路11から分岐する水素取出口17を備え、水素取出口17は図示しない開閉弁を備えている。また、アノード側セパレータ6は流体通路12に連通する給水口18と排水口19とを備えている。そして、各給電体3,4は、それぞれセパレータ5,6を介して通電されるようになっている。   The solid polymer electrolyte membrane 2, the power feeders 3, 4, and the separators 5, 6 are sandwiched between end plates 14, 14 via insulating members 13, 13 stacked on the separators 5, 6. 14 and 14 are pressed against each other by the bolt 15 and the nut 16 attached to each other, and are brought into close contact with each other. The cathode separator 5 includes a hydrogen outlet 17 that branches from the communication path 11, and the hydrogen outlet 17 includes an opening / closing valve (not shown). The anode separator 6 includes a water supply port 18 and a drain port 19 that communicate with the fluid passage 12. The power feeders 3 and 4 are energized through the separators 5 and 6, respectively.

高圧水素製造装置1において、固体高分子電解質膜2は陽イオン透過膜であり、例えばNafion(登録商標、デュポン社製)、Aciplex(商品名、旭化成株式会社製)等を用いることができる。固体高分子電解質膜2は、アノード側には例えばRuIrFeO触媒を含む触媒層(図示せず)を備え、カソード側には例えば白金触媒を含む触媒層(図示せず)を備えている。 In the high-pressure hydrogen production apparatus 1, the solid polymer electrolyte membrane 2 is a cation permeable membrane, and for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (trade name, manufactured by Asahi Kasei Co., Ltd.) or the like can be used. The solid polymer electrolyte membrane 2 includes a catalyst layer (not shown) including, for example, a RuIrFeO X catalyst on the anode side, and a catalyst layer (not illustrated) including, for example, a platinum catalyst, on the cathode side.

カソード給電体3、アノード給電体4は、例えば、チタン製多孔質焼結体により形成することができる。前記チタン製多孔質焼結体は、例えば、チタンの溶融飛沫を飛散中に凝固させるガスアトマイズ法により製造された球状ガスアトマイズチタン粉末を、所定形状の焼結容器に充填して真空焼結することにより得られる。   The cathode power supply 3 and the anode power supply 4 can be formed of, for example, a titanium porous sintered body. The titanium porous sintered body is filled with a spherical gas atomized titanium powder produced by, for example, a gas atomizing method for solidifying molten droplets of titanium during scattering into a predetermined shaped sintering vessel and vacuum sintered. can get.

また、カソード側セパレータ5、アノード側セパレータ6と、カソード側セパレータ5内に配設される遮断部材9は、例えば非多孔質のチタン材料等を所定の形状に加工することにより形成することができる。   Moreover, the cathode side separator 5, the anode side separator 6, and the blocking member 9 disposed in the cathode side separator 5 can be formed, for example, by processing a non-porous titanium material or the like into a predetermined shape. .

前記構成を備える高圧水素製造装置1では、給水口18からアノード側流体通路12に水を供給すると共に、カソード側セパレータ5とアノード側セパレータ6とを介してカソード給電体3とアノード給電体4とにそれぞれ通電することにより、前記水の電気分解を行う。前記電気分解によれば、流体通路12内に水素イオン、電子、酸素ガスが生成し、該水素イオンは、カソード給電体3とアノード給電体4との電位差により、一部の水分子を伴って陽イオン透過膜である固体高分子電解質膜2を透過して、カソード給電体3側に移動する。そして、前記水素イオンがカソード給電体3から電子を受け取って分子化することにより、カソード側流体通路10に高圧の水素ガスが得られる。   In the high-pressure hydrogen production apparatus 1 having the above-described configuration, water is supplied from the water supply port 18 to the anode-side fluid passage 12, and the cathode power supply 3 and the anode power supply 4 are connected via the cathode-side separator 5 and the anode-side separator 6. The water is electrolyzed by energizing each of them. According to the electrolysis, hydrogen ions, electrons, and oxygen gas are generated in the fluid passage 12, and the hydrogen ions are accompanied by some water molecules due to the potential difference between the cathode power supply 3 and the anode power supply 4. It passes through the solid polymer electrolyte membrane 2 which is a cation permeable membrane and moves to the cathode power supply 3 side. The hydrogen ions receive electrons from the cathode power supply 3 and are molecularized, whereby high-pressure hydrogen gas is obtained in the cathode-side fluid passage 10.

一方、流体通路12内に生成した酸素ガスは、大部分の水と共に排水口19から排出されるが、このようにすると、カソード側とアノード側とで圧力のバランスが崩れる。この結果、図2に示すように、カソード側セパレータ5の流体通路10に得られた高圧の水素ガスにより、固体高分子電解質膜2とアノード給電体4とがアノード側セパレータ6方向に押圧されることになる。   On the other hand, the oxygen gas generated in the fluid passage 12 is discharged from the drain port 19 together with most of the water. However, when this is done, the pressure balance between the cathode side and the anode side is lost. As a result, as shown in FIG. 2, the solid polymer electrolyte membrane 2 and the anode feeder 4 are pressed toward the anode separator 6 by the high-pressure hydrogen gas obtained in the fluid passage 10 of the cathode separator 5. It will be.

このとき、高圧水素製造装置1では、水素取出口17に備えられた図示しない開閉弁を閉じることにより、流体通路10で生成した水素ガスが、連通路11を介して遮断部材9の後方の第2室8に供給される。このようにすると、第1室7の一部である流体通路10内の水素圧と、第2室8内の水素圧とは同圧になるが、第2室8は固体高分子電解質膜2と平行な方向での断面積が、第1室7よりも大きくなるようにされているので、遮断部材9は第2室8内の水素圧により固体高分子電解質膜2方向に前進せしめられ、カソード給電体3に圧接される。   At this time, in the high-pressure hydrogen production apparatus 1, by closing an unillustrated on-off valve provided at the hydrogen outlet 17, the hydrogen gas generated in the fluid passage 10 passes through the communication passage 11 and flows behind the blocking member 9. 2 chamber 8 is supplied. In this way, the hydrogen pressure in the fluid passage 10 which is a part of the first chamber 7 and the hydrogen pressure in the second chamber 8 are the same, but the second chamber 8 is in the solid polymer electrolyte membrane 2. Since the cross-sectional area in the direction parallel to the first chamber 7 is larger than that of the first chamber 7, the blocking member 9 is advanced in the direction of the solid polymer electrolyte membrane 2 by the hydrogen pressure in the second chamber 8, The cathode power supply 3 is in pressure contact.

そこで、図2に示すように、カソード給電体3が、固体高分子電解質膜2の変形に追随して固体高分子2方向に押圧され、固体高分子電解質膜2に密着した状態を維持する。従って、高圧水素製造装置1によれば、カソード給電体3と固体高分子電解質膜2との間に間隙を生じることを防止することができる。   Therefore, as shown in FIG. 2, the cathode power supply 3 is pressed in the direction of the solid polymer 2 following the deformation of the solid polymer electrolyte membrane 2 and is kept in close contact with the solid polymer electrolyte membrane 2. Therefore, according to the high-pressure hydrogen production apparatus 1, it is possible to prevent a gap from being generated between the cathode power supply 3 and the solid polymer electrolyte membrane 2.

高圧水素製造装置1では、所定時間の電気分解が終了した後、水素取出口17に備えられた図示しない開閉弁を開くことにより、流体通路10に生成した水素と、第2室8内に供給された水素とを取り出すことができる。   In the high-pressure hydrogen production apparatus 1, after the electrolysis for a predetermined time is completed, the hydrogen generated in the fluid passage 10 is supplied to the second chamber 8 by opening an opening / closing valve (not shown) provided in the hydrogen outlet 17. Hydrogen can be taken out.

尚、本実施形態では、1組の固体高分子電解質膜2、給電体3,4、セパレータ5,6からなる単セルの構成を備える高圧水素製造装置1について説明しているが、高圧水素製造装置1は複数のセルが積層されたものであってもよい。この場合、1つのセルのセパレータ5に、隣接するセルのセパレータ6を積層することにより、各セルが直列に連結されていることが好ましい。   In the present embodiment, the high-pressure hydrogen production apparatus 1 having a single cell configuration including a pair of solid polymer electrolyte membranes 2, power feeders 3 and 4, and separators 5 and 6 is described. The device 1 may be a stack of a plurality of cells. In this case, it is preferable that each cell is connected in series by laminating the separator 6 of the adjacent cell on the separator 5 of one cell.

本発明の高圧水素製造装置の構成を示す説明的断面図。Explanatory sectional drawing which shows the structure of the high pressure hydrogen production apparatus of this invention. 図1に示す高圧水素製造装置の作動を示す説明的断面図。Explanatory sectional drawing which shows the action | operation of the high pressure hydrogen production apparatus shown in FIG. 従来の高圧水素製造装置の構成を示す説明的断面図。Explanatory sectional drawing which shows the structure of the conventional high pressure hydrogen production apparatus.

符号の説明Explanation of symbols

1…高圧水素製造装置、 2…固体高分子電解質膜、 3…カソード給電体、 4…アノード給電体、 5…カソード側セパレータ、 6…アノード側セパレータ、 7…第1室、 8…第2室、 9…遮断部材、 10,12…流体通路、 11…連通路。   DESCRIPTION OF SYMBOLS 1 ... High-pressure hydrogen production apparatus, 2 ... Solid polymer electrolyte membrane, 3 ... Cathode feeder, 4 ... Anode feeder, 5 ... Cathode side separator, 6 ... Anode side separator, 7 ... First chamber, 8 ... Second chamber , 9: blocking member, 10, 12 ... fluid passage, 11 ... communication passage.

Claims (2)

固体高分子電解質膜と、該固体高分子電解質膜の両側に相対向して設けられたカソード給電体と、アノード給電体と、各給電体に積層されたセパレータと、各セパレータに設けられ各給電体が露出する流体通路とを備え、アノード側セパレータの流体通路に水を供給すると共に各給電体に通電することにより、アノード側セパレータの流体通路に供給された水を電気分解し、カソード側セパレータの流体通路に高圧の水素ガスを得る高圧水素製造装置において、
カソード側セパレータは、該カソード給電体を収容する第1室と、該カソード給電体と反対側で第1室に連通すると共に該カソード給電体と平行な方向の断面積が第1室より大きい第2室と、第1室と第2室とを気密に遮断すると共に両室の内壁に沿って該カソード給電体方向に進退自在に備えられ該流体通路を備える遮断部材と、該遮断部材を迂回して第1室と第2室とを連通する連通路とを備え、
該電気分解により該流体通路に生成し第1室から該連通路を介して第2室に供給される水素の圧力により該遮断部材を該給電体方向に前進せしめ、該給電体を該固体高分子電解質膜に押圧することを特徴とする高圧水素製造装置。
Solid polymer electrolyte membrane, cathode power supply provided opposite to both sides of the solid polymer electrolyte membrane, anode power supply, separator laminated on each power supply, and each power supply provided on each separator A fluid passage exposing the body, and supplying water to the fluid passage of the anode side separator and energizing each power feeding body to electrolyze the water supplied to the fluid passage of the anode side separator, In the high-pressure hydrogen production apparatus for obtaining high-pressure hydrogen gas in the fluid passage of
The cathode-side separator communicates with the first chamber accommodating the cathode power feeder and the first chamber on the opposite side of the cathode power feeder, and has a cross-sectional area in a direction parallel to the cathode power feeder larger than that of the first chamber. The chamber, the first chamber, and the second chamber are hermetically shut off, and are provided along the inner walls of the two chambers so as to be capable of moving forward and backward in the direction of the cathode power supply body. And a communication passage communicating the first chamber and the second chamber,
The blocking member is advanced in the direction of the power supply body by the pressure of hydrogen generated in the fluid passage by the electrolysis and supplied from the first chamber to the second chamber through the communication passage, and the power supply body is A high-pressure hydrogen production apparatus that presses against a molecular electrolyte membrane.
前記各給電体は、チタン製の多孔質焼結体からなることを特徴とする請求項1記載の高圧水素製造装置。   The high-pressure hydrogen production apparatus according to claim 1, wherein each of the power feeding bodies is made of a porous sintered body made of titanium.
JP2004305934A 2004-10-20 2004-10-20 High pressure hydrogen production equipment Expired - Fee Related JP4554328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305934A JP4554328B2 (en) 2004-10-20 2004-10-20 High pressure hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305934A JP4554328B2 (en) 2004-10-20 2004-10-20 High pressure hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2006117987A true JP2006117987A (en) 2006-05-11
JP4554328B2 JP4554328B2 (en) 2010-09-29

Family

ID=36536140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305934A Expired - Fee Related JP4554328B2 (en) 2004-10-20 2004-10-20 High pressure hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP4554328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121086A (en) * 2006-11-15 2008-05-29 Honda Motor Co Ltd Apparatus for producing high-pressure hydrogen
JP2013522457A (en) * 2010-03-12 2013-06-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High-efficiency high-temperature electrolytic cell (HTE) with a stack of electrolytic cells and improved operational reliability
WO2020095836A1 (en) * 2018-11-06 2020-05-14 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029929A1 (en) * 1997-12-10 1999-06-17 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
JP2001131787A (en) * 1999-10-29 2001-05-15 Shinko Pantec Co Ltd Pressure compensation structure of electrolysis cell
JP2003160891A (en) * 2001-11-26 2003-06-06 Hitachi Zosen Corp Clamping device in solid polymer type water electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004115860A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Water electrolyzing apparatus
JP2004143523A (en) * 2002-10-24 2004-05-20 Fuji Electric Holdings Co Ltd Feed conductor of electrochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029929A1 (en) * 1997-12-10 1999-06-17 Shinko Plant Construction Co., Ltd. Apparatus for producing ozone water and method of producing ozone water by using the same apparatus
JP2001131787A (en) * 1999-10-29 2001-05-15 Shinko Pantec Co Ltd Pressure compensation structure of electrolysis cell
JP2003160891A (en) * 2001-11-26 2003-06-06 Hitachi Zosen Corp Clamping device in solid polymer type water electrolytic cell
JP2004002914A (en) * 2002-05-31 2004-01-08 Hitachi Zosen Corp Hydrogen feeding apparatus using solid high polymer type water electrolyzer
JP2004115860A (en) * 2002-09-26 2004-04-15 Fuji Electric Holdings Co Ltd Water electrolyzing apparatus
JP2004143523A (en) * 2002-10-24 2004-05-20 Fuji Electric Holdings Co Ltd Feed conductor of electrochemical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121086A (en) * 2006-11-15 2008-05-29 Honda Motor Co Ltd Apparatus for producing high-pressure hydrogen
JP2013522457A (en) * 2010-03-12 2013-06-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High-efficiency high-temperature electrolytic cell (HTE) with a stack of electrolytic cells and improved operational reliability
WO2020095836A1 (en) * 2018-11-06 2020-05-14 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
CN112955584A (en) * 2018-11-06 2021-06-11 松下知识产权经营株式会社 Electrochemical hydrogen pump

Also Published As

Publication number Publication date
JP4554328B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4796639B2 (en) Electrochemical equipment
JP4597800B2 (en) High pressure hydrogen production equipment
US10053784B2 (en) Differential pressure water electrolysis system
JP2006316288A (en) High-pressure hydrogen production apparatus
JP5192001B2 (en) Operation method of water electrolysis system
JP5341931B2 (en) High pressure hydrogen production equipment
JP5603928B2 (en) Electrochemical device
JP4165655B2 (en) Electrolytic device, electrochemical reaction membrane device, and porous conductor
JP2006070322A (en) High pressure hydrogen production device
US20120209434A1 (en) Method for operating differential pressure water electrolysis apparatus
JP4852157B2 (en) Water electrolysis equipment
US7553399B2 (en) Hydrogen production apparatus with electrolyte of varying thicknesses
JP4856770B2 (en) Water electrolysis equipment
JP2012180554A (en) High-pressure hydrogen producing apparatus
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
JP2010053401A (en) Separator for electrolyzer and method for manufacturing the same
JP6382886B2 (en) Differential pressure type high pressure water electrolyzer
JP4554328B2 (en) High pressure hydrogen production equipment
JP5095670B2 (en) Electrolyzer
JP5364056B2 (en) Water electrolysis equipment
CN110042411B (en) Water electrolysis device
JP4554325B2 (en) High pressure hydrogen production equipment
JP4838879B2 (en) Water electrolysis equipment
JP5095714B2 (en) Water electrolysis equipment
JP5095715B2 (en) Water electrolysis equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees