JP2006116509A - Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region - Google Patents

Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region Download PDF

Info

Publication number
JP2006116509A
JP2006116509A JP2004309950A JP2004309950A JP2006116509A JP 2006116509 A JP2006116509 A JP 2006116509A JP 2004309950 A JP2004309950 A JP 2004309950A JP 2004309950 A JP2004309950 A JP 2004309950A JP 2006116509 A JP2006116509 A JP 2006116509A
Authority
JP
Japan
Prior art keywords
pollutant
contaminated area
concentration
purification
rate constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004309950A
Other languages
Japanese (ja)
Inventor
Satoru Miyoshi
悟 三好
Yoshinori Oshima
義徳 大島
Hiroshi Kubo
博 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004309950A priority Critical patent/JP2006116509A/en
Publication of JP2006116509A publication Critical patent/JP2006116509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating progress of purification at a contaminated region. <P>SOLUTION: The method for estimating progress of the purification at the contaminated region beforehand comprises the steps of collecting the soil in the contaminated region to carry out an indoor test of water-carrying purification, creating the first data showing change in concentration of a contaminated substance with time when the water-carrying purification is carried out at a predetermined flow amount, determining a detachable rate constant based on the first data in an adsorption expression of the contaminated substance containing the detachable rate constant of the contaminated substance to the soil, collecting the soil of the contaminated region to carry out the indoor test of purification by a microbe, creating the second data showing change in concentration of the contaminated substance with time when the microbe existing in the soil is cultivated to decompose the contaminated substance, and calculating a decomposition reaction rate constant based on the second data in a decomposition reaction expression of the contaminated substance containing the decomposition reaction rate constant of the contaminated substance by the microbe, and simulating change in concentration of contamination with time at the contaminated region three-dimensionally using the detachable rate constant and the decomposition reaction rate constant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、現場において汚染物質により汚染されている汚染領域を通水浄化及び汚染領域に存在する微生物により浄化する場合において、汚染領域の浄化経過を予め予測する方法、汚染領域の浄化に要する期間を予測する方法、及び最適な揚水井と注水井との配置場所を決定する方法に関する。   The present invention relates to a method for predicting the purification process of a contaminated area in advance when a contaminated area contaminated with a pollutant in the field is purified by water and purified by microorganisms present in the contaminated area, and a period required for the purification of the contaminated area. And a method for determining the optimal location of the pumping well and water injection well.

汚染物質で汚染されている場合には、通水洗浄や汚染領域に存在する汚染物質分解微生物を利用した技術(バイオレメディエーション技術)などを利用して汚染領域の浄化工事を行っているが、この浄化工事を行う場合には、工程上の進捗を予測することや終了時期を予測することが工期の把握等(浄化工事の計画)において重要であるため、工期の把握等を行う技術(例えば、特許文献1参照)の開発が行われている。   When contaminated with pollutants, we are purifying the contaminated area using water washing and technology (bioremediation technology) using pollutant-degrading microorganisms present in the contaminated area. When performing purification work, it is important to predict the progress in the process and predict the end time in understanding the construction period (planning for the purification work). The development of Japanese Patent Application Laid-Open No. 2004-151867 is underway.

しかしながら、上述の技術は実際に浄化工事を始めてから、汚染された土壌及び地下水の浄化作業の進捗状態をモニタリングして、シミュレーションによる予測値と対比して浄化工事の終了時期を予測しているので、浄化工事前では浄化過程の進捗や浄化工事の終了時期を予測することができず、工事の計画(例えば、効率的に浄化することができる設備の計画の検証や立案)、予算、工期などのベースや、浄化のコンセプトそのものの確認をするために定量評価や予測手法の開発が求められている。   However, since the above-mentioned technology actually starts the purification work, it monitors the progress of the purification work of contaminated soil and groundwater, and predicts the end time of the purification work compared with the predicted value by simulation. Before the purification work, it is impossible to predict the progress of the purification process or the completion time of the purification work, such as the construction plan (for example, verification or planning of a facility plan that can be efficiently purified), budget, construction period, etc Quantitative evaluation and development of prediction methods are required to confirm the base of the product and the purification concept itself.

さらに、現場の条件においては、現場ごとに地質構造や、土壌の性質が異なるため、別の現場で得られた経験を基に通水浄化の進捗状況を精度よく予測することは困難であった。   Furthermore, because the geological structure and soil properties differ from site to site under on-site conditions, it was difficult to accurately predict the progress of water purification based on experience gained at different sites. .

また、汚染領域を通水洗浄する場合には、汚染物質を分解する微生物により汚染物質の浄化も期待することができるが、通水浄化による効果と微生物浄化による効果とをそれぞれ評価していないため、これらの効果に基づいた合理的な計画及び施工管理が行われていなかった。   In addition, when water is washed through a contaminated area, it can be expected that the pollutant will be purified by microorganisms that decompose the pollutant, but the effects of water purification and microbial purification are not evaluated separately. Therefore, rational planning and construction management based on these effects were not performed.

さらに、現場の条件において微生物の存在量や微生物による浄化能力などが異なるため、別の現場で得られた経験を基に微生物による浄化の進捗状況を精度よく予測することは困難であった。
特開2002−119951号公報
Furthermore, since the abundance of microorganisms and the purification ability by microorganisms differ depending on the conditions at the site, it is difficult to accurately predict the progress of purification by microorganisms based on experience obtained at another site.
JP 2002-119951 A

本発明は、上記課題に鑑みてなされたものであり、井戸の配置等の浄化設備の計画を検証又は立案するために必要な工程上の進捗や終了時期の予測を行うことができる、汚染領域の浄化経過を予め予測する方法及び汚染領域の浄化に要する期間を予測する方法、並びに、最適な揚水井と注水井との配置場所を決定する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to predict the progress and end time of the process necessary for verifying or planning a purification facility plan such as the arrangement of wells, etc. It is an object of the present invention to provide a method for predicting the purification process in advance, a method for predicting the time required for purification of a contaminated area, and a method for determining an optimal location for the pumping well and water injection well.

通水洗浄による汚染領域の浄化においては、汚染領域の土壌の間隙に存在する汚染物質が通水により地下水とともに移動して回収されることと、汚染領域の土壌(固相)から地下水(液相)に汚染物質が溶出して地下水とともに回収されることが期待される。   In the purification of contaminated areas by water flow cleaning, pollutants present in the soil gaps in the contaminated areas move together with the groundwater through the water flow and are collected, and the soil (solid phase) from the contaminated area is groundwater (liquid phase). It is expected that pollutants will elute and be collected together with groundwater.

そのため、通水浄化による汚染物質の移動過程をシミュレーションする場合には、通常、汚染物質が地下水中を移動する過程を表す移流拡散式と、固相から液相へと汚染物質が溶出する過程を表す線形ないし非線形の瞬時平衡式とを用いて連立させることにより行われている。しかしながら、汚染物質の種類や汚染の形態によっては、通水浄化による汚染物質の移動過程をこれらの数式でシミュレーションすることが難しい場合がある。例えば、ベンゼンなどの疎水性の汚染物質は汚染土壌中に含まれる有機物と脱着すると考えられており、汚染物質の濃度が長期間にわたる通水浄化により徐々に低下するためである。   Therefore, when simulating the movement process of pollutants due to water purification, the advection diffusion method, which represents the process in which pollutants move in groundwater, and the process in which pollutants elute from the solid phase to the liquid phase are usually used. This is performed by using a linear or non-linear instantaneous balance expression. However, depending on the type of pollutant and the form of contamination, it may be difficult to simulate the movement process of pollutants by water purification using these mathematical formulas. For example, hydrophobic pollutants such as benzene are considered to desorb organic substances contained in contaminated soil, and the concentration of pollutants gradually decreases due to water purification over a long period of time.

また、通水浄化においては、汚染領域に存在する微生物による汚染物質の浄化も期待されているが、通水洗浄による汚染領域の浄化及び微生物による汚染物質の浄化をそれぞれ区別して汚染領域の浄化過程をシミュレーションされていなかった。   In water purification, purification of pollutants by microorganisms present in the contaminated area is also expected. Was not simulated.

従って、本発明者らは、汚染領域の土壌に対する汚染物質の脱着速度定数を通水洗浄の室内試験から決定し、また、汚染領域に存在する微生物による汚染物質の分解反応速度定数を微生物浄化の室内試験から算出し、これらの定数を含むパラメータに基づいて、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることにより、汚染領域の浄化経過を予め予測することができるのではないかと考えた。   Therefore, the present inventors determined the desorption rate constant of the pollutant to the soil in the contaminated area from laboratory tests of water washing, and determined the decomposition reaction rate constant of the pollutant by microorganisms present in the contaminated area. Based on parameters calculated from laboratory tests and including these constants, it is possible to predict the purification process of the contaminated area in advance by three-dimensionally simulating changes in the contaminated area over time. Thought.

そこで、本発明者らは、通水浄化の室内試験によって、所定流量で通水浄化を行った場合の汚染物質の濃度の経時変化を示すデータを作成し、また、式(1)における脱着速度定数βを変数として、下式(1)に表される非平衡吸着式と、下式(2)に表される移流拡散方程式とを連立させてシミュレーションすることにより、所定流量で通水浄化を行った場合の汚染物質の濃度の経時変化を示す関数を作成し、これらのデータをフィッティングすることにより脱着速度定数βを決定した。なお、シミュレーションにおいて用いた各種パラメータは、室内実験により得られた各種パラメータを用い(表1参照)、縦分散係数は、Gelharらの文献(A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), pp1955-1974, 1992)に基づき、試験スケールの1/10とした値を用いて行った。
Therefore, the present inventors have created data showing the change over time in the concentration of pollutants when water purification is performed at a predetermined flow rate through a laboratory test of water purification, and the desorption rate in equation (1) By using the constant β as a variable and simulating the non-equilibrium adsorption equation expressed by the following equation (1) and the advection diffusion equation expressed by the following equation (2), water purification is performed at a predetermined flow rate. A function indicating the change with time of the concentration of the contaminant when it was performed was prepared, and the desorption rate constant β was determined by fitting these data. The parameters used in the simulation are the parameters obtained by laboratory experiments (see Table 1), and the longitudinal dispersion coefficient is the same as that of Gelhar et al. (A critical review of data on field-scale dispersion in aquifers, water Resour. Res., 28 (7), pp1955-1974, 1992), using 1/10 of the test scale.

その結果、図1に示すように、室内試験による結果では緩慢な勾配変化を示すのに対して、シミュレーションによる結果では直線的に減少するが、その後は両者とも同様にして直線的に減少することが明らかになった。また、選定した非平衡吸着式では、固相から液相への溶出のしやすさを脱着速度定数を用いた数式として表現したため、濃度変化のプロットにおいて、土壌の間隙中の汚染物質の移流が支配的で濃度減少が早い期間から、固相からの溶出速度が支配的で濃度減少が遅い期間への明確な折れ点を生じていることが確認された。   As a result, as shown in FIG. 1, the result of the laboratory test shows a slow gradient change, whereas the result of the simulation decreases linearly, but thereafter both decrease linearly in the same way. Became clear. In the selected nonequilibrium adsorption formula, the ease of elution from the solid phase to the liquid phase is expressed as a mathematical formula using the desorption rate constant. It was confirmed that there was a clear break point from the dominant period in which the concentration decrease was fast to the period in which the dissolution rate from the solid phase was dominant and the concentration decrease was slow.

以上のことから、通水洗浄の室内試験により汚染物質の脱着速度定数βを算出して、下式(1)に表される非平衡吸着式と、下式(2)に表される移流拡散方程式とを連立してシミュレーションを行うことにより、汚染領域の土壌における汚染物質の濃度の経時変化をシミュレーションすることができ、通水浄化による汚染領域の浄化経過を予め予測することができることが示唆された。このことから、同様に、微生物浄化の室内試験により汚染物質の分解反応速度定数を算出して、シミュレーションを行うことにより汚染領域の土壌における汚染物質の濃度の経時変化をシミュレーションすることができ、微生物による汚染領域の浄化経過を予め予測することができるのではないかと考えた。このようにして、本発明者らは、本発明を完成するに至った。   Based on the above, the desorption rate constant β of the pollutant is calculated by a laboratory test of water flow cleaning, and the non-equilibrium adsorption equation expressed by the following equation (1) and the advection diffusion expressed by the following equation (2) It is suggested that by simulating the equations together, it is possible to simulate changes in the concentration of pollutants in the soil in the contaminated area over time, and to predict the purification process of the contaminated area by water purification in advance. It was. From this, it is possible to simulate the time-dependent change in the concentration of contaminants in the soil in the contaminated area by calculating the decomposition reaction rate constant of the contaminants through laboratory tests for microbial purification and performing simulations. We thought that it was possible to predict in advance the purification process of the contaminated area. Thus, the present inventors have completed the present invention.

式(1)中、ρsは固相(土壌)の嵩密度を、Sは固相における汚染物質の濃度を、Cは液相(地下水)における汚染物質の濃度を、βは脱着速度定数を、Kdは平衡分配係数を、tは時間をそれぞれ意味する。   In equation (1), ρs is the bulk density of the solid phase (soil), S is the concentration of contaminants in the solid phase, C is the concentration of contaminants in the liquid phase (groundwater), β is the desorption rate constant, Kd means an equilibrium distribution coefficient, and t means time.

式(2)中、Cは液相における汚染物質の濃度を、Dは分散係数を、Vは汚染領域に通水した場合に水が間隙部分を流れる流速を、θは間隙率を、ρsは固相(土壌)の嵩密度を、Sは固相における汚染物質の濃度を、tは時間を、xはx方向(現場において注水井と揚水井とを結ぶ直線の方向)の距離を、添え字(i及びjなど)はベクトルないしテンソル量をそれぞれ意味する。   In Equation (2), C is the concentration of the contaminant in the liquid phase, D is the dispersion coefficient, V is the flow rate of water flowing through the contaminated area when passing through the contaminated area, θ is the porosity, and ρs is The solid density (soil) bulk density, S is the concentration of contaminants in the solid phase, t is the time, x is the distance in the x direction (the direction of the straight line connecting the injection well and the pumping well at the site). The letters (i and j etc.) mean vectors or tensor quantities, respectively.

すなわち、本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化経過を予測する方法であって、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定し、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、 前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出し、決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることを含む。   That is, the method according to the present invention is a method for predicting the purification process of the contaminated area when the contaminated area contaminated with the pollutant at the site is purified by water and purified by microorganisms present in the contaminated area. Collecting soil in the contaminated area and conducting a laboratory test for water purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate, In the pollutant adsorption formula including the desorption rate constant of the pollutant to the soil, the desorption rate constant is determined based on the first data, and the soil in the contaminated area is collected and purified by the microorganism. Perform a laboratory test, create second data showing the change over time of the concentration of the pollutant when the pollutant is decomposed by culturing the microorganism present in the soil, In the decomposition reaction formula of the pollutant including the decomposition reaction rate constant of the pollutant, the decomposition reaction rate constant is calculated based on the second data, and the determined desorption rate constant and the calculated decomposition reaction rate constant are determined. Is used to three-dimensionally simulate the change over time of the contamination concentration in the contaminated area.

また、本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化経過を予測する方法であって、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定し、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出し、決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることを含む。   Further, the method according to the present invention is a method for predicting the purification process of the contaminated area when the contaminated area contaminated with the pollutant at the site is purified by water and purified by microorganisms present in the contaminated area. Collecting soil in the contaminated area and conducting a laboratory test for water purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate, The function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of the contaminant to the soil and the advection diffusion equation determines the desorption rate constant that most closely approximates the first data. The soil in the contaminated area is collected and subjected to a laboratory test for purification by the microorganisms, and the change in the concentration of the contaminants with time when the microorganisms existing in the soil are cultured to decompose the contaminants is shown. In the second data, the absolute value of the slope of the graph representing the relationship between the logarithm of the concentration and the time with respect to the data in the range in which the concentration and the time are in a monotonically decreasing relationship is obtained by the microorganism. Calculating a time constant change of the contamination concentration in the contaminated region by using the determined desorption rate constant and the calculated decomposition rate constant as a decomposition reaction rate constant of the pollutant.

本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化に要する期間を予測する方法であって、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定し、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出し、決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、前記汚染領域における前記汚染物質の濃度が所定の濃度に達する期間を算出することを含む。   The method according to the present invention is a method for predicting the time required for purification of a contaminated area when the contaminated area contaminated with a pollutant in the field is purified by water and purified by microorganisms present in the contaminated area. Collecting soil in the contaminated area and conducting a laboratory test for water purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate, In the pollutant adsorption formula including the desorption rate constant of the pollutant to the soil, the desorption rate constant is determined based on the first data, and the soil in the contaminated area is collected and purified by the microorganism. Perform a laboratory test, create second data indicating the change over time of the concentration of the pollutant when the pollutant is decomposed by culturing microorganisms present in the soil, In the decomposition reaction formula of the pollutant including the decomposition reaction rate constant of the dyeing substance, the decomposition reaction rate constant is calculated based on the second data, and the determined desorption rate constant and the calculated decomposition reaction rate constant are calculated. And a three-dimensional simulation of a change in contamination concentration over time in the contaminated region, and calculating a period during which the concentration of the contaminant in the contaminated region reaches a predetermined concentration.

また、本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化に要する期間を予測する方法であって、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定し、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出し、決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、前記汚染領域における前記汚染物質の濃度が所定の濃度に達する期間を算出することを含む。   Further, the method according to the present invention is a method for predicting a period required for purification of a contaminated area when a contaminated area contaminated with a pollutant at a site is purified by water and purified by microorganisms present in the contaminated area. The soil of the contaminated area is collected, the indoor water purification test is performed, and the first data showing the change over time in the concentration of the pollutant when the water purification is performed at a predetermined flow rate is created. The desorption rate constant is such that the function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of the pollutant with respect to the soil and the advection diffusion equation most closely approximates the first data. Change in the concentration of the pollutant when the microorganism is present in the soil and decomposed by culturing the microorganism present in the soil. The second data is created, and in the second data, the absolute value of the slope of the graph representing the relationship between the logarithm of the density and the time with respect to the data in the range where the density and the time are monotonously decreasing Calculated as a decomposition reaction rate constant of the pollutant by microorganisms, using the determined desorption rate constant and the calculated decomposition reaction rate constant, three-dimensional simulation of the change in the concentration of contamination in the contaminated area over time, Calculating a period during which the concentration of the contaminant in the contaminated area reaches a predetermined concentration.

本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定する方法であって、複数の揚水井と注水井との組み合わせに対し、前記揚水井及び前記注水井を配置する場所を特定するデータ、前記汚染領域における水理地質モデルデータ、前記汚染領域の土壌に対する前記汚染物質の脱着速度定数、並びに、前記微生物による前記汚染物質の分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションする工程と、前記複数の揚水井と注水井との組み合わせの中で、最も短期間で前記汚染領域における前記汚染物質を浄化することができる前記注水井と前記揚水井との配置場所を決定する工程と、を含み、前記汚染物質の脱着速度定数は、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定することにより得られ、前記汚染物質の分解反応速度定数は、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出することにより得られることを特徴とする。   The method according to the present invention includes a pumping well and a pouring well that reach a predetermined concentration in the shortest period when a contaminated area contaminated with a pollutant at a site is purified by water and purified by microorganisms present in the contaminated area. A method for determining an arrangement location with a water well, the data specifying a location where the pumping well and the injection well are arranged for a combination of a plurality of pumping wells and injection wells, a hydrogeological model in the contaminated area Using the data, the desorption rate constant of the pollutant with respect to the soil in the contaminated area, and the decomposition reaction rate constant of the pollutant by the microorganism, a three-dimensional simulation of the change over time in the contamination concentration in the contaminated area And before the contaminants in the contaminated area can be purified in the shortest period of time in the combination of the plurality of pumping wells and water injection wells. Determining the placement location of the water injection well and the pumping well, and the desorption rate constant of the pollutant is obtained by conducting the indoor purification test by sampling the soil in the contaminated area and at a predetermined flow rate. In the adsorption formula of the pollutant including the desorption rate constant of the pollutant with respect to the soil, the first data showing the change over time of the concentration of the pollutant when water purification is performed is performed. It is obtained by determining the desorption rate constant based on the data, and the decomposition reaction rate constant of the pollutant is present in the soil by collecting the soil in the contaminated area and conducting a laboratory test for purification by the microorganism. The second data showing the change over time of the concentration of the pollutant when the pollutant is decomposed by culturing the microorganism, and the pollutant containing the degradation rate constant of the pollutant by the microorganism is included. In the solution reaction formula, characterized in that it is obtained by calculating the decomposition reaction rate constant based on said second data.

また、本発明に係る方法は、現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定する方法であって、複数の揚水井と注水井との組み合わせに対し、前記揚水井及び前記注水井を配置する場所を特定するデータ、前記汚染領域における水理地質モデルデータ、前記汚染領域の土壌に対する前記汚染物質の脱着速度定数、並びに、前記微生物による前記汚染物質の分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションする工程と、前記複数の揚水井と注水井との組み合わせの中で、最も短期間で前記汚染領域における前記汚染物質を浄化することができる前記注水井と前記揚水井との配置場所を決定する工程と、を含み、前記汚染物質の脱着速度定数は、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定することにより得られ、前記汚染物質の分解反応速度定数は、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出することにより得られることを特徴とする。   Further, the method according to the present invention provides a pumping well that reaches a predetermined concentration in the shortest period when water is purified through a contaminated area contaminated with a pollutant in the field and purified by microorganisms present in the contaminated area. For determining the location where the water well and the water injection well are arranged, and for a combination of a plurality of water wells and water injection wells, data for specifying the location where the water well and the water injection well are arranged, hydraulic in the contaminated area Using the geological model data, the desorption rate constant of the pollutant with respect to the soil in the contaminated area, and the decomposition reaction rate constant of the pollutant by the microorganism, the change over time of the contamination concentration in the contaminated area is three-dimensionally simulated. And in the combination of the plurality of pumping wells and injection wells, the pollutant in the contaminated area can be purified in the shortest time. Determining a place where the water injection well and the pumping well are arranged, and the desorption rate constant of the pollutant is obtained by sampling the soil in the contaminated area and conducting a laboratory test for water purification. The first data showing the change over time in the concentration of the pollutant when water purification is performed at a flow rate is created, and the adsorption formula including the desorption rate constant of the pollutant to the soil and the advection diffusion formula are combined. A function of time and concentration is obtained by determining the desorption rate constant that most closely approximates the first data, and the degradation rate constant of the contaminant is determined by the soil in the contaminated area. Collecting and conducting a laboratory test of purification by the microorganisms, creating second data indicating the change over time of the concentration of the contaminants when the microorganisms present in the soil are cultured and the contaminants are decomposed, To the second data And calculating the absolute value of the slope of the graph representing the relationship between the logarithm of concentration and time for data in a range where the concentration and time are monotonically decreasing as the decomposition reaction rate constant of the pollutant by the microorganism. It is obtained by these.

なお、前記汚染物質は、例えば、ベンゼンなどの疎水性物質などである。   The contaminant is, for example, a hydrophobic substance such as benzene.

本発明によれば、井戸の配置等の浄化設備の計画を検証又は立案するために必要な工程上の進捗や終了時期の予測を行うことができる、汚染領域の浄化経過を予め予測する方法、汚染領域の浄化に要する期間を予測する方法、及び、最適な揚水井と注水井との配置場所を決定する方法を提供することができる。従って、浄化工事に取り掛かる前に浄化設備の計画を検証、立案することが可能となり、効果的な設備配置等を行うことができるようになる。   According to the present invention, a method for predicting the purification process of a contaminated area in advance, which can predict the progress and end time of processes necessary for verifying or planning a purification facility such as the arrangement of wells, It is possible to provide a method for predicting a period required for purification of a contaminated area, and a method for determining an optimal arrangement location of a pumping well and a water injection well. Accordingly, it is possible to verify and formulate a purification facility plan before starting the purification work, and to perform effective facility arrangement and the like.

また、本発明によれば、通水洗浄による浄化効果だけでなく、微生物による浄化効果もそれぞれ検討することができるのでより効果的な浄化計画を行うことができるようになる。   Further, according to the present invention, not only the purification effect by water washing but also the purification effect by microorganisms can be examined, so that a more effective purification plan can be performed.

上記知見に基づき完成した本発明を実施するための形態を、実施例を挙げながら詳細に説明する。   An embodiment for carrying out the present invention completed based on the above knowledge will be described in detail with reference to examples.

本発明に係る汚染領域の浄化経過を予め予測する方法は、例えば、再開発の予定地や売買された土地などの現場において、その土壌が汚染物質で汚染されていることが確認された場合に実施される。この予測方法により、汚染物質で汚染された汚染領域を通水洗浄により浄化した場合の汚染物質の濃度の変化を予め予測することができるようになり、汚染土壌の浄化経過を予め予測することが可能となる。また、汚染土壌の浄化経過を予め予測することができるので、汚染領域の浄化に要する期間も予測することが可能になる。   The method of predicting the purification process of a contaminated area according to the present invention in advance is, for example, when it is confirmed that the soil is contaminated with a pollutant at a site such as a planned redevelopment site or a sold land. To be implemented. By this prediction method, it becomes possible to predict in advance the change in the concentration of the pollutant when the contaminated area contaminated with the pollutant is purified by water washing, and the purification process of the contaminated soil can be predicted in advance. It becomes possible. Further, since the purification process of the contaminated soil can be predicted in advance, it is possible to predict the period required for the purification of the contaminated area.

以下、図2の汚染領域の浄化計画の作業フロー図を用いて、本発明の一実施形態に係る汚染領域の浄化経過を予め予測する方法について説明する。   Hereinafter, a method for predicting the purification process of a contaminated area according to an embodiment of the present invention in advance will be described with reference to the work flow diagram of the contaminated area purification plan in FIG.

汚染領域の浄化経過を予め予測する方法においては、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることが必要となるが、このシミュレーションにおいては、汚染領域の水理地質モデル、初期水位分布、及び初期濃度分布、並びに、現場において汚染物質により汚染されている汚染領域を通水浄化及び汚染領域に存在する微生物により浄化した場合の汚染領域における汚染物質の移行・変換(=汚染浄化)を表現する数式、並びに、それらの数式に付随するパラメータが必要となる。   In the method of predicting the purification process of the contaminated area in advance, it is necessary to simulate the change over time of the contamination concentration in the contaminated area in three dimensions. In this simulation, the hydrogeological model of the contaminated area, the initial water level Distribution, initial concentration distribution, and migration / conversion of pollutants in the contaminated area when the contaminated area contaminated by the pollutant at the site is purified by water and purified by microorganisms present in the contaminated area (= contamination purification) As well as parameters associated with these equations.

前記汚染領域の水理地質モデル、初期水位分布、及び初期濃度分布に関するデータは、様々な調査(S201)を行い、汚染領域の境界条件を設定したり(S202)、初期条件を設定したり(S203)することにより得ることができる。例えば、図2及び図3に示すように、汚染領域の水理地質モデル(S308)のデータは、従来の地質情報調査(S301)やボーリングコアの観察(S302)により地質構成(S303)を解析し、また、現場における透水試験(S304)により汚染領域の土壌の層ごとの透水係数(S305)を解析し、これらの解析したデータ、及び経験的に又は推測された通水浄化に用いる注水井や揚水井などの井戸の配置(S306)データに基づいてシミュレーションすることにより得ることができる。なお、このシミュレーションにおいて誤差が生じる場合には、データの離散化を行うこととしてもよいし、このシミュレーションにおいて汚染領域の3次元モデルの端部の条件設定を変更することとしてもよい(S307)。なお、汚染領域の水理地質モデル(S308)のデータは、上記各種データと既存のプログラム(例えば、GMS(Groundwater Modeling System;BOSS international社など)とを用いてシミュレーションすることにより得ることができる。本実施の形態においては、S202で汚染領域の水理地質モデルデータを作成することとしているが、S205で作成することとしてもよい。   For the data related to the hydrogeological model, initial water level distribution, and initial concentration distribution of the contaminated area, various investigations (S201) are performed, boundary conditions of the contaminated area are set (S202), and initial conditions are set ( S203). For example, as shown in FIGS. 2 and 3, the data of the hydrogeological model (S308) of the contaminated area is analyzed by the conventional geological information survey (S301) and the observation of the boring core (S302). In addition, the water permeability coefficient (S305) for each soil layer in the contaminated area is analyzed by the on-site water permeability test (S304), and these analyzed data and the irrigation well used for water purification empirically or presumedly And wells such as pumping wells (S306) can be obtained by simulation based on data. If an error occurs in this simulation, the data may be discretized, or the condition setting at the end of the three-dimensional model of the contaminated region may be changed in this simulation (S307). Note that the data of the hydrogeological model (S308) of the contaminated area can be obtained by simulation using the above-mentioned various data and existing programs (for example, GMS (Groundwater Modeling System; BOSS international, etc.)). In the present embodiment, the hydrogeological model data of the contaminated area is created in S202, but may be created in S205.

また、前記汚染領域の初期水位分布(S312)データは、例えば、汚染領域の各点における土壌の孔内水位測定や土壌の間隙水圧測定(S309)により、汚染領域の各点における水位分布(S310)を解析し、得られたデータから汚染領域における水位分布のデータを補間することにより得ることができる。   In addition, the initial water level distribution (S312) data of the contaminated area is obtained by, for example, measuring the water level distribution (S310) at each point of the contaminated area by measuring the pore water level of the soil at each point of the contaminated area or measuring the pore water pressure of the soil (S309). ) And by interpolating the data of the water level distribution in the contaminated area from the obtained data.

一方、前記汚染領域の初期濃度分布(S315)データは、例えば、汚染領域の各点における汚染物質の濃度測定(S313)により、汚染領域の各点における濃度分布(S314)を解析し、得られたデータから汚染領域における濃度分布のデータを補間することにより得ることができる。なお、汚染物質の濃度測定(S313)は、例えば、日本工業規格に定める測定方法に準じて行うこととしてもよいし、環境庁告示に準じた方法により行うこととしてもよい。   On the other hand, the initial concentration distribution (S315) data of the contaminated area is obtained by analyzing the concentration distribution (S314) at each point of the contaminated area, for example, by measuring the concentration of the pollutant at each point of the contaminated area (S313). It can be obtained by interpolating density distribution data in the contaminated area from the obtained data. In addition, the concentration measurement of the pollutant (S313) may be performed in accordance with, for example, a measurement method defined in Japanese Industrial Standards, or may be performed in a method in accordance with the Notification of the Environment Agency.

上述の汚染領域における汚染物質の移行・変換を表現する数式の選定や、それらの数式に付随するパラメータの取得(S204)は、以下のように行うことができる。なお、「物質移行・変換を表現する数式」とは、通水洗浄による浄化過程や、微生物による浄化過程などを表現する数式を意味する。以下、通水洗浄による浄化過程や、微生物による浄化過程などを表現する数式の選定について例を挙げて説明する。   Selection of mathematical expressions expressing the migration / conversion of pollutants in the contaminated area and acquisition of parameters associated with the mathematical expressions (S204) can be performed as follows. In addition, the “mathematical expression expressing substance transfer / conversion” means a mathematical expression expressing a purification process using water washing, a purification process using microorganisms, and the like. Hereinafter, selection of mathematical expressions expressing the purification process by water flow cleaning and the purification process by microorganisms will be described with examples.

<通水洗浄による浄化過程を表現する数式の選定及びパラメータの取得>
通水洗浄による浄化過程を表現する数式の選定は、まず、汚染領域の土壌を採取して通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示すデータを作成し、このデータを最もよく再現(近似)することができる数式を選び出すことにより行う。このように、室内試験の結果を最もよく再現することができる数式を選定することにより、現場の汚染土壌の特性を反映した通水浄化による汚染物質の濃度変化を精度よく予測することができるようになる。
<Selection of mathematical formula and parameter acquisition to express purification process by water flow cleaning>
The selection of a mathematical expression that expresses the purification process by water flow cleaning is performed by first collecting soil in the contaminated area, conducting a laboratory test of water flow purification, and determining the concentration of the pollutant when water flow purification is performed at a predetermined flow rate. This is done by creating data showing changes over time and selecting a mathematical formula that can best reproduce (approximate) this data. In this way, by selecting a mathematical formula that can best reproduce the results of laboratory tests, it is possible to accurately predict changes in the concentration of pollutants due to water purification that reflects the characteristics of contaminated soil in the field. become.

なお、前記数式としては、例えば、移流拡散方程式及び吸着式の連立方程式を用いることができる。吸着式としては、土壌に対する汚染物質の脱着速度定数を含む汚染物質の吸着式であればどのようなものでもよいが、例えば、非平衡吸着式(例えば、上述の式(1)など)、2重間隙吸着式(例えば、下式(3)など)などを用いることができる。なお、吸着式として上述の式(1)を用いた場合には、移流拡散方程式として、例えば、上述の式(2)などを用いることができる。また、吸着式として上述の式(3)を用いた場合には、移流拡散方程式として、例えば、下式(4)などを用いることができる。また、前記通水浄化の室内試験は、例えば、図4に示すようなカラム装置を用いて、通水口及び排水口を備える土壌カラムに、汚染領域から採取した汚染土を現場の土壌と同じ嵩密度となるように充填し、土壌カラムの通水口から所定の流量で通水して土壌カラムに水を通過させ、土壌カラムの排水口から所定の間隔で土壌カラムを通過した水を所定量採取して汚染物質の濃度を測定することにより行うことができる。   In addition, as said numerical formula, the advection diffusion equation and the simultaneous equation of an adsorption type can be used, for example. The adsorption equation may be any contaminant adsorption equation including a desorption rate constant of the contaminant to the soil. For example, a non-equilibrium adsorption equation (for example, the above equation (1)), 2 A heavy gap adsorption type (for example, the following formula (3)) can be used. When the above equation (1) is used as the adsorption equation, for example, the above equation (2) can be used as the advection diffusion equation. When the above equation (3) is used as the adsorption equation, for example, the following equation (4) can be used as the advection diffusion equation. In addition, the indoor test for water flow purification uses, for example, a column apparatus as shown in FIG. 4 and the soil volume collected from the contaminated area is applied to a soil column having a water flow port and a water discharge port. Packed to a density, let the water flow through the soil column at a predetermined flow rate, pass water through the soil column, and collect a predetermined amount of water that has passed through the soil column at a predetermined interval from the soil column drain And measuring the concentration of contaminants.

式(3)中、θimは地下水が移動不可能な相によって占められた間隙率を、Cmは地下水が移動可能な相における汚染物質の濃度を、Cimは地下水が移動不可能な相における汚染物質の濃度を、Simは地下水が移動不可能な相と接する固相における汚染物質の濃度を、ρsは固相(土壌)の嵩密度を、fは固相表面において地下水が移動可能な相と接する割合を、βは脱着速度定数を、tは時間をそれぞれ意味する。 In equation (3), θim is the porosity occupied by the phase in which groundwater cannot move, Cm is the concentration of contaminants in the phase in which groundwater can move, and Cim is the contaminant in phases in which groundwater cannot move. , Sim is the concentration of contaminants in the solid phase in contact with the phase in which groundwater cannot move, ρs is the bulk density of the solid phase (soil), and f is in contact with the phase in which groundwater can move on the solid surface. The ratio means β, the desorption rate constant, and t means time.

式(4)中、θmは地下水が移動可能な相によって占められた間隙率を、θimは地下水が移動不可能な相によって占められた間隙率を、Cmは地下水が移動可能な相における汚染物質の濃度を、Cimは地下水が移動不可能な相における汚染物質の濃度を、Smは地下水が移動可能な相と接する固相における汚染物質の濃度を、Simは地下水が移動不可能な相と接する固相における汚染物質の濃度を、Vmは地下水が移動可能な相を流れる流速を、ρsは固相(土壌)の嵩密度を、fは固相表面において地下水が移動可能な相と接する割合を、Dmは地下水が移動可能な相の見かけ上の分散係数を、βは脱着速度定数を、tは時間を、xはx方向(現場において注水井と揚水井とを結ぶ直線の方向)の距離を、添え字(i及びjなど)はベクトルないしテンソル量をそれぞれ意味する。 In equation (4), θm is the porosity occupied by the phase in which groundwater can move, θim is the porosity occupied by the phase in which groundwater cannot move, and Cm is the contaminant in the phase in which groundwater can move. Cim is the concentration of contaminants in the phase in which groundwater cannot move, Sm is the concentration of contaminants in the solid phase that contacts the phase in which groundwater can move, and Sim is in contact with the phase in which groundwater cannot move The concentration of contaminants in the solid phase, Vm is the flow velocity through which the groundwater can move, ρs is the bulk density of the solid phase (soil), and f is the ratio of contact with the phase where groundwater can move on the solid surface. , Dm is the apparent dispersion coefficient of the phase in which the groundwater can move, β is the desorption rate constant, t is the time, x is the distance in the x direction (the direction of the straight line connecting the injection well and the pumping well at the site) , Subscripts (i and j etc.) are vector Each means the amount of the tensor.

なお、パラメータは、選定された数式により決定される。例えば、上述の式(1)及び式(2)を選定した場合には、汚染領域の固相の嵩密度ρs、汚染物質に対する汚染領域の固相と液相との分配係数Kd、汚染領域に通水した場合の汚染物質の分散係数D(x,y,z=D,D,D)、汚染領域に通水した場合に汚染領域中の水に溶解した汚染物質が水とともに移動する流速(すなわち、地下水の流速;ダルシー流速)V(x,y,z=Vx,Vy,Vz)、汚染領域の間隙率θ、脱着速度定数βなどのパラメータが決定される。 The parameter is determined by the selected mathematical formula. For example, when the above formulas (1) and (2) are selected, the bulk density ρs of the solid phase in the contaminated area, the partition coefficient Kd between the solid phase and the liquid phase in the contaminated area for the contaminant, Dispersion coefficient D (x, y, z = D L , D T , D T ) of pollutants when water is passed, pollutants dissolved in the water in the polluted area move with water when passed through the polluted area Parameters such as the flow velocity (ie, groundwater flow velocity; Darcy flow velocity) V (x, y, z = Vx, Vy, Vz), the porosity θ of the contaminated area, and the desorption rate constant β are determined.

ここで、固相の嵩密度ρs、分配係数Kd、及び間隙率θは、従来の手法で汚染領域の汚染土壌を分析することにより求めることができる。なお、固相の嵩密度ρsとしては、通常、汚染土壌の締固め状態での湿潤密度を用いる。固相の嵩密度ρsは、例えば、土壌ボーリングによって不かく乱試料を汚染領域から採取し、その体積V及び質量Mを計測して質量Mを体積Vで割ることにより求めることができる。また、分配係数Kdは、例えば、上述の通水浄化の室内試験により得られた、土壌カラムの汚染土中の初期汚染物質の含有量So[mg/kg]を初期の土壌カラムの透過液中の対象汚染物質濃度Co[mg/L]で割ることにより求めることができるが、このような方法に制限されるものではなく、通常のバッチ平衡試験により分配係数Kdを求めることとしてもよい。間隙率θは、例えば、上記固相の嵩密度ρsを計測した試料の含水比ω及び土粒子の密度dを土質工学会基準の方法(JSF T 111-1990及びJSF T 121-1990)に準じて求め、式:θ=1−[ρs/d(1+ω)]を用いて求めることができる。   Here, the bulk density ρs of the solid phase, the distribution coefficient Kd, and the porosity θ can be obtained by analyzing the contaminated soil in the contaminated area by a conventional method. In addition, as the bulk density ρs of the solid phase, a wet density in a compacted state of contaminated soil is usually used. The bulk density ρs of the solid phase can be obtained, for example, by collecting an undisturbed sample from the contaminated region by soil boring, measuring its volume V and mass M, and dividing the mass M by the volume V. In addition, the distribution coefficient Kd is, for example, the content So [mg / kg] of the initial pollutant in the contaminated soil of the soil column obtained by the laboratory test of water purification described above in the permeate of the initial soil column. However, the present invention is not limited to such a method, and the distribution coefficient Kd may be obtained by a normal batch equilibrium test. As for the porosity θ, for example, the water content ratio ω of the sample for which the bulk density ρs of the solid phase is measured and the density d of the soil particles are in accordance with the method of the Japan Society for Geotechnical Engineering (JSF T 111-1990 and JSF T 121-1990). And can be obtained using the formula: θ = 1− [ρs / d (1 + ω)].

汚染物質の分散係数Dも従来の手法で汚染領域の汚染土壌を分析することにより求めることができるが、従来報告されている文献(例えば、Gelharらの文献(A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 28(7), pp1955-1974, 1992)など)から得ることとしてもよい。また、地下水の流速は従来の方法により測定・解析することができる。具体的には、浸透流解析を用いた方法を挙げることができる。さらに、脱着速度定数βは、上述のように通水浄化の室内試験から得られた汚染物質の濃度の経時変化を示すグラフに基づいて決定することができる。例えば、土壌に対する汚染物質の脱着速度定数を含む吸着式と移流拡散式とを連立させて得られる時間と濃度の関数が、通水浄化の室内試験から得られた汚染物質の濃度の経時変化を示すグラフを最も近似するような脱着速度定数を決定することにより、脱着速度定数βを得ることができる。   The dispersion coefficient D of the pollutant can also be obtained by analyzing the contaminated soil in the contaminated area by a conventional method. However, a literature (eg, a critical review of data on field-scale by Gelhar et al. dispersion in aquifers, Water Resour. Res., 28 (7), pp1955-1974, 1992)). In addition, the flow rate of groundwater can be measured and analyzed by conventional methods. Specifically, a method using osmotic flow analysis can be mentioned. Furthermore, the desorption rate constant β can be determined based on the graph showing the change over time in the concentration of the pollutant obtained from the indoor test for water purification as described above. For example, the function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of pollutants to the soil and the advection diffusion equation shows the change over time in the concentration of pollutants obtained from laboratory tests for water purification. The desorption rate constant β can be obtained by determining the desorption rate constant that most closely approximates the graph shown.

なお、本実施の形態においては、通水洗浄による浄化過程を表現する数式を選定することとしているが、予め定められた数式を用いることとしてもよい。   In the present embodiment, a mathematical expression expressing the purification process by water flow cleaning is selected. However, a predetermined mathematical expression may be used.

<微生物による浄化過程を表現する数式の選定>
微生物による浄化過程を表現する数式の選定は、まず、汚染領域の土壌を採取して微生物による浄化の室内試験を行い、土壌に存在する微生物を培養して汚染物質を分解した場合の汚染物質の濃度の経時変化を示すデータを作成し、このデータを最もよく再現(近似)することができる数式を選び出すことにより行う。このように、室内試験の結果を最もよく再現することができる数式を選定することにより、現場の汚染土壌の特性を反映した微生物浄化による汚染物質の濃度変化を精度よく予測することができるようになる。
<Selection of mathematical expression expressing purification process by microorganisms>
The selection of a mathematical formula that expresses the purification process by microorganisms is performed by first collecting soil in the contaminated area, conducting laboratory tests for purification by microorganisms, cultivating microorganisms present in the soil, and degrading the contaminants. This is done by creating data indicating the change in concentration over time and selecting a mathematical expression that can best reproduce (approximate) this data. In this way, by selecting mathematical formulas that can best reproduce the results of laboratory tests, it is possible to accurately predict changes in the concentration of pollutants due to microbial purification that reflects the characteristics of contaminated soil in the field. Become.

なお、前記数式としては、微生物による汚染物質の分解反応速度定数を含む汚染物質の分解反応式であればどのようなものでもよく、例えば、1次反応式(例えば、下式(5)など)、モノー(monod)式(例えば、下式(6)など)などを用いることができる。また、微生物による浄化の室内試験は、例えば、バッチ式であってもよいが、連続式であってもよい。バッチ式である場合には、例えば、汚染領域から採取した所定量の汚染土と、所定量の水と、所定量の汚染物質を容器(例えば、褐色耐圧ビンなど)に入れ、土壌に存在する微生物が好気性である場合には、容器内の気相部分を酸素に置換して容器を密閉し、一方、土壌に存在する微生物が嫌気性である場合には、容器内の気相部分を窒素又は二酸化炭素に置換して容器を密閉し、容器内に存在する微生物を培養して、所定の間隔で容器内の溶液を採取して溶液における汚染物質の濃度を測定することにより行うこととしてもよい。   The mathematical expression may be any pollutant decomposition reaction formula including the degradation rate constant of the pollutants by microorganisms. For example, a primary reaction formula (for example, the following formula (5)) A monod formula (for example, the following formula (6)) can be used. Moreover, the laboratory test of purification by microorganisms may be, for example, a batch type or a continuous type. In the case of a batch type, for example, a predetermined amount of contaminated soil collected from a contaminated area, a predetermined amount of water, and a predetermined amount of contaminant are put in a container (for example, a brown pressure-resistant bottle) and exist in the soil. If the microorganisms are aerobic, replace the gas phase part in the container with oxygen and seal the container, while if the microorganisms present in the soil are anaerobic, remove the gas phase part in the container. Substituting with nitrogen or carbon dioxide, sealing the container, culturing microorganisms present in the container, collecting the solution in the container at predetermined intervals, and measuring the concentration of contaminants in the solution Also good.

式(5)中、[HC]は液相における汚染物質の濃度を、κは微生物による汚染物質の分解反応速度定数を、tは時間をそれぞれ意味する。 In equation (5), [HC] represents the concentration of the contaminant in the liquid phase, κ represents the decomposition reaction rate constant of the contaminant by the microorganism, and t represents time.

式(6)中、[HC]は液相における汚染物質の濃度を、[O]は液相に溶解している酸素の濃度を、κは微生物による汚染物質の分解反応速度定数を、Kは半減定数を、Yは1モルの汚染物質を消費するのに必要な酸素質量と1モルの汚染物質の質量との比を、tは時間をそれぞれ意味する。 In equation (6), [HC] is the concentration of the pollutant in the liquid phase, [O 2 ] is the concentration of oxygen dissolved in the liquid phase, κ is the decomposition reaction rate constant of the pollutant by the microorganism, K Is the half constant, Y is the ratio of the mass of oxygen required to consume 1 mol of pollutant and the mass of 1 mol of pollutant, and t is the time.

なお、パラメータは、選定された数式により決定される。例えば、上述の式(5)を選定した場合には、微生物による汚染物質の分解反応速度定数κが決定される。微生物による汚染物質の分解反応速度定数κは、上述のように、微生物による浄化の室内試験から得られた汚染物質の濃度の経時変化を示すグラフに基づいて算出することができる。例えば、分解反応速度定数κを含む汚染物質の分解反応式が一次反応式である場合には、微生物による浄化の室内試験から得られた汚染物質の濃度の経時変化を示すグラフにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を分解反応速度定数として算出することにより、分解反応速度定数κを得ることができる。   The parameter is determined by the selected mathematical formula. For example, when the above formula (5) is selected, the decomposition reaction rate constant κ of the contaminant by the microorganism is determined. As described above, the degradation reaction rate constant κ of the pollutant by the microorganism can be calculated based on the graph showing the change over time in the concentration of the pollutant obtained from the laboratory test for purification by the microorganism. For example, if the degradation reaction formula for the pollutant containing the degradation reaction rate constant κ is a first-order reaction formula, the concentration and time in the graph showing the change over time in the concentration of the pollutant obtained from the laboratory test of purification by microorganisms The decomposition reaction rate constant κ can be obtained by calculating the absolute value of the slope of the graph representing the relationship between the logarithm of the concentration and time for the data in a range in which the monotonic decrease relationship is as the decomposition reaction rate constant. .

なお、本実施の形態においては、微生物による浄化過程を表現する数式を選定することとしているが、予め定められた数式を用いることとしてもよい。   In the present embodiment, a mathematical expression expressing a purification process by microorganisms is selected, but a predetermined mathematical expression may be used.

<汚染領域における汚染濃度の経時変化の三次元的シミュレーション>
以上のようにして得られた、汚染領域の水理地質モデルデータ、初期水位分布データ、及び初期濃度分布データ、並びに汚染物質の移行・変換を表現する数式、及びそれらの数式に付随するパラメータに基づいてシミュレーションすることにより、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることが可能となる。前記汚染物質の移行・変換を表現する数式としては、例えば、上述の式(1)、式(2)、及び式(5)を選定して脱着速度定数βの決定や分解反応速度定数κの算出を行った場合には以下の式(7)を用いることができ、上述の式(1)、式(2)、及び式(6)を選定して脱着速度定数βの決定や分解反応速度定数κの算出を行った場合には以下の式(8)を用いることができる。
<3D simulation of contamination concentration over time in the contaminated area>
The hydrogeological model data, the initial water level distribution data, the initial concentration distribution data of the contaminated area, the mathematical expressions expressing the migration / conversion of pollutants, and the parameters associated with those mathematical expressions obtained as described above. By performing the simulation based on this, it is possible to three-dimensionally simulate the temporal change of the contamination concentration in the contamination region. As a mathematical expression expressing the migration / conversion of the pollutant, for example, the above formula (1), formula (2), and formula (5) are selected to determine the desorption rate constant β and the decomposition reaction rate constant κ. When calculation is performed, the following formula (7) can be used, and the above-described formula (1), formula (2), and formula (6) are selected to determine the desorption rate constant β and the decomposition reaction rate. When the constant κ is calculated, the following equation (8) can be used.

式(7)中、[HC]は液相における汚染物質の濃度を、[HC]は固相における汚染物質の濃度を、Dは分散係数を、Vは汚染領域に通水した場合に汚染領域中の水に溶解した汚染物質が水とともに移動する流速を、θは間隙率を、ρsは固相(土壌)の嵩密度を、κは分解反応速度定数を、tは時間を、xはx方向(現場において注水井と揚水井とを結ぶ直線の方向)の距離を、添え字(i及びjなど)はベクトルないしテンソル量をそれぞれ意味する。 In equation (7), [HC] is the concentration of the contaminant in the liquid phase, [HC] S is the concentration of the contaminant in the solid phase, D is the dispersion coefficient, and V is the contamination when water is passed through the contaminated area. The flow rate of contaminants dissolved in water in the region with water, θ is the porosity, ρs is the solid density (soil) bulk density, κ is the decomposition reaction rate constant, t is the time, x is the time The distance in the x direction (the direction of the straight line connecting the water injection well and the pumping well at the site), and the subscripts (i and j etc.) mean the vector or tensor amount.

式(8)中、[HC]は液相における汚染物質の濃度を、[HC]は固相における汚染物質の濃度を、[O]は液相に溶解している酸素濃度を、[O]は固相における酸素濃度を、Dは分散係数を、vは汚染領域に通水した場合に汚染領域中の水に溶解した汚染物質が水とともに移動する流速を、θは間隙率を、ρsは固相(土壌)の嵩密度を、κは分解反応速度定数を、Kは半減定数を、Yは1モルの汚染物質を消費するのに必要な酸素質量と1モルの汚染物質の質量との比を、tは時間を、xはx方向(現場において注水井と揚水井とを結ぶ直線の方向)の距離を、添え字(i及びjなど)はベクトルないしテンソル量をそれぞれ意味する。 In formula (8), [HC] is the concentration of contaminants in the liquid phase, [HC] S is the concentration of contaminants in the solid phase, [O 2 ] is the concentration of oxygen dissolved in the liquid phase, [ O 2 ] S is the oxygen concentration in the solid phase, D is the dispersion coefficient, v is the flow rate of the contaminant dissolved in the water in the contaminated area when water is passed through the contaminated area, and θ is the porosity. Ρs is the bulk density of the solid phase (soil), κ is the decomposition rate constant, K is the half constant, Y is the oxygen mass and 1 mol of pollutant required to consume 1 mol of pollutant T is the time, x is the distance in the x direction (the direction of the straight line connecting the injection well and the pumping well at the site), and the subscripts (i and j, etc.) are the vector or tensor quantity. means.

以上のようにして、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることにより、通水洗浄による浄化効果や微生物による浄化効果をそれぞれ明確に把握することができ、また、汚染領域の浄化経過を精度よく予測することができるようになる。従って、汚染領域における汚染物質の濃度が所定の濃度(例えば、環境庁によって定められた基準値)に達する期間を算出することも可能になる。また、汚染領域を効率的に浄化することができる浄化設備の計画を検証、立案することも可能となる。なお、浄化設備としては、例えば、通水洗浄に必要な注水井と揚水井との配置場所、それらの井戸の配置数などである。   As described above, it is possible to clearly grasp the purification effect by washing with water and the purification effect by microorganisms by three-dimensionally simulating the temporal change of the contamination concentration in the contaminated area. The purification process can be accurately predicted. Therefore, it is possible to calculate a period during which the concentration of the contaminant in the contaminated area reaches a predetermined concentration (for example, a reference value determined by the Environment Agency). It is also possible to verify and formulate a purification facility plan that can efficiently purify the contaminated area. In addition, as purification equipment, it is the arrangement | positioning location of the injection well and pumping well required for water flow washing | cleaning, the arrangement number of those wells, etc., for example.

通水洗浄に必要な注水井と揚水井との配置場所の計画は、所定の場所に注水井と揚水井とを配置して、それぞれの井戸の配置場所による汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、通水洗浄及び微生物による浄化効果が十分であるかどうか、すなわち、浄化効果が予定した浄化工期で浄化可能かどうかを判断し(S206;図2参照)、浄化不可能と判断した場合(S206;No)には、S306へ進み、各井戸の配置場所を変更したり、各井戸の配置数を増加したりして、それらの配置場所による汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることとなる(S205)。一方、S206において、浄化可能と判断した場合(S206;Yes)には汚染領域の浄化施工を開始する(S207)。   The location of the injection wells and pumping wells required for water washing is determined by arranging the injection wells and the pumping wells at the predetermined locations, and measuring the contamination concentration in the contaminated area over time according to the location of each well. A three-dimensional simulation is performed, and it is determined whether or not the purification effect by water washing and microorganisms is sufficient, that is, whether or not the purification effect can be purified in the scheduled purification period (S206; see FIG. 2). If it is determined (S206; No), the process proceeds to S306, where the location of each well is changed or the number of wells is increased, and the concentration of contamination in the contaminated area due to those locations changes over time. The change is simulated three-dimensionally (S205). On the other hand, when it is determined in S206 that purification is possible (S206; Yes), purification of the contaminated area is started (S207).

このように、浄化設備の計画を検証、立案することにより、浄化工事の計画、予算、工期などを定量することが可能になるだけではなく、不要な設備投資を防止することができ、また、浄化工事をスムーズに行うことができるようになる。なお、本実施の形態においては、浄化効果が予定した浄化工期で浄化可能かどうかを判断し、浄化不可能と判断した場合には、各井戸の配置場所を変更したり、各井戸の配置数を増加したりして、それらの配置場所による汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることにより(S206→S306→S205)、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定することもできるが、複数の揚水井と注水井との組み合わせに対し、揚水井及び注水井を配置する場所を特定するデータ、汚染領域における水理地質モデルデータ、汚染領域の土壌に対する汚染物質の脱着速度定数、並びに、微生物による汚染物質の分解反応速度定数を用いて、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、複数の揚水井と注水井との組み合わせの中で、最も短期間で汚染領域における汚染物質を浄化することができる注水井と揚水井との配置場所を決定することにより、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定することとしてもよい。この決定方法により、最適な揚水井と注水井との配置場所を迅速に決定することが可能となる。   In this way, by verifying and planning the purification equipment plan, it becomes possible not only to quantify the purification work plan, budget, construction period, etc., but also to prevent unnecessary capital investment, The purification work can be performed smoothly. In this embodiment, it is determined whether the purification effect can be purified in the scheduled purification period, and if it is determined that purification is impossible, the location of each well is changed or the number of each well is arranged. The pumping well that reaches a predetermined concentration in the shortest period can be obtained by three-dimensionally simulating the time-dependent change of the contamination concentration in the contaminated area depending on the arrangement location (S206 → S306 → S205). It is possible to determine the location of the injection well, but for a combination of multiple pumping wells and injection wells, data for identifying the location where the pumping well and injection well are placed, hydrogeological model data in the contaminated area, Using the rate of desorption of pollutants to the soil in the contaminated area and the rate constant for the decomposition of pollutants by microorganisms, the change over time in the contaminated area is three-dimensional. By simulating and determining the location of the injection well and the pump well where the pollutants in the contaminated area can be purified in the shortest period among the combinations of multiple pump wells and injection wells. It is good also as determining the arrangement | positioning place of a pumping well and a water injection well which reaches a predetermined density | concentration. With this determination method, it is possible to quickly determine the optimal placement location of the pumping well and the water injection well.

本実施の形態においては、通水洗浄及び微生物による浄化を行う場合の汚染領域の浄化経過を予め予測する方法、汚染領域の浄化に要する期間を予測する方法、及び、最適な揚水井と注水井との配置場所を決定する方法について説明したが、これらの浄化の代わりに曝気洗浄による浄化(例えば、エアースパージング法など)や土壌ガス吸引法(例えば、真空吸引工法など)を適用することとしてもよいし、これらの浄化以外に曝気洗浄による浄化や土壌ガス吸引法を適用することとしてもよい。曝気洗浄による浄化や土壌ガス吸引法を適用する場合には、汚染領域の土壌を採取してこれらの室内試験を行い、所定の処理を行った場合の汚染物質の濃度の経時変化を示すデータを作成し、このデータを再現する数式を選定し、また、この数式に付随するパラメータを取得することにより、汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすることができるものと考えられる。   In the present embodiment, a method for predicting the purification process of a contaminated area in the case of performing water washing and purification with microorganisms in advance, a method for predicting the time required for purification of the contaminated area, and an optimal pumping well and injection well However, instead of these purification methods, purification by aeration cleaning (for example, air sparging method) or soil gas suction method (for example, vacuum suction method) may be applied. In addition to these purifications, purification by aeration cleaning or a soil gas suction method may be applied. When applying purification by aeration cleaning or soil gas suction method, soil in the contaminated area is collected, subjected to laboratory tests, and data showing the changes in the concentration of pollutants over time when prescribed treatment is performed. It is considered that the change over time in the contamination concentration in the contaminated region can be simulated three-dimensionally by creating and selecting a mathematical formula that reproduces this data, and acquiring parameters associated with this mathematical formula.

なお、本実施の形態において、各シミュレーションは、各シミュレーションを行うためのプログラムがインストールされたパーソナルコンピュータを用いて行われるが、これらに制限されるものではない。   In the present embodiment, each simulation is performed using a personal computer in which a program for performing each simulation is installed, but is not limited thereto.

==その他の実施形態==
上述のように、決定された揚水井と注水井との配置場所により、施工を開始する場合の施工管理方法について説明する。図5は、他の実施形態に係る施工管理を行うためのフローチャートを示す図である。
== Other Embodiments ==
As described above, the construction management method in the case of starting construction according to the determined location of the pumping well and the water injection well will be described. FIG. 5 is a diagram illustrating a flowchart for performing construction management according to another embodiment.

まず、数値解析による想定濃度変化の設定を行い(S501)、注水井及び揚水井の配置場所や配置数などの浄化設備の計画をする。なお、数値解析による想定濃度変化の設定は、図2におけるS201〜207に準じて行われる。   First, an assumed concentration change is set by numerical analysis (S501), and purification facilities are planned such as the location and number of injection wells and pumping wells. The setting of the assumed density change by numerical analysis is performed according to S201 to S207 in FIG.

上記計画案に基づいて現場における汚染領域に注水井や揚水井を配置し、曝気した水又は脱気した水を注水井から通水させ、浄化工事を施工する(S502)。所定の期間経過後に、各地点の地下水及び土壌を採取して汚染物質の濃度を測定し、汚染領域における地下水、土壌の汚染濃度分布を解析する(S503)。この解析により得られた濃度分布(測定値)を参照して、汚染領域における汚染物質の濃度が浄化基準を満足したかどうか、すなわち、環境庁で定められた基準値以下に達したかどうかを判断する(S504)。その結果、浄化基準を満足したと判断した場合(S504;Yes)には、浄化工事を終了する。一方、浄化基準を満足していないと判断した場合(S504;No)には、シミュレーションにより予測した所定期間経過後の汚染領域における汚染濃度の濃度分布(想定濃度)と比較し、測定値が想定濃度以下であるかどうかを判断する(S505)。その結果、測定値が想定濃度以下であると判断した場合(S505;Yes)には、S502へ進み、施工を続ける。一方、測定値が測定濃度以下であると判断した場合(S505;No)には、数値解析による初期モデルの見直し(S506)や、浄化設備等の見直し(S507)がなされ、図2におけるS206の数値解析が再度行われることとなる。このように、施工管理を行うことにより、浄化工事の施工開始後の浄化工事の進行を的確に把握することができ、その進行状況に応じて的確な対処を行うことができるようになる。   Based on the plan, water injection wells and pumping wells are arranged in the contaminated area at the site, aerated water or degassed water is passed through the water injection wells, and purification work is performed (S502). After a predetermined period of time, the groundwater and soil at each point are collected, the concentration of the pollutant is measured, and the groundwater and soil contamination concentration distribution in the contaminated area is analyzed (S503). With reference to the concentration distribution (measured value) obtained by this analysis, it is determined whether the concentration of the pollutant in the contaminated area satisfies the purification standard, that is, whether it reaches the standard value or less determined by the Environment Agency. Judgment is made (S504). As a result, when it is determined that the purification standard is satisfied (S504; Yes), the purification work is terminated. On the other hand, when it is determined that the purification standard is not satisfied (S504; No), the measured value is assumed by comparing with the concentration distribution (presumed concentration) of the contamination concentration in the contaminated region after the predetermined period predicted by the simulation. It is determined whether or not the concentration is equal to or lower than the concentration (S505). As a result, when it is determined that the measured value is equal to or lower than the assumed concentration (S505; Yes), the process proceeds to S502 and the construction is continued. On the other hand, when it is determined that the measured value is equal to or lower than the measured concentration (S505; No), the initial model is reviewed by numerical analysis (S506) and the purification equipment is reviewed (S507). Numerical analysis will be performed again. Thus, by performing construction management, it is possible to accurately grasp the progress of the purification work after the start of the purification work, and it is possible to take an appropriate measure according to the progress.

以上、本発明を実施形態により説明したが、当業者にとっては、本発明が本願中に説明した実施形態に限定されるものではなく、多くの変形例および実装例が、発明の上記の実施形態に対してなし得ることは明らかである。   As described above, the present invention has been described with reference to the embodiment. However, for those skilled in the art, the present invention is not limited to the embodiment described in the present application, and many modifications and implementation examples are described in the above embodiment of the present invention. It is clear that this can be done.

本発明の一実施形態において、通水浄化の室内試験による汚染物質の濃度の経時変化と、シミュレーションすることにより得られた汚染物質の濃度の経時変化を示す図である。In one Embodiment of this invention, it is a figure which shows the time-dependent change of the density | concentration of the pollutant by the indoor test of water flow purification, and the time-dependent change of the density | concentration of the pollutant obtained by simulating. 本発明の一実施形態において、汚染領域の浄化計画の作業フローを示す図である。In one Embodiment of this invention, it is a figure which shows the work flow of the purification plan of a contamination area | region. 本発明の一実施形態において、水理地質モデルデータ、初期水位分布データ、及び初期濃度分布データを得るためのフローを示す図である。In one Embodiment of this invention, it is a figure which shows the flow for obtaining hydrogeological model data, initial stage water level distribution data, and initial density distribution data. 本発明の一実施形態において、通水浄化の室内試験に用いるカラム実験装置の構造を示す図である。In one Embodiment of this invention, it is a figure which shows the structure of the column experiment apparatus used for the laboratory test of water flow purification. 他の一実施形態において、施工管理を行うためのフローチャートを示す図である。In other one Embodiment, it is a figure which shows the flowchart for performing construction management.

Claims (11)

現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化経過を予測する方法であって、
前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、
前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定し、
前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、
前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出し、
決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすること、
を含むことを特徴とする方法。
A method for predicting the purification process of the contaminated area when purifying the contaminated area contaminated with a pollutant at the site and purifying with a microorganism present in the contaminated area,
Collecting soil in the contaminated area and conducting a laboratory test for water flow purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate,
In the pollutant adsorption formula including a desorption rate constant of the pollutant to the soil, the desorption rate constant is determined based on the first data;
A second test is performed to collect the soil in the contaminated area and perform a laboratory test for purification by the microorganisms, and to show the change over time in the concentration of the contaminants when the microorganisms existing in the soil are cultured to decompose the contaminants. Create data,
In the decomposition reaction formula of the pollutant including the decomposition reaction rate constant of the pollutant by the microorganism, the decomposition reaction rate constant is calculated based on the second data,
Using the determined desorption rate constant and the calculated decomposition reaction rate constant, three-dimensionally simulating the change over time of the contamination concentration in the contaminated region,
A method comprising the steps of:
現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化経過を予測する方法であって、
前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、
前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定し、
前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、
前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出し、
決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションすること、
を含むことを特徴とする方法。
A method for predicting the purification process of the contaminated area when purifying the contaminated area contaminated with a pollutant at the site and purifying with a microorganism present in the contaminated area,
Collecting soil in the contaminated area and conducting a laboratory test for water flow purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate,
The function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of the contaminant to the soil and the advection diffusion equation determines the desorption rate constant that most closely approximates the first data. And
A second test is performed to collect the soil in the contaminated area and perform a laboratory test for purification by the microorganisms, and to show the change over time in the concentration of the contaminants when the microorganisms existing in the soil are cultured to decompose the contaminants. Create data,
In the second data, the absolute value of the slope of the graph showing the relationship between the logarithm of the concentration and the time with respect to the data in the range where the concentration and the time are in a monotonously decreasing relationship is the decomposition reaction rate of the pollutant by the microorganism. Calculated as a constant,
Using the determined desorption rate constant and the calculated decomposition reaction rate constant, three-dimensionally simulating the change over time of the contamination concentration in the contaminated region,
A method comprising the steps of:
前記第二のデータに最も近似するような前記微生物による前記汚染物質の分解反応式を選定し、
選定した前記微生物による前記汚染物質の分解反応式を前記シミュレーションに用いることを特徴とする請求項1に記載の方法。
Select the degradation reaction formula of the pollutant by the microorganism that most closely approximates the second data,
The method according to claim 1, wherein a decomposition reaction formula of the pollutant by the selected microorganism is used for the simulation.
前記第一のデータに最も近似するような前記汚染物質の吸着式を選定し、
選定した前記汚染物質の吸着式を前記シミュレーションに用いることを特徴とする請求項1〜3のいずれかに記載の方法。
Select the pollutant adsorption formula that most closely approximates the first data,
The method according to claim 1, wherein the selected adsorption formula of the contaminant is used for the simulation.
前記通水浄化の室内試験は、前記汚染領域から採取した汚染土を、通水口及び排水口を備えるカラムに充填する工程と、前記カラムの通水口から所定の流量で通水して前記カラムに水を通過させる工程と、前記カラムの排水口から所定の間隔で前記カラムを通過した水を所定量採取する工程と、採取した前記水における前記汚染物質の濃度を測定する工程と、を含むことを特徴とする請求項1〜4のいずれかに記載の方法。   The indoor test for water flow purification includes a step of filling contaminated soil collected from the contaminated area into a column having a water flow port and a water discharge port, and water is passed from the water flow port of the column at a predetermined flow rate to the column. Including a step of passing water, a step of collecting a predetermined amount of water that has passed through the column at a predetermined interval from a drain outlet of the column, and a step of measuring a concentration of the contaminant in the collected water. The method according to claim 1, characterized in that: 前記微生物による浄化の室内試験が、前記汚染領域から採取した所定量の汚染土と、所定量の水と、所定量の前記汚染物質を前記容器に入れる工程と、前記容器内の気相部分を前記微生物の成育条件に従って酸素、窒素、又は二酸化炭素に置換して前記容器を密閉する工程と、前記容器内に存在する微生物を培養する工程と、前記容器内の溶液を所定の間隔で採取する工程と、採取した前記溶液における前記汚染物質の濃度を測定する工程と、を含むことを特徴とする請求項1〜5のいずれかに記載の方法。   The laboratory test for purification by microorganisms includes a step of putting a predetermined amount of contaminated soil collected from the contaminated area, a predetermined amount of water, a predetermined amount of the contaminant into the container, and a gas phase portion in the container. Substituting oxygen, nitrogen, or carbon dioxide according to the growth conditions of the microorganism to seal the container, culturing the microorganism present in the container, and collecting the solution in the container at predetermined intervals The method according to claim 1, comprising a step and a step of measuring a concentration of the contaminant in the collected solution. 前記パラメータは、前記汚染領域の固相の嵩密度、前記汚染物質に対する前記汚染領域の固相と前記汚染領域の液相との分配係数、前記汚染領域に通水した場合の前記汚染物質の分散係数、前記汚染領域に通水した場合に前記汚染領域中の水に溶解した前記汚染物質が前記水とともに移動する流速、前記汚染領域の有効間隙率、前記汚染領域を通水浄化する前の前記汚染領域における前記汚染物質の濃度分布データ、前記汚染領域を通水浄化する前の前記汚染領域における水位分布データ、及び前記汚染領域における水理地質モデルデータを含むことを特徴とする請求項1〜6のいずれかに記載の方法。   The parameters are the solid density of the solid phase in the contaminated area, the partition coefficient between the solid phase of the contaminated area and the liquid phase of the contaminated area with respect to the pollutant, and the dispersion of the pollutant when water passes through the contaminated area. Coefficient, flow rate when the pollutant dissolved in the water in the contaminated area moves together with the water when passing through the contaminated area, the effective porosity of the contaminated area, the water before purifying the contaminated area through the water The concentration distribution data of the pollutant in the contaminated area, the water level distribution data in the contaminated area before water purification of the contaminated area, and the hydrogeological model data in the contaminated area are included. 7. The method according to any one of 6. 現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化に要する期間を予測する方法であって、
前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、
前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定し、
前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、
前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出し、
決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、
前記汚染領域における前記汚染物質の濃度が所定の濃度に達する期間を算出すること、
を含むことを特徴とする方法。
A method for predicting a period required for purification of a contaminated area when a contaminated area contaminated with a pollutant at a site is purified by water and purified by microorganisms present in the contaminated area,
Collecting soil in the contaminated area and conducting a laboratory test for water flow purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate,
In the pollutant adsorption formula including a desorption rate constant of the pollutant to the soil, the desorption rate constant is determined based on the first data;
A second test is performed to collect the soil in the contaminated area and perform a laboratory test for purification by the microorganisms, and to show the change over time in the concentration of the contaminants when the microorganisms existing in the soil are cultured to decompose the contaminants. Create data,
In the decomposition reaction formula of the pollutant including the decomposition reaction rate constant of the pollutant by the microorganism, the decomposition reaction rate constant is calculated based on the second data,
Using the determined desorption rate constant and the calculated decomposition reaction rate constant, three-dimensional simulation of the change over time in the contamination concentration in the contaminated region,
Calculating a period during which the concentration of the contaminant in the contaminated area reaches a predetermined concentration;
A method comprising the steps of:
現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、前記汚染領域の浄化に要する期間を予測する方法であって、
前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、
前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定し、
前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、
前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出し、
決定した前記脱着速度定数及び算出した前記分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションし、
前記汚染領域における前記汚染物質の濃度が所定の濃度に達する期間を算出すること、
を含むことを特徴とする方法。
A method for predicting a period required for purification of a contaminated area when a contaminated area contaminated with a pollutant at a site is purified by water and purified by microorganisms present in the contaminated area,
Collecting soil in the contaminated area and conducting a laboratory test for water flow purification, creating first data indicating the change over time in the concentration of the pollutant when water purification is performed at a predetermined flow rate,
The function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of the contaminant to the soil and the advection diffusion equation determines the desorption rate constant that most closely approximates the first data. And
A second test is performed to collect the soil in the contaminated area and perform a laboratory test for purification by the microorganisms, and to show the change over time in the concentration of the contaminants when the microorganisms existing in the soil are cultured to decompose the contaminants. Create data,
In the second data, the absolute value of the slope of the graph showing the relationship between the logarithm of the concentration and the time with respect to the data in the range where the concentration and the time are in a monotonously decreasing relationship is the decomposition reaction rate of the pollutant by the microorganism. Calculated as a constant,
Using the determined desorption rate constant and the calculated decomposition reaction rate constant, three-dimensional simulation of the change over time in the contamination concentration in the contaminated region,
Calculating a period during which the concentration of the contaminant in the contaminated area reaches a predetermined concentration;
A method comprising the steps of:
現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定する方法であって、
複数の揚水井と注水井との組み合わせに対し、前記揚水井及び前記注水井を配置する場所を特定するデータ、前記汚染領域における水理地質モデルデータ、前記汚染領域の土壌に対する前記汚染物質の脱着速度定数、並びに、前記微生物による前記汚染物質の分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションする工程と、
前記複数の揚水井と注水井との組み合わせの中で、最も短期間で前記汚染領域における前記汚染物質を浄化することができる前記注水井と前記揚水井との配置場所を決定する工程と、
を含み、
前記汚染物質の脱着速度定数は、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む前記汚染物質の吸着式において、前記第一のデータに基づいて前記脱着速度定数を決定することにより得られ、
前記汚染物質の分解反応速度定数は、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記微生物による前記汚染物質の分解反応速度定数を含む前記汚染物質の分解反応式において、前記第二のデータに基づいて前記分解反応速度定数を算出することにより得られることを特徴とする方法。
Decide where to place the pumping well and the water injection well so that they reach the specified concentration in the shortest period when the contaminated area contaminated with pollutants is purified on the site and purified by microorganisms present in the contaminated area. A way to
Data for specifying the location where the pumping well and the water injection well are arranged for a combination of a plurality of pumping wells and water injection wells, hydrogeological model data in the contaminated area, desorption of the pollutant from the soil in the contaminated area Using the rate constant and the degradation reaction rate constant of the pollutant by the microorganism, three-dimensionally simulating the temporal change of the contamination concentration in the contaminated area; and
In the combination of the plurality of pumping wells and water injection wells, determining the location of the water injection wells and the pumping wells that can purify the pollutants in the contaminated area in the shortest period;
Including
The desorption rate constant of the pollutant indicates the change over time in the concentration of the pollutant when the soil in the contaminated area is collected, subjected to the indoor test of the water purification, and the water purification is performed at a predetermined flow rate. In the pollutant adsorption equation including the desorption rate constant of the pollutant to the soil, the data is obtained by determining the desorption rate constant based on the first data,
The pollutant decomposition reaction rate constant is determined by collecting the soil in the contaminated area, conducting a laboratory test for purification by the microorganism, cultivating the microorganism present in the soil, and decomposing the pollutant. 2nd data showing the change over time of the concentration of the pollutant in the degradation reaction equation of the pollutant including the degradation rate constant of the pollutant by the microorganism, the degradation reaction rate constant based on the second data A method characterized by being obtained by calculating.
現場において汚染物質により汚染されている汚染領域を通水浄化及び前記汚染領域に存在する微生物により浄化する場合に、最短期間で所定の濃度に達するような揚水井と注水井との配置場所を決定する方法であって、
複数の揚水井と注水井との組み合わせに対し、前記揚水井及び前記注水井を配置する場所を特定するデータ、前記汚染領域における水理地質モデルデータ、前記汚染領域の土壌に対する前記汚染物質の脱着速度定数、並びに、前記微生物による前記汚染物質の分解反応速度定数を用いて、前記汚染領域における汚染濃度の経時変化を三次元的にシミュレーションする工程と、
前記複数の揚水井と注水井との組み合わせの中で、最も短期間で前記汚染領域における前記汚染物質を浄化することができる前記注水井と前記揚水井との配置場所を決定する工程と、
を含み、
前記汚染物質の脱着速度定数は、前記汚染領域の土壌を採取して前記通水浄化の室内試験を行い、所定流量で通水浄化を行った場合の前記汚染物質の濃度の経時変化を示す第一のデータを作成し、前記土壌に対する前記汚染物質の脱着速度定数を含む吸着式と、移流拡散式とを連立させて得られる時間と濃度の関数が、前記第一のデータを最も近似するような前記脱着速度定数を決定することにより得られ、
前記汚染物質の分解反応速度定数は、前記汚染領域の土壌を採取して前記微生物による浄化の室内試験を行い、前記土壌に存在する微生物を培養して前記汚染物質を分解した場合の前記汚染物質の濃度の経時変化を示す第二のデータを作成し、前記第二のデータにおいて、濃度と時間が単調減少関係にある範囲のデータに対して濃度の対数と時間との関係を表したグラフの傾きの絶対値を前記微生物による前記汚染物質の分解反応速度定数として算出することにより得られることを特徴とする方法。

Decide where to place the pumping well and the water injection well so that they reach the specified concentration in the shortest period when the contaminated area contaminated with pollutants is purified on the site and purified by microorganisms present in the contaminated area. A way to
Data for specifying the location where the pumping well and the water injection well are arranged for a combination of a plurality of pumping wells and water injection wells, hydrogeological model data in the contaminated area, desorption of the pollutant from the soil in the contaminated area Using the rate constant and the degradation reaction rate constant of the pollutant by the microorganism, three-dimensionally simulating the temporal change of the contamination concentration in the contaminated area; and
In the combination of the plurality of pumping wells and water injection wells, determining the location of the water injection wells and the pumping wells that can purify the pollutants in the contaminated area in the shortest period;
Including
The desorption rate constant of the pollutant indicates the change over time in the concentration of the pollutant when the soil in the contaminated area is collected, subjected to the indoor test of the water purification, and the water purification is performed at a predetermined flow rate. A function of time and concentration obtained by combining the adsorption equation including the desorption rate constant of the pollutant with respect to the soil and the advection diffusion equation so that the first data is most approximated. Obtained by determining the desorption rate constant,
The pollutant decomposition reaction rate constant is determined by collecting the soil in the contaminated area, conducting a laboratory test for purification by the microorganism, cultivating the microorganism present in the soil, and decomposing the pollutant. The second data showing the time-dependent change of the concentration of the graph is created. A method comprising obtaining an absolute value of a slope as a decomposition reaction rate constant of the pollutant by the microorganism.

JP2004309950A 2004-10-25 2004-10-25 Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region Pending JP2006116509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309950A JP2006116509A (en) 2004-10-25 2004-10-25 Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309950A JP2006116509A (en) 2004-10-25 2004-10-25 Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region

Publications (1)

Publication Number Publication Date
JP2006116509A true JP2006116509A (en) 2006-05-11

Family

ID=36534891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309950A Pending JP2006116509A (en) 2004-10-25 2004-10-25 Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region

Country Status (1)

Country Link
JP (1) JP2006116509A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098330A (en) * 2005-10-06 2007-04-19 Teijin Fibers Ltd Method of contaminated soil purification, and management system of contaminated soil purification for it
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
JP2010000456A (en) * 2008-06-20 2010-01-07 Kurita Water Ind Ltd Method for estimating oil concentration of soil or ground water
JP2010214274A (en) * 2009-03-16 2010-09-30 Ritsumeikan Cleaning simulation method for bioremediation
JP2012047498A (en) * 2010-08-24 2012-03-08 Meijo University Method for predicting movement of chemical substance in soil gas, method for calculating removal period of chemical substance in soil gas, and method for determining disposition of suction well for removal of chemical substance in soil gas
JP2013526706A (en) * 2010-05-10 2013-06-24 グラウンドスウェル テクノロジーズ,インコーポレイテッド Method and apparatus for groundwater basin storage tracking, purification performance monitoring and optimization
JP2014062799A (en) * 2012-09-21 2014-04-10 Tokyo Electric Power Co Inc:The Estimation method of the number of days required for cleaning treatment of transformer tank contaminated by pcb
JP2017154073A (en) * 2016-03-01 2017-09-07 株式会社竹中工務店 Countermeasure against contamination and program for countermeasure against contamination
KR101813154B1 (en) * 2016-05-03 2018-01-31 연세대학교 산학협력단 Apparatus and method for assessing natural purification of oil pollution
WO2018043508A1 (en) * 2016-08-31 2018-03-08 株式会社竹中工務店 Contaminated soil cleaning system
JP2021084056A (en) * 2019-11-26 2021-06-03 栗田工業株式会社 Purification period prediction method and purification period prediction device
CN112981149A (en) * 2021-02-04 2021-06-18 核工业北京化工冶金研究院 Control method and system for pumping and injecting balance of mining area of in-situ leaching uranium mining mine
JP7423334B2 (en) 2020-02-03 2024-01-29 株式会社竹中工務店 Soil remediation analysis method
JP7423333B2 (en) 2020-02-03 2024-01-29 株式会社竹中工務店 Analysis method of heating purification

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098330A (en) * 2005-10-06 2007-04-19 Teijin Fibers Ltd Method of contaminated soil purification, and management system of contaminated soil purification for it
JP2009222668A (en) * 2008-03-18 2009-10-01 Ritsumeikan Method for estimating oil contamination distribution of soil and applying result thereof to bioremediation
JP2010000456A (en) * 2008-06-20 2010-01-07 Kurita Water Ind Ltd Method for estimating oil concentration of soil or ground water
JP2010214274A (en) * 2009-03-16 2010-09-30 Ritsumeikan Cleaning simulation method for bioremediation
JP2013526706A (en) * 2010-05-10 2013-06-24 グラウンドスウェル テクノロジーズ,インコーポレイテッド Method and apparatus for groundwater basin storage tracking, purification performance monitoring and optimization
JP2012047498A (en) * 2010-08-24 2012-03-08 Meijo University Method for predicting movement of chemical substance in soil gas, method for calculating removal period of chemical substance in soil gas, and method for determining disposition of suction well for removal of chemical substance in soil gas
JP2014062799A (en) * 2012-09-21 2014-04-10 Tokyo Electric Power Co Inc:The Estimation method of the number of days required for cleaning treatment of transformer tank contaminated by pcb
JP7023595B2 (en) 2016-03-01 2022-02-22 株式会社竹中工務店 Pollution control methods and pollution control programs
JP2017154073A (en) * 2016-03-01 2017-09-07 株式会社竹中工務店 Countermeasure against contamination and program for countermeasure against contamination
KR101813154B1 (en) * 2016-05-03 2018-01-31 연세대학교 산학협력단 Apparatus and method for assessing natural purification of oil pollution
JPWO2018043508A1 (en) * 2016-08-31 2019-07-04 株式会社竹中工務店 Contaminated soil remediation system
US11000885B2 (en) 2016-08-31 2021-05-11 Takenaka Corporation Contaminated soil purification method
WO2018043508A1 (en) * 2016-08-31 2018-03-08 株式会社竹中工務店 Contaminated soil cleaning system
JP2021084056A (en) * 2019-11-26 2021-06-03 栗田工業株式会社 Purification period prediction method and purification period prediction device
JP7423334B2 (en) 2020-02-03 2024-01-29 株式会社竹中工務店 Soil remediation analysis method
JP7423333B2 (en) 2020-02-03 2024-01-29 株式会社竹中工務店 Analysis method of heating purification
CN112981149A (en) * 2021-02-04 2021-06-18 核工业北京化工冶金研究院 Control method and system for pumping and injecting balance of mining area of in-situ leaching uranium mining mine

Similar Documents

Publication Publication Date Title
Abichou et al. Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions
Thullner et al. Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis–review of recent developments
De Visscher et al. Simulation model for gas diffusion and methane oxidation in landfill cover soils
JP2006116509A (en) Method for estimating progress of purification at contaminated region beforehand, method for determining optimum place to arrange water pumping and water pouring wells, and method for estimating period required to purify contaminated region
Cook et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data
Han et al. Application of a genetic algorithm to groundwater pollution source identification
Mostafid et al. Gas transport properties of compost–woodchip and green waste for landfill biocovers and biofilters
Mahmoodi et al. Assessing persistence of entrapped gas for induced partial saturation
Lehto Principles and application in soils and sediments
Mahieu et al. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils
Wang et al. A semi-analytical model for methane transport and oxidation in a soil cover
JP2008046083A (en) Underground area model testing apparatus
Feng et al. Numerical study of landfill gas emissions through three earthen landfill covers
Clement et al. Experimental and numerical investigation of DNAPL dissolution processes in a laboratory aquifer model
Wang et al. High stress low-flow (HSLF) sampling: A newly proposed groundwater purge and sampling approach
Tick et al. Gas-phase diffusive tracer test for the in-situ measurement of tortuosity in the vadose zone
Donaldson et al. Dissolved gas transport in the presence of a trapped gas phase: Experimental evaluation of a two‐dimensional kinetic model
Huang et al. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process
Chen et al. Different forms of phosphorous transformation and release prediction with environment factor in sediments from Lake Dongting, China
Lee et al. Microbial respiration and diffusive transport of O2, 16O2, and 18O16O in unsaturated soils and geologic sediments
JP2010214282A (en) Method for estimating microorganism distribution of contaminated soil and nutrient salinity distribution
Karlsson et al. Simulation and verification of hydraulic properties and organic matter degradation in sand filters for greywater treatment
Frippiat et al. Estimation of laboratory-scale dispersivities using an annulus-and-core device
Lari et al. Advective and diffusive gas phase transport in vadose zones: Importance for defining vapour risks and natural source zone depletion of petroleum hydrocarbons
Urmann et al. Quantification of microbial methane oxidation in an alpine peat bog