JP2006116375A - Sludge treatment apparatus - Google Patents

Sludge treatment apparatus Download PDF

Info

Publication number
JP2006116375A
JP2006116375A JP2004304118A JP2004304118A JP2006116375A JP 2006116375 A JP2006116375 A JP 2006116375A JP 2004304118 A JP2004304118 A JP 2004304118A JP 2004304118 A JP2004304118 A JP 2004304118A JP 2006116375 A JP2006116375 A JP 2006116375A
Authority
JP
Japan
Prior art keywords
tank
ultrasonic
treatment tank
drainage
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304118A
Other languages
Japanese (ja)
Inventor
Shinichiro Fuchigami
真一郎 淵上
Takashi Sakakibara
隆司 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004304118A priority Critical patent/JP2006116375A/en
Publication of JP2006116375A publication Critical patent/JP2006116375A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge treatment apparatus which has high treatment efficiency and prolongs the life of an ultrasonic vibrator by utilizing exhaust heat from an ultrasonic oscillator which is used for driving the ultrasonic vibrator and which exhausts the heat equivalent to about 50% of input electric power from a heat sink to the atmosphere and utilizing natural energy such as solar heat. <P>SOLUTION: The sludge treatment apparatus is provided with: the ultrasonic vibrator 14 arranged in an ultrasonic treatment tank 50; the ultrasonic oscillator 15 for driving the ultrasonic vibrator 14; an exhaust heat transferring medium circulating circuit for circulating an exhaust heat transferring medium; an exhaust heat absorbing heat exchanger 71 for exchanging the exhaust heat from the ultrasonic oscillator 15 to the exhaust heat transferring medium; and an exhaust heat radiating heat exchanger 74 for radiating the exhaust heat transferred to the exhaust heat transferring medium from the ultrasonic oscillator 15 by the exhaust heat absorbing heat exchanger 71. The sludge treatment apparatus is is characterized in that the exhaust heat radiating heat exchanger 74 is arranged in the ultrasonic treatment tank 50. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水処理により発生する排液中の有機物の大幅な減量を可能とする汚泥処理装置に関する。   The present invention relates to a sludge treatment apparatus that enables a significant reduction in the amount of organic matter in waste liquid generated by waste water treatment.

従来の汚泥減量化技術には、生物・化学的汚泥処理と、物理的汚泥処理があり、生物・化学的汚泥処理は化学薬品等を使用して短時間(8時間程度)で処理するもので、大容量の汚泥処理に向いており、物理的汚泥処理は超音波等を利用して長時間(24時間程度)を掛けて処理するもので、小容量の汚泥処理に向いている(特許文献1、特許文献2参照)。そして例えば特許文献2の処理技術では、有機性汚水を好気性生物処理槽で処理し、沈殿槽で固液分離して処理水と汚泥とを得る。この汚泥を返送汚泥として好気性生物処理槽に循環するとともに、一部を余剰汚泥として貯留槽に導入する。貯留槽ではその汚泥を超音波発振子から発振される超音波を用いて可溶化処理を行い、可溶化汚泥として好気性生物処理槽に返して生物分解を行うことにより、汚泥を減容する方法が開示されている。   Conventional sludge reduction technologies include biological / chemical sludge treatment and physical sludge treatment. Biological / chemical sludge treatment is performed in a short time (about 8 hours) using chemicals. It is suitable for large-capacity sludge treatment, and physical sludge treatment is performed over a long period of time (about 24 hours) using ultrasonic waves, etc., and is suitable for small-capacity sludge treatment (Patent Literature). 1, see Patent Document 2). For example, in the treatment technique disclosed in Patent Document 2, organic sewage is treated in an aerobic biological treatment tank, and solid-liquid separation is performed in a sedimentation tank to obtain treated water and sludge. This sludge is circulated to the aerobic biological treatment tank as return sludge and a part is introduced into the storage tank as surplus sludge. In the storage tank, the sludge is solubilized using ultrasonic waves oscillated from an ultrasonic oscillator, and returned to the aerobic biological treatment tank as solubilized sludge for biodegradation. Is disclosed.

また、特に紫外線照射による汚泥の可溶化率を高めるために、紫外線照射による汚泥の可溶化処理に加えて超音波照射処理を併用する処理装置が提案されている(特許文献3参照)。
特開平5−345192号公報 特開平11−128975号公報 特開2004−113918号公報
Moreover, in order to raise the sludge solubilization rate especially by ultraviolet irradiation, in addition to the sludge solubilization processing by ultraviolet irradiation, a processing apparatus that uses ultrasonic irradiation processing in combination has been proposed (see Patent Document 3).
JP-A-5-345192 Japanese Patent Laid-Open No. 11-128975 JP 2004-113918 A

しかし、上記従来の処理装置は、超音波振動子の長寿命化、低消費電力でコンパクトな装置を図ることは提案されていない。また、超音波振動子を駆動するための超音波発振器は入力電力の約50%を熱としてヒートシンクにより大気中へ放出しており、このような超音波発振器の排熱を利用する装置は提案されていない。また太陽熱などの自然エネルギーを利用する装置も提案されていない。   However, the conventional processing apparatus described above has not been proposed to achieve a compact apparatus with a long life of the ultrasonic transducer and low power consumption. In addition, an ultrasonic oscillator for driving an ultrasonic transducer emits about 50% of the input power as heat to the atmosphere by a heat sink, and a device utilizing the exhaust heat of such an ultrasonic oscillator has been proposed. Not. In addition, no device using natural energy such as solar heat has been proposed.

そこで、本発明は汚泥の可溶化率を高めるために超音波振動子および超音波発振器からの排熱または及び太陽熱を利用して汚泥を加温しつつ超音波処理をすることで、低消費電力でコンパクトな装置を実現することを目的とする。   Therefore, the present invention reduces the power consumption by performing ultrasonic treatment while heating the sludge using exhaust heat from the ultrasonic vibrator and the ultrasonic oscillator or solar heat in order to increase the solubilization rate of the sludge. The purpose is to realize a compact device.

また、超音波処理装置に導く前の排水から、特にトイレットペーパなどのセルロース系の繊維質などの異物を分離することで、処理効率がよく、超音波振動子の長寿命化を図ることのできる装置を提供することを目的とする。   In addition, by separating foreign matter such as cellulosic fibers such as toilet paper from waste water before being guided to the ultrasonic treatment apparatus, it is possible to improve treatment efficiency and extend the life of the ultrasonic vibrator. An object is to provide an apparatus.

請求項1記載の本発明の汚泥処理装置は、超音波処理槽に超音波振動子を備えた汚泥処理装置であって、前記超音波振動子を駆動する超音波発振器と、排熱輸送媒体を循環させる排熱輸送媒体循環回路と、前記超音波発振器の排熱を前記排熱輸送媒体へ熱交換する排熱交換手段と、前記排熱交換手段によって前記排熱熱輸送媒体に移された前記超音波発振器の排熱を放熱する排熱放熱手段とを備え、前記排熱放熱手段を前記超音波処理槽に設けたことを特徴とする。   The sludge treatment apparatus of the present invention according to claim 1 is a sludge treatment apparatus provided with an ultrasonic vibrator in an ultrasonic treatment tank, comprising: an ultrasonic oscillator that drives the ultrasonic vibrator; and an exhaust heat transport medium. The exhaust heat transport medium circulation circuit to be circulated, the exhaust heat exchange means for exchanging the exhaust heat of the ultrasonic oscillator to the exhaust heat transport medium, and the exhaust heat exchange means transferred to the exhaust heat transport medium A waste heat radiating means for radiating the waste heat of the ultrasonic oscillator, and the waste heat radiating means is provided in the ultrasonic treatment tank.

請求項2記載の本発明は、請求項1に記載の汚泥処理装置において、前記超音波処理槽の前段に下部から排液を導入し、導入した前記排液の一部を上部から導出するとともに他の前記排液を下部から導出する乱流沈殿槽と、前記乱流沈殿槽の上部から前記排液を導入し、導入した前記排液を旋回させ、上部から前記排液を導出し前記超音波処理槽に導入する旋回流分離槽を設けたことを特徴とする。   According to a second aspect of the present invention, in the sludge treatment apparatus according to the first aspect, the waste liquid is introduced from the lower part into the front stage of the ultrasonic treatment tank, and a part of the introduced waste liquid is led out from the upper part. The turbulent sedimentation tank for deriving the other drainage liquid from the lower part, and introducing the drainage liquid from the upper part of the turbulent sedimentation tank, swirling the introduced drainage liquid, deriving the drainage liquid from the upper part, and A swirl flow separation tank to be introduced into the sonication tank is provided.

請求項3記載の本発明は、請求項1に記載の汚泥処理装置において、前記排熱放熱手段を前記超音波処理槽の底部に設けたことを特徴とする。   According to a third aspect of the present invention, in the sludge treatment apparatus according to the first aspect, the exhaust heat radiating means is provided at the bottom of the ultrasonic treatment tank.

請求項4記載の本発明は、請求項1に記載の汚泥処理装置において、前記超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、前記第1の処理槽に前記排液の流入口と超音波振動子を備え、前記第2の処理槽に前記排液の流出口を備え、前記第2の処理槽を前記第1の処理槽の両側部にそれぞれ設け、前記第1の処理槽の前記堰を除く壁面に前記排熱放熱手段を配置したことを特徴とする。   According to a fourth aspect of the present invention, in the sludge treatment apparatus according to the first aspect, the ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment tank The drainage inlet and the ultrasonic vibrator, the second treatment tank is provided with the drainage outlet, and the second treatment tank is provided on both sides of the first treatment tank. The exhaust heat radiating means is arranged on the wall surface of the first treatment tank excluding the weir.

請求項5記載の本発明は、請求項2に記載の汚泥処理装置において、前記超音波処理槽に前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記排熱放熱手段を設けたことを特徴とする。   According to a fifth aspect of the present invention, in the sludge treatment apparatus according to the second aspect, the ultrasonic treatment tank includes a drainage introduction section that introduces a drainage liquid from the swirl flow separation tank, and the drainage introduction section includes the drainage introduction section. The exhaust heat radiating means is provided.

請求項6記載の本発明は、請求項1に記載の汚泥処理装置において、前記超音波処理槽内に前記排熱放熱手段を設けたことを特徴とする。   A sixth aspect of the present invention is the sludge treatment apparatus according to the first aspect, wherein the exhaust heat radiating means is provided in the ultrasonic treatment tank.

請求項7記載の本発明は、請求項1に記載の汚泥処理装置において、前記超音波処理槽を断熱材で覆ったことを特徴とする。   The present invention according to claim 7 is the sludge treatment apparatus according to claim 1, wherein the ultrasonic treatment tank is covered with a heat insulating material.

請求項8記載の本発明は、請求項1に記載の汚泥処理装置において、太陽熱輸送媒体を循環させる太陽熱輸送媒体循環回路と、太陽熱を前記太陽熱輸送媒体へ熱交換する太陽熱吸熱手段と、前記太陽熱吸熱手段によって前記太陽熱輸送媒体に移された太陽熱を放熱する太陽熱放熱手段とを備え、前記太陽熱放熱手段を前記超音波処理槽に設けたことを特徴とする。   The present invention according to claim 8 is the sludge treatment apparatus according to claim 1, wherein a solar heat transport medium circulation circuit for circulating a solar heat transport medium, solar heat absorption means for exchanging solar heat to the solar heat transport medium, and the solar heat Solar heat radiating means for radiating solar heat transferred to the solar heat transport medium by heat absorbing means, and the solar heat radiating means is provided in the ultrasonic treatment tank.

請求項9記載の本発明は、請求項8に記載の汚泥処理装置において、前記太陽熱放熱手段を前記超音波処理槽の底部に設けたことを特徴とする。   According to a ninth aspect of the present invention, in the sludge treatment apparatus according to the eighth aspect, the solar heat dissipating means is provided at the bottom of the ultrasonic treatment tank.

請求項10記載の本発明は、請求項1に記載の汚泥処理装置において、前記超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、前記第1の処理槽に前記排水の流入口と超音波振動子を備え、前記第2の処理槽に前記排水の流出口を備え、前記第2の処理槽を前記第1の処理槽の両側部にそれぞれ設け、前記第1の処理槽の前記堰を除く壁面に前記太陽熱放熱手段を配置したことを特徴とする。   The present invention according to claim 10 is the sludge treatment apparatus according to claim 1, wherein the ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment tank is used. The waste water inlet and the ultrasonic vibrator, the second treatment tank is provided with the waste water outlet, the second treatment tank is provided on both sides of the first treatment tank, The solar heat radiating means is arranged on a wall surface of the first treatment tank excluding the weir.

請求項11記載の本発明は、請求項2に記載の汚泥処理装置において、前記超音波処理槽へ前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記太陽熱放熱手段を設けたことを特徴とする。   The eleventh aspect of the present invention is the sludge treatment apparatus according to the second aspect, further comprising a drainage introduction unit that introduces drainage from the swirl flow separation tank to the ultrasonic treatment tank, and the drainage introduction unit includes The solar heat radiating means is provided.

請求項12記載の本発明は、請求項2に記載の汚泥処理装置において、前記超音波処理槽へ前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記超音波処理槽から流出する処理排液と前記超音波処理槽へ前記旋回流分離槽から流入する未処理排液との間で熱交換を行う排液間熱交換手段を設けたことを特徴とする。   According to a twelfth aspect of the present invention, in the sludge treatment apparatus according to the second aspect, the ultrasonic treatment tank includes a drainage introduction unit that introduces a drainage liquid from the swirl flow separation tank, and the drainage introduction unit includes the drainage introduction unit. A waste water heat exchanging means is provided for performing heat exchange between the treatment waste liquid flowing out from the ultrasonic treatment tank and the untreated waste liquid flowing into the ultrasonic treatment tank from the swirl flow separation tank. And

本発明の汚泥処理装置によれば、処理効率がよく超音波振動子の長寿命化を図ることができる。   According to the sludge treatment apparatus of the present invention, the treatment efficiency is good and the life of the ultrasonic vibrator can be extended.

本発明の第1の実施の形態による汚泥処理装置は、超音波振動子を駆動する超音波発振器と、排熱輸送媒体を循環させる排熱輸送媒体循環回路と、超音波発振器の排熱を排熱輸送媒体へ熱交換する排熱交換手段と、排熱交換手段によって排熱熱輸送媒体に移された超音波発振器の排熱を放熱する排熱放熱手段とを備え、排熱放熱手段を超音波処理槽に設けたものである。本実施の形態によれば、超音波発振器の排熱を排熱輸送媒体によって超音波処理槽へ伝えることができ、超音波処理槽を加温するために超音波処理による可溶化率を高めることができる。   The sludge treatment apparatus according to the first embodiment of the present invention includes an ultrasonic oscillator that drives an ultrasonic vibrator, an exhaust heat transport medium circulation circuit that circulates an exhaust heat transport medium, and exhaust heat from the ultrasonic oscillator. Exhaust heat exchanging means for exchanging heat to the heat transport medium, and exhaust heat dissipating means for dissipating the exhaust heat of the ultrasonic oscillator transferred to the exhaust heat heat transport medium by the exhaust heat exchanging means. It is provided in the sonication tank. According to the present embodiment, the waste heat of the ultrasonic oscillator can be transmitted to the ultrasonic treatment tank by the exhaust heat transport medium, and the solubilization rate by the ultrasonic treatment is increased in order to heat the ultrasonic treatment tank. Can do.

本発明の第2の実施の形態による汚泥処理装置は、第1の実施の形態による汚泥処理装置において、超音波処理槽の前段に導入した排液の一部を上部から導出するとともに他の排液を下部から導出する乱流沈殿槽と、乱流沈殿槽の上部から排液を導入し、導入した排液を旋回させ、上部から排液を導出し超音波処理槽に導入する旋回流分離槽を設けたものである。本実施の形態によれば、超音波処理槽に導入する排液は、乱流沈殿槽と旋回流分離槽によって、あらかじめ繊維物や沈殿物を分離除去しているので、超音波処理槽における処理能力を高めることができるとともに、超音波振動子の長寿命化を図ることができる。   The sludge treatment apparatus according to the second embodiment of the present invention is a sludge treatment apparatus according to the first embodiment, in which a part of the drained liquid introduced into the previous stage of the ultrasonic treatment tank is led out from the top and other wastewater is discharged. A turbulent flow settling tank that draws liquid from the bottom and a swirl flow separation that introduces drainage from the top of the turbulent settling tank, swirls the introduced drainage, and draws drainage from the top and introduces it to the ultrasonic treatment tank A tank is provided. According to the present embodiment, the waste liquid introduced into the ultrasonic treatment tank is separated and removed in advance by the turbulent precipitation tank and the swirl flow separation tank, so that the treatment in the ultrasonic treatment tank is performed. The ability can be increased and the life of the ultrasonic transducer can be extended.

本発明の第3の実施の形態は、第1の実施の形態による汚泥処理装置において、排熱放熱手段を超音波処理槽の底部に設けたものである。本実施の形態によれば、排熱放熱手段を超音波処理槽の底部に設けているために、超音波処理槽内に加温による対流を発生させることができ、対流による撹拌効果により超音波処理槽内を均一に加温することが出来る。   According to the third embodiment of the present invention, in the sludge treatment apparatus according to the first embodiment, exhaust heat radiating means is provided at the bottom of the ultrasonic treatment tank. According to the present embodiment, since the exhaust heat radiating means is provided at the bottom of the ultrasonic treatment tank, convection due to heating can be generated in the ultrasonic treatment tank, and ultrasonic waves can be generated by the stirring effect by convection. The inside of the treatment tank can be heated uniformly.

本発明の第4の実施の形態は、第1の実施の形態による汚泥処理装置において、超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、第1の処理槽に排液の流入口と超音波振動子を備え、第2の処理槽に排液の流出口を備え、第2の処理槽を第1の処理槽の両側部にそれぞれ設け、第1の処理槽の堰を除く壁面に排熱放熱手段を配置したものである。本実施の形態によれば、排熱放熱手段を第1の処理槽の堰を除く壁面に配置することで、排熱放熱手段と第1の処理槽内の排液との接触面積を大きくとることができ、かつ第1の処理槽の下部から上部までを加温することができるため超音波処理槽内を均一に加温することが出来る。   According to a fourth embodiment of the present invention, in the sludge treatment apparatus according to the first embodiment, the ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment is performed. The tank is provided with a drainage inlet and an ultrasonic vibrator, the second treatment tank is provided with a drainage outlet, the second treatment tank is provided on both sides of the first treatment tank, Exhaust heat radiating means is arranged on the wall surface excluding the weir of the treatment tank. According to the present embodiment, by arranging the exhaust heat radiating means on the wall surface excluding the weir of the first processing tank, the contact area between the exhaust heat radiating means and the waste liquid in the first processing tank is increased. In addition, since the first treatment tank can be heated from the lower part to the upper part, the inside of the ultrasonic treatment tank can be uniformly heated.

本発明の第5の実施の形態は、第2の実施の形態による汚泥処理装置において、超音波処理槽に旋回流分離槽から排液を導入する排液導入部を備え、排液導入部に排熱放熱手段を設けたこものである。本実施の形態によれば、超音波処理槽へ排液が流入する前に、排液導入部で排液を加温するために超音波処理槽内に流入する排液を均一に加温することが出来る。   According to a fifth embodiment of the present invention, in the sludge treatment apparatus according to the second embodiment, the ultrasonic treatment tank includes a drainage introduction section that introduces drainage liquid from the swirl flow separation tank, and the drainage introduction section includes This is provided with exhaust heat radiating means. According to this embodiment, before drainage flows into the ultrasonic treatment tank, the drainage flowing into the ultrasonic treatment tank is uniformly heated in order to heat the drainage at the drainage introduction section. I can do it.

本発明の第6の実施の形態は、第1の実施の形態による汚泥処理装置において、超音波処理槽内に前記排熱放熱手段を設けたものである。本実施の形態によれば、超音波処理槽内の排液を直接加温することができるために、効率よく超音波処理槽内の排液を加温することができる。   The sixth embodiment of the present invention is the sludge treatment apparatus according to the first embodiment, wherein the exhaust heat radiating means is provided in an ultrasonic treatment tank. According to this embodiment, since the drainage in the ultrasonic treatment tank can be directly heated, the drainage in the ultrasonic treatment tank can be efficiently heated.

本発明の第7の実施の形態は、第1の実施の形態による汚泥処理装置において、超音波処理槽を断熱材で覆ったものである。本実施の形態によれば、排熱放熱手段によって加温された超音波処理槽からの放熱を防止することで、効率よく超音波処理槽内の排液を加温することができる。   In the seventh embodiment of the present invention, in the sludge treatment apparatus according to the first embodiment, the ultrasonic treatment tank is covered with a heat insulating material. According to the present embodiment, the waste liquid in the ultrasonic treatment tank can be efficiently heated by preventing the heat radiation from the ultrasonic treatment tank heated by the exhaust heat radiation means.

本発明の第8の実施の形態は、第1の実施の形態による汚泥処理装置において、太陽熱輸送媒体を循環させる太陽熱輸送媒体循環回路と、太陽熱を太陽熱輸送媒体へ熱交換する太陽熱吸熱手段と、太陽熱吸熱手段によって太陽熱輸送媒体に移された太陽熱を放熱する太陽熱放熱手段とを備え、太陽熱放熱手段を前記超音波処理槽に設けたものである。本実施の形態によれば、太陽熱吸熱手段によって集められた太陽熱によって効率よく超音波処理槽を加温することができ、自然エネルギーを利用することで超音波処理による可溶化率を高めることができる。   In the sludge treatment apparatus according to the first embodiment, the eighth embodiment of the present invention is a solar heat transport medium circulation circuit that circulates a solar heat transport medium, solar heat absorption means that exchanges heat of solar heat with the solar heat transport medium, Solar heat radiating means for radiating the solar heat transferred to the solar heat transport medium by the solar heat absorbing means, and the solar heat radiating means is provided in the ultrasonic treatment tank. According to the present embodiment, the ultrasonic treatment tank can be efficiently heated by solar heat collected by the solar heat absorption means, and the solubilization rate by ultrasonic treatment can be increased by utilizing natural energy. .

本発明の第9の実施の形態は、第8の実施の形態による汚泥処理装置において、太陽熱放熱手段を超音波処理槽の底部に設けたものである。本実施の形態によれば、排熱放熱手段を超音波処理槽の底部に設けているために、超音波処理槽内に加温による対流を発生させることができ、対流による撹拌効果により超音波処理槽内を均一に加温することが出来る。   In the ninth embodiment of the present invention, in the sludge treatment apparatus according to the eighth embodiment, solar heat radiation means is provided at the bottom of the ultrasonic treatment tank. According to the present embodiment, since the exhaust heat radiating means is provided at the bottom of the ultrasonic treatment tank, convection due to heating can be generated in the ultrasonic treatment tank, and ultrasonic waves can be generated by the stirring effect by convection. The inside of the treatment tank can be heated uniformly.

本発明の第10の実施の形態は、第1の実施の形態による汚泥処理装置において、超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、第1の処理槽に前記排水の流入口と超音波振動子を備え、第2の処理槽に排水の流出口を備え、第2の処理槽を前記第1の処理槽の両側部にそれぞれ設け、第1の処理槽の堰を除く壁面に太陽熱放熱手段を配置したものである。本実施の形態によれば、排熱放熱手段を第1の処理槽の堰を除く壁面に配置することで、排熱放熱手段と第1の処理槽内の排液との接触面積を大きくとることができ、かつ第1の処理槽の下部から上部までを加温することができるため超音波処理槽内を均一に加温することが出来る。   According to a tenth embodiment of the present invention, in the sludge treatment apparatus according to the first embodiment, the ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment is performed. The tank is provided with the drainage inlet and the ultrasonic vibrator, the second treatment tank is provided with the drainage outlet, the second treatment tank is provided on both sides of the first treatment tank, Solar heat radiating means is arranged on the wall surface excluding the weir of the treatment tank. According to the present embodiment, by arranging the exhaust heat radiating means on the wall surface excluding the weir of the first processing tank, the contact area between the exhaust heat radiating means and the waste liquid in the first processing tank is increased. In addition, since the first treatment tank can be heated from the lower part to the upper part, the inside of the ultrasonic treatment tank can be uniformly heated.

本発明の第11の実施の形態は、第2の実施の形態による汚泥処理装置において、超音波処理槽へ旋回流分離槽から排液を導入する排液導入部を備え、排液導入部に太陽熱放熱手段を設けたものである。本実施の形態によれば、超音波処理槽へ排液が流入する前に、排液導入部で排液を加温するために超音波処理槽内に流入する排液を均一に加温することができる。   The eleventh embodiment of the present invention is a sludge treatment apparatus according to the second embodiment, further comprising a drainage introduction unit that introduces drainage from the swirl flow separation tank to the ultrasonic treatment tank. Solar heat radiating means is provided. According to this embodiment, before drainage flows into the ultrasonic treatment tank, the drainage flowing into the ultrasonic treatment tank is uniformly heated in order to heat the drainage at the drainage introduction section. be able to.

本発明の第12の実施の形態は、第2の実施の形態による汚泥処理装置において、超音波処理槽へ旋回流分離槽から排液を導入する排液導入部を備え、排液導入部に超音波処理槽から流出する処理排液と超音波処理槽へ旋回流分離槽から流入する未処理排液との間で熱交換を行う排液間熱交換手段を設けたものである。本実施の形態によれば、超音波処理槽から流出する処理排液の余熱を超音波処理槽へ流入する未処理排液の加温に利用することができ、効率よく排液の加温を行うことができる。   The twelfth embodiment of the present invention is a sludge treatment apparatus according to the second embodiment, comprising a drainage introduction part for introducing drainage from the swirl flow separation tank to the ultrasonic treatment tank, and the drainage introduction part. There is provided an inter-drain heat exchange means for exchanging heat between the treated waste liquid flowing out from the ultrasonic treatment tank and the untreated waste liquid flowing into the ultrasonic treatment tank from the swirl flow separation tank. According to the present embodiment, it is possible to use the residual heat of the treatment waste liquid flowing out from the ultrasonic treatment tank for heating the untreated waste liquid flowing into the ultrasonic treatment tank, and efficiently heating the waste liquid. It can be carried out.

以下、本発明による実施例の汚泥処理装置について、図面を参照して説明する。図1は本発明の一実施例による汚泥処理装置を示す構成図、図2は本発明の一実施例による超音波発振器の排熱や太陽熱を利用して排液の加温を行う排熱輸送媒体循環回路の構成図である。   Hereinafter, the sludge treatment apparatus of the Example by this invention is demonstrated with reference to drawings. FIG. 1 is a block diagram showing a sludge treatment apparatus according to one embodiment of the present invention, and FIG. 2 is a waste heat transport that heats waste liquid using exhaust heat or solar heat of an ultrasonic oscillator according to one embodiment of the present invention. It is a block diagram of a medium circulation circuit.

工場や下水処理場などから排出される排液や汚泥は、図示しない排液貯留槽に貯留されている。この排液や汚泥に対して何らかの処理を施して再利用や減容を行う場合には、排液に含まれる異物を除去することが重要である。   Drainage and sludge discharged from factories and sewage treatment plants are stored in a drainage storage tank (not shown). When performing some kind of treatment on the drainage or sludge to reuse or reduce the volume, it is important to remove foreign substances contained in the drainage.

本実施例による汚泥処理装置は、本体ケース1内に、乱流沈殿槽20と旋回流分離槽30と超音波処理槽50とを備えている。ここで乱流沈殿槽20と旋回流分離槽30とによって異物分離装置が構成される。   The sludge treatment apparatus according to this embodiment includes a turbulent sedimentation tank 20, a swirl flow separation tank 30, and an ultrasonic treatment tank 50 in the main body case 1. Here, the turbulent sedimentation tank 20 and the swirl flow separation tank 30 constitute a foreign matter separation device.

乱流沈殿槽20は、円筒状のケーシング21を持ち、複数の仕切板22で複数の空間に分けられている。仕切板22には丸い開口が設けてあり、開口の直径は上段より下段の方が大きくなっている。このため、上段から下段へ落下する異物は下段の開口を通過することができ、異物は配管Cから乱流沈殿槽20外に排出される。また、仕切板22には丸い開口に向けて下方へ向かう傾斜面を設けていることが好ましい。この傾斜面によって、各仕切板22に沈殿した異物は、開口部へ向けて滑り落ち、乱流沈殿槽20より排出される。一方、仕切板22で区切られたそれぞれの空間は、上段より下段の方が小さくなっており処理液を排出する配管Bは、最上部空間の上面付近に設けている。排液は、配管Aより最下段の空間へ流入し、被処理排液と処理に不要な排液に分離され、処理に不要な排液は、配管Cより排液貯留槽へ還流される。次に被処理排液は最下段の空間の上方に位置する第2の空間へ流入し、発生した乱流によって異物の一部が除去される。第2の空間を通過した被処理液は更に上方に位置する第3の空間(最上部空間)へと流入する。第3の空間は、他の二つの空間より大きな容積とすることで、乱流が穏やかとなっており、乱流と重力沈殿の両方の効果で異物が除去される。第3の空間を通過した被処理液は配管Bより排出される。   The turbulent sedimentation tank 20 has a cylindrical casing 21 and is divided into a plurality of spaces by a plurality of partition plates 22. The partition plate 22 is provided with a round opening, and the diameter of the opening is larger in the lower stage than in the upper stage. For this reason, the foreign substance falling from the upper stage to the lower stage can pass through the lower stage opening, and the foreign substance is discharged from the pipe C to the outside of the turbulent precipitation tank 20. Moreover, it is preferable that the partition plate 22 is provided with an inclined surface directed downward toward the round opening. Due to this inclined surface, the foreign matter settled on each partition plate 22 slides down toward the opening and is discharged from the turbulent sedimentation tank 20. On the other hand, each space divided by the partition plate 22 is smaller in the lower stage than in the upper stage, and the pipe B for discharging the processing liquid is provided near the upper surface of the uppermost space. The drainage liquid flows into the lowermost space from the pipe A and is separated into the waste liquid to be treated and the waste liquid unnecessary for the treatment, and the waste liquid unnecessary for the treatment is returned to the waste liquid storage tank through the pipe C. Next, the waste liquid to be treated flows into the second space located above the lowermost space, and part of the foreign matter is removed by the generated turbulent flow. The liquid to be processed that has passed through the second space flows into a third space (uppermost space) located further above. The third space has a larger volume than the other two spaces, so that the turbulent flow is gentle, and foreign matters are removed by the effects of both turbulent flow and gravity precipitation. The liquid to be processed that has passed through the third space is discharged from the pipe B.

旋回流分離槽30は、円筒状の胴部分31とおわん状の底部32とで構成されている。旋回流分離槽30の胴部分31には、被処理液が旋回流分離槽30に流入する配管Bと、処理液が流出する配管Dとを旋回流分離槽30内に突き出して設けている。排液が流入する配管Dは、配管Bより下方側で、底部32よりも上方側に配置されている。配管Bの流出口33はエルボが形成され、旋回流分離槽30内で胴部分31の接線方向へ排液は流出し、旋回流を発生させる構成となっている。配管Dの導入口34は旋回流分離槽30内の水面より下であり、導入口34は上側に開口しており、旋回流分離槽30の水面に浮上した浮遊性の異物、底部32に沈降した沈降性の異物、及び旋回流による慣性力で旋回流分離槽30の外周へ分離された異物を導入することなく、処理液の排出が可能となっている。また、底部32に沈降した沈降性の異物は、バルブ35を開放することで排液貯留槽へ返送することが可能となっている。ここで、旋回流分離槽30の上部には、空気抜きバルブを設け、旋回流分離槽30内へ溜まった空気を外部へ排出するように構成することが好ましい。空気抜きバルブを設けることで、旋回流分離槽30に余分な圧力がかからず、胴部分31の強度を低く抑えることができ、旋回流分離槽30のコンパクト化と低コスト化を実現できる。   The swirl flow separation tank 30 includes a cylindrical body portion 31 and a bowl-shaped bottom portion 32. A pipe B through which the liquid to be treated flows into the swirl flow separation tank 30 and a pipe D through which the processing liquid flows out are provided in the trunk portion 31 of the swirl flow separation tank 30 so as to protrude into the swirl flow separation tank 30. The pipe D into which the drainage flows is disposed below the pipe B and above the bottom 32. An elbow is formed at the outlet 33 of the pipe B, and the drainage liquid flows out in the tangential direction of the body portion 31 in the swirling flow separation tank 30 to generate a swirling flow. The introduction port 34 of the pipe D is below the water surface in the swirling flow separation tank 30, and the introduction port 34 is open on the upper side, so that the floating foreign matter floating on the water surface of the swirling flow separation tank 30 is settled on the bottom 32. The treatment liquid can be discharged without introducing the settled foreign matter and the foreign matter separated into the outer periphery of the swirling flow separation tank 30 by the inertial force due to the swirling flow. Moreover, the sedimentary foreign matter settled on the bottom portion 32 can be returned to the drainage storage tank by opening the valve 35. Here, it is preferable to provide an air vent valve on the upper part of the swirl flow separation tank 30 so that the air accumulated in the swirl flow separation tank 30 is discharged to the outside. By providing the air vent valve, no extra pressure is applied to the swirling flow separation tank 30, the strength of the body portion 31 can be kept low, and the swirling flow separation tank 30 can be made compact and low in cost.

配管Dには、電動バルブ41、流量計42、及び三方弁(切換手段)43が順に設けられている。三方弁43は、電動バルブ41及び流量計42よりも下流側に配置し、三方弁43には洗浄水導入管44を設けている。三方弁43は、使用状態では旋回流分離槽30と超音波処理槽50とを連通しているが、洗浄時には流路を切り換えて洗浄水を導入することで、電動バルブ41や流量計42の洗浄を行うことができる。なお、本実施例では異物分離装置として、乱流沈殿槽と旋回流分離槽が用いられているが、特に限定されるものではなく、スクリーン、ストレーナー等の異物分離装置を用いてもよい。   The pipe D is provided with an electric valve 41, a flow meter 42, and a three-way valve (switching means) 43 in this order. The three-way valve 43 is disposed on the downstream side of the electric valve 41 and the flow meter 42, and the three-way valve 43 is provided with a washing water introduction pipe 44. The three-way valve 43 communicates with the swirling flow separation tank 30 and the ultrasonic treatment tank 50 in the use state, but at the time of cleaning, the flow path is switched and the cleaning water is introduced so that the electric valve 41 and the flow meter 42 are connected. Cleaning can be performed. In this embodiment, a turbulent sedimentation tank and a swirl flow separation tank are used as the foreign substance separation apparatus, but the present invention is not particularly limited, and a foreign substance separation apparatus such as a screen or a strainer may be used.

超音波処理槽50は、その内部に第1の処理槽51と第2の処理槽52A、52Bとを備え、第1の処理槽51と第2の処理槽52A、52Bとは、それぞれ堰53A、53Bによって区画され、第1の処理槽51内の排液は、この堰53A、53Bを越えて第2の処理槽52A、52Bに導かれる構成となっている。堰53A、53Bは、第1の処理槽51又は第2の処理槽52A、52Bの内壁間に、内壁全幅に設けることが好ましい。   The ultrasonic treatment tank 50 includes therein a first treatment tank 51 and second treatment tanks 52A and 52B, and the first treatment tank 51 and the second treatment tanks 52A and 52B are respectively a weir 53A. , 53B, and the drainage liquid in the first processing tank 51 is guided to the second processing tanks 52A and 52B through the weirs 53A and 53B. The weirs 53A and 53B are preferably provided across the entire inner wall width between the inner walls of the first processing tank 51 or the second processing tanks 52A and 52B.

ここで、一方の第2の処理槽52Aにおける堰53Aの上端面と、他方の第2の処理槽52Bにおける堰53Bの上端面との高さを異ならせている。このように、一方の第2の処理槽52Aにおける堰53Aの上端面と、他方の第2の処理槽52Bにおける堰53Bの上端面との高さを異ならせることで、第2の処理槽52Aが汚泥などによって詰まった場合であっても他方の第2の処理槽52Bに排水することができるので、排液の連続処理を確実に行うことができるとともに、オーバーフローを回避することができる。なお、一方の第2の処理槽52Aにおける堰53Aの上端面と、他方の第2の処理槽52Bにおける堰53Bの上端面との高さを同じ高さとしてもよい。このように同じ高さとすることで第1の処理槽から流出する排液を薄くのばすことができる。   Here, the height of the upper end surface of the weir 53A in one second processing tank 52A and the upper end surface of the weir 53B in the other second processing tank 52B are different. As described above, the height of the upper end surface of the weir 53A in the one second processing tank 52A and the upper end surface of the weir 53B in the other second processing tank 52B are made different, whereby the second processing tank 52A. Even when the water is clogged with sludge or the like, it can be drained to the other second processing tank 52B, so that continuous processing of the drainage can be performed reliably and overflow can be avoided. The upper end surface of the weir 53A in one second processing tank 52A and the upper end surface of the weir 53B in the other second processing tank 52B may be the same height. In this way, the drainage flowing out from the first treatment tank can be thinned by setting the same height.

第1の処理槽51の、堰53A側の面には、超音波振動子14がその放射面が鉛直方向と平行に向くように取り付けられ、この超音波振動子14の取り付けられた面と対向する面(反射壁)に、排液の流入口54が設けられている。この流入口54は、配管Dに接続されている。一方第2の処理槽52A、52Bの下部には、排液を排出する流出口55が設けられている。この流出口55は、配管Fに接続されている。また第1の処理槽51の底面には、第1の処理槽51の底面に沈殿した排液を排出するドレン口56を設けている。排液は、超音波振動子14の取り付け面の上方の堰53Aによって、超音波振動子14の上方から、堰53Aによって一定の水位を保って溢れさせる。   The ultrasonic transducer 14 is attached to the surface of the first treatment tank 51 on the side of the weir 53A so that the radiation surface thereof is parallel to the vertical direction, and faces the surface to which the ultrasonic transducer 14 is attached. A drainage inlet 54 is provided on the surface (reflection wall). The inflow port 54 is connected to the pipe D. On the other hand, an outlet 55 for discharging the drainage is provided below the second treatment tanks 52A and 52B. The outlet 55 is connected to the pipe F. Further, a drain port 56 is provided on the bottom surface of the first processing tank 51 to discharge the drained liquid that has settled on the bottom surface of the first processing tank 51. The drainage liquid overflows from above the ultrasonic transducer 14 while maintaining a constant water level by the weir 53A above the attachment surface of the ultrasonic transducer 14.

ここで、流入口54は、超音波振動子14の高さ方向に、下部から1/3以下の位置に設けるか、または、第1の処理槽51の底面から堰53Aまでの高さの1/3以下の位置に設ける。そしてこの流入口54は、第1の処理槽51内に波長λ以下の長さの突出部を形成して取り付けることが好ましい。なお、超音波の発振周波数をf[Hz]、水中の音速をA[m/S]とした時の超音波の波長λ[m]は、λ=A/f[m]である。   Here, the inflow port 54 is provided at a position of 1/3 or less from the lower side in the height direction of the ultrasonic transducer 14, or 1 in height from the bottom surface of the first treatment tank 51 to the weir 53 </ b> A. / 3 or less. The inflow port 54 is preferably attached by forming a protrusion having a length of λ or less in the first processing tank 51. Note that the ultrasonic wave wavelength λ [m] is λ = A / f [m] when the ultrasonic oscillation frequency is f [Hz] and the sound velocity in water is A [m / S].

堰53Aよりも上方位置の第2の処理槽52A、52Bには、紫外線照射手段であるUV灯58を取り付けている。   UV lamps 58 as ultraviolet irradiation means are attached to the second treatment tanks 52A and 52B located above the weir 53A.

このUV灯58は直管型又はU字管型であり、その中心軸が堰53A、53Bと平行になるように取り付けられている。   The UV lamp 58 is a straight tube type or a U-shaped tube type, and is attached so that the central axis thereof is parallel to the weirs 53A and 53B.

UV灯58を第2の処理槽52A、52Bに設けることで、排液は超音波照射が行われた後にUV灯58によって照射される。また排液へのUV照射は、堰53A、53Bを流下する際と、流出口55へ滞留した際に行われる。   By providing the UV lamp 58 in the second treatment tanks 52A and 52B, the waste liquid is irradiated by the UV lamp 58 after being irradiated with ultrasonic waves. Further, the UV irradiation to the drainage is performed when flowing down the weirs 53 </ b> A and 53 </ b> B and when staying at the outlet 55.

超音波処理槽50の上部には、蓋体60を設けている。この蓋体60は、第1の処理槽51と第2の処理槽52A、52Bとを覆うように設けられ、上部より配管Gによって洗浄水が供給され、下部より洗浄水を噴出するように構成されている。蓋体60には、複数の箱体61が形成され、これらの箱体61には複数の洗浄水噴出孔62を、箱体61の下面だけでなく側壁にも多数設けている。本実施例によれば、複数の箱体61内に洗浄水を導き、この箱体61内の洗浄水を噴出させることで、水流の均一化を図れ、超音波処理槽50内全体を確実に洗浄することができる。   A lid 60 is provided on the upper part of the ultrasonic treatment tank 50. The lid 60 is provided so as to cover the first processing tank 51 and the second processing tanks 52A and 52B, and is configured such that the cleaning water is supplied from the upper part by the pipe G and the cleaning water is ejected from the lower part. Has been. A plurality of box bodies 61 are formed in the lid body 60, and a plurality of washing water ejection holes 62 are provided in these box bodies 61 on the side walls as well as the lower surface of the box body 61. According to the present embodiment, the cleaning water is guided into the plurality of box bodies 61 and the cleaning water in the box bodies 61 is ejected, so that the water flow can be made uniform and the entire ultrasonic treatment tank 50 can be surely provided. Can be washed.

本実施例における超音波処理槽50は、旋回流分離槽30の上方に配置し、超音波処理槽50のドレン配管Eの排出口36を旋回流分離槽30の上部中心に配置している。なお、ドレン口56と排出口36とが鉛直方向に一致するように超音波処理槽50と旋回流分離槽30とを配置する。ドレン配管Eにはバルブ57が設けられている。   The ultrasonic treatment tank 50 in the present embodiment is disposed above the swirl flow separation tank 30, and the discharge port 36 of the drain pipe E of the ultrasonic treatment tank 50 is disposed at the upper center of the swirl flow separation tank 30. The ultrasonic treatment tank 50 and the swirl flow separation tank 30 are arranged so that the drain port 56 and the discharge port 36 are aligned in the vertical direction. The drain pipe E is provided with a valve 57.

なお本体ケース1内には、超音波処理槽50や電動バルブ41に電源を供給する制御盤2を備えている。また、本体ケース1の底面には漏水センサー3を有することが好ましい。また、本体ケース1の下部には、複数のアジャスタ4が設けられている。このアジャスタ4は、一方の第2の処理槽52Aにおける堰53Aの上端面の位置と他方の第2の処理槽52Bにおける堰53Bの上端面の位置とを変更する傾き調整手段として機能する。なお、本実施例では、傾き調整手段を本体ケース1に設けた場合を示すが、傾き調整手段は、超音波処理槽50自体の傾きを調整するものであってもよい。また、堰53A、53Bの高さを可変とする構成であってもよい。   The main body case 1 includes a control panel 2 that supplies power to the ultrasonic treatment tank 50 and the electric valve 41. Further, it is preferable to have a water leakage sensor 3 on the bottom surface of the main body case 1. A plurality of adjusters 4 are provided at the bottom of the main body case 1. This adjuster 4 functions as an inclination adjusting means for changing the position of the upper end surface of the weir 53A in one second processing tank 52A and the position of the upper end surface of the weir 53B in the other second processing tank 52B. Although the present embodiment shows a case where the tilt adjusting means is provided in the main body case 1, the tilt adjusting means may adjust the tilt of the ultrasonic treatment tank 50 itself. Further, the height of the weirs 53A and 53B may be variable.

上記構成によって、排液貯留槽からの排液は、配管Aを通って乱流沈殿槽20に流入し、必要な量の被処理排液のみを配管Bによって排出している。乱流沈殿槽20によって除去された異物と処理に不要な排液は配管Cによって排液貯留槽へと還流する。一般に排液貯留槽は定期的に槽内の清掃が必要であり、清掃の際に排液貯留槽内の排液はバキュームによって排出される。したがって、配管Cによって異物を排液貯留槽へ返送した場合は、定期的なバキュームによって異物を一括して処理することができ、メンテナンスに必要なコストの低減を図ることが可能となる。   With the above configuration, the drainage liquid from the drainage storage tank flows into the turbulent sedimentation tank 20 through the pipe A, and only a necessary amount of the treated wastewater is discharged through the pipe B. The foreign matter removed by the turbulent sedimentation tank 20 and the waste liquid unnecessary for processing are returned to the drainage storage tank by the pipe C. In general, the drainage storage tank needs to be periodically cleaned, and the drainage in the drainage storage tank is discharged by vacuum during cleaning. Therefore, when the foreign matter is returned to the drainage storage tank by the pipe C, the foreign matter can be collectively processed by periodic vacuum, and the cost required for maintenance can be reduced.

乱流沈殿槽20へ流入した排液の一部は、乱流沈殿槽20によって異物を除去された後、配管Bを経由して旋回流分離槽30へ流入する。そして旋回流分離槽30にて、さらに異物を除去された排液は、配管Dを経由して旋回流分離槽30より流出する。乱流沈殿槽20と旋回流分離槽30によって除去された異物と処理に不要な排液は配管Cを経由して排液貯留槽へと還流する。ここで、乱流沈殿槽20では、旋回流分離槽30へ流入する流量を、排液貯留槽へ還流する流量に対して少なくすることで、旋回流分離槽30を小さくすることができる。また、乱流沈殿槽20と旋回流分離槽30を組み合わせることで、より良好な処理液を超音波処理槽50に供給することが可能となる。   Part of the drained liquid that has flowed into the turbulent sedimentation tank 20 flows into the swirling flow separation tank 30 via the pipe B after the foreign matter has been removed by the turbulent sedimentation tank 20. Then, the waste liquid from which the foreign matters are further removed in the swirling flow separation tank 30 flows out from the swirling flow separation tank 30 via the pipe D. The foreign matter removed by the turbulent sedimentation tank 20 and the swirl flow separation tank 30 and the waste liquid unnecessary for the treatment are returned to the waste liquid storage tank via the pipe C. Here, in the turbulent sedimentation tank 20, the swirl flow separation tank 30 can be made smaller by reducing the flow rate flowing into the swirl flow separation tank 30 with respect to the flow rate returning to the drainage storage tank. Further, by combining the turbulent precipitation tank 20 and the swirl flow separation tank 30, it becomes possible to supply a better processing liquid to the ultrasonic processing tank 50.

旋回流分離槽30より流出した排液は、配管Dを経由して流入口54から第1の処理槽51に導かれる。   The drainage liquid flowing out from the swirling flow separation tank 30 is guided to the first processing tank 51 from the inlet 54 via the pipe D.

本実施例によれば、超音波処理槽50に供給された排液に対して、まず超音波照射が行われ、超音波によって排液に混入している汚泥のフロックが分散・破砕し、汚泥粒子に光のあたる表面積が増加する。また排液は、堰53A、53Bによって薄く伸ばされ、堰53A、53Bを越えた後も堰53A、53Bの表面を伝って薄く伸ばされながら流下する。更に流下した排液は薄く伸ばされた状態で流出口55へ向けて流れる。UV灯58は、薄く伸ばされた排液に対して紫外線があたるように取り付けられているため、濁度が大きい排液であっても全量に対して均一に紫外線を照射することができる。このように排液は均一にUVを吸収するため、汚泥細胞が十分に破壊する。   According to the present embodiment, the waste liquid supplied to the ultrasonic treatment tank 50 is first irradiated with ultrasonic waves, and the flocs of sludge mixed in the waste liquid are dispersed and crushed by the ultrasonic waves. The surface area of the particles exposed to light increases. Further, the drained liquid is stretched thinly by the weirs 53A and 53B, and flows down while being stretched thinly along the surfaces of the weirs 53A and 53B even after passing over the weirs 53A and 53B. Further, the drained liquid flows down toward the outlet 55 in a thinly stretched state. Since the UV lamp 58 is mounted so that the ultraviolet light is applied to the drained liquid that has been stretched thinly, even if the liquid is highly turbid, the entire amount can be irradiated with the ultraviolet light. Thus, since the drainage absorbs UV uniformly, the sludge cells are sufficiently destroyed.

そして、汚泥細胞が十分に破壊された排液は、流出口55から配管Fを経由して処理排液として装置外へ導出される。   And the waste liquid from which the sludge cell was fully destroyed is derived | led-out outside the apparatus as a process waste liquid via the piping F from the outflow port 55. FIG.

次に、超音波発振器15の排熱や太陽熱を利用して排液を加温する排熱輸送媒体循環回路について図2を用いて説明する。超音波発振器15の排熱はヒートシンク78および冷却ファン79によって空気中へ放熱され、超音波発振器15の排気口に設置された排熱吸熱用熱交換器71にて排熱輸送媒体へ移され、超音波処理槽50の下側に設置された排熱放熱用熱交換器74にて超音波処理槽50を加温する。また、太陽熱は太陽熱吸熱用熱交換器73にて太陽熱輸送媒体へ移され、太陽熱放熱用熱交換器75にて超音波処理槽50を加温する。ここで、排熱放熱用熱交換器74および太陽熱放熱用熱交換器75は超音波処理槽50内に設けてもよいし、超音波処理槽50の壁面に設けても良いが、超音波処理槽50の下側に設置するのが望ましい。また、排熱輸送媒体や太陽熱輸送媒体は熱輸送媒体駆動ポンプ72によって駆動される。さらに、超音波処理槽50から流出した処理排液の余熱は排液間熱交換器76によって超音波処理槽50へ流入する未処理排液の加温に利用される。ここで、排熱輸送媒体や太陽熱輸送媒体としては例えば水などが利用される。なお、超音波処理槽50は蓋体を設け、断熱材で覆って熱損失を低減している状態が望ましい。なお、本実施例では超音波発振器15の排熱と太陽熱の両方を利用しているが、超音波発振器15の排熱のみを利用しても、太陽熱のみを利用しても良い。   Next, an exhaust heat transport medium circulation circuit that heats the waste liquid using the exhaust heat of the ultrasonic oscillator 15 and solar heat will be described with reference to FIG. The exhaust heat of the ultrasonic oscillator 15 is radiated into the air by the heat sink 78 and the cooling fan 79, and is transferred to the exhaust heat transport medium by the exhaust heat absorption heat exchanger 71 installed at the exhaust port of the ultrasonic oscillator 15. The ultrasonic treatment tank 50 is heated by the heat exchanger 74 for exhaust heat radiation installed under the ultrasonic treatment tank 50. The solar heat is transferred to the solar heat transport medium by the solar heat absorption heat exchanger 73, and the ultrasonic treatment tank 50 is heated by the solar heat radiation heat exchanger 75. Here, the heat exchanger 74 for exhaust heat radiation and the heat exchanger 75 for solar heat radiation 75 may be provided in the ultrasonic treatment tank 50 or may be provided on the wall surface of the ultrasonic treatment tank 50. It is desirable to install it below the tank 50. The exhaust heat transport medium and the solar heat transport medium are driven by the heat transport medium drive pump 72. Further, the residual heat of the treatment waste liquid that has flowed out of the ultrasonic treatment tank 50 is used for heating the untreated waste liquid flowing into the ultrasonic treatment tank 50 by the inter-drain heat exchanger 76. Here, for example, water is used as the exhaust heat transport medium and the solar heat transport medium. The ultrasonic treatment tank 50 is preferably provided with a lid and covered with a heat insulating material to reduce heat loss. In this embodiment, both the exhaust heat of the ultrasonic oscillator 15 and solar heat are used, but only the exhaust heat of the ultrasonic oscillator 15 may be used or only solar heat may be used.

表1は超音波処理槽50の保温手段や加温手段が超音波処理槽内の排液の温度に与える影響を示した表を、図3は超音波処理槽50内の排液の温度がSS可溶化率に与える影響を示したものである。   Table 1 shows the effect of the heat retaining means and heating means of the sonication tank 50 on the temperature of the effluent in the sonication tank, and FIG. 3 shows the temperature of the effluent in the sonication tank 50. This shows the influence on the SS solubilization rate.

Figure 2006116375
Figure 2006116375

表1は流量2[L/min]、超音波周波数20[kHz]、超音波出力600[W]、超音波処理槽容積35[L]の測定条件において、超音波処理槽50の保温や加温がない場合、超音波処理槽50を断熱材で覆った場合、超音波処理槽50を断熱材で覆い、かつ超音波発振器の排熱を利用した場合、超音波処理槽50を断熱材で覆い、かつ超音波発振器の排熱を利用し、かつ太陽熱を利用した場合の超音波処理槽50内の排液の温度を示したものである。同表に示すように、太陽熱を利用しない場合でも超音波処理槽内の排液の温度を最高で51℃とすることができ、太陽熱を利用した場合は超音波処理槽内の排液の温度を最高で72℃とすることができることが分かる。また、表1からは読み取れないが、排液の濃度や粘度が高い場合は排液は冷めにくく、濃度や粘度が低い場合と比較すると排液の温度を高く維持することができた。   Table 1 shows the heat treatment and heating of the ultrasonic treatment tank 50 under the measurement conditions of flow rate 2 [L / min], ultrasonic frequency 20 [kHz], ultrasonic output 600 [W], and ultrasonic treatment tank volume 35 [L]. When there is no temperature, when the ultrasonic treatment tank 50 is covered with a heat insulating material, when the ultrasonic treatment tank 50 is covered with a heat insulating material and the exhaust heat of the ultrasonic oscillator is used, the ultrasonic treatment tank 50 is covered with a heat insulating material. The temperature of the waste liquid in the ultrasonic treatment tank 50 when covering, utilizing the waste heat of the ultrasonic oscillator, and utilizing the solar heat is shown. As shown in the table, even when solar heat is not used, the temperature of the drainage liquid in the sonication tank can be up to 51 ° C. When solar heat is used, the temperature of the drainage liquid in the sonication tank It can be seen that the maximum temperature can be 72 ° C. Moreover, although it cannot read from Table 1, when the density | concentration and viscosity of a drainage liquid were high, the drainage liquid was hard to cool, and compared with the case where a density | concentration and a viscosity were low, the temperature of the drainage liquid was able to be maintained high.

図3は超音波処理槽容積0.1[L]、超音波出力600[W]、超音波周波数20[kHz]の測定条件において、超音波処理槽内の排液の温度が汚泥のSS可溶化率に与える影響を示したものである。同図に示すように、排液の温度が30℃、50℃、70℃と高くなるにつれて汚泥のSS可溶化率が高くなっており、液温が70℃ではSS可溶化率が50%を超えていることが分かる。   FIG. 3 shows that the temperature of the effluent in the sonication tank is sludge SS under the measurement conditions of a sonication tank volume of 0.1 [L], an ultrasonic output of 600 [W], and an ultrasonic frequency of 20 [kHz]. This shows the effect on the solubilization rate. As shown in the figure, the SS solubilization rate of sludge increases as the temperature of the effluent increases to 30 ° C., 50 ° C., and 70 ° C., and the SS solubilization rate becomes 50% at a liquid temperature of 70 ° C. You can see that it is over.

本発明による汚泥処理装置は、工場や、排水処理施設などから排出される様々な排液に対して適用することができる。   The sludge treatment apparatus according to the present invention can be applied to various effluents discharged from factories, wastewater treatment facilities, and the like.

本発明の一実施例による汚泥処理装置を示す構成図The block diagram which shows the sludge processing apparatus by one Example of this invention 本発明の一実施例による超音波発振器の排熱や太陽熱を利用して排液の加温を行う排熱輸送媒体循環回路の構成図1 is a configuration diagram of an exhaust heat transport medium circulation circuit that heats waste liquid by using exhaust heat or solar heat of an ultrasonic oscillator according to an embodiment of the present invention. 本発明の一実施例による超音波処理槽内の排液の温度がSS可溶化率に与える影響を示すグラフThe graph which shows the influence which the temperature of the waste_water | drain in the ultrasonic processing tank by one Example of this invention has on SS solubilization rate

符号の説明Explanation of symbols

1 本体ケース
2 制御盤
3 漏水センサー
4 アジャスタ
5 本体ケース仕切板
14 超音波振動子
15 超音波発振器
16 冷却ファン
20 乱流沈殿槽
21 ケーシング
22 仕切板
30 旋回流分離槽
31 胴部分
32 底部
33 流出口
34 導入口
35 バルブ
36 排出口
41 電動バルブ
42 流量計
43 三方弁
44 洗浄水導入管
50 超音波処理槽
51 第1の処理槽
52A 第2の処理槽
52B 第2の処理槽
53A 堰
53B 堰
54 流入口
55 流出口
56 ドレン口
57 バルブ
58 UV灯
60 蓋体
61 箱体
62 噴出孔
71 排熱吸熱用熱交換器
72 熱輸送媒体駆動ポンプ
73 太陽熱吸熱用熱交換器
74 排熱放熱用熱交換器
75 太陽熱放熱用熱交換器
76 排液間熱交換器
78 ヒートシンク
79 冷却ファン
A 配管
B 配管
C 配管
D 配管
E 配管
F 配管
G 配管
DESCRIPTION OF SYMBOLS 1 Main body case 2 Control panel 3 Water leak sensor 4 Adjuster 5 Main body case partition plate 14 Ultrasonic vibrator 15 Ultrasonic oscillator 16 Cooling fan 20 Turbulent sedimentation tank 21 Casing 22 Partition plate 30 Swirling flow separation tank 31 Trunk part 32 Bottom 33 Flow Exit 34 Introduction port 35 Valve 36 Discharge port 41 Electric valve 42 Flow meter 43 Three-way valve 44 Washing water introduction pipe 50 Ultrasonic treatment tank 51 First treatment tank 52A Second treatment tank 52B Second treatment tank 53A weir 53B weir 54 inflow port 55 outflow port 56 drain port 57 valve 58 UV lamp 60 lid body 61 box body 62 ejection hole 71 heat exchanger for exhaust heat absorption 72 heat transport medium drive pump 73 heat exchanger for solar heat absorption 74 heat for heat dissipation Exchanger 75 Heat exchanger for solar heat radiation 76 Inter-drain heat exchanger 78 Heat sink 79 Cooling fan A Piping B Piping C Piping D Piping E Piping F Piping G Piping

Claims (12)

超音波処理槽に超音波振動子を備えた汚泥処理装置であって、前記超音波振動子を駆動する超音波発振器と、排熱輸送媒体を循環させる排熱輸送媒体循環回路と、前記超音波発振器の排熱を前記排熱輸送媒体へ熱交換する排熱交換手段と、前記排熱交換手段によって前記排熱熱輸送媒体に移された前記超音波発振器の排熱を放熱する排熱放熱手段とを備え、前記排熱放熱手段を前記超音波処理槽に設けたことを特徴とする汚泥処理装置。 A sludge treatment apparatus provided with an ultrasonic vibrator in an ultrasonic treatment tank, the ultrasonic oscillator for driving the ultrasonic vibrator, an exhaust heat transport medium circulation circuit for circulating an exhaust heat transport medium, and the ultrasonic wave Exhaust heat exchanging means for exchanging the exhaust heat of the oscillator to the exhaust heat transport medium, and exhaust heat dissipating means for dissipating the exhaust heat of the ultrasonic oscillator transferred to the exhaust heat transfer medium by the exhaust heat exchange means The sludge treatment apparatus is characterized in that the waste heat radiating means is provided in the ultrasonic treatment tank. 前記超音波処理槽の前段に下部から排液を導入し、導入した前記排液の一部を上部から導出するとともに他の前記排液を下部から導出する乱流沈殿槽と、前記乱流沈殿槽の上部から前記排液を導入し、導入した前記排液を旋回させ、上部から前記排液を導出し前記超音波処理槽に導入する旋回流分離槽を設けたことを特徴とする請求項1に記載の汚泥処理装置。 A turbulent sedimentation tank that introduces drainage liquid from the lower part into the previous stage of the ultrasonic treatment tank, derives a part of the introduced drainage liquid from the upper part and derives the other drainage liquid from the lower part, and the turbulent precipitation The swirl flow separation tank is provided, wherein the drainage liquid is introduced from an upper part of the tank, the introduced drainage liquid is swirled, and the drainage liquid is led out from the upper part and introduced into the ultrasonic treatment tank. The sludge treatment apparatus according to 1. 前記排熱放熱手段を前記超音波処理槽の底部に設けたことを特徴とする請求項1に記載の汚泥処理装置。 2. The sludge treatment apparatus according to claim 1, wherein the exhaust heat radiating means is provided at the bottom of the ultrasonic treatment tank. 前記超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、前記第1の処理槽に前記排液の流入口と超音波振動子を備え、前記第2の処理槽に前記排液の流出口を備え、前記第2の処理槽を前記第1の処理槽の両側部にそれぞれ設け、前記第1の処理槽の前記堰を除く壁面に前記排熱放熱手段を配置したことを特徴とする請求項1に記載の汚泥処理装置。 The ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment tank includes the drainage inlet and an ultrasonic vibrator, and the second treatment The tank is provided with an outlet for the waste liquid, the second processing tank is provided on both sides of the first processing tank, and the exhaust heat dissipating means is provided on the wall surface of the first processing tank excluding the weir. The sludge treatment apparatus according to claim 1, wherein the sludge treatment apparatus is disposed. 前記超音波処理槽に前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記排熱放熱手段を設けたことを特徴とする請求項2に記載の汚泥処理装置。 3. The sludge according to claim 2, wherein the ultrasonic treatment tank is provided with a drainage introduction section that introduces drainage liquid from the swirl flow separation tank, and the waste heat release means is provided in the drainage introduction section. Processing equipment. 前記超音波処理槽内に前記排熱放熱手段を設けたことを特徴とする請求項1に記載の汚泥処理装置。 The sludge treatment apparatus according to claim 1, wherein the exhaust heat radiating means is provided in the ultrasonic treatment tank. 前記超音波処理槽を断熱材で覆ったことを特徴とする請求項1に記載の汚泥処理装置。 The sludge treatment apparatus according to claim 1, wherein the ultrasonic treatment tank is covered with a heat insulating material. 太陽熱輸送媒体を循環させる太陽熱輸送媒体循環回路と、太陽熱を前記太陽熱輸送媒体へ熱交換する太陽熱吸熱手段と、前記太陽熱吸熱手段によって前記太陽熱輸送媒体に移された太陽熱を放熱する太陽熱放熱手段とを備え、前記太陽熱放熱手段を前記超音波処理槽に設けたことを特徴とする請求項1に記載の汚泥処理装置。 A solar heat transport medium circulation circuit for circulating the solar heat transport medium, solar heat absorption means for exchanging solar heat to the solar heat transport medium, and solar heat heat dissipation means for dissipating solar heat transferred to the solar heat transport medium by the solar heat absorption means. 2. The sludge treatment apparatus according to claim 1, wherein the solar heat radiation means is provided in the ultrasonic treatment tank. 前記太陽熱放熱手段を前記超音波処理槽の底部に設けたことを特徴とする請求項8に記載の汚泥処理装置。 The sludge treatment apparatus according to claim 8, wherein the solar heat radiating means is provided at the bottom of the ultrasonic treatment tank. 前記超音波処理槽を、堰によって第1の処理槽と第2の処理槽に区分し、前記第1の処理槽に前記排水の流入口と超音波振動子を備え、前記第2の処理槽に前記排水の流出口を備え、前記第2の処理槽を前記第1の処理槽の両側部にそれぞれ設け、前記第1の処理槽の前記堰を除く壁面に前記太陽熱放熱手段を配置したことを特徴とする請求項1に記載の汚泥処理装置。 The ultrasonic treatment tank is divided into a first treatment tank and a second treatment tank by a weir, and the first treatment tank includes the drainage inlet and an ultrasonic vibrator, and the second treatment tank. The drainage outlet is provided, the second treatment tank is provided on both sides of the first treatment tank, and the solar heat dissipating means is disposed on the wall surface of the first treatment tank excluding the weir. The sludge treatment apparatus according to claim 1. 前記超音波処理槽へ前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記太陽熱放熱手段を設けたことを特徴とする請求項2に記載の汚泥処理装置。 3. The sludge treatment according to claim 2, further comprising a drainage introduction unit that introduces drainage from the swirl flow separation tank to the ultrasonic treatment tank, and the solar heat radiation unit is provided in the drainage introduction unit. apparatus. 前記超音波処理槽へ前記旋回流分離槽から排液を導入する排液導入部を備え、前記排液導入部に前記超音波処理槽から流出する処理排液と前記超音波処理槽へ前記旋回流分離槽から流入する未処理排液との間で熱交換を行う排液間熱交換手段を設けたことを特徴とする請求項2に記載の汚泥処理装置。 A drainage introduction unit that introduces drainage liquid from the swirl flow separation tank to the ultrasonic treatment tank is provided, and the wastewater introduction part is configured to discharge the treatment wastewater that flows out of the ultrasonic treatment tank and the swirl to the ultrasonic treatment tank. The sludge treatment apparatus according to claim 2, further comprising an inter-drain heat exchange means for exchanging heat with untreated waste liquid flowing in from the flow separation tank.
JP2004304118A 2004-10-19 2004-10-19 Sludge treatment apparatus Pending JP2006116375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304118A JP2006116375A (en) 2004-10-19 2004-10-19 Sludge treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304118A JP2006116375A (en) 2004-10-19 2004-10-19 Sludge treatment apparatus

Publications (1)

Publication Number Publication Date
JP2006116375A true JP2006116375A (en) 2006-05-11

Family

ID=36534767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304118A Pending JP2006116375A (en) 2004-10-19 2004-10-19 Sludge treatment apparatus

Country Status (1)

Country Link
JP (1) JP2006116375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130475A (en) * 2004-11-09 2006-05-25 Torishima Pump Mfg Co Ltd Sludge solubilization processor
JP2008519674A (en) * 2004-11-11 2008-06-12 株式会社荏原製作所 Method and apparatus for treating organic wastewater to reduce excess sludge generation
GB2477924A (en) * 2010-02-17 2011-08-24 Encapsuwaste Ltd A method of encapsulating waste material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130475A (en) * 2004-11-09 2006-05-25 Torishima Pump Mfg Co Ltd Sludge solubilization processor
JP2008519674A (en) * 2004-11-11 2008-06-12 株式会社荏原製作所 Method and apparatus for treating organic wastewater to reduce excess sludge generation
GB2477924A (en) * 2010-02-17 2011-08-24 Encapsuwaste Ltd A method of encapsulating waste material

Similar Documents

Publication Publication Date Title
KR101281514B1 (en) A pressure float type polluted water treatment method using microbubble unit and slanted plate sturcture
US20080210884A1 (en) Device for Irradiating Liquids with Uv Radiation in a Throughflow
RU2431610C2 (en) Compound method for reagentless treatment of waste water and briquetting sludge
US20150183657A1 (en) Method and apparatus for using air scouring of a screen in a water treatment facility
CN103319049B (en) A kind of MBR film sewage treatment system
KR20130109631A (en) Water treatment apparatus for purifing waste water using natural energy
KR101964830B1 (en) Water treatment apparatus
JP2006116375A (en) Sludge treatment apparatus
KR101774488B1 (en) Settling and floating sludge removal equipment and operating method of the same
JP4265043B2 (en) Water treatment method and apparatus using photocatalyst
CN112340876A (en) Integrated mobile vehicle-mounted wastewater sludge harmless treatment device
KR102452662B1 (en) Wastewater treatment apparatus having the circulation guide unit of penton oxidation and treated water
JP4625291B2 (en) Sludge treatment equipment
JP4543874B2 (en) Sludge treatment equipment
JP4519401B2 (en) Ultrasonic treatment tank
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
JP2004188379A5 (en)
JP4483664B2 (en) Sludge treatment equipment
CN112358098A (en) Harmless in-situ treatment process for wastewater and sludge
WO2006105575A1 (en) Water treatment apparatus
KR102452663B1 (en) Wastewater treatment apparatus which is controllable the inflow of the treated water and penton oxidation
WO2004101162A1 (en) Method and apparatus for disinfecting fluids using electromagnetic radiation while undergoing separation
CN110102107A (en) A kind of self-rotation mechanical automation backwashing sewage water processing unit
CN212198881U (en) Animal laboratory waste water innocent treatment device
KR102452659B1 (en) Wastewater treatment apparatus having the circulation guide part of the treated water