JP2006113019A - Triaxial type electronic compass, and azimuth detecting method using same - Google Patents

Triaxial type electronic compass, and azimuth detecting method using same Download PDF

Info

Publication number
JP2006113019A
JP2006113019A JP2004303148A JP2004303148A JP2006113019A JP 2006113019 A JP2006113019 A JP 2006113019A JP 2004303148 A JP2004303148 A JP 2004303148A JP 2004303148 A JP2004303148 A JP 2004303148A JP 2006113019 A JP2006113019 A JP 2006113019A
Authority
JP
Japan
Prior art keywords
angle
posture angle
axis
azimuth
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004303148A
Other languages
Japanese (ja)
Inventor
Hiroko Takahashi
裕子 高橋
Yuichi Umeda
裕一 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004303148A priority Critical patent/JP2006113019A/en
Publication of JP2006113019A publication Critical patent/JP2006113019A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a triaxial type electronic compass capable of detecting precisely an azimuth in response to all the attitudes without being restricted by attitude angles, and an azimuth detecting method using the same. <P>SOLUTION: When two candidates α1, α2 exist in solution of the attitude angles calculated from magnetic data X, Y, Z, the azimuth is detected precisely in response to all the attitudes, by selecting the one proper attitude angle (α1 or α2) from on the first processing of selecting the proper attitude angle, based on a variation in the attitude angle calculated time-serially, the second processing of selecting the proper attitude angle, referring to the azimuth calculated just before and the attitude angle used in that time, and the third processing of selecting the proper attitude angle, on a ratio of the azimuth calculated just before to a differential value of the attitude angle used in that time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地磁気から方位角を検出する3軸型電子コンパス及びこれを用いた方位検出方法に係わり、特に傾斜センサを用いずに方位角を検出できるようにした3軸型電子コンパス及びこれを用いた方位検出方法に関する。   The present invention relates to a three-axis electronic compass for detecting an azimuth angle from geomagnetism and an azimuth detection method using the same, and more particularly to a three-axis electronic compass that can detect an azimuth angle without using a tilt sensor. The present invention relates to the direction detection method used.

地平面に対してコンパス自体が傾斜姿勢に設定されたときの姿勢角度(地平面に対する姿勢角度)に起因して発生する誤差を考慮して、方位角の検出を行う方法が記載された先行技術としては、例えば以下に示すような特許文献1や2が存在している。   Prior art describing a method for detecting an azimuth angle in consideration of an error caused by a posture angle (posture angle with respect to the ground plane) when the compass itself is set in a tilted posture with respect to the ground plane For example, Patent Documents 1 and 2 shown below exist.

特許文献1に記載されたものでは、基板と平行な平面に規定される磁気ベクトルの2軸成分を検出する磁気センサ100と、磁気ベクトルの基板とは垂直な方向の成分を検出するホール素子24と、基板の姿勢角度を検出する傾斜センサ22とが一体に構成されており、前記傾斜センサ22が検出した基板の姿勢角度(ロール角やピッチ角)を基づき、前記磁気センサ100から検出される磁気ベクトルの2軸成分、およびホール素子24から検出される垂直成分を補正することにより、適正な方位角の検出を行うというものである。   In the device described in Patent Document 1, a magnetic sensor 100 that detects a biaxial component of a magnetic vector defined on a plane parallel to the substrate, and a Hall element 24 that detects a component in a direction perpendicular to the substrate of the magnetic vector. And a tilt sensor 22 that detects the posture angle of the substrate are integrally configured, and is detected from the magnetic sensor 100 based on the posture angle (roll angle or pitch angle) of the substrate detected by the tilt sensor 22. By correcting the biaxial component of the magnetic vector and the vertical component detected from the Hall element 24, an appropriate azimuth angle is detected.

また特許文献2に記載の磁気センサ装置用地球磁極方位計算方法は、3軸磁気センサより得られる地磁気ベクトルと予め指定した所定の角度αを持つベクトルGとを特定の軸Xに対してほぼ直交するベクトルの中から求めるものであり、所定の角度αを地磁気ベクトルと地面からの鉛直ベクトルとの成す角にほぼ等しいものとし、特定の軸Xを3軸磁気センサを取り付けた基板が実際に使用される状況下にあって主たる回転に供する軸のうちの地面にほぼ平行な軸であるとすることにより、頻度高く想定される使用条件下で最適な傾斜補正を行うようにしたものである。
特開2002−196055号公報 特開2003−166825号公報
In addition, in the earth magnetic pole direction calculation method for a magnetic sensor device described in Patent Document 2, a geomagnetic vector obtained from a three-axis magnetic sensor and a vector G having a predetermined angle α specified in advance are substantially orthogonal to a specific axis X. The predetermined angle α is approximately equal to the angle formed by the geomagnetic vector and the vertical vector from the ground, and the specific axis X is actually used by a board with a 3-axis magnetic sensor attached. In this situation, it is assumed that an axis substantially parallel to the ground among the axes used for main rotation is subjected to optimum inclination correction under use conditions that are frequently assumed.
JP 2002-196055 A JP 2003-166825 A

しかし、上記特許文献1に記載されたものは、地球磁極方位を算出するための3軸磁気センサに加えて傾斜補正を行うための傾斜センサを必要とする構成である。このため、コンパス自体が大規模化・重量化させる要因となり、結果として前記コンパスを搭載する携帯機器等の小型化・軽量化の妨げになるという問題がある。   However, the device described in Patent Document 1 requires a tilt sensor for performing tilt correction in addition to the three-axis magnetic sensor for calculating the earth magnetic pole direction. For this reason, the compass itself becomes a factor that increases the scale and weight, and as a result, there is a problem that the size and weight of a portable device or the like equipped with the compass is hindered.

また上記特許文献2に記載されたものでは、姿勢角度に一定の制限(0〜90度)が設けられているため、例えば使用者が仰向けに寝そべったような状態(したがって、コンパスが搭載された携帯電話機の天地が逆さまの状態)で使用した場合には、正しい方位角を得ることができないという問題がある。   Moreover, in the thing described in the said patent document 2, since the fixed restriction | limiting (0-90 degree | times) was provided in the attitude angle, for example, the state where the user lay down on his back (therefore, the compass was mounted) When the mobile phone is used upside down, the correct azimuth angle cannot be obtained.

本発明は上記従来の課題を解決するためのものであり、方位角を取得する際に傾斜センサを不用として小型化・軽量化に適した3軸型電子コンパス及びこれを用いた方位検出方法を提供することを目的としている。   The present invention is for solving the above-described conventional problems, and a triaxial electronic compass suitable for miniaturization and weight reduction without using a tilt sensor when acquiring an azimuth angle, and an azimuth detection method using the same. It is intended to provide.

また本発明は姿勢角による制限を受けることなく、あらゆる姿勢に対応して方位角を高精度に検出することが可能な3軸型電子コンパス及びこれを用いた方位検出方法を提供することを目的としている。   Another object of the present invention is to provide a three-axis electronic compass capable of detecting an azimuth angle with high accuracy corresponding to any posture without being limited by the posture angle, and an azimuth detection method using the same. It is said.

本発明は、互いに直交する3つの軸(x’軸,y’軸,z’軸)からなる(x’y’z’)直交座標系を備え、前記いずれかの軸と真北との間に形成される方位角(θ’)の算出を行う3軸型電子コンパスであって、
任意の測定位置における地磁気ベクトル(H)を3軸方向の成分からなる磁気データ(X,Y,Z)として検出する磁気検出手段(3,4,5)と、前記測定位置における地磁気ベクトルの伏角(η)及び偏角(D)を取得する手段(20)と、
前記磁気データ(X,Y,Z)と前記伏角(η)とを用いて前記3つの軸から選択した2軸によって形成される傾斜平面(例えば、x’y’平面)と地平面(例えば、xy平面)との間に形成される姿勢角の解を所定の計算式から算出する第1の演算部(11)と、
前記第1の演算部で得られた姿勢角の解に2つの候補(α1,α2)がある場合に、時系列に沿って算出される姿勢角の変化量から適正な姿勢角が選定される第1の処理と、直前に算出された方位角とこのとき用いられた姿勢角とを参照して適正な姿勢角が選定される第2の処理と、前記直前に算出された方位角とこのとき用いられた姿勢角の微分値の比から適正な姿勢角が選定される第3の処理とから適正な1つの姿勢角(α1又はα2)を選定する第2の演算部(12)と、
前記第2の演算部で選定した姿勢角(α1又はα2)と前記磁気データ(X,Y,Z)とから磁北に対する方位角(θ)を算出する第3の演算部(13)と、
前記方位角(θ)から偏角(D)を除去することにより真北に対する方位角(θ’=θ−D)を算出する第4の演算部(14)と、を有すること特徴とするものである。
The present invention includes an (x′y′z ′) orthogonal coordinate system including three axes (x ′ axis, y ′ axis, z ′ axis) orthogonal to each other, and between any one of the axes and true north. A three-axis electronic compass that calculates the azimuth angle (θ ′) formed in
Magnetic detection means (3, 4, 5) for detecting the geomagnetic vector (H) at an arbitrary measurement position as magnetic data (X, Y, Z) composed of components in three axes, and the dip angle of the geomagnetic vector at the measurement position Means (20) for obtaining (η) and declination (D);
An inclined plane formed by two axes selected from the three axes using the magnetic data (X, Y, Z) and the dip angle (η) (for example, an x′y ′ plane) and a ground plane (for example, a first calculation unit (11) that calculates a solution of a posture angle formed between the xy plane and a predetermined calculation formula;
When there are two candidates (α1, α2) in the posture angle solution obtained by the first calculation unit, an appropriate posture angle is selected from the amount of change in posture angle calculated along the time series. A first process, a second process in which an appropriate attitude angle is selected with reference to the azimuth angle calculated immediately before and the attitude angle used at this time, and the azimuth angle calculated immediately before and A second calculation unit (12) for selecting an appropriate posture angle (α1 or α2) from the third process in which an appropriate posture angle is selected from the ratio of the differential values of the posture angle used at the time,
A third calculation unit (13) for calculating an azimuth angle (θ) with respect to magnetic north from the attitude angle (α1 or α2) selected by the second calculation unit and the magnetic data (X, Y, Z);
And a fourth calculation unit (14) for calculating an azimuth angle (θ ′ = θ−D) with respect to true north by removing a declination angle (D) from the azimuth angle (θ). It is.

本発明では傾斜センサを用いることなく方位角を求めることができるため、小型化・軽量化に適した3軸型電子コンパスを提供できる。しかも3軸型電子コンパスを搭載した携帯端末はどのような姿勢に向けた場合であっても高精度で方位角を検出することができるため、携帯端末の操作性を向上させることができる。   In the present invention, since the azimuth angle can be obtained without using a tilt sensor, a three-axis electronic compass suitable for miniaturization and weight reduction can be provided. Moreover, since the portable terminal equipped with the three-axis electronic compass can detect the azimuth angle with high accuracy regardless of the orientation, the operability of the portable terminal can be improved.

上記においては、前記傾斜平面を形成する2軸のいずれか一方の軸が、前記地平面に対して平行とされているものが好ましい。   In the above, it is preferable that one of the two axes forming the inclined plane is parallel to the ground plane.

上記手段では、地平面とy軸との間の傾斜角度(姿勢角)を求める場合にはx軸、地平面とx軸との間の傾斜角度(姿勢角)を求める場合にはy軸が地平面と平行な状態にあれば正しい姿勢角を検出することができる。   In the above means, the x-axis is used to determine the tilt angle (posture angle) between the ground plane and the y-axis, and the y-axis is used to determine the tilt angle (posture angle) between the ground plane and the x-axis. If it is parallel to the ground plane, the correct posture angle can be detected.

例えば、前記伏角及び偏角を取得する手段は、当該使用地域の中継局を介して外部から入手されるものが好ましい。   For example, the means for obtaining the dip and declination is preferably obtained from the outside through a relay station in the area of use.

上記手段では、携帯端末が中継局から発せられる電波が届く中継エリア内にあれば、いずれの箇所からでも伏角や偏角のデータを容易に入手することができるようになり、これらのデータから方位角を高精度で求めることが可能となる。   In the above means, if the mobile terminal is within a relay area where radio waves emitted from the relay station reach, it becomes possible to easily obtain the dip angle and declination data from any location, and the direction from these data The angle can be obtained with high accuracy.

また前記第1ないし第4の演算部が一つの演算手段で形成されており、制御部からの指令を受けて各演算部における演算が行われるものが好ましい。   Further, it is preferable that the first to fourth calculation units are formed by a single calculation unit, and a calculation is performed in each calculation unit in response to a command from the control unit.

演算部を少なくすることができるため、小型化・軽量化を図ることができる。
具体的な前記第1の処理としては、直前の姿勢角の変化量と今回の姿勢角の変化量を算出し、前記直前の姿勢角の変化量と今回の姿勢角の変化量との比が所定の範囲外である場合に、前記2つの解の候補のうち変化量の少ない方を適正な姿勢角として選定するものである。
Since the number of arithmetic units can be reduced, the size and weight can be reduced.
Specifically, as the first process, a change amount of the immediately previous posture angle and a change amount of the current posture angle are calculated, and a ratio between the change amount of the previous posture angle and the change amount of the current posture angle is calculated. When it is outside the predetermined range, the one with the smaller amount of change among the two solution candidates is selected as an appropriate posture angle.

また前記第2の処理は、前記第1の処理における比が所定の範囲内にある場合に、前記直前の姿勢角と今回の姿勢角との差の絶対値を算出し、前記絶対値が所定の範囲を超える場合に、前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択するものである。   The second process calculates an absolute value of a difference between the immediately previous attitude angle and the current attitude angle when the ratio in the first process is within a predetermined range, and the absolute value is predetermined. When the range is exceeded, a value obtained from the same calculation formula as the posture angle used last time is selected as the posture angle.

さらに前記第3の処理は、前記第2の処理における絶対値が所定の範囲内の場合に、前記直前の姿勢角が±90°を中心とする所定の範囲内であるか否かを判定し、前記範囲外である場合には、前記選択した2軸に対応する磁気データから算出される直前の微分値の比(Y’/X’(ad))の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を有するものである。   Further, the third process determines whether or not the immediately preceding posture angle is within a predetermined range centered on ± 90 ° when the absolute value in the second process is within a predetermined range. If it is out of the range, the sign of the ratio (Y ′ / X ′ (ad)) of the immediately preceding differential value calculated from the magnetic data corresponding to the selected two axes is checked, and the sign is If the sign is positive, select the value obtained from the same formula as the attitude angle used last time as the attitude angle, and if the sign is negative, the value is obtained from a formula different from the one used to calculate the attitude angle used last time. A value to be selected as a posture angle.

この場合、前記第3の処置が、直前の姿勢角が±90°を中心とする所定の範囲内である場合に、前記選択した2軸に対応する磁気データのうちの一方の磁気データと、選択されなかった他の軸に対応する磁気データとから算出される直前の微分値の比(Z’/X’(ad))の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を備えたものとすることができる。   In this case, when the third treatment is within a predetermined range centered on ± 90 ° just before the posture angle, one of the magnetic data corresponding to the selected two axes, The sign of the immediately preceding differential value ratio (Z ′ / X ′ (ad)) calculated from the magnetic data corresponding to the other axes not selected is checked. If the sign is positive, it is used last time. The value obtained from the same calculation formula as the posture angle is selected as the posture angle, and if the sign is negative, the value obtained from the calculation formula different from the calculation formula used to calculate the posture angle used last time is selected as the posture angle. It is possible to have a process to perform.

また本発明は、互いに直交する3つの軸(x’軸,y’軸,z’軸)からなる(x’y’z’)直交座標系を備え、前記いずれかの軸と真北との間に形成される方位角(θ’)の算出を行う3軸型電子コンパスを用いた方位算出方法であって、
任意の測定位置における地磁気ベクトルを3軸方向の成分からなる磁気データ(X,Y,Z)として検出する工程と、
前記測定位置における地磁気ベクトルの伏角(η)及び偏角(D)を入手するとともに、前記磁気データ(X,Y,Z)と前記伏角(η)とを用いて前記3つの軸から選択した2軸によって形成される傾斜平面(例えば、x’y’平面)と地平面(例えば、xy平面)との間に形成される姿勢角の解を所定の計算式から算出する工程と、
前記の工程で得られた姿勢角の解に2つの候補(α1,α2)がある場合に、時系列に沿って算出される姿勢角の変化量から適正な姿勢角が選定される第1の処理と、直前に算出された方位角とこのとき用いられた姿勢角とを参照して適正な姿勢角が選定される第2の処理と、前記直前に算出された方位角とこのとき用いられた姿勢角の微分値の比から適正な姿勢角が選定される第3の処理とから適正な1つの姿勢角(α1又はα2)を選定する工程と、
前記の工程で選定した姿勢角(α1又はα2)と前記磁気データ(X,Y,Z)とから磁北に対する方位角(θ)を算出する工程と、
前記方位角(θ)から偏角(D)を除去することにより真北に対する方位角(θ’=θ−D)を算出する工程と、を有すること特徴とするものである。
The present invention also includes an (x′y′z ′) orthogonal coordinate system including three axes (x ′ axis, y ′ axis, z ′ axis) orthogonal to each other, and any one of the axes and true north An azimuth calculation method using a three-axis electronic compass that calculates an azimuth angle (θ ′) formed therebetween,
Detecting a geomagnetic vector at an arbitrary measurement position as magnetic data (X, Y, Z) composed of components in three axial directions;
The dip angle (η) and declination angle (D) of the geomagnetic vector at the measurement position are obtained, and 2 selected from the three axes using the magnetic data (X, Y, Z) and the dip angle (η). Calculating a solution of a posture angle formed between an inclined plane (for example, x′y ′ plane) formed by the axis and a ground plane (for example, xy plane) from a predetermined calculation formula;
When there are two candidates (α1, α2) in the solution of the posture angle obtained in the above step, the first one in which an appropriate posture angle is selected from the amount of change in the posture angle calculated along the time series A second process in which an appropriate posture angle is selected with reference to the processing, the azimuth angle calculated immediately before and the posture angle used at this time, and the azimuth angle calculated immediately before and used at this time. A step of selecting one appropriate posture angle (α1 or α2) from the third process in which an appropriate posture angle is selected from the ratio of the differential values of the posture angle.
Calculating an azimuth angle (θ) with respect to magnetic north from the attitude angle (α1 or α2) selected in the step and the magnetic data (X, Y, Z);
And calculating the azimuth angle (θ ′ = θ−D) with respect to true north by removing the declination angle (D) from the azimuth angle (θ).

本発明では、z軸を含む座標平面の地磁気ベクトルと磁気センサの出力から姿勢角を求めることにより、この姿勢角を用いて3軸型電子コンパスに生じている傾斜角度を補正することができるため、従来のように傾斜角度を求めるための傾斜センサを不要とすることができる。よって、小型化・軽量化に適した3軸型電子コンパスとすることができる。   In the present invention, since the attitude angle is obtained from the geomagnetic vector on the coordinate plane including the z axis and the output of the magnetic sensor, the inclination angle generated in the three-axis electronic compass can be corrected using the attitude angle. Thus, it is possible to eliminate the need for a tilt sensor for determining the tilt angle as in the prior art. Therefore, a triaxial electronic compass suitable for miniaturization and weight reduction can be obtained.

しかも姿勢角による制限を受けることなく、いかなる姿勢に設定された場合であっても方位角を高精度で検出することができる。   In addition, the azimuth angle can be detected with high accuracy regardless of the posture set without being restricted by the posture angle.

図1は3軸型電子コンパスを搭載した携帯端末と方位角との関係を2次元的に示す平面図、図2は3軸型電子コンパスの構成を示すブロック図、図3は傾斜補正の原理を3次元的に説明するための方位解析図、図4はx軸回りにピッチ角αだけ傾斜させた状態を2次元的に示す携帯端末の側面図である。   FIG. 1 is a plan view that two-dimensionally shows the relationship between a mobile terminal equipped with a three-axis electronic compass and an azimuth angle, FIG. 2 is a block diagram showing the configuration of the three-axis electronic compass, and FIG. 3 is the principle of tilt correction. FIG. 4 is a side view of the portable terminal that two-dimensionally shows a state in which the pitch angle α is tilted around the x axis.

図1は携帯端末1の代表例として示す携帯電話機である。この携帯端末1には電子コンパスが搭載されている。   FIG. 1 shows a mobile phone shown as a representative example of the mobile terminal 1. The mobile terminal 1 is equipped with an electronic compass.

図2に示すように、前記3軸型電子コンパス2は軸方向の磁界の強さを検出する磁気検出手段として3ヶの磁気センサ3,4,5が搭載されている。前記磁気センサ3,4,5は互いに直交する方向に配置されており、前記携帯端末1の幅方向をx’軸、前記携帯端末1の長手方向をy’軸、携帯端末1の板厚方向をz’軸とすると、前記磁気センサ3はx’軸方向、前記磁気センサ4はy’軸方向、前記磁気センサ5はz’軸方向にそれぞれ発生した磁界の強さを検出することが可能とされている。したがって、前記3軸型電子コンパス2は3ヶの磁気センサ3,4,5によりx’y’z’直交座標系が形成されており、地球の回りに発生する地磁気ベクトルHを3軸方向の各成分ごとに検出することが可能とされている。   As shown in FIG. 2, the three-axis electronic compass 2 is equipped with three magnetic sensors 3, 4, and 5 as magnetic detection means for detecting the magnetic field strength in the axial direction. The magnetic sensors 3, 4, and 5 are arranged in directions orthogonal to each other, the width direction of the mobile terminal 1 is the x ′ axis, the longitudinal direction of the mobile terminal 1 is the y ′ axis, and the thickness direction of the mobile terminal 1 Is the z ′ axis, the magnetic sensor 3 can detect the intensity of the magnetic field generated in the x ′ axis direction, the magnetic sensor 4 can detect the y ′ axis direction, and the magnetic sensor 5 can detect the strength of the magnetic field generated in the z ′ axis direction. It is said that. Accordingly, the three-axis electronic compass 2 has an x′y′z ′ orthogonal coordinate system formed by the three magnetic sensors 3, 4, 5, and the geomagnetic vector H generated around the earth is It is possible to detect each component.

なお、前記磁気検出手段を構成する磁気センサとしては、例えばMR(Magneto Resistive)センサ、ホール素子、フラックスゲート型磁気センサ(特開平9−43322号および特開平11−118892号公報参照)などを用いることができる。   As the magnetic sensor constituting the magnetic detection means, for example, an MR (Magneto Resistive) sensor, a Hall element, a fluxgate type magnetic sensor (see Japanese Patent Laid-Open Nos. 9-43322 and 11-118892), and the like are used. be able to.

図2に示すように、前記3軸型電子コンパス2は演算手段10と伏角及び偏角取得手段20が設けられている。前記演算手段10は、第1の演算部11、第2の演算部12、第3の演算部13、第4の演算部14を有している。なお、第1ないし第4の演算部11,12,13,14および伏角及び偏角取得手段20の機能については後述する。   As shown in FIG. 2, the three-axis electronic compass 2 is provided with a calculation means 10 and a dip and declination acquisition means 20. The calculation means 10 includes a first calculation unit 11, a second calculation unit 12, a third calculation unit 13, and a fourth calculation unit 14. The functions of the first to fourth arithmetic units 11, 12, 13, 14 and the dip angle and declination obtaining unit 20 will be described later.

以下の説明においては、携帯端末1の姿勢に応じて変化する前記x’y’z’直交座標系のx’軸とy’軸とが地面に対して平行となる水平面(x’y’平面(地平面))を形成しており、y軸’が真北を向き且つ前記x’軸とy軸’の双方に直交するz’軸が鉛直方向(重力方向)を向いた場合をxyz直交座標系としている。   In the following description, a horizontal plane (x′y ′ plane) in which the x ′ axis and the y ′ axis of the x′y′z ′ orthogonal coordinate system that changes according to the attitude of the mobile terminal 1 are parallel to the ground. Xyz orthogonal when the y-axis 'faces true north and the z'-axis perpendicular to both the x'-axis and the y-axis' faces the vertical direction (gravity direction). The coordinate system is used.

また符号Hx、Hy、Hzは、携帯端末1に搭載されたの前記3軸型磁気センサが検知する地磁気ベクトルHのxyz直交座標系におけるx軸成分,y軸成分およびz軸成分の大きさ(磁界の強さ)を意味している。また符号H’は前記地磁気ベクトルHを前記地平面(xy平面)に投影したときの水平成分を示すとともに、磁北の向きを示している。   Symbols Hx, Hy, Hz denote the magnitudes of the x-axis component, the y-axis component, and the z-axis component in the xyz orthogonal coordinate system of the geomagnetic vector H detected by the three-axis magnetic sensor mounted on the mobile terminal 1 ( Means the strength of the magnetic field. Reference numeral H ′ indicates a horizontal component when the geomagnetic vector H is projected onto the ground plane (xy plane) and indicates the direction of magnetic north.

図1および図3に示す方位角θは、基準とするy’軸と磁北(地磁気ベクトルの水平成分H’)とが成す角である。また方位角θ’は、基準とするy’軸と真北とが成す角であり、本発明の3軸型電子コンパスが最終的に求めようとする角度である。   The azimuth angle θ shown in FIGS. 1 and 3 is an angle formed by the reference y ′ axis and magnetic north (the horizontal component H ′ of the geomagnetic vector). The azimuth angle θ ′ is an angle formed by the reference y ′ axis and true north, and is the angle that the triaxial electronic compass of the present invention finally seeks.

さらに図4に示す符号αは、携帯端末1をx’軸(x軸)回りに回転させたときに前記y軸(または地平面(xy平面))と回転後のy’軸(またはx’y’平面)とが成す姿勢角(以下ピッチ角という。)を意味する。また符号βは携帯端末1をy’軸(y軸)回りに回転させたときに前記x軸(または地平面(xy平面))と回転後のx’軸(またはx’y’平面)とが成す姿勢角(以下ロール角という。)を意味している。   Further, reference symbol α shown in FIG. 4 indicates the y axis (or the ground plane (xy plane)) and the rotated y ′ axis (or x ′) when the mobile terminal 1 is rotated about the x ′ axis (x axis). It means a posture angle (hereinafter referred to as a pitch angle) formed by y ′ plane. The symbol β represents the x axis (or the ground plane (xy plane)) and the rotated x ′ axis (or x′y ′ plane) when the mobile terminal 1 is rotated about the y ′ axis (y axis). Means the posture angle (hereinafter referred to as roll angle).

ここで、図3に示す符号ηは前記地平面(xy平面)と前記地平面を突っ切る地磁気ベクトルHとが成す角であり、伏角(下向きをプラスとする)を意味している。ただし、前記伏角ηは場所によって異なる値であり、緯度が高くなるほど大きな値となる傾向がある。   Here, the symbol η shown in FIG. 3 is an angle formed by the ground plane (xy plane) and the geomagnetic vector H that cuts through the ground plane, and means a dip angle (downward is a plus). However, the dip angle η is a value that varies depending on the location, and tends to increase as the latitude increases.

伏角ηの値は、例えば任意の測定位置に対応する伏角ηデータを図示しないメモリ手段に記憶させておき、携帯端末1に設けられたGPS(汎地球測位システム)を構築する人工衛星を介して現在の測定位置を入手するとともに、前記現在の測定位置に対応する前記伏角ηを内部の前記メモリ手段から入手することが可能である。あるいは前記携帯端末1が携帯電話機の場合には、通話やメールの際に接続される中継局の位置から携帯電話機が使用されている地域(現在の測定位置)を割り出し、前記中継局を介して前記伏角ηに関するデータを3軸型電子コンパス2の外部から入手することが可能であり、図2に示すように前記3軸型電子コンパス2は、伏角及び偏角取得手段20を有している。   The value of the dip angle η is stored, for example, in a memory means (not shown) corresponding to an arbitrary measurement position, via an artificial satellite that constructs a GPS (Global Positioning System) provided in the mobile terminal 1. It is possible to obtain the current measurement position and obtain the dip angle η corresponding to the current measurement position from the internal memory means. Alternatively, when the mobile terminal 1 is a mobile phone, an area (current measurement position) where the mobile phone is used is determined from the position of the relay station connected during a call or mail, Data regarding the dip angle η can be obtained from the outside of the triaxial electronic compass 2, and the triaxial electronic compass 2 has an dip angle and declination obtaining unit 20 as shown in FIG. 2. .

まず、最も簡単な場合、すなわちxyz直交座標系の中心に携帯端末1が置かれ、且つ前記ピッチ角αとロール角βが共にα=β=0°の場合にける磁北に対する方位角θの検出方法について説明する。なお、ピッチ角αおよびロール角βは共に0°であるから、xyz直交座標系とx’y’z’直交座標系とは一致した状態にある。   First, in the simplest case, that is, when the portable terminal 1 is placed at the center of the xyz orthogonal coordinate system and the pitch angle α and the roll angle β are both α = β = 0 °, detection of the azimuth angle θ with respect to magnetic north is detected. A method will be described. Since the pitch angle α and the roll angle β are both 0 °, the xyz orthogonal coordinate system and the x′y′z ′ orthogonal coordinate system are in agreement.

このとき、前記電子コンパスが検出した地磁気ベクトルHのx’y’z’直交座標系の各成分はxyz直交座標系の各成分と同じであるから、この場合の地磁気ベクトルHの各成分をそれぞれHx、Hy、Hzとすると、前記各成分Hx、Hy、Hzは方位角θと伏角ηを用いることにより、以下の数1のように表わすことができる。   At this time, each component of the x'y'z 'orthogonal coordinate system of the geomagnetic vector H detected by the electronic compass is the same as each component of the xyz orthogonal coordinate system. Assuming that Hx, Hy, and Hz, the components Hx, Hy, and Hz can be expressed as the following Equation 1 by using the azimuth angle θ and the dip angle η.

前記方位角θは、図1および図3に示すようにy’軸(この場合はy軸と一致する)と地磁気ベクトルの水平成分H’との成す角であるから、以下の数2として表わすことができる。   As shown in FIGS. 1 and 3, the azimuth angle θ is an angle formed by the y ′ axis (in this case, coincident with the y axis) and the horizontal component H ′ of the geomagnetic vector. be able to.

次に、図4に示すように、携帯端末1にピッチ角αが発生した場合(なお、ロール角β=0°とする)の方位角θの算出方法について説明する。   Next, as shown in FIG. 4, a method for calculating the azimuth angle θ when the pitch angle α occurs in the mobile terminal 1 (note that the roll angle β = 0 °) will be described.

このとき、電子コンパスを構成する3ヶの磁気センサが検知した磁気データ、すなわちx’y’z’直交座標系として算出される磁気データをそれぞれX,Y,Zとすると、上記数1は以下の数3のように磁気データX,Y,Zとピッチ角αで表わすことができる。   At this time, assuming that the magnetic data detected by the three magnetic sensors constituting the electronic compass, that is, the magnetic data calculated as the x′y′z ′ orthogonal coordinate system, is X, Y, and Z, the above equation 1 is The magnetic data X, Y, Z and the pitch angle α can be expressed as shown in equation (3).

因みに、ピッチ角α=0°(ロール角βもβ=0°とする)の場合には、数3にα=0°を代入することによって以下の数4が成立する。これはxyz直交座標系とx’y’z’直交座標系とが完全に一致していることを意味している。   Incidentally, when the pitch angle α = 0 ° (the roll angle β is also β = 0 °), the following equation 4 is established by substituting α = 0 ° into the equation 3. This means that the xyz orthogonal coordinate system and the x′y′z ′ orthogonal coordinate system completely coincide.

携帯端末1にピッチ角αが発生した場合の方位角θは、前記数2と数3とから以下の数5として表わすことができる。   When the pitch angle α is generated in the mobile terminal 1, the azimuth angle θ can be expressed as the following equation 5 from the equations 2 and 3.

上記数5より、方位角θを求めるにはピッチ角αを知る必要があることがわかる。
ところで、傾斜センサを搭載した従来の携帯端末の場合には、前記傾斜センサよって検出されるピッチ角αを用いることにより、方位角θを求めることができる。しかし、本願発明のように傾斜センサを有しない構成の場合には、以下に示す手段により前記ピッチ角αを求めることが可能である。
上記数1および数3の3行目より、以下の数6が成立する。
From the above formula 5, it can be seen that it is necessary to know the pitch angle α in order to obtain the azimuth angle θ.
By the way, in the case of a conventional portable terminal equipped with a tilt sensor, the azimuth angle θ can be obtained by using the pitch angle α detected by the tilt sensor. However, in the case of a configuration having no tilt sensor as in the present invention, the pitch angle α can be obtained by the following means.
From the third row of the above formulas 1 and 3, the following formula 6 is established.

また地磁気ベクトルHと磁気データX,Y,Zとの間には、以下の数7の関係がある。 Further, there is a relationship of the following formula 7 between the geomagnetic vector H and the magnetic data X, Y, Z.

次に、図3および図4に示すように、地磁気ベクトルHをxyz直交座標系のyz平面に投影したときの地磁気ベクトルの成分Hyzとz軸との成す角をγaとすると、γaは以下の数8で表わすことができる。   Next, as shown in FIG. 3 and FIG. 4, if the angle formed between the geomagnetic vector component Hyz and the z axis when the geomagnetic vector H is projected onto the yz plane of the xyz orthogonal coordinate system is γa, This can be expressed by Equation 8.

数6に数7および数8を代入してαについて解くと、ピッチ角αは以下の数9のように求められる。   Substituting Equations 7 and 8 into Equation 6 and solving for α yields the pitch angle α as shown in Equation 9 below.

よって、前記数9で求めたピッチ角αを上記数5に代入することにより、方位角θを求めることができる。なお、北半球では伏角ηは下向きの負となるため、数9の括弧内の先頭にマイナスの記号(−)が付き、南半球では伏角ηは上向きの正となるため、数9の括弧内の先頭にプラスの記号(+)が付く。   Therefore, the azimuth angle θ can be obtained by substituting the pitch angle α obtained in the equation 9 into the equation 5. In the Northern Hemisphere, since the dip angle η is downwardly negative, a minus sign (−) is added at the beginning of the parenthesis in Equation 9, and in the Southern Hemisphere, the dip angle η is upwardly positive, so Is followed by a plus sign (+).

ただし、数9に示すようにピッチ角αには2つの解を有する。このため、正しい方位角θを求めるためには、前記2つの解の候補の中から適正な解をピッチ角αとして選択する必要がある。   However, as shown in Equation 9, the pitch angle α has two solutions. Therefore, in order to obtain the correct azimuth angle θ, it is necessary to select an appropriate solution as the pitch angle α from the two solution candidates.

ここで、北半球における前記2つの解をそれぞれ方位角α1およびα2とおいて、以下の数10と数11のように定義する。   Here, the two solutions in the northern hemisphere are defined as the following equations 10 and 11 with azimuth angles α1 and α2, respectively.

また前記ピッチ角α1,α2を数5に代入して求められる計算上の方位角をそれぞれθα1,θα2とおくと、θα1,θα2は以下の数12,13のように定義される。 If the calculated azimuth angles obtained by substituting the pitch angles α1 and α2 into Equation 5 are θ α1 and θ α2 , respectively, θ α1 and θ α2 are defined as in the following Equations 12 and 13. .

図5は、ピッチ角α=+30°(一定)の場合におけるz軸回りの回転角度θzと磁気データとの関係を示すグラフ、すなわち、ピッチ角α=+30°(一定)、ロール角β=0°、伏角η=51°の状態で、携帯端末1を前記絶対座標系のz軸回りに360°回転させたときの磁気データX,Y,Zとの関係を示している。図6は図5の磁気データX,Y,Zに基づいて算出したピッチ角α1,α2と、前記ピッチ角α1,α2から算出した方位角θα1,θα2との関係を示すグラフ、図7は図5の磁気データX,Y,Zの角度の微分値X’,Y’,Z’〔mV/deg〕とz軸の回転角度θzとの関係を示すグラフである。 FIG. 5 is a graph showing the relationship between the rotation angle θz about the z axis and magnetic data when the pitch angle α = + 30 ° (constant), that is, the pitch angle α = + 30 ° (constant) and the roll angle β = 0. This shows the relationship with the magnetic data X, Y, Z when the mobile terminal 1 is rotated 360 ° around the z-axis of the absolute coordinate system in the state of ° and the depression angle η = 51 °. FIG. 6 is a graph showing the relationship between the pitch angles α1, α2 calculated based on the magnetic data X, Y, Z in FIG. 5 and the azimuth angles θ α1 , θ α2 calculated from the pitch angles α1, α2. FIG. 6 is a graph showing the relationship between the differential values X ′, Y ′, Z ′ [mV / deg] of the angles of the magnetic data X, Y, Z in FIG. 5 and the rotation angle θz of the z axis.

なお、図5ないし図7に示すものではy’軸(携帯端末1の長手方向の軸)が磁北(N)に一致する角度を0°(360°)とし、その状態から携帯端末1を磁北(N)→東(E)→南(S)→西(W)→磁北(N)の順に時計回りに1回転させた場合であり、z軸回り回転角度をθzとすると、θz=0°(360°)の地点が磁北(N)を、θz=90°の地点が東(E)を、θz=180°の地点が南(S)を、θz=270°の地点が西(W)を意味している。また図6では磁気データX,Y,Zを数10に代入することにより求めたピッチ角α1を実線で示し、同じく磁気データX,Y,Zを数11に代入することにより求めたピッチ角α2を一点鎖線で示している。さらに数12にピッチ角α1を代入することにより算出した方位角θα1を点線で示し、同じく数13にピッチ角α2を代入することにより算出した方位角θα2を破線で示している。 5 to 7, the angle at which the y ′ axis (the longitudinal axis of the mobile terminal 1) coincides with magnetic north (N) is 0 ° (360 °). (N) → East (E) → South (S) → West (W) → Magnetic North (N) In this case, the rotation angle is θz = 0 ° when the rotation angle around the z axis is θz. (360 °) is magnetic north (N), θz = 90 ° is east (E), θz = 180 ° is south (S), and θz = 270 ° is west (W). Means. In FIG. 6, the pitch angle α1 obtained by substituting the magnetic data X, Y, and Z into the equation 10 is shown by a solid line, and the pitch angle α2 obtained by substituting the magnetic data X, Y, Z into the equation 11 is also shown. Is indicated by a one-dot chain line. Further, the azimuth angle θ α1 calculated by substituting the pitch angle α1 in the equation 12 is indicated by a dotted line, and the azimuth angle θ α2 calculated by substituting the pitch angle α2 in the equation 13 is indicated by a broken line.

図6に示すように、ピッチ角α1が適正なピッチ角(α1=+30°)を示すのは、z軸回りの回転角度θzが0°から90°の範囲と、270°から360°の範囲に限られ、その他の範囲(90°から270°の範囲)では適正なピッチ角ではない正弦波を示す。またピッチ角α2が適正なピッチ角(α2=+30°)を示すのは、z軸回りの回転角度θzが90°から270°の範囲であり、その他の範囲(0°〜90°と270°〜360°の範囲)では適正なピッチ角ではない正弦波を示す。   As shown in FIG. 6, the pitch angle α1 indicates an appropriate pitch angle (α1 = + 30 °) because the rotation angle θz around the z axis is in the range of 0 ° to 90 ° and in the range of 270 ° to 360 °. In other ranges (90 ° to 270 ° range), a sine wave that is not an appropriate pitch angle is shown. The pitch angle α2 indicates an appropriate pitch angle (α2 = + 30 °) when the rotation angle θz around the z axis is in the range of 90 ° to 270 °, and other ranges (0 ° to 90 ° and 270 °). In the range of ~ 360 °, a sine wave that is not an appropriate pitch angle is shown.

すなわち、回転角度θzがθz=0°〜90°の範囲ではピッチ角αの2つの解のうちピッチ角α1が適正であり、同じくθz=90°〜270°の範囲ではピッチ角α2が適正であり、同じくθz=270°〜360°の範囲ではピッチ角α1が適正であることがわかる。またピッチ角αの2つの解α1,α2は、θz=90°(東)とθz=270°(西)を境に正しい解が逆転することがわかる。すなわちθz=90°(東)は適正な解がピッチ角α1からピッチ角α2へ逆転する変極点P1であり、同じくθz=270°(西)は適正な解がピッチ角α2からピッチ角α1へ逆転する変極点P2となっている。   That is, the pitch angle α1 is appropriate among the two solutions of the pitch angle α when the rotation angle θz is in the range of θz = 0 ° to 90 °, and the pitch angle α2 is also appropriate when the rotation angle θz is in the range of θz = 90 ° to 270 °. Similarly, it can be seen that the pitch angle α1 is appropriate in the range of θz = 270 ° to 360 °. In addition, it can be seen that the two solutions α1 and α2 of the pitch angle α are reversed at θz = 90 ° (east) and θz = 270 ° (west). That is, θz = 90 ° (east) is an inflection point P1 where the proper solution reverses from the pitch angle α1 to the pitch angle α2, and similarly θz = 270 ° (west) is the proper solution from the pitch angle α2 to the pitch angle α1. The turning point P2 is reversed.

したがって、携帯端末1の回転角度θzの範囲ごとに区切って適正なピッチ角のみを選択することができれば、常に適正な方位角θを計算により求めることが可能となる。ちなみに、適正な方位角θは、θz=0°〜90°の範囲ではθα1であり、θz=90°〜270°の範囲ではθα2であり、θz=270°〜360°の範囲ではθα1である。 Therefore, if only an appropriate pitch angle can be selected by dividing each range of the rotation angle θz of the mobile terminal 1, it is possible to always obtain an appropriate azimuth angle θ by calculation. Incidentally, the proper azimuth angle θ is θ α1 in the range of θz = 0 ° to 90 °, θ α2 in the range of θz = 90 ° to 270 °, and θ in the range of θz = 270 ° to 360 °. α1 .

ただし、上記は携帯端末1をz軸回りに連続的に360°回転させた場合であり、実際に携帯端末1が使用される場合に、常にユーザーに携帯端末1を360°回転させることを期待することは不可能である。すなわち、実際の使用環境下では、電子コンパスはθz=0°から360°のうち一部の狭い範囲内の磁気データX,Y,Zしか得ることができない場合が多いため、このような磁気データX,Y,Zを上記数10,数11に代入して2つの解のピッチ角α1,α2を得た場合に、いずれのピッチ角α1,α2が適正な値であるかを判断することが必要となる。   However, the above is a case where the mobile terminal 1 is continuously rotated 360 ° around the z-axis, and when the mobile terminal 1 is actually used, the user is always expected to rotate the mobile terminal 1 360 °. It is impossible to do. That is, in an actual usage environment, the electronic compass can often only obtain magnetic data X, Y, and Z within a narrow range of θz = 0 ° to 360 °. When X, Y, and Z are substituted into the above formulas 10 and 11 to obtain the pitch angles α1 and α2 of the two solutions, it is possible to determine which pitch angles α1 and α2 are appropriate values. Necessary.

以下には、2つの解の候補であるピッチ角α1とα2のうちいずれが適正な値であるかを判断する手法を説明する。   In the following, a method for determining which of the two solution candidates, pitch angle α1 and α2, is an appropriate value will be described.

図8は適正なピッチ角αを求める手法の主要部を示すフローチャートである。
なお、図8においては、X,Y,Zは前記3軸型電子コンパスのx’軸、y’軸,z’軸の各出力値である磁気データを示している。またα’は前回選択されたピッチ角αを示しており、これはメモリ手段に記憶されている。そして、X’,Y’,Z’は前記磁気データX,Y,Zの微分値を示している。またフローチャートの各段階をST1のようにSTの符号と番号とを用いて表わすこととする。
FIG. 8 is a flowchart showing a main part of a method for obtaining an appropriate pitch angle α.
In FIG. 8, X, Y, and Z indicate magnetic data that are output values of the x ′ axis, the y ′ axis, and the z ′ axis of the three-axis electronic compass. Α ′ indicates the previously selected pitch angle α, which is stored in the memory means. X ′, Y ′, and Z ′ indicate differential values of the magnetic data X, Y, and Z. In addition, each stage of the flowchart is expressed by using ST codes and numbers as in ST1.

(第1の工程)
ST1では、前記3軸型電子コンパス2のx’軸用の磁気センサ3、y’軸用の磁気センサ4およびz’軸用の磁気センサ5の各出力を磁気データX,Y,Zとして所定のサンプリング周期に基づいて随時取得する。
(First step)
In ST1, the outputs of the x'-axis magnetic sensor 3, the y'-axis magnetic sensor 4 and the z'-axis magnetic sensor 5 of the three-axis electronic compass 2 are predetermined as magnetic data X, Y, Z. Acquired at any time based on the sampling period.

(第2の工程)
ST2では、前記第1の演算部11が、前記GPS又は中継局を利用して現在の測定位置における伏角η及び偏角Dを取得するとともに、前記ST1で取得された各磁気データX,Y,Zを上記数10,数11に代入することにより、それぞれピッチ角α1,α2の計算値を前記サンプリング周期に応じて求める。
(Second step)
In ST2, the first calculation unit 11 acquires the dip angle η and the declination D at the current measurement position using the GPS or relay station, and the magnetic data X, Y, By substituting Z into Equations 10 and 11, the calculated values of the pitch angles α1 and α2 are obtained according to the sampling period, respectively.

(第3の工程の第1の処理)
ST3では、前記第2の演算部12が、前記ST2で求めた複数のピッチ角α1、例えば20個分のピッチ角α1どうしを比較し、その最大値α1maxと最小値α1minを求めるとともに前記20個分のピッチ角α1の変化量Δα1を以下の数14として求める。
(First process of the third step)
In ST3, the second calculation unit 12 compares a plurality of pitch angles α1 obtained in ST2, for example, 20 pitch angles α1, obtains a maximum value α1 max and a minimum value α1 min, and The amount of change Δα1 of 20 pitch angles α1 is obtained as the following equation (14).

同様に、前記第2の演算部12は20個の計算上のピッチ角α2どうしを比較し、その最大値α2maxと最小値α2minを求め、さらにこのときのピッチ角α2の変化量Δα2を以下の数15として求める。 Similarly, the second calculation unit 12 compares the 20 calculated pitch angles α2 to obtain the maximum value α2 max and the minimum value α2 min , and further calculates the change amount Δα2 of the pitch angle α2 at this time. The following equation 15 is obtained.

上記図6に示すようにz軸回りの回転角度θzがθz=0°〜90°の範囲およびθz=270°から360°の範囲では、ピッチ角α1はほぼ一定の値+30°を示すので前記変化量Δα1は小さな値となるが、ピッチ角α2は正弦波で変化しているので前記変化量Δα2は大きな値となりやすい。したがって、この範囲では比Δα1/Δα2の値は通常1/3倍未満となる。   As shown in FIG. 6, when the rotation angle θz around the z-axis is in the range of θz = 0 ° to 90 ° and in the range of θz = 270 ° to 360 °, the pitch angle α1 shows a substantially constant value + 30 °. Although the change amount Δα1 is a small value, the change amount Δα2 tends to be a large value because the pitch angle α2 is changed by a sine wave. Therefore, in this range, the value of the ratio Δα1 / Δα2 is usually less than 1/3 times.

また前記z軸回りの回転角度θzがθz=90°〜270°の範囲では、ピッチ角α2はほぼ一定の値+30°を示すので前記変化量Δα2は小さな値となるが、ピッチ角α1は正弦波で変化するので前記変化量Δα1は大きな値となりやすい。したがって、この範囲では比Δα1/Δα2の値は通常3倍を超えるものとなる。   Further, when the rotation angle θz around the z-axis is in the range of θz = 90 ° to 270 °, the pitch angle α2 shows a substantially constant value + 30 °, so the change amount Δα2 is a small value, but the pitch angle α1 is a sine. Since the change is caused by the wave, the change amount Δα1 tends to be a large value. Therefore, in this range, the value of the ratio Δα1 / Δα2 usually exceeds three times.

一方、前記z軸回りの回転角度θzが0°(360°)付近ではピッチ角α1が正弦波の谷部付近に相当しほぼ一定の値を示すため、前記z軸回りの回転角度θzが180°付近ではピッチ角α2が正弦波の山部付近に相当しほぼ一定の値を示するため、ともにピッチ角α1,α2の変化量Δα1,Δα2は小さな値を示す。このため、z軸回りの回転角度θzが0°(360°)および180°付近では、前記比Δα1/Δα2は1/3<(Δα1/Δα2)<3の範囲となる。   On the other hand, when the rotation angle θz around the z-axis is around 0 ° (360 °), the pitch angle α1 corresponds to the vicinity of the valley of the sine wave and shows a substantially constant value, so the rotation angle θz around the z-axis is 180. In the vicinity of °, the pitch angle α2 corresponds to the vicinity of the peak portion of the sine wave and shows a substantially constant value. Therefore, the change amounts Δα1, Δα2 of the pitch angles α1, α2 are both small values. Therefore, the ratio Δα1 / Δα2 is in the range of 1/3 <(Δα1 / Δα2) <3 when the rotation angle θz around the z-axis is around 0 ° (360 °) and 180 °.

そこで、ST4では、ST3で求めた変化量Δα1と変化量Δα2からこれらの比Δα1/Δα2を求めるとともに、前記変化量の比Δα1/Δα2が1/3<(Δα1/Δα2)<3の範囲にあるか否かの判定を行うことにより、z軸回りの回転角度θzがθz=0°(360°)またはθz=180°付近に位置するか、それ以外に位置するかの大別を行う。   Therefore, in ST4, the ratio Δα1 / Δα2 is obtained from the variation Δα1 and the variation Δα2 obtained in ST3, and the variation ratio Δα1 / Δα2 is in the range of 1/3 <(Δα1 / Δα2) <3. By determining whether or not there is, it is roughly classified whether the rotation angle θz around the z-axis is located near θz = 0 ° (360 °), θz = 180 °, or other than that.

すなわち、ST4では「Yes」の場合、すなわち1/3<(Δα1/Δα2)<3の場合(変化量Δα1と変化量α2との間の変化率が小さい場合)にはz軸回りの回転角度θzはθz=0°(360°)またはθz=180°近付に位置すると判断される。また「No」の場合、すなわち1/3<(Δα1/Δα2)<3以外の場合(変化量Δα1と変化量Δα2との間の変化率が大きな場合)には、θz=0°(360°)またはθz=180°付近には位置しないと判断される。   That is, in the case of “Yes” in ST4, that is, in the case of 1/3 <(Δα1 / Δα2) <3 (when the change rate between the change amount Δα1 and the change amount α2 is small), the rotation angle around the z axis. It is determined that θz is positioned close to θz = 0 ° (360 °) or θz = 180 °. In the case of “No”, that is, when 1/3 <(Δα1 / Δα2) <3 (when the rate of change between the change amount Δα1 and the change amount Δα2 is large), θz = 0 ° (360 °) ) Or θz = 180 °.

このとき、後者の「No」の場合には、z軸回りの回転角度θzは、θz=0°(360°)またはθz=180°付近に位置せず、したがってピッチ角α1とα2のうち、一方のピッチ角αはほぼ一定の+30°にあり、他方のピッチ角は大きな変化を示すと判断することができる。   At this time, in the case of the latter “No”, the rotation angle θz around the z-axis is not located in the vicinity of θz = 0 ° (360 °) or θz = 180 °, and therefore, of the pitch angles α1 and α2, One pitch angle α is substantially constant at + 30 °, and it can be determined that the other pitch angle shows a large change.

このため、さらにST4−1においてはΔα1/Δα2と1との大小を比較する。このとき、Δα1/Δα2<1の場合(「Yes」の場合)には、ピッチ角α2が大きく変化し且つピッチ角α1はほぼ一定の値(+30°)を示していると判断することができる。よって、変化量の小さいα1を選択することにより適正なピッチ角(α1=+30°)を得ることが可能となる(ST4−1−1)。   Therefore, in ST4-1, Δα1 / Δα2 and 1 are compared in magnitude. At this time, if Δα1 / Δα2 <1 (in the case of “Yes”), it can be determined that the pitch angle α2 changes greatly and the pitch angle α1 shows a substantially constant value (+ 30 °). . Therefore, an appropriate pitch angle (α1 = + 30 °) can be obtained by selecting α1 having a small change amount (ST4-1-1).

また前記とは逆に、Δα1/Δα2>1の場合(「No」の場合)には、ピッチ角α1が大きく変化し且つピッチ角α2がほぼ一定の値(+30°)を示していると判断することができる。よって、この場合は、変化量の小さいα2を選択することにより適正なピッチ角(α2=+30°)を得ることが可能となる(ST4−1−2)。   Contrary to the above, when Δα1 / Δα2> 1 (in the case of “No”), it is determined that the pitch angle α1 changes greatly and the pitch angle α2 shows a substantially constant value (+ 30 °). can do. Therefore, in this case, it is possible to obtain an appropriate pitch angle (α2 = + 30 °) by selecting α2 having a small change amount (ST4-1-2).

(第3の工程の第2の処理)
一方、前者の場合、すなわち1/3<(Δα1/Δα2)<3の場合(ST4で「Yes」の場合)、つまりz軸回りの回転角度θzがθz=0°(360°)またはθz=180°付近に位置する場合には、これだけではピッチ角α1とα2のいずれが適正であるかを判断することはできないため、さらにST5以下の第2の処理が行われる。
(Second process of the third step)
On the other hand, in the former case, that is, 1/3 <(Δα1 / Δα2) <3 (in the case of “Yes” in ST4), that is, the rotation angle θz around the z axis is θz = 0 ° (360 °) or θz = When the position is near 180 °, it is not possible to determine which one of the pitch angles α1 and α2 is appropriate, so the second processing from ST5 is further performed.

図6に示すように、ピッチ角α1とピッチ角α2との差の絶対値|α1−α2|を求めてみると、前記絶対値|α1−α2|は前記z軸回りの回転角度θzがθz=90°とθz=270°のときに最小値(|α1−α2|≒0°)を示し、これらの角度から離れるにしたがって徐々に大きな値となり、θz=0°(360°)およびθz=180°のときに最大値(|α1−α2|≒80°)を示すことがわかる。   As shown in FIG. 6, when the absolute value | α1-α2 | of the difference between the pitch angle α1 and the pitch angle α2 is obtained, the absolute value | α1-α2 | is the rotation angle θz around the z-axis is θz. = 90 ° and θz = 270 °, the minimum value (| α1−α2 | ≈0 °) is shown, and gradually increases as the distance from these angles increases. Θz = 0 ° (360 °) and θz = It can be seen that the maximum value (| α1−α2 | ≈80 °) is shown at 180 °.

そこで、ST5では、前記絶対値|α1−α2|を求め、多少余裕を加えた例えば角度70°との大小の比較を行う。このとき前記絶対値が、|α1−α2|<70°の範囲にない場合(「No」の場合)、すなわち絶対値|α1−α2|が70°を超えた場合には、前記z軸回りの回転角度θzはθz=0°(360°)近傍かまたはθz=180°近傍に位置すること、すなわち前記変極点P1(東)または変極点P2(西)の近傍には位置しないことがわかる。   Therefore, in ST5, the absolute value | α1-α2 | is obtained, and the magnitude is compared with, for example, an angle of 70 ° with some margin. At this time, when the absolute value is not in the range of | α1-α2 | <70 ° (in the case of “No”), that is, when the absolute value | α1-α2 | It can be seen that the rotation angle θz is located near θz = 0 ° (360 °) or near θz = 180 °, that is, not located near the inflection point P1 (east) or inflection point P2 (west). .

したがって、ピッチ角αの2つの解の間で解の逆転は起こらなかった判断できるため、前回のピッチ角αが数10から算出されたピッチ角α1である場合には、今回も数10を用いて算出されるピッチ角α1とする。また前回のピッチ角αが数11から算出されたピッチ角α2である場合には、今回も数11を用いて算出されるピッチ角α2とする(ST5−1)。 Therefore, since it can be determined that no reversal of the solution has occurred between the two solutions of the pitch angle α, when the previous pitch angle α is the pitch angle α1 a calculated from the equation 10, the equation 10 is also obtained this time. It is assumed that the pitch angle α1 b is calculated using When the previous pitch angle α is the pitch angle α2 a calculated from the equation 11, the pitch angle α2 b calculated using the equation 11 is also used (ST5-1).

なお、ピッチ角α1とα1およびピッチ角α2とα2は、数10または数11によって算出される値としては前回の値と今回の値とでは異なるという意味である。 Note that the pitch angles α1 a and α1 b and the pitch angles α2 a and α2 b are different from the previous value and the current value in terms of the values calculated by Equation 10 or Equation 11.

(第3の工程の第3の処理)
一方、前記ST5での判定が「Yes」の場合、すなわち前記絶対値が|α1−α2|<70°の範囲にある場合には、以下の第3の処理が行われる。
(Third process of the third step)
On the other hand, if the determination in ST5 is “Yes”, that is, if the absolute value is in the range of | α1-α2 | <70 °, the following third process is performed.

前記絶対値が|α1−α2|<70°の範囲にある場合には、前記z軸回りの回転角度θzはθz=0°または180°近傍以外の位置、すなわち変極点P1またはP2の近傍に位置することがわかる。しかしながら、ピッチ角α1,α2のいずれが適正であるかは不明である。そこで、ST6以下の処理が行われる。   When the absolute value is in the range of | α1-α2 | <70 °, the rotation angle θz around the z axis is at a position other than θz = 0 ° or near 180 °, that is, near the inflection point P1 or P2. You can see that it is located. However, it is unclear which of pitch angles α1 and α2 is appropriate. Therefore, the process after ST6 is performed.

ST6では前回の計算に用いられたピッチ角α’を図示しないメモリ手段から呼び出し、ピッチ角α’が所定の角度にあるか否かで場合を分ける。すなわちST6では、前回の計算に用いられたピッチ角α’が60°<α’<120°または−60°<α’<−120°の範囲のあるか否か、あるいはその以外の範囲にあるかで分け、後者(「No」)の場合にはST7,ST8の処理を行ない、前者(「Yes」)の場合にはST9,ST10の処理を行う。   In ST6, the pitch angle α ′ used for the previous calculation is called from a memory means (not shown), and the case is divided depending on whether or not the pitch angle α ′ is at a predetermined angle. That is, in ST6, whether or not the pitch angle α ′ used in the previous calculation is in the range of 60 ° <α ′ <120 ° or −60 ° <α ′ <− 120 °, or is in the other range. In the latter case (“No”), the processes of ST7 and ST8 are performed, and in the former case (“Yes”), the processes of ST9 and ST10 are performed.

ST7およびST9の各処理では、電子コンパスの磁気データX,Y,Zの微分値X’,Y’,Z’が用いられる。   In each process of ST7 and ST9, differential values X ', Y', Z 'of magnetic data X, Y, Z of the electronic compass are used.

ここで、微分値X’,Y’,Z’とは、磁気データX,Y,Zを例えば20個分サンプリングし、現在と直前のデータとの差を出力の変化量(傾き)として扱ったものであり、全部で19個分の変化量の平均値を出力の微分値X’,Y’,Z’としたものである。例えば、磁気データXを構成する個々のデータをX1,X2,X3,・・・,X20とし、X2−X1=X’1、X3−X2=X’2、X4−X3=X’3、・・・・、X20−X19=X’19とおいた場合、微分値X’は以下の数16で示される。   Here, the differential values X ′, Y ′, and Z ′ are, for example, 20 samples of magnetic data X, Y, and Z, and the difference between the current data and the immediately preceding data is treated as an output change amount (slope). In other words, the average value of the change amounts corresponding to 19 values is used as the output differential values X ′, Y ′, and Z ′. For example, the individual data constituting the magnetic data X are X1, X2, X3,..., X20, and X2-X1 = X′1, X3-X2 = X′2, X4-X3 = X′3,. .., X20−X19 = X′19, the differential value X ′ is expressed by the following equation (16).

なお、微分値Y’,Z’についても同様である。 The same applies to the differential values Y ′ and Z ′.

ST7では、メモリに記憶されている直前の磁気データX、Yから微分値X’およびY’と、これらの比Y’/X’(ad)を算出し、ST8において前記直前の微分値の比Y’/X’(ad)と今回の微分値の比(Y’/X’)との積の符号の正負を調べる。   In ST7, the differential values X ′ and Y ′ and their ratio Y ′ / X ′ (ad) are calculated from the immediately preceding magnetic data X and Y stored in the memory, and the ratio of the immediately preceding differential value is calculated in ST8. The sign of the product of Y ′ / X ′ (ad) and the ratio of the current differential value (Y ′ / X ′) is examined.

図7に示すように、ピッチ角αがα=−30°におけるz軸回りの回転角度θzに対する微分値X’およびY’の符号は、0°≦θz<90°で示す第1の範囲L1ではX’は正、Y’は負を示し、90°≦θz<180°で示す第2の範囲L2ではX’およびY’は共に負を示し、180°≦θz<270°で示す第3の範囲L3ではX’は負、Y’は正を示し、270°≦θz<360°で示す第4の範囲L4ではX’およびY’は共に正を示す。よって、前記微分値の比Y’/X’の符号は、前記第1の範囲L1では負となり、前記第2の範囲L2では正となり、前記第3の範囲L3では負となり、前記第4の範囲L4では正となる。   As shown in FIG. 7, the signs of the differential values X ′ and Y ′ with respect to the rotation angle θz around the z axis when the pitch angle α is α = −30 ° are the first range L1 expressed by 0 ° ≦ θz <90 °. , X ′ is positive, Y ′ is negative, and in the second range L2 indicated by 90 ° ≦ θz <180 °, X ′ and Y ′ are both negative, and third is indicated by 180 ° ≦ θz <270 °. In the range L3, X ′ is negative and Y ′ is positive. In the fourth range L4 indicated by 270 ° ≦ θz <360 °, both X ′ and Y ′ are positive. Therefore, the sign of the differential value ratio Y ′ / X ′ is negative in the first range L1, positive in the second range L2, negative in the third range L3, and the fourth range. It becomes positive in the range L4.

上記の傾向はピッチ角αが、−90°<α<+90°の範囲のときに成立する。
一方、ピッチ角αが−90°>α且つα>+90°の範囲(90°<α<270°)における微分値の比Y’/X’の符号は、前記第1の範囲L1では正となり、前記第2の範囲L2では負となり、前記第3の範囲L3では正となり、前記第4の範囲L4では負となる。
The above tendency is established when the pitch angle α is in the range of −90 ° <α <+ 90 °.
On the other hand, the sign of the differential value ratio Y ′ / X ′ in the range where the pitch angle α is −90 °> α and α> + 90 ° (90 ° <α <270 °) is positive in the first range L1. The second range L2 is negative, the third range L3 is positive, and the fourth range L4 is negative.

そこで、z軸回りの回転角度θzを90°ごとに前記第1ないし第4の範囲L1ないしL4で示す4つの領域に分け、前回のピッチ角α’から今回のピッチ角αに移行したときに、積の符号の正負を調べることにより、z軸回りの回転角度θzに領域間移動があったか否かの検出を行うことができる。なお、ここでの領域間移動とは、例えばz軸回りの回転角度θzが、前回は第1の範囲L1に位置していたものが、今回は第2の範囲L2に移行したような場合をいう。   Therefore, the rotation angle θz around the z-axis is divided into four regions indicated by the first to fourth ranges L1 to L4 every 90 °, and when the previous pitch angle α ′ is shifted to the current pitch angle α. By examining the sign of the product, it is possible to detect whether or not there is a movement between regions at the rotation angle θz around the z axis. In addition, the movement between areas | regions here is the case where the rotation angle (theta) z around z-axis moved to the 2nd range L2 this time when it was located in the 1st range L1 last time, for example. Say.

例えば、ST8において前記直前の微分値の比Y’/X’(ad)と今回の微分値の比Y’/X’との積を求めたときに、前記積の符号が正の場合には、z軸回りの回転角度θzに領域間移動はなかったものと判断し、直前のピッチ角α’と同じ種類のピッチ角αを選択する処理を行う(ST8−1)。すなわち、前回のピッチ角α’が前記数10で算出したピッチ角α1である場合には、今回も前記数10を用いて算出したピッチ角α1(数値は異なる)とすることができ、また前回のピッチ角α’が数11で算出したピッチ角α2である場合には、今回も数11を用いて算出したピッチ角α2(数値は異なる)とすることができる。   For example, when the product of the immediately preceding differential value ratio Y ′ / X ′ (ad) and the current differential value ratio Y ′ / X ′ is obtained in ST8, the sign of the product is positive. Then, it is determined that there is no movement between regions at the rotation angle θz around the z axis, and a process of selecting the same type of pitch angle α as the previous pitch angle α ′ is performed (ST8-1). That is, when the previous pitch angle α ′ is the pitch angle α1 calculated by the formula 10, the pitch angle α1 calculated by using the formula 10 can also be set this time (the numerical value is different). Is the pitch angle α2 calculated using Equation 11, the pitch angle α2 calculated using Equation 11 (the numerical values are different) can be used.

一方、積の符号が負の場合には、z軸回りの回転角度θzに領域間移動が生じたものと判断し、直前のピッチ角α’とは異なる種類のピッチ角αを選択する処理を行う(ST8−2)。すなわち、前回のピッチ角α’が前記数10から算出されたピッチ角α1である場合には、今回は前記数11を用いて算出されるピッチ角α2を適正な値として選択する。あるいは前回のピッチ角α’が数11から算出されたピッチ角α2である場合には、今回は数10を用いて算出されるピッチ角α1を適正な値として選択する。   On the other hand, when the sign of the product is negative, it is determined that the movement between the regions has occurred at the rotation angle θz around the z axis, and processing for selecting a pitch angle α of a type different from the immediately preceding pitch angle α ′ is performed. (ST8-2). That is, when the previous pitch angle α ′ is the pitch angle α1 calculated from the equation 10, the pitch angle α2 calculated using the equation 11 is selected as an appropriate value this time. Alternatively, when the previous pitch angle α ′ is the pitch angle α2 calculated from Equation 11, the pitch angle α1 calculated using Equation 10 is selected as an appropriate value this time.

図9ないし図11は、ピッチ角α=90°(一定)、ロール角β=0°、伏角η=51°とした場合における図5ないし図7に対応するグラフである。すなわち図9は携帯端末1を前記絶対座標系のz軸回りに360°回転させたときの磁気データX,Y,Zとの関係を示し、図10は図9の磁気データX,Y,Zに基づいて算出したピッチ角α1,α2と、前記ピッチ角α1,α2から算出した方位角θα1,θα2との関係を示すグラフ、図11は図9の磁気データX,Y,Zの微分値X’,Y’,Z’〔mV/deg〕とz軸の回転角度θzとの関係を示すグラフである。 9 to 11 are graphs corresponding to FIGS. 5 to 7 when the pitch angle α = 90 ° (constant), the roll angle β = 0 °, and the depression angle η = 51 °. That is, FIG. 9 shows the relationship with the magnetic data X, Y, Z when the mobile terminal 1 is rotated 360 ° around the z axis of the absolute coordinate system, and FIG. 10 shows the magnetic data X, Y, Z of FIG. FIG. 11 is a graph showing the relationship between the pitch angles α1, α2 calculated based on azimuth and the azimuth angles θ α1 , θ α2 calculated from the pitch angles α1, α2, and FIG. 11 is a derivative of the magnetic data X, Y, Z in FIG. It is a graph which shows the relationship between value X ', Y', Z '[mV / deg] and rotation angle (theta) z of az axis.

図9に示すように、ピッチ角αがα=+90°(−90°も同様)の近傍では、磁気データYの変化は小さくなりほぼ一定となる。よって、図11に示すように、直前の微分値Y’は0となって直前の微分値の比Y’/X’も0となってしまうため、ピッチ角α=±90°の近傍では前記直前の微分値の比Y’/X’(ad)と今回の微分値の比Y’/X’との積の符号に基づく判定は不可能となる。   As shown in FIG. 9, when the pitch angle α is in the vicinity of α = + 90 ° (the same applies to −90 °), the change in the magnetic data Y becomes small and becomes almost constant. Therefore, as shown in FIG. 11, the immediately preceding differential value Y ′ becomes 0 and the immediately preceding differential value ratio Y ′ / X ′ also becomes 0. Therefore, in the vicinity of the pitch angle α = ± 90 °, Determination based on the sign of the product of the ratio Y ′ / X ′ (ad) of the immediately preceding differential value and the ratio Y ′ / X ′ of the current differential value becomes impossible.

そこで、ST6では前回のピッチ角α’が前記+60°<α’<+120°および−60°>α’>−120°の範囲、すなわち直前のピッチ角(姿勢角)α’が±90°を中心とする所定の範囲内にある場合には、微分値の比Y’/X’の代わりに微分値の比Z’/X’を利用することにより今回のピッチ角α1とα2の判別を可能としている。   Therefore, in ST6, the previous pitch angle α ′ is in the range of + 60 ° <α ′ <+ 120 ° and −60 °> α ′> − 120 °, that is, the previous pitch angle (posture angle) α ′ is ± 90 °. When it is within a predetermined range as the center, it is possible to distinguish the current pitch angle α1 and α2 by using the differential value ratio Z ′ / X ′ instead of the differential value ratio Y ′ / X ′. It is said.

すなわち、ST9では図示しないメモリ手段に記憶されている直前の磁気データXとZとから微分値X’,Z’および微分値の比Z’/X’(ad)を算出し、前記比Z’/X’(ad)を直前の微分値の比とする。ST10においては、前記直前の微分値の比Z’/X’(ad)と今回の微分値の比(Z’/X’)との積の符号の正負を、上記ST8と同様の手法により調べる。   That is, in ST9, the differential values X ′ and Z ′ and the differential value ratio Z ′ / X ′ (ad) are calculated from the immediately preceding magnetic data X and Z stored in the memory means (not shown), and the ratio Z ′. Let / X ′ (ad) be the ratio of the previous differential value. In ST10, the sign of the product of the immediately preceding differential value ratio Z ′ / X ′ (ad) and the current differential value ratio (Z ′ / X ′) is examined by the same method as in ST8. .

そして、このときの積の符号が正である場合には、前回と今回との間においてz軸回りの回転角度θzに領域間移動はないものと判断し、直前のピッチ角α’と同じ種類のピッチ角αを選択する処理を行う(ST10−1)。一方、積の符号が負の場合には、前回と今回との間においてz軸回りの回転角度θzに領域間移動が生じたものと判断し、直前のピッチ角α’とは異なるピッチ角αを選択する処理を行う(ST10−2)。これにより、上記同様に適正なピッチ角α1またはα2を選定することができる。   If the sign of the product at this time is positive, it is determined that there is no movement between regions in the rotation angle θz around the z axis between the previous time and the current time, and the same type as the previous pitch angle α ′ Is selected (ST10-1). On the other hand, when the sign of the product is negative, it is determined that the inter-region movement has occurred at the rotation angle θz around the z axis between the previous time and the current time, and the pitch angle α is different from the previous pitch angle α ′. Is selected (ST10-2). As a result, an appropriate pitch angle α1 or α2 can be selected as described above.

(第4の工程)
第4の工程では、第3の演算部13が、上記第3の工程の各処理において求められた適正なピッチ角α1またはα2を、上記数12または数13に代入することにより、正確な方位角θを算出する。
(Fourth process)
In the fourth step, the third calculation unit 13 substitutes the appropriate pitch angle α1 or α2 obtained in each process of the third step into the above Equation 12 or Equation 13, so that an accurate orientation is obtained. The angle θ is calculated.

上記の方法によって求めた方位角θは磁北(地磁気ベクトルの水平成分H’)と携帯端末のy’軸とが成す角度であるが、前記磁北と真北(地球の自転軸)との間には偏角Dが生じている。前記偏角Dは場所ごとに異なる値であるところ、日本の偏角のデータは国土地理院が所有しており、そのデータは3ヶ月に一度更新されている。   The azimuth angle θ obtained by the above method is an angle formed between magnetic north (the horizontal component H ′ of the geomagnetic vector) and the y ′ axis of the mobile terminal, but between the magnetic north and true north (the rotation axis of the earth). Has a declination D. The declination D has a different value for each location. The data on the declination in Japan is owned by the Geographical Survey Institute, and the data is updated once every three months.

前記電子コンパスを搭載した携帯電話機は、必ず中継局と通信を行う必要があことから、中継局の位置から携帯端末1が使用されている現在位置を割り出すことができる。あるいはGPSから現在位置を割り出すようにしてもよい。そして、上記伏角ηの場合同様に、伏角及び偏角取得手段20が、前記携帯電話システムの中継局、またはGPSを利用することにより、測定位置ごとに異なる偏角Dに関するデータを入手することが可能である。   Since the mobile phone equipped with the electronic compass must always communicate with the relay station, the current position where the mobile terminal 1 is used can be determined from the position of the relay station. Alternatively, the current position may be determined from the GPS. As in the case of the above-described dip angle η, the dip angle and declination obtaining unit 20 can obtain data on the declination D that differs for each measurement position by using the relay station of the mobile phone system or the GPS. Is possible.

(第5の工程)
第5の工程では、第4の演算部14が、上記第4の工程で算出した方位角θと、前記手法で入手した偏角Dとを用いて、以下の数17を計算することにより、真の方位角θ’が求められる。
(Fifth step)
In the fifth step, the fourth calculation unit 14 calculates the following Expression 17 using the azimuth angle θ calculated in the fourth step and the declination D obtained by the above method. A true azimuth angle θ ′ is determined.

上記実施の形態では、ロール角βを0°としてピッチ角αのみが生じている場合について説明したが、ピッチ角αが0°でありロール角βのみが生じている場合には、xyz直交座標系のx軸とy軸を入れ替え、さらにx’y’z’直交座標系のx’軸とy’軸を入れ替えるだけで同じような処理方法により方位角θを求めることが可能である。   In the above-described embodiment, the case where the roll angle β is 0 ° and only the pitch angle α is generated has been described. However, when the pitch angle α is 0 ° and only the roll angle β is generated, xyz orthogonal coordinates are generated. It is possible to obtain the azimuth angle θ by a similar processing method by simply exchanging the x axis and y axis of the system and further exchanging the x ′ axis and y ′ axis of the x′y′z ′ orthogonal coordinate system.

以上のように、本願発明では傾斜センサを用いなくとも姿勢角(ピッチ角αまたはロール角β)を求めることができるため、小型化・軽量化に優れた3軸型電子コンパスを提供することができる。   As described above, since the posture angle (pitch angle α or roll angle β) can be obtained without using an inclination sensor in the present invention, it is possible to provide a three-axis electronic compass excellent in miniaturization and weight reduction. it can.

また本願発明では姿勢角(ピッチ角αまたはロール角β)がどのような角度の範囲であっても、ピッチ角の2つの解の中から適正なピッチ角を常に選定することができるため、磁北に対する方位角θ、さらには真北に対する方位角θ’を高い精度で検出することができる。   Further, in the present invention, an appropriate pitch angle can always be selected from two solutions of the pitch angle regardless of the range of the posture angle (pitch angle α or roll angle β). It is possible to detect the azimuth angle θ with respect to and further the azimuth angle θ ′ with respect to true north with high accuracy.

しかも、方位角を求めるに際し、3軸型電子コンパスが搭載された携帯端末を360°回す必要がないため、前記携帯端末の操作性を向上させることができる。   In addition, when determining the azimuth angle, it is not necessary to turn the mobile terminal equipped with the three-axis electronic compass 360 °, so that the operability of the mobile terminal can be improved.

なお、上記実施の形態に示す3軸型電子コンパスでは、演算手段10が第1ないし第4の演算部11ないし14を有するものとして説明したが、第1ないし第4の演算部11ないし14が一つの演算手段10として形成されており、図示しない制御部からの指令を受けて各演算部における演算が行われるものであってもよい。   In the three-axis electronic compass shown in the above embodiment, the calculation means 10 has been described as having the first to fourth calculation units 11 to 14, but the first to fourth calculation units 11 to 14 are not included. The calculation unit 10 may be formed as one calculation unit 10 and may be operated by each calculation unit in response to a command from a control unit (not shown).

3軸型電子コンパスを搭載した携帯端末と方位角との関係を2次元的に示す平面図、A plan view two-dimensionally showing the relationship between a mobile terminal equipped with a three-axis electronic compass and an azimuth angle; 3軸型電子コンパスの構成を示すうブロック図、Block diagram showing the configuration of a 3-axis electronic compass, 傾斜補正の原理を3次元的に説明するための方位解析図、Orientation analysis diagram to explain the principle of tilt correction three-dimensionally, x軸回りにピッチ角αだけ傾斜させた状態を2次元的に示す携帯端末の側面図、A side view of the mobile terminal that two-dimensionally shows a state in which the pitch angle α is inclined around the x-axis; ピッチ角α=+30°(一定)の場合におけるz軸回りの回転角度と磁気データとの関係を示すグラフ、A graph showing the relationship between the rotation angle around the z axis and the magnetic data when the pitch angle α is + 30 ° (constant); 図5の場合におけるz軸回りの回転角度とピッチ角および方位角との関係を示すグラフ、FIG. 5 is a graph showing the relationship between the rotation angle around the z axis and the pitch angle and azimuth angle in the case of FIG. 図5の場合におけるz軸回りの回転角度と磁気データの微分値ととの関係を示すグラフ、FIG. 5 is a graph showing the relationship between the rotation angle around the z axis and the differential value of magnetic data in the case of FIG. 適正なピッチ角αを求める手法の主要部を示すフローチャート、A flowchart showing the main part of the method for obtaining an appropriate pitch angle α, ピッチ角α=90°(一定)の場合におけるz軸回りの回転角度と磁気データとの関係を示すグラフ、A graph showing the relationship between the rotation angle around the z-axis and magnetic data when the pitch angle α = 90 ° (constant); 図9の場合におけるz軸回りの回転角度とピッチ角および方位角との関係を示すグラフ、FIG. 9 is a graph showing the relationship between the rotation angle around the z axis and the pitch angle and azimuth angle in the case of FIG. 図9の場合におけるz軸回りの回転角度と磁気データの微分値ととの関係を示すグラフ、FIG. 9 is a graph showing the relationship between the rotation angle about the z axis and the differential value of magnetic data in the case of FIG. 9;

符号の説明Explanation of symbols

1 携帯端末(携帯電話機)
2 3軸型電子コンパス
3,4,5 磁気センサ(磁気検出手段)
10 演算手段
11 第1の演算部
12 第2の演算部
13 第3の演算部
14 第4の演算部
20 伏角及び偏角取得手段
D 偏角
H 地磁気ベクトル
H’ 地磁気ベクトルの水平成分
Hx 地磁気ベクトルHのx軸成分
Hy 地磁気ベクトルHのy軸成分
Hz 地磁気ベクトルHのz軸成分
P1,P2 変極点
x’,y’,z’ 携帯端末に固定された直交座標系(x’y’z’直交座標系)
x,y,z 直交座標系(x’y’平面が地平面、z’軸が鉛直方向となる時の携帯端末に固定された座標系)
X,Y,Z 磁気データ(磁気センサの出力)
α 携帯端末の実際のピッチ角(姿勢角)
α1,α2 計算上のピッチ角(姿勢角)
β ロール角(姿勢角)
η 伏角
θ 磁北に対する方位角
θ’ 真北に対する方位角
1 Mobile terminal (mobile phone)
2 3-axis electronic compass 3, 4, 5 Magnetic sensor (magnetic detection means)
DESCRIPTION OF SYMBOLS 10 Calculation means 11 1st calculation part 12 2nd calculation part 13 3rd calculation part 14 4th calculation part 20 Declination and declination acquisition means D Declination H Geomagnetic vector H 'Horizontal component Hx of geomagnetic vector Geomagnetic vector X-axis component Hy of H y-axis component Hz of the geomagnetic vector H z-axis components P1, P2 of the geomagnetic vector H Inflection points x ′, y ′, z ′ An orthogonal coordinate system (x′y′z ′) fixed to the mobile terminal Cartesian coordinate system)
x, y, z Cartesian coordinate system (coordinate system fixed to the portable terminal when the x′y ′ plane is the ground plane and the z ′ axis is the vertical direction)
X, Y, Z Magnetic data (magnetic sensor output)
α Actual pitch angle (posture angle) of mobile devices
α1, α2 Calculation pitch angle (posture angle)
β Roll angle (Attitude angle)
η Depression angle θ Azimuth angle to magnetic north θ ′ Azimuth angle to true north

Claims (13)

互いに直交する3つの軸からなる直交座標系を備え、前記いずれかの軸と真北との間に形成される方位角の算出を行う3軸型電子コンパスであって、
任意の測定位置における地磁気ベクトルを3軸方向の成分からなる磁気データとして検出する磁気検出手段と、前記測定位置における地磁気ベクトルの伏角及び偏角を取得する手段と、
前記磁気データと前記伏角とを用いて前記3つの軸から選択した2軸によって形成される傾斜平面と地平面との間に形成される姿勢角の解を所定の計算式から算出する第1の演算部と、
前記第1の演算部で得られた姿勢角の解に2つの候補がある場合に、時系列に沿って算出される姿勢角の変化量から適正な姿勢角が選定される第1の処理と、直前に算出された方位角とこのとき用いられた姿勢角とを参照して適正な姿勢角が選定される第2の処理と、前記直前に算出された方位角とこのとき用いられた姿勢角の微分値の比から適正な姿勢角が選定される第3の処理とから適正な1つの姿勢角を選定する第2の演算部と、
前記第2の演算部で選定した姿勢角と前記磁気データとから磁北に対する方位角を算出する第3の演算部と、
前記方位角から偏角を除去することにより真北に対する方位角を算出する第4の演算部と、を有すること特徴とする3軸型電子コンパス。
A three-axis electronic compass having an orthogonal coordinate system composed of three axes orthogonal to each other and calculating an azimuth angle formed between any of the axes and true north,
Magnetic detection means for detecting a geomagnetic vector at an arbitrary measurement position as magnetic data composed of components in three axial directions; means for acquiring the dip and declination of the geomagnetic vector at the measurement position;
A first calculation method for calculating a solution of a posture angle formed between an inclined plane formed by two axes selected from the three axes using the magnetic data and the dip angle and a ground plane from a predetermined calculation formula An arithmetic unit;
A first process in which an appropriate posture angle is selected from the amount of change in posture angle calculated in time series when there are two candidates for the posture angle solution obtained by the first calculation unit; A second process in which an appropriate attitude angle is selected with reference to the azimuth angle calculated immediately before and the attitude angle used at this time, and the azimuth angle calculated immediately before and the attitude used at this time A second calculation unit that selects one appropriate posture angle from the third process in which an appropriate posture angle is selected from the ratio of the differential values of the angles;
A third computing unit that calculates an azimuth angle with respect to magnetic north from the attitude angle selected by the second computing unit and the magnetic data;
A three-axis electronic compass comprising: a fourth arithmetic unit that calculates an azimuth angle with respect to true north by removing a declination from the azimuth angle.
前記傾斜平面を形成する2軸のいずれか一方の軸が、前記地平面に対して平行とされている請求項1記載の3軸型電子コンパス。   The triaxial electronic compass according to claim 1, wherein any one of the two axes forming the inclined plane is parallel to the ground plane. 前記伏角及び偏角を取得する手段が、当該使用地域の中継局を介して入手されるものである請求項1記載の3軸型電子コンパス。   The three-axis electronic compass according to claim 1, wherein the means for obtaining the dip angle and the declination angle is obtained via a relay station in the area of use. 前記第1ないし第4の演算部が一つの演算手段で形成されており、制御部からの指令を受けて各演算部における演算が行われる請求項1記載の3軸型電子コンパス。   The three-axis electronic compass according to claim 1, wherein the first to fourth calculation units are formed by a single calculation unit, and a calculation is performed in each calculation unit in response to a command from the control unit. 前記第1の処理は、直前の姿勢角の変化量と今回の姿勢角の変化量を算出し、前記直前の姿勢角の変化量と今回の姿勢角の変化量との比が所定の範囲外である場合に、前記2つの解の候補のうち変化量の少ない方を適正な姿勢角として選定するものである請求項1記載の3軸型電子コンパス。   The first process calculates a change amount of the immediately previous posture angle and a change amount of the current posture angle, and a ratio between the change amount of the previous posture angle and the change amount of the current posture angle is out of a predetermined range. 2. The three-axis electronic compass according to claim 1, wherein one of the two solution candidates having a smaller amount of change is selected as an appropriate posture angle. 前記第2の処理は、前記第1の処理における比が所定の範囲内にある場合に、前記直前の姿勢角と今回の姿勢角との差の絶対値を算出し、前記絶対値が所定の範囲を超える場合に、前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択するものである請求項1記載の3軸型電子コンパス。   The second process calculates an absolute value of a difference between the immediately previous attitude angle and the current attitude angle when the ratio in the first process is within a predetermined range, and the absolute value is a predetermined value. The three-axis electronic compass according to claim 1, wherein a value obtained from the same calculation formula as the posture angle used last time is selected as the posture angle when the range is exceeded. 前記第3の処理は、前記第2の処理における絶対値が所定の範囲内の場合に、前記直前の姿勢角が±90°を中心とする所定の範囲内であるか否かを判定し、前記範囲外である場合には、前記選択した2軸に対応する磁気データから算出される直前の微分値の比の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を有するものである請求項1記載の3軸型電子コンパス。   The third process determines whether or not the immediately preceding posture angle is within a predetermined range centered on ± 90 ° when the absolute value in the second process is within a predetermined range; If it is out of the range, the sign of the ratio of the immediately preceding differential value calculated from the magnetic data corresponding to the selected two axes is checked. If the sign is positive, the attitude angle used last time and A value obtained from the same calculation formula is selected as the posture angle, and when the sign is negative, a value obtained from a calculation formula different from the calculation formula used to calculate the posture angle used last time is selected as the posture angle. The three-axis electronic compass according to claim 1, wherein 前記第3の処理が、直前の姿勢角が±90°を中心とする所定の範囲内である場合に、前記選択した2軸に対応する磁気データのうちの一方の磁気データと、選択されなかった他の軸に対応する磁気データとから算出される直前の微分値の比の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を備えたものである請求項7記載の3軸型電子コンパス。   In the third process, when the immediately previous posture angle is within a predetermined range centered on ± 90 °, one of the magnetic data corresponding to the selected two axes is not selected. Check the sign of the ratio of the previous differential value calculated from the magnetic data corresponding to the other axis, and if the sign is positive, use the posture calculated by the same formula as the posture angle used last time. 8. The method according to claim 7, further comprising a process of selecting a value obtained from a calculation formula different from a calculation formula used to calculate a posture angle used last time as a posture angle when the angle is selected and the sign is negative. 3-axis electronic compass. 互いに直交する3つの軸からなる直交座標系を備え、前記いずれかの軸と真北との間に形成される方位角の算出を行う3軸型電子コンパスを用いた方位算出方法であって、
任意の測定位置における地磁気ベクトルを3軸方向の成分からなる磁気データとして検出する工程と、
前記測定位置における地磁気ベクトルの伏角及び偏角を入手するとともに、
前記磁気データと前記伏角とを用いて前記3つの軸から選択した2軸によって形成される傾斜平面と地平面との間に形成される姿勢角の解を所定の計算式から算出する工程と、
前記の工程で得られた姿勢角の解に2つの候補がある場合に、時系列に沿って算出される姿勢角の変化量から適正な姿勢角が選定される第1の処理と、直前に算出された方位角とこのとき用いられた姿勢角とを参照して適正な姿勢角が選定される第2の処理と、前記直前に算出された方位角とこのとき用いられた姿勢角の微分値の比から適正な姿勢角が選定される第3の処理とから適正な1つの姿勢角を選定する工程と、
前記の工程で選定した姿勢角と前記磁気データとから磁北に対する方位角を算出する工程と、
前記方位角から偏角を除去することにより真北に対する方位角を算出する工程と、を有すること特徴とする3軸型電子コンパスを用いた方位算出方法。
An azimuth calculation method using a three-axis electronic compass that includes an orthogonal coordinate system including three axes orthogonal to each other and calculates an azimuth angle formed between any one of the axes and true north,
Detecting a geomagnetic vector at an arbitrary measurement position as magnetic data comprising components in three axial directions;
Obtaining the dip and declination of the geomagnetic vector at the measurement position;
Calculating a solution of a posture angle formed between an inclined plane formed by two axes selected from the three axes using the magnetic data and the dip angle and a ground plane from a predetermined calculation formula;
When there are two candidates for the posture angle solution obtained in the above step, the first process in which an appropriate posture angle is selected from the amount of change in posture angle calculated along the time series, and immediately before Second processing for selecting an appropriate posture angle with reference to the calculated azimuth angle and the posture angle used at this time, and the azimuth angle calculated immediately before and the differentiation of the posture angle used at this time A step of selecting one appropriate posture angle from the third process in which an appropriate posture angle is selected from the ratio of the values;
A step of calculating an azimuth angle with respect to magnetic north from the attitude angle selected in the step and the magnetic data;
And a step of calculating an azimuth angle with respect to true north by removing a declination from the azimuth angle, and an azimuth calculation method using a three-axis electronic compass.
前記第1の処理は、直前の姿勢角の変化量と今回の姿勢角の変化量を算出し、前記直前の姿勢角の変化量と今回の姿勢角の変化量との比が所定の範囲外である場合に、前記2つの解の候補のうち変化量の少ない方を適正な姿勢角として選定するものである請求項9記載の3軸型電子コンパスを用いた方位算出方法。   The first process calculates a change amount of the immediately previous posture angle and a change amount of the current posture angle, and a ratio between the change amount of the previous posture angle and the change amount of the current posture angle is out of a predetermined range. 10. The direction calculation method using a three-axis electronic compass according to claim 9, wherein the one with the smaller amount of change among the two solution candidates is selected as an appropriate posture angle. 前記第2の処理は、前記第1の処理における比が所定の範囲内にある場合に、前記直前の姿勢角と今回の姿勢角との差の絶対値を算出し、前記絶対値が所定の範囲を超える場合に、前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択するものである請求項9記載の3軸型電子コンパスを用いた方位算出方法。   The second process calculates an absolute value of a difference between the immediately previous attitude angle and the current attitude angle when the ratio in the first process is within a predetermined range, and the absolute value is a predetermined value. The direction calculation method using a three-axis electronic compass according to claim 9, wherein, when the range is exceeded, a value obtained from the same calculation formula as the posture angle used last time is selected as the posture angle. 前記第3の処理は、前記第2の処理における絶対値が所定の範囲内の場合に、前記直前の姿勢角が±90°を中心とする所定の範囲内であるか否かを判定し、前記範囲外である場合には、前記選択した2軸に対応する磁気データから算出される直前の微分値の比の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を有するものである請求項9記載の3軸型電子コンパスを用いた方位算出方法。   The third process determines whether or not the immediately preceding posture angle is within a predetermined range centered on ± 90 ° when the absolute value in the second process is within a predetermined range; If it is out of the range, the sign of the ratio of the immediately preceding differential value calculated from the magnetic data corresponding to the selected two axes is checked. If the sign is positive, the attitude angle used last time and A value obtained from the same calculation formula is selected as the posture angle, and when the sign is negative, a value obtained from a calculation formula different from the calculation formula used to calculate the posture angle used last time is selected as the posture angle. The azimuth calculation method using the three-axis electronic compass according to claim 9. 前記第3の処理が、直前の姿勢角が±90°を中心とする所定の範囲内である場合に、前記選択した2軸に対応する磁気データのうちの一方の磁気データと、選択されなかった他の軸に対応する磁気データとから算出される直前の微分値の比の符号の正負を調べ、前記符号が正の場合には前回使用した姿勢角と同じ計算式から得られる値を姿勢角として選択し、前記符号が負の場合には前回使用した姿勢角を算出した計算式とは異なる計算式から得られる値を姿勢角として選択する処理を備えたものである請求項12記載の3軸型電子コンパスを用いた方位算出方法。   In the third process, when the immediately previous posture angle is within a predetermined range centered on ± 90 °, one of the magnetic data corresponding to the selected two axes is not selected. Check the sign of the ratio of the previous differential value calculated from the magnetic data corresponding to the other axis, and if the sign is positive, use the posture calculated by the same formula as the posture angle used last time. 13. The method according to claim 12, further comprising a process of selecting a value obtained from a calculation formula different from a calculation formula used to calculate a posture angle used last time as a posture angle when the sign is negative and the sign is negative. A direction calculation method using a three-axis electronic compass.
JP2004303148A 2004-10-18 2004-10-18 Triaxial type electronic compass, and azimuth detecting method using same Withdrawn JP2006113019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303148A JP2006113019A (en) 2004-10-18 2004-10-18 Triaxial type electronic compass, and azimuth detecting method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303148A JP2006113019A (en) 2004-10-18 2004-10-18 Triaxial type electronic compass, and azimuth detecting method using same

Publications (1)

Publication Number Publication Date
JP2006113019A true JP2006113019A (en) 2006-04-27

Family

ID=36381634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303148A Withdrawn JP2006113019A (en) 2004-10-18 2004-10-18 Triaxial type electronic compass, and azimuth detecting method using same

Country Status (1)

Country Link
JP (1) JP2006113019A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115041A1 (en) * 2005-04-25 2006-11-02 Alps Electric Co., Ltd. Inclination sensor and direction finding device using the same
JP2010038743A (en) * 2008-08-06 2010-02-18 Aichi Micro Intelligent Corp Electronic compass
US7716008B2 (en) 2007-01-19 2010-05-11 Nintendo Co., Ltd. Acceleration data processing program, and storage medium, and acceleration data processing apparatus for use with the same
US7774155B2 (en) 2006-03-10 2010-08-10 Nintendo Co., Ltd. Accelerometer-based controller
US7786976B2 (en) 2006-03-09 2010-08-31 Nintendo Co., Ltd. Coordinate calculating apparatus and coordinate calculating program
US7877224B2 (en) 2006-03-28 2011-01-25 Nintendo Co, Ltd. Inclination calculation apparatus and inclination calculation program, and game apparatus and game program
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US7931535B2 (en) 2005-08-22 2011-04-26 Nintendo Co., Ltd. Game operating device
US7942745B2 (en) 2005-08-22 2011-05-17 Nintendo Co., Ltd. Game operating device
US8072424B2 (en) 2004-04-30 2011-12-06 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8089458B2 (en) 2000-02-22 2012-01-03 Creative Kingdoms, Llc Toy devices and methods for providing an interactive play experience
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
JP2012112859A (en) * 2010-11-26 2012-06-14 Aichi Micro Intelligent Corp Electronic compass
US8267786B2 (en) 2005-08-24 2012-09-18 Nintendo Co., Ltd. Game controller and game system
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8409003B2 (en) 2005-08-24 2013-04-02 Nintendo Co., Ltd. Game controller and game system
US8475275B2 (en) 2000-02-22 2013-07-02 Creative Kingdoms, Llc Interactive toys and games connecting physical and virtual play environments
US8608535B2 (en) 2002-04-05 2013-12-17 Mq Gaming, Llc Systems and methods for providing an interactive game
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8702515B2 (en) 2002-04-05 2014-04-22 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US8708821B2 (en) 2000-02-22 2014-04-29 Creative Kingdoms, Llc Systems and methods for providing interactive game play
US8753165B2 (en) 2000-10-20 2014-06-17 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8758136B2 (en) 1999-02-26 2014-06-24 Mq Gaming, Llc Multi-platform gaming systems and methods
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758136B2 (en) 1999-02-26 2014-06-24 Mq Gaming, Llc Multi-platform gaming systems and methods
US10300374B2 (en) 1999-02-26 2019-05-28 Mq Gaming, Llc Multi-platform gaming systems and methods
US9861887B1 (en) 1999-02-26 2018-01-09 Mq Gaming, Llc Multi-platform gaming systems and methods
US9731194B2 (en) 1999-02-26 2017-08-15 Mq Gaming, Llc Multi-platform gaming systems and methods
US9468854B2 (en) 1999-02-26 2016-10-18 Mq Gaming, Llc Multi-platform gaming systems and methods
US9186585B2 (en) 1999-02-26 2015-11-17 Mq Gaming, Llc Multi-platform gaming systems and methods
US8888576B2 (en) 1999-02-26 2014-11-18 Mq Gaming, Llc Multi-media interactive play system
US9814973B2 (en) 2000-02-22 2017-11-14 Mq Gaming, Llc Interactive entertainment system
US9713766B2 (en) 2000-02-22 2017-07-25 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9149717B2 (en) 2000-02-22 2015-10-06 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US8915785B2 (en) 2000-02-22 2014-12-23 Creative Kingdoms, Llc Interactive entertainment system
US9474962B2 (en) 2000-02-22 2016-10-25 Mq Gaming, Llc Interactive entertainment system
US8089458B2 (en) 2000-02-22 2012-01-03 Creative Kingdoms, Llc Toy devices and methods for providing an interactive play experience
US8814688B2 (en) 2000-02-22 2014-08-26 Creative Kingdoms, Llc Customizable toy for playing a wireless interactive game having both physical and virtual elements
US8164567B1 (en) 2000-02-22 2012-04-24 Creative Kingdoms, Llc Motion-sensitive game controller with optional display screen
US8169406B2 (en) 2000-02-22 2012-05-01 Creative Kingdoms, Llc Motion-sensitive wand controller for a game
US8184097B1 (en) 2000-02-22 2012-05-22 Creative Kingdoms, Llc Interactive gaming system and method using motion-sensitive input device
US10307671B2 (en) 2000-02-22 2019-06-04 Mq Gaming, Llc Interactive entertainment system
US8790180B2 (en) 2000-02-22 2014-07-29 Creative Kingdoms, Llc Interactive game and associated wireless toy
US8708821B2 (en) 2000-02-22 2014-04-29 Creative Kingdoms, Llc Systems and methods for providing interactive game play
US10188953B2 (en) 2000-02-22 2019-01-29 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US9579568B2 (en) 2000-02-22 2017-02-28 Mq Gaming, Llc Dual-range wireless interactive entertainment device
US8368648B2 (en) 2000-02-22 2013-02-05 Creative Kingdoms, Llc Portable interactive toy with radio frequency tracking device
US8686579B2 (en) 2000-02-22 2014-04-01 Creative Kingdoms, Llc Dual-range wireless controller
US8491389B2 (en) 2000-02-22 2013-07-23 Creative Kingdoms, Llc. Motion-sensitive input device and interactive gaming system
US8475275B2 (en) 2000-02-22 2013-07-02 Creative Kingdoms, Llc Interactive toys and games connecting physical and virtual play environments
US9480929B2 (en) 2000-10-20 2016-11-01 Mq Gaming, Llc Toy incorporating RFID tag
US10307683B2 (en) 2000-10-20 2019-06-04 Mq Gaming, Llc Toy incorporating RFID tag
US9931578B2 (en) 2000-10-20 2018-04-03 Mq Gaming, Llc Toy incorporating RFID tag
US9320976B2 (en) 2000-10-20 2016-04-26 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8961260B2 (en) 2000-10-20 2015-02-24 Mq Gaming, Llc Toy incorporating RFID tracking device
US8753165B2 (en) 2000-10-20 2014-06-17 Mq Gaming, Llc Wireless toy systems and methods for interactive entertainment
US8248367B1 (en) 2001-02-22 2012-08-21 Creative Kingdoms, Llc Wireless gaming system combining both physical and virtual play elements
US9393491B2 (en) 2001-02-22 2016-07-19 Mq Gaming, Llc Wireless entertainment device, system, and method
US8711094B2 (en) 2001-02-22 2014-04-29 Creative Kingdoms, Llc Portable gaming device and gaming system combining both physical and virtual play elements
US10179283B2 (en) 2001-02-22 2019-01-15 Mq Gaming, Llc Wireless entertainment device, system, and method
US9162148B2 (en) 2001-02-22 2015-10-20 Mq Gaming, Llc Wireless entertainment device, system, and method
US10758818B2 (en) 2001-02-22 2020-09-01 Mq Gaming, Llc Wireless entertainment device, system, and method
US8913011B2 (en) 2001-02-22 2014-12-16 Creative Kingdoms, Llc Wireless entertainment device, system, and method
US9737797B2 (en) 2001-02-22 2017-08-22 Mq Gaming, Llc Wireless entertainment device, system, and method
US8384668B2 (en) 2001-02-22 2013-02-26 Creative Kingdoms, Llc Portable gaming device and gaming system combining both physical and virtual play elements
US9616334B2 (en) 2002-04-05 2017-04-11 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US10507387B2 (en) 2002-04-05 2019-12-17 Mq Gaming, Llc System and method for playing an interactive game
US9463380B2 (en) 2002-04-05 2016-10-11 Mq Gaming, Llc System and method for playing an interactive game
US8827810B2 (en) 2002-04-05 2014-09-09 Mq Gaming, Llc Methods for providing interactive entertainment
US10478719B2 (en) 2002-04-05 2019-11-19 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US8702515B2 (en) 2002-04-05 2014-04-22 Mq Gaming, Llc Multi-platform gaming system using RFID-tagged toys
US8608535B2 (en) 2002-04-05 2013-12-17 Mq Gaming, Llc Systems and methods for providing an interactive game
US9272206B2 (en) 2002-04-05 2016-03-01 Mq Gaming, Llc System and method for playing an interactive game
US10010790B2 (en) 2002-04-05 2018-07-03 Mq Gaming, Llc System and method for playing an interactive game
US11278796B2 (en) 2002-04-05 2022-03-22 Mq Gaming, Llc Methods and systems for providing personalized interactive entertainment
US8373659B2 (en) 2003-03-25 2013-02-12 Creative Kingdoms, Llc Wirelessly-powered toy for gaming
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US9039533B2 (en) 2003-03-25 2015-05-26 Creative Kingdoms, Llc Wireless interactive game having both physical and virtual elements
US9993724B2 (en) 2003-03-25 2018-06-12 Mq Gaming, Llc Interactive gaming toy
US8961312B2 (en) 2003-03-25 2015-02-24 Creative Kingdoms, Llc Motion-sensitive controller and associated gaming applications
US10022624B2 (en) 2003-03-25 2018-07-17 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9770652B2 (en) 2003-03-25 2017-09-26 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US11052309B2 (en) 2003-03-25 2021-07-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9707478B2 (en) 2003-03-25 2017-07-18 Mq Gaming, Llc Motion-sensitive controller and associated gaming applications
US10369463B2 (en) 2003-03-25 2019-08-06 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US10583357B2 (en) 2003-03-25 2020-03-10 Mq Gaming, Llc Interactive gaming toy
US9393500B2 (en) 2003-03-25 2016-07-19 Mq Gaming, Llc Wireless interactive game having both physical and virtual elements
US9298282B2 (en) 2004-04-30 2016-03-29 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US8072424B2 (en) 2004-04-30 2011-12-06 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods
US9575570B2 (en) 2004-04-30 2017-02-21 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US9261978B2 (en) 2004-04-30 2016-02-16 Hillcrest Laboratories, Inc. 3D pointing devices and methods
US8937594B2 (en) 2004-04-30 2015-01-20 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US11157091B2 (en) 2004-04-30 2021-10-26 Idhl Holdings, Inc. 3D pointing devices and methods
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9675878B2 (en) 2004-09-29 2017-06-13 Mq Gaming, Llc System and method for playing a virtual game by sensing physical movements
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US11154776B2 (en) 2004-11-23 2021-10-26 Idhl Holdings, Inc. Semantic gaming and application transformation
US8907889B2 (en) 2005-01-12 2014-12-09 Thinkoptics, Inc. Handheld vision based absolute pointing system
WO2006115041A1 (en) * 2005-04-25 2006-11-02 Alps Electric Co., Ltd. Inclination sensor and direction finding device using the same
US7377046B2 (en) 2005-04-25 2008-05-27 Alps Electric Co., Ltd. Inclination sensor and azimuth measuring apparatus using inclination sensor
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US7942745B2 (en) 2005-08-22 2011-05-17 Nintendo Co., Ltd. Game operating device
US7931535B2 (en) 2005-08-22 2011-04-26 Nintendo Co., Ltd. Game operating device
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
US8267786B2 (en) 2005-08-24 2012-09-18 Nintendo Co., Ltd. Game controller and game system
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US8409003B2 (en) 2005-08-24 2013-04-02 Nintendo Co., Ltd. Game controller and game system
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
US8708824B2 (en) 2005-09-12 2014-04-29 Nintendo Co., Ltd. Information processing program
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8430753B2 (en) 2005-09-15 2013-04-30 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US7786976B2 (en) 2006-03-09 2010-08-31 Nintendo Co., Ltd. Coordinate calculating apparatus and coordinate calculating program
US7774155B2 (en) 2006-03-10 2010-08-10 Nintendo Co., Ltd. Accelerometer-based controller
US7877224B2 (en) 2006-03-28 2011-01-25 Nintendo Co, Ltd. Inclination calculation apparatus and inclination calculation program, and game apparatus and game program
US8041536B2 (en) 2006-03-28 2011-10-18 Nintendo Co., Ltd. Inclination calculation apparatus and inclination calculation program, and game apparatus and game program
US8473245B2 (en) 2006-03-28 2013-06-25 Nintendo Co., Ltd. Inclination calculation apparatus and inclination calculation program, and game apparatus and game program
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US7716008B2 (en) 2007-01-19 2010-05-11 Nintendo Co., Ltd. Acceleration data processing program, and storage medium, and acceleration data processing apparatus for use with the same
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
JP2010038743A (en) * 2008-08-06 2010-02-18 Aichi Micro Intelligent Corp Electronic compass
JP2012112859A (en) * 2010-11-26 2012-06-14 Aichi Micro Intelligent Corp Electronic compass

Similar Documents

Publication Publication Date Title
JP2006113019A (en) Triaxial type electronic compass, and azimuth detecting method using same
JP4252555B2 (en) Tilt sensor and azimuth measuring device using the same
US7119533B2 (en) Method, system and device for calibrating a magnetic field sensor
US6536123B2 (en) Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
JP5017539B1 (en) Applied equipment for measuring and using geomagnetism
JP4118297B2 (en) Tilt compensation method and apparatus using biaxial geomagnetic sensor and acceleration sensor
WO2006088057A1 (en) Bearing measuring instrument
JP4590511B2 (en) Electronic compass
Cho et al. A calibration technique for a two‐axis magnetic compass in telematics devices
JP2010078376A (en) Bearing detection method and apparatus and travel history calculation method and apparatus
JP2017166895A (en) Electronic apparatus, sensor calibration method, and sensor calibration program
JP5375394B2 (en) Magnetic data processing apparatus, magnetic data processing method, and magnetic data processing program
JP4448957B2 (en) Magnetic measuring device and magnetic measuring method
US11079224B2 (en) Offset derivation device, offset calculation device, and azimuth sensor
JP2006337333A (en) Triaxial electronic compass, and azimuth detecting method using the same
JP2005195376A (en) Azimuth measuring method, and azimuth measuring instrument
JP5475873B2 (en) Geomagnetic detector
JP5374422B2 (en) Magnetic field detector
WO2016114027A1 (en) Offset detection device and azimuth angle sensor
JP2006337057A (en) Azimuth-angle measuring instrument and azimuth-angle measuring method
JP2006133154A (en) Geomagnetic sensor and mobile body display device provided with the geomagnetic sensor
CN109716064B (en) Electronic compass
KR100674194B1 (en) Method of controlling magnetic sensor, control device therefor, and portable terminal
JP4955115B2 (en) Azimuth measuring apparatus and azimuth measuring method
JP2007163389A (en) Direction sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108