JP2006112888A - Analyzing filter - Google Patents

Analyzing filter Download PDF

Info

Publication number
JP2006112888A
JP2006112888A JP2004299692A JP2004299692A JP2006112888A JP 2006112888 A JP2006112888 A JP 2006112888A JP 2004299692 A JP2004299692 A JP 2004299692A JP 2004299692 A JP2004299692 A JP 2004299692A JP 2006112888 A JP2006112888 A JP 2006112888A
Authority
JP
Japan
Prior art keywords
filter
base
coating film
metal coating
filter base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299692A
Other languages
Japanese (ja)
Inventor
Katsuji Ichikawa
勝治 市川
Yoshio Nakagawa
宣雄 中川
Mitsuhiko Oguchi
光彦 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2004299692A priority Critical patent/JP2006112888A/en
Priority to US11/250,321 priority patent/US20060081527A1/en
Publication of JP2006112888A publication Critical patent/JP2006112888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/08Special characteristics of binders
    • B01D2239/086Binders between particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size

Abstract

<P>PROBLEM TO BE SOLVED: To remove obstruction from the viewpoint of the specification of the element of particulates to be originally measured, such that the element of the base member of a filter ends up to measuring other than the particulates, when the elemental analysis of the particulates captured by the filter are conducted by X-ray analyzer. <P>SOLUTION: This analyzing filter 1 has a filter base 2 comprising a resin, having a large number of filter pores 3 with a pore size of 100-1,000 nm and a metal coating film 4, formed by applying gold (Au) on the surface of one side of the filter base 2 by ion sputtering. The thickness of the metal coated film 4 is desirably set to a degree that does not permit the electron beam of the X-ray analyzer to pierce and that does not close the filter pores 3 and is preferably set to 40-100 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はX線分析装置に用いる分析用フィルタに係り、特に部品を洗浄した洗浄水から微粒子を捕捉する分析用フィルタに関する。   The present invention relates to an analysis filter used in an X-ray analysis apparatus, and more particularly to an analysis filter that captures fine particles from cleaning water that has cleaned parts.

磁気ディスク装置等の電子装置には、加工部品が組み込まれている。加工部品には、加工の際に微細な粒子が付着しているので、洗浄した後で装置に組み込まれる。部品に付着した微粒子が、装置に取り込まれた場合の影響を調べるために、X線分析装置にて微粒子の元素分析を行う必要がある。そのために部品を洗浄し、洗浄水からフィルタにより微粒子を捕捉している。フィルタは樹脂、ガラス、焼結金属等の単一材料からなるフィルタベースに、微細なろ過穴が開けられたものである。   An electronic device such as a magnetic disk device incorporates a processed part. Since fine particles adhere to the processed parts during processing, they are assembled into the apparatus after being cleaned. In order to examine the influence of the fine particles adhering to the parts when taken into the apparatus, it is necessary to perform elemental analysis of the fine particles with an X-ray analyzer. For this purpose, the parts are washed, and fine particles are captured from the washing water by a filter. The filter is a filter base made of a single material such as resin, glass, sintered metal, and the like, with fine filtration holes.

特許文献1には、フィルタプレス等のろ過機のろ材として、合成樹脂材等からなる微小通孔を有する母材に、ステンレス、チタン等を蒸着することにより、ケーキが付着しにくく、目詰まりしない、ろ材が得られることが開示されている。   In Patent Document 1, as a filter material of a filter such as a filter press, by depositing stainless steel, titanium or the like on a base material having a minute through hole made of a synthetic resin material or the like, the cake is difficult to adhere and does not clog. It is disclosed that a filter medium can be obtained.

特開平7−136430号公報JP-A-7-136430

微粒子を従来の分析用フィルタで捕捉して元素分析を行うと、微粒子が微細になるほど元素分析に用いる電子線は容易に微粒子を貫通するようになる。この場合、電子線が微粒子に当り発生する特性X線以外に、電子線が微粒子を貫通してフィルタベースに到達し、フィルタベースに当り発生する特性X線もX線分析装置に入力されることになる。したがって、X線分析装置は本来の測定対象の微粒子の元素以外にフィルタベースの元素も測定することになり、本来の測定対象の微粒子の元素を特定する上で障害となっていた。また、特許文献1記載のろ材は、汚泥脱水機等に使用されるもので、電子装置に組み込まれる部品等に付着している微粒子を捕捉するのに適した構造ではない。   When elemental analysis is performed by capturing fine particles with a conventional analysis filter, the electron beam used for elemental analysis easily penetrates the fine particles as the fine particles become finer. In this case, in addition to the characteristic X-ray generated when the electron beam hits the fine particle, the electron beam passes through the fine particle and reaches the filter base, and the characteristic X-ray generated when hitting the filter base is also input to the X-ray analyzer. become. Therefore, the X-ray analyzer measures not only the element of the original fine particle to be measured but also the filter-based element, which is an obstacle to specifying the original element of the fine particle to be measured. Further, the filter medium described in Patent Document 1 is used in a sludge dehydrator or the like, and is not a structure suitable for capturing fine particles adhering to components or the like incorporated in an electronic device.

本発明の目的は、フィルタベースからの特性X線の発生を抑え、捕捉した微粒子の元素特定を行うことができる分析用フィルタを提供することである。   An object of the present invention is to provide an analytical filter capable of suppressing the generation of characteristic X-rays from a filter base and performing element identification of captured fine particles.

上記目的を達成するために、本発明の分析用フィルタにおいては、穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの少なくとも一方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする。   In order to achieve the above object, in the analytical filter of the present invention, a filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, and a thickness of 40 nm formed on at least one surface of the filter base. And having a metal coating film of ˜100 nm.

前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素である。   The metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium.

前記フィルタベースは樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されている。   The filter base is made of a material selected from the group consisting of resin, glass, and sintered metal.

上記目的を達成するために、本発明の分析用フィルタにおいては、穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの外縁の少なくとも片面に貼り付けられた補強板と、前記フィルタベースの少なくとも一方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする。   In order to achieve the above object, in the analysis filter of the present invention, a filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, and a reinforcing plate attached to at least one surface of the outer edge of the filter base And a metal coating film having a thickness of 40 nm to 100 nm formed on at least one surface of the filter base.

前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素である。   The metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium.

前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されている。   The base member is made of a material selected from the group consisting of resin, glass, and sintered metal.

上記目的を達成するために、本発明の分析用フィルタにおいては、穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの一方の面に貼り付けられた網状補強板と、前記フィルタベースの他方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする。   In order to achieve the above object, in the analysis filter of the present invention, a filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, and a mesh-like reinforcing plate attached to one surface of the filter base And a metal coating film having a thickness of 40 nm to 100 nm formed on the other surface of the filter base.

前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素である。   The metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium.

前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されている。   The base member is made of a material selected from the group consisting of resin, glass, and sintered metal.

上記目的を達成するために、本発明の分析用フィルタにおいては、穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの一方の面に貼り付けられたスクリーン状補強板と、前記フィルタベースの他方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする。   In order to achieve the above object, in the analysis filter of the present invention, a filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, and a screen-like reinforcement attached to one surface of the filter base. And a metal coating film having a thickness of 40 nm to 100 nm formed on the other surface of the filter base.

前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素である。   The metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium.

前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されている。   The base member is made of a material selected from the group consisting of resin, glass, and sintered metal.

上記目的を達成するために、本発明の分析用フィルタにおいては、穴径が約0.1μm〜1μmの複数のろ過穴を有する厚さ数μm〜数百μmの金属膜で構成されることを特徴とする。   In order to achieve the above object, the analytical filter of the present invention is composed of a metal film having a thickness of several μm to several hundreds of μm having a plurality of filtration holes having a hole diameter of about 0.1 μm to 1 μm. Features.

本発明によれば、フィルタベースからの特性X線の発生を抑え、捕捉した微粒子の元素特定を行うことができる分析用フィルタを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the characteristic X-ray from a filter base can be suppressed, and the analysis filter which can perform the element identification of the capture | acquired microparticles | fine-particles can be provided.

図1に本発明の一実施例による分析用フィルタの部分断面図を示す。分析用フィルタ1は、穴径100nm〜1000nmのろ過穴3を複数有する樹脂からなるフィルタベース2と、フィルタベース2の片側の表面に金(Au)をイオンスパッタにて形成した金属被覆膜4とを有する。金属被覆膜4の膜厚は、X線分析装置の電子線が貫通しない程度で、ろ過穴3を塞がない程度が望ましく、40nm〜100nmが好適である。   FIG. 1 is a partial sectional view of an analysis filter according to an embodiment of the present invention. The analysis filter 1 includes a filter base 2 made of a resin having a plurality of filtration holes 3 with a hole diameter of 100 nm to 1000 nm, and a metal coating film 4 in which gold (Au) is formed on one surface of the filter base 2 by ion sputtering. And have. The film thickness of the metal coating film 4 is desirably such that the electron beam of the X-ray analyzer does not penetrate and does not block the filtration hole 3, and is preferably 40 nm to 100 nm.

次に上記分析用フィルタ1を用いて捕捉した微粒子5の元素分析の方法について説明する。磁気ディスク装置等の電子装置に組み込まれる加工部品を水で洗浄し、加工部品に付着している微粒子を洗い落とす。洗浄水から上記分析用フィルタ1を用いて微粒子5を捕捉する。微粒子5を捕捉した分析用フィルタ1をX線分析装置に設置し、電子線6を照射する。電子線6は微粒子5を貫通するが金属被覆膜4までしか達せず、特性X線6は主として微粒子5と金属被覆膜4から検出され、フィルタベース2からの検出は抑えられる。したがって、微粒子5と金属被覆膜4からの特性X線7を基に分析した元素から、金属被覆膜4からの特性X線を基に分析した元素を差し引くことにより、微粒子5の元素を特定することができる。   Next, a method for elemental analysis of the fine particles 5 captured using the analysis filter 1 will be described. Processed parts incorporated in an electronic device such as a magnetic disk device are washed with water, and fine particles adhering to the processed parts are washed away. The fine particles 5 are captured from the washing water using the analysis filter 1. The analysis filter 1 that has captured the fine particles 5 is placed in an X-ray analyzer and irradiated with an electron beam 6. The electron beam 6 penetrates the fine particles 5 but reaches only the metal coating film 4, and the characteristic X-ray 6 is mainly detected from the fine particles 5 and the metal coating film 4, and detection from the filter base 2 is suppressed. Therefore, by subtracting the element analyzed based on the characteristic X-ray from the metal coating film 4 from the element analyzed based on the characteristic X-ray 7 from the fine particle 5 and the metal coating film 4, the element of the fine particle 5 is obtained. Can be identified.

ここで、金属被覆膜を用いない従来の樹脂製フィルタと比較すると、図2に示すように従来の分析用フィルタでは、微粒子を捕捉した後、X線分析に必要な導通皮膜を金蒸着等により微粒子も被うように形成した後、電子線を照射するが、電子線は導通皮膜及び微粒子を貫通し、フィルタベースまで達する。したがって、分析装置は導通皮膜と微粒子とフィルタベースからの特性X線を検出して元素分析を行うことになる。フィルタベースを構成する樹脂は炭素(C)と酸素(O)からなるので、微粒子を貫通しフィルタベースまで達した電子線からの特性X線にアルミニウム(Al)が検出され、さらに炭素(C)、酸素(O)が検出された場合、アルミニウムは単独金属(Al)なのか、それとも酸素(O)と結合した酸化物(Al−O)なのか特定が困難である。   Here, in comparison with a conventional resin filter that does not use a metal coating film, as shown in FIG. 2, the conventional analysis filter captures fine particles and then deposits a conductive film necessary for X-ray analysis by vapor deposition or the like. After being formed so as to cover fine particles, the electron beam is irradiated, but the electron beam penetrates the conductive film and the fine particles and reaches the filter base. Therefore, the analyzer detects the characteristic X-rays from the conductive film, the fine particles, and the filter base, and performs elemental analysis. Since the resin constituting the filter base is composed of carbon (C) and oxygen (O), aluminum (Al) is detected in the characteristic X-rays from the electron beam penetrating the fine particles and reaching the filter base, and further the carbon (C) When oxygen (O) is detected, it is difficult to specify whether aluminum is a single metal (Al) or an oxide (Al—O) bonded to oxygen (O).

さらに図3を用いて詳細に説明する。図3は走査型電子顕微鏡でみた分析用フィルタの表面と、X線分析装置の分析結果を示す図である。検証用微粒子として粒径が200nmの酸化アルミニウム(Al−O)を用いた。従来の樹脂製フィルタで酸化アルミニウム(Al−O)を捕捉し、X線分析装置で分析した結果、検出元素はAl−C−O−Auであった。微粒子の存在しない部分の樹脂製フィルタの検出元素はC−O−Auであった。微粒子が存在する部分の検出元素から微粒子が存在しない部分の検出元素を差し引いた結果はAlであり、実際に用いたAl−Oは特定できなかった。これは、樹脂製フィルタベースの酸素(O)と酸化アルミニウムの酸素(O)とが重なるためである。   Furthermore, it demonstrates in detail using FIG. FIG. 3 is a diagram showing the surface of the analysis filter and the analysis result of the X-ray analyzer as seen with a scanning electron microscope. Aluminum oxide (Al—O) having a particle diameter of 200 nm was used as the verification fine particles. As a result of capturing aluminum oxide (Al—O) with a conventional resin filter and analyzing it with an X-ray analyzer, the detected element was Al—C—O—Au. The detection element of the resin filter in the portion where no fine particles were present was C—O—Au. The result obtained by subtracting the detection element of the portion where the fine particles do not exist from the detection element of the portion where the fine particles exist is Al, and Al—O actually used cannot be specified. This is because oxygen (O) of the filter base made of resin and oxygen (O) of aluminum oxide overlap.

上記本発明の一実施例による金(Au)を被覆した分析用フィルタで酸化アルミニウム(Al−O)を捕捉した場合は、酸化アルミニウム(Al−O)が存在する部分の検出元素はAl−C−O−Auであり、酸化アルミニウム(Al−O)が存在しない部分の検出元素はC−Auが主であり、Oは極めて少量に抑えられている。酸化アルミニウム(Al−O)が存在する部分の検出元素から、酸化アルミニウム(Al−O)が存在しない部分の検出元素を差し引いた結果はAl−Oであり、実際の微粒子の元素を正しく特定することができた。また、本実施例の分析用フィルタでは、フィルタベースに金属被覆膜を形成するために、元素分析時に必要な導通皮膜を形成する必要はない。   When aluminum oxide (Al—O) is captured by the analytical filter coated with gold (Au) according to one embodiment of the present invention, the detection element in the portion where aluminum oxide (Al—O) is present is Al—C. The detection element in the portion where -O-Au is free of aluminum oxide (Al-O) is mainly C-Au, and O is suppressed to an extremely small amount. The result of subtracting the detection element of the portion where aluminum oxide (Al-O) does not exist from the detection element of the portion where aluminum oxide (Al-O) is present is Al-O, and the element of the actual fine particle is correctly specified. I was able to. Further, in the analysis filter of this example, since a metal coating film is formed on the filter base, it is not necessary to form a conductive film necessary for elemental analysis.

上記実施例では、フィルタのベース部材を被う金属被覆膜として金(Au)を用いたが、金(Au)以外に白金(Pt)あるいはパラジウム(Pd)を用いることができるし、これらの金属の合金を用いることも可能である。また、上記実施例では、金属被覆膜をイオンスパッタで形成したが、蒸着で形成しても良い。上記実施例では、フィルタベースに樹脂を用いたが、樹脂以外にガラス、焼結金属を使用することができる。   In the above embodiment, gold (Au) is used as the metal coating film covering the base member of the filter. However, platinum (Pt) or palladium (Pd) can be used in addition to gold (Au). It is also possible to use metal alloys. Moreover, in the said Example, although the metal coating film was formed by ion sputtering, you may form by vapor deposition. In the said Example, although resin was used for the filter base, glass and a sintered metal can be used besides resin.

上記実施例の分析用フィルタにおいて、被覆する金属の応力や処理時の熱によりフィルタベースが変形する場合は、次のような方法で変形を防止することができる。図4(a)に示す例は、フィルタベース2の周囲の上下をフィルタ押え10で挟み、フィルタベース2が張った状態で専用の固定具11を使用して固定し、金属被覆膜を形成する。図4(b)に示す例は、フィルタベース2の外縁の片面あるいは両面に補強板12を接着剤などで貼りつけ、金属被覆膜を形成する。図4(c)に示す例は、フィルタベースの片面に面状の補強板を接着材などで貼りつけ、金属被覆膜を形成する。面状の補強板としては、網状補強板13やスクリーン状補強板14が好適である。   In the analysis filter of the above embodiment, when the filter base is deformed due to the stress of the metal to be coated or heat during processing, the deformation can be prevented by the following method. In the example shown in FIG. 4A, the upper and lower sides of the periphery of the filter base 2 are sandwiched between the filter holders 10 and fixed with a dedicated fixing tool 11 while the filter base 2 is stretched to form a metal coating film. To do. In the example shown in FIG. 4B, a reinforcing plate 12 is attached to one or both sides of the outer edge of the filter base 2 with an adhesive or the like to form a metal coating film. In the example shown in FIG. 4C, a planar reinforcing plate is attached to one side of the filter base with an adhesive or the like to form a metal coating film. As the planar reinforcing plate, a mesh-like reinforcing plate 13 or a screen-like reinforcing plate 14 is suitable.

次に図5の部分断面図を用いて、本発明の他の実施例による分析用フィルタ20を説明する。数μm〜数百μmの厚さの金属膜でフィルタベース21を形成し、フィルタベース21に電子線またはレーザにより、0.1μm〜1μmの穴径の貫通穴を開けてろ過穴22を形成する。金属膜21としては、金(Au)、白金(Pt)、パラジウム(Pd)あるいはこれらの合金が好適である。この実施例においても、上記第一の実施例と同様の効果が得られる。   Next, an analysis filter 20 according to another embodiment of the present invention will be described with reference to a partial sectional view of FIG. A filter base 21 is formed of a metal film having a thickness of several μm to several hundred μm, and a through hole having a hole diameter of 0.1 μm to 1 μm is formed in the filter base 21 by an electron beam or a laser to form a filtration hole 22. . As the metal film 21, gold (Au), platinum (Pt), palladium (Pd), or an alloy thereof is suitable. In this embodiment, the same effect as in the first embodiment can be obtained.

本発明の一実施例による分析用フィルタの部分断面図である。It is a fragmentary sectional view of the filter for analysis by one example of the present invention. 従来の分析用フィルタの部分断面図である。It is a fragmentary sectional view of the conventional filter for analysis. 従来の樹脂フィルタと本発明の一実施例による金属被覆フィルタによる捕捉粒子の元素分析の結果を示す図である。It is a figure which shows the result of the elemental analysis of the capture particle | grains by the conventional resin filter and the metal-coated filter by one Example of this invention. 金属被覆フィルタの変形を防止するための手段を示す図である。It is a figure which shows the means for preventing a deformation | transformation of a metal-coated filter. 本発明の他の実施例による分析用フィルタの部分断面図である。It is a fragmentary sectional view of the filter for analysis by other examples of the present invention.

符号の説明Explanation of symbols

1,20…分析用フィルタ、
2,21…フィルタベース、
3,22…ろ過穴、
4…金属被覆膜、
5…微粒子、
6…電子線、
7…特性X線、
10…フィルタ押え、
11…固定具、
12…補強板、
13…網状補強板、
14…スクリーン状補強板。
1,20 ... filter for analysis,
2, 21 ... Filter base,
3,22 ... filtration holes,
4 ... Metal coating film,
5 ... fine particles,
6 ... electron beam,
7 ... Characteristic X-ray,
10: Filter presser,
11 ... Fixing tool,
12 ... Reinforcing plate,
13 ... Reticulated reinforcing plate,
14: Screen-like reinforcing plate.

Claims (13)

穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの少なくとも一方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする分析用フィルタ。   For analysis, comprising: a filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm; and a metal coating film having a thickness of 40 nm to 100 nm formed on at least one surface of the filter base filter. 前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項1記載の分析用フィルタ。   2. The analytical filter according to claim 1, wherein the metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium. 前記フィルタベースは樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されていることを特徴とする請求項1記載の分析用フィルタ。   2. The analytical filter according to claim 1, wherein the filter base is made of a material selected from the group consisting of resin, glass, and sintered metal. 穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの外縁の少なくとも片面に貼り付けられた補強板と、前記フィルタベースの少なくとも一方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする分析用フィルタ。   A filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, a reinforcing plate attached to at least one surface of the outer edge of the filter base, and a thickness of 40 nm formed on at least one surface of the filter base An analytical filter having a metal coating film of ˜100 nm. 前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項4記載の分析用フィルタ。   5. The analytical filter according to claim 4, wherein the metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium. 前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されていることを特徴とする請求項4記載の分析用フィルタ。   5. The analytical filter according to claim 4, wherein the base member is made of a material selected from the group consisting of resin, glass, and sintered metal. 穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの一方の面に貼り付けられた網状補強板と、前記フィルタベースの他方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする分析用フィルタ。   A filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, a net-like reinforcing plate attached to one surface of the filter base, and a thickness of 40 nm to 40 nm formed on the other surface of the filter base A filter for analysis, comprising: a metal-coated film of 100 nm. 前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項7記載の分析用フィルタ。   8. The analytical filter according to claim 7, wherein the metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium. 前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されていることを特徴とする請求項7記載の分析用フィルタ。   8. The analytical filter according to claim 7, wherein the base member is made of a material selected from the group consisting of resin, glass, and sintered metal. 穴径が約100nm〜1000nmの複数のろ過穴を有するフィルタベースと、該フィルタベースの一方の面に貼り付けられたスクリーン状補強板と、前記フィルタベースの他方の面に形成された厚さ40nm〜100nmの金属被覆膜とを有することを特徴とする分析用フィルタ。   A filter base having a plurality of filtration holes having a hole diameter of about 100 nm to 1000 nm, a screen-like reinforcing plate attached to one surface of the filter base, and a thickness of 40 nm formed on the other surface of the filter base An analytical filter having a metal coating film of ˜100 nm. 前記金属被覆膜は、金、白金、パラジウムからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項10記載の分析用フィルタ。   11. The analytical filter according to claim 10, wherein the metal coating film is at least one element selected from the group consisting of gold, platinum, and palladium. 前記ベース部材は樹脂、ガラス、焼結金属からなる群より選ばれた材料で構成されていることを特徴とする請求項10記載の分析用フィルタ。   11. The analytical filter according to claim 10, wherein the base member is made of a material selected from the group consisting of resin, glass, and sintered metal. 穴径が約0.1μm〜1μmの複数のろ過穴を有する厚さ数μm〜数百μmの金属膜で構成されることを特徴とする分析用フィルタ。   An analysis filter comprising a metal film having a thickness of several μm to several hundred μm having a plurality of filtration holes having a hole diameter of about 0.1 μm to 1 μm.
JP2004299692A 2004-10-14 2004-10-14 Analyzing filter Pending JP2006112888A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004299692A JP2006112888A (en) 2004-10-14 2004-10-14 Analyzing filter
US11/250,321 US20060081527A1 (en) 2004-10-14 2005-10-13 Analytical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299692A JP2006112888A (en) 2004-10-14 2004-10-14 Analyzing filter

Publications (1)

Publication Number Publication Date
JP2006112888A true JP2006112888A (en) 2006-04-27

Family

ID=36179612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299692A Pending JP2006112888A (en) 2004-10-14 2004-10-14 Analyzing filter

Country Status (2)

Country Link
US (1) US20060081527A1 (en)
JP (1) JP2006112888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139109A (en) * 2007-12-03 2009-06-25 Nomura Micro Sci Co Ltd Inspection method of foreign matter in solution, and filter membrane for inspecting foreign matter in solution

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK441587A (en) * 1986-10-23 1988-04-24 Sulzer Ag DEVICE FOR REPOSITIONING A METALLIC MICROFILTER FILM
NL9200902A (en) * 1992-05-21 1993-12-16 Cornelis Johannes Maria Van Ri CERAMIC MICROFILTRATION MEMBRANE AND METHOD FOR MANUFACTURING SUCH MEMBRANE.
US5591690A (en) * 1994-06-29 1997-01-07 Midwest Research Institute Self assembled molecular monolayers on high surface area materials as molecular getters
GB9505038D0 (en) * 1994-10-01 1995-05-03 Imas Uk Ltd A filter, apparatus including the filter and a method of use of the apparatus
WO1998030315A1 (en) * 1997-01-10 1998-07-16 Ellipsis Corporation Micro and ultrafilters with controlled pore sizes and pore size distribution and method for making
US5882496A (en) * 1997-02-27 1999-03-16 The Regents Of The University Of California Porous silicon structures with high surface area/specific pore size
DE19741498B4 (en) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Production of a ceramic stainless steel mesh composite
US6346192B2 (en) * 1999-05-14 2002-02-12 Therox, Inc. Apparatus for high pressure fluid filtration
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
US6835311B2 (en) * 2002-01-31 2004-12-28 Koslow Technologies Corporation Microporous filter media, filtration systems containing same, and methods of making and using
US6833075B2 (en) * 2002-04-17 2004-12-21 Watervisions International, Inc. Process for preparing reactive compositions for fluid treatment
US6797405B1 (en) * 2002-05-01 2004-09-28 The Ohio State University Method for uniform electrochemical reduction of apertures to micron and submicron dimensions using commercial biperiodic metallic mesh arrays and devices derived therefrom
US7241388B2 (en) * 2002-11-01 2007-07-10 Kx Industries L.P. Means to miniaturize diffusion filters for particulate removal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139109A (en) * 2007-12-03 2009-06-25 Nomura Micro Sci Co Ltd Inspection method of foreign matter in solution, and filter membrane for inspecting foreign matter in solution

Also Published As

Publication number Publication date
US20060081527A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP5611966B2 (en) Counting inclusions in alloys by image analysis
CA2991681A1 (en) Additive manufacturing apparatus and method
WO2020047177A1 (en) Assay accuracy improvement
US7016034B2 (en) Methods of using and fabricating a supporting substrate for the deposition, automated recognition, and spectroscopic identification of particles
JP2006112888A (en) Analyzing filter
Seleznev et al. In situ detection of cracks during laser powder bed fusion using acoustic emission monitoring
TW201025474A (en) Die defect inspecting system for inspecting the defect of a back surface of a die and method for using the same
JP2009139109A (en) Inspection method of foreign matter in solution, and filter membrane for inspecting foreign matter in solution
JP2009524018A (en) Liquid-particle analysis of metallic materials
JP2005174657A (en) Mesh for electron microscope and manufacturing method thereof
WO2023112504A1 (en) State monitoring system and state monitoring method
Lee et al. Selective detection of particles containing highly enriched uranium for nuclear safeguards environmental samples
JP2007070126A (en) Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
JPH11248655A (en) Method for judging and quantatively determining dust species
Bhuiyan et al. Estimating the parameters of audible clinical percussion signals by fitting exponentially damped harmonics
Safara et al. Heart sounds clustering using a combination of temporal, spectral and geometric features
JP4349904B2 (en) Method and apparatus for non-destructive target cleanliness characterization by defect type categorized by size and location
JP2010071781A (en) Transfer jig and method for analyzing deposit using the same
Fritzsch et al. Automated quantification of SiC-particles in solidified A356 aluminium using Image-Pro® Plus 7.0
JP2016106918A (en) Powder for fingerprint detection
JP2010197152A (en) Dust measuring method and filtering device
WO2023203882A1 (en) Filtration membrane for trapping microparticles, method for manufacturing same, and method for measuring microparticle count
JP2008309495A (en) Identification and analyzing method of fine organic matter
Obeidat et al. Further development of image processing algorithms to improve detectability of defects in Sonic IR NDE
Wasmer et al. In situ and real-time monitoring of powder-bed AM by combining acoustic emission and machine learning