JP2006112812A - Vacuum measurement structure, vacuum heat insulation panel, vacuum measurement method, vacuum structured body equipped with vacuum measurement structure and its manufacturing method - Google Patents

Vacuum measurement structure, vacuum heat insulation panel, vacuum measurement method, vacuum structured body equipped with vacuum measurement structure and its manufacturing method Download PDF

Info

Publication number
JP2006112812A
JP2006112812A JP2004297628A JP2004297628A JP2006112812A JP 2006112812 A JP2006112812 A JP 2006112812A JP 2004297628 A JP2004297628 A JP 2004297628A JP 2004297628 A JP2004297628 A JP 2004297628A JP 2006112812 A JP2006112812 A JP 2006112812A
Authority
JP
Japan
Prior art keywords
vacuum
shape
degree
space
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004297628A
Other languages
Japanese (ja)
Other versions
JP4845169B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Mitsuyuki Wadasako
三志 和田迫
Tsutomu Kobayashi
強 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nichias Corp
Original Assignee
Tohoku University NUC
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nichias Corp filed Critical Tohoku University NUC
Priority to JP2004297628A priority Critical patent/JP4845169B2/en
Publication of JP2006112812A publication Critical patent/JP2006112812A/en
Application granted granted Critical
Publication of JP4845169B2 publication Critical patent/JP4845169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for measurement of a vacuum of a vacuum space of an enclosed vacuum structured body, using a very simple means without accompaniment of any destructive operation. <P>SOLUTION: The vacuum insulation panel 10 of the vacuum structured body is provided with a bellows member 20, in a recessed shape on a part of the panel 10. The bellows member 20 is retractable, while forming the shape-variable part 11. The bellows member 20 becomes elongated shape, by receiving the outer pressure of the vacuum insulation panel to the vacuum degree of the vacuum space 14 of the vacuum insulation panel 10; but if the degree of vacuum in the vacuum space 14 is lowered, the difference of pressure to the outer pressure becomes lowered, and consequently, the bellows member 20 is contracted in shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空構造体の真空空間の真空度を測定するための測定技術に関するものである。   The present invention relates to a measurement technique for measuring the degree of vacuum in a vacuum space of a vacuum structure.

真空構造体の真空空間は、常に一定の真空度を保持できるものでもなく、アウトガスやリークによって、その真空度が変化する。真空構造体が、例えば、断熱パネルとして使用されている時は、真空度の低下によって断熱効果を低下させることになる。従って、真空構造体の真空空間の真空度は、その真空構造体の及ぼす効果・作用を知る上で非常に重要である。   The vacuum space of the vacuum structure cannot always maintain a constant degree of vacuum, and the degree of vacuum changes due to outgassing or leakage. When the vacuum structure is used as, for example, a heat insulating panel, the heat insulating effect is reduced due to a decrease in the degree of vacuum. Therefore, the degree of vacuum in the vacuum space of the vacuum structure is very important for knowing the effects and actions of the vacuum structure.

しかしながら、密閉された真空構造体の真空空間の真空度を測定することは、そう容易ではない。特許文献1に記載された「真空断熱体の真空度測定装置」は、真空断熱容器(11)の外容器(13)の表面に小チャンバー(17)を気密状態で取り付ける。そして、その気密状態の中で、打撃シャフト(21)によって外容器(13)の一部分を貫通状態に開口し、真空度センサ(31)で真空度を測定するものである。
特開平07−294359号公報
However, it is not so easy to measure the vacuum degree of the vacuum space of the sealed vacuum structure. The “vacuum insulation body vacuum degree measuring device” described in Patent Document 1 attaches a small chamber (17) in an airtight state to the surface of an outer container (13) of a vacuum insulation container (11). In the airtight state, a part of the outer container (13) is opened in a penetrating state by the striking shaft (21), and the degree of vacuum is measured by the vacuum degree sensor (31).
JP 07-294359 A

特許文献1は、一種の破壊検査によって、真空度を測定するものである(特許文献1[0010]第2文他)。しかし、破壊検査は、破壊のために複雑な装置が必要になり、また、破壊後にその破壊部分を修復する必要があるため、極めて面倒な作業となる。
そこで、本発明は、何ら破壊作業を伴わず、極めて簡便な手法で、密閉された真空構造体の真空空間の真空度を測定する技術の提供を目的とする。
Patent document 1 measures a vacuum degree by a kind of destructive inspection (patent document 1 [0010] 2nd sentence etc.). However, the destructive inspection requires a complicated device for the destruction, and it is necessary to repair the destroyed portion after the destruction, which is a very troublesome work.
Therefore, the present invention aims to provide a technique for measuring the degree of vacuum in a vacuum space of a sealed vacuum structure by a very simple method without any destruction work.

上記する目的を達成するために、第一の発明は、内部に真空空間を形成する真空構造体の一部を形状変化可能な形状変化部とし、真空空間の真空度の変化に伴ってその形状変化部が形状変化することで、真空空間の真空度を測定する真空度測定構造であることを特徴とする。
ここで、本発明においては、真空とは大気圧101325Pa以下をいい、真空構造体の内部空間が減圧されていることをいう。また、真空構造体が断熱用途に使用される真空断熱パネルであった場合、その真空度は13333Pa〜0.013Paが好ましく、より好ましくは1333Pa〜1.3Pa、さらに好ましくは1000Pa〜10Paである。
第二の発明は、形状変化部は、真空構造体の一部に凹状に設けられた伸縮自在なベローズ部材であることを特徴とし、第三の発明は、形状変化部は、真空構造体の一部に湾曲して設けられたダイアフラムであることを特徴とする。
第四の発明は、内部に真空空間を形成する真空構造体の一部を形状変化可能な形状変化部に形成し、真空空間の真空度の変化に伴ってその形状変化部を形状変化させて、真空空間の真空度を測定する真空度測定方法であることを特徴とする。
第五の発明は、第一から第三の発明に係る真空度測定構造を備えた真空構造体であることを特徴とし、第六の発明は、第一から第三の発明に係る真空度測定構造を備えた真空断熱パネルであることを特徴とする。
In order to achieve the above-described object, the first invention is to form a part of a vacuum structure that forms a vacuum space inside a shape-changing portion capable of changing its shape, and to change its shape as the degree of vacuum of the vacuum space changes. It is a vacuum degree measuring structure that measures the degree of vacuum in the vacuum space by changing the shape of the changing portion.
Here, in the present invention, the vacuum means an atmospheric pressure of 101325 Pa or less, and means that the internal space of the vacuum structure is depressurized. Moreover, when the vacuum structure is a vacuum heat insulation panel used for heat insulation, the degree of vacuum is preferably 13333 Pa to 0.013 Pa, more preferably 1333 Pa to 1.3 Pa, and still more preferably 1000 Pa to 10 Pa.
The second invention is characterized in that the shape changing portion is a stretchable bellows member provided in a concave shape in a part of the vacuum structure, and the third invention is characterized in that the shape changing portion is a part of the vacuum structure. It is characterized in that it is a diaphragm that is curved in part.
According to a fourth aspect of the present invention, a part of a vacuum structure that forms a vacuum space is formed in a shape-changing portion that can change shape, and the shape-changing portion is changed in shape as the degree of vacuum in the vacuum space changes. A vacuum degree measuring method for measuring the degree of vacuum in a vacuum space.
A fifth invention is characterized in that it is a vacuum structure provided with a vacuum measurement structure according to the first to third inventions, and a sixth invention is a vacuum measurement according to the first to third inventions A vacuum heat insulation panel having a structure.

第七の発明は、内部に真空空間を形成する真空構造体の一部に取付孔を設け、その取付孔の外周縁に沿って段部を形成し、真空空間の真空度の変化に伴ってその形状を変化する形状変化部材をその取付孔へ取り付ける真空構造体の製造方法であることを特徴とする。
第八の発明は、内部に真空空間を形成する真空構造体の一部に取付孔を設け、真空空間の真空度の変化に伴ってその形状を変化させる形状変化部を備えた真空度測定ユニットをその取付孔へ取り付ける真空構造体の製造方法であることを特徴とする。
第九の発明は、第七の発明にあって、真空度測定ユニットが、形状変化部を囲むようにして測定空間を形成する囲繞部材を備え、囲繞部材には、真空空間と測定空間とを連通する連通孔を有することを特徴とする。
According to a seventh aspect of the present invention, a mounting hole is provided in a part of a vacuum structure that forms a vacuum space therein, and a step portion is formed along the outer peripheral edge of the mounting hole. It is a manufacturing method of the vacuum structure which attaches the shape change member which changes the shape to the attachment hole.
The eighth invention is a vacuum degree measuring unit provided with a mounting hole in a part of a vacuum structure forming a vacuum space therein, and having a shape changing portion that changes its shape in accordance with a change in the vacuum degree of the vacuum space. It is the manufacturing method of the vacuum structure which attaches to the attachment hole.
According to a ninth invention, in the seventh invention, the vacuum degree measurement unit includes an enclosure member that forms a measurement space so as to surround the shape change portion, and the enclosure member communicates the vacuum space and the measurement space. It has a communication hole.

本発明によれば、次のような効果を有する。
(1)真空空間の真空度が変化した場合、真空構造体の一部にある形状変化部が形状変化するので、一見して簡便に真空度を測定できる。
(2)真空構造体を破壊することがないので、破壊後の修復作業を必要としない。
(3)真空度センサなど特別な測定装置を用いることがないので、一般人でも測定でき、また、測定コストを低減できる。
(4)かさばらず、シンプルな構成であるため、種々の目的の真空構造体に使用することができる。
The present invention has the following effects.
(1) When the degree of vacuum in the vacuum space changes, the shape changing part in a part of the vacuum structure changes in shape, so that the degree of vacuum can be easily measured at a glance.
(2) Since the vacuum structure is not destroyed, no repair work is required after the destruction.
(3) Since a special measuring device such as a vacuum sensor is not used, it can be measured by ordinary people, and the measurement cost can be reduced.
(4) Since it is not bulky and has a simple configuration, it can be used for vacuum structures for various purposes.

本発明の実施形態を図面に基づいて説明する。ここでは、真空構造体として、半導体製造装置や液晶製造装置に使用される真空断熱パネルを用いて説明する。なお、真空構造体は真空断熱パネルに限らず、真空空間を有するものであれば、これに該当する。また、真空断熱パネルの真空空間は外装本体の内部に形成されればよい。外装本体は、例えば、複数毎の板状の構成部材を溶接してつなぎあわせて形成されればよい。板状の構成部材は1枚の板を折曲加工して得てもよいし、プレス成形にて加工して得てもよい。
図1は、本発明の第一実施形態を示す説明用断面図である。
図1(a)に示すように、真空構造体である真空断熱パネル10は、その一部に凹状(蛇腹状)に設けられたベローズ部材20を有する。このベローズ部材20は伸縮自在であり、形状変化可能な形状変化部11を形成する。
Embodiments of the present invention will be described with reference to the drawings. Here, a vacuum heat insulating panel used in a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus will be described as a vacuum structure. Note that the vacuum structure is not limited to the vacuum heat insulation panel, and any structure having a vacuum space corresponds to this. Moreover, the vacuum space of a vacuum heat insulation panel should just be formed in the inside of an exterior main body. The exterior body may be formed by, for example, welding a plurality of plate-shaped components and joining them together. The plate-like component may be obtained by bending one plate or may be obtained by press forming.
FIG. 1 is an explanatory sectional view showing a first embodiment of the present invention.
As shown to Fig.1 (a), the vacuum heat insulation panel 10 which is a vacuum structure has the bellows member 20 provided in the concave shape (bellows shape) in the part. The bellows member 20 is extendable and forms a shape changing portion 11 whose shape can be changed.

図1(b)に示すように、ベローズ部材20は、真空断熱パネル10の真空空間14の真空度に対して、真空断熱パネル10外の外気圧を受け、伸長した形状にある。
しかし、真空空間14の真空度が低下すると、前記外気圧との差が縮まり、図1(c)に示すように、ベローズ部材20は収縮した形状になる。
従って、ベローズ部材20が収縮すると、真空空間14の真空度が低下したことになり、一見して真空空間14の真空度の変化を確認できる。さらに、ベローズ部材20の収縮具合で、真空空間14の具体的な真空度を測定可能となる。
本発明において、外装本体を構成する構成部材の材料は、100℃程度の温度に耐えられるものであれば良く、ポリエチレン、ポリプロピレンといった樹脂製、アルミナ、シリカといったセラミックス製であってもよいが、真空断熱パネルの剛性、強度、低発塵といった視点からステンレスや鉄、アルミニウムといった金属製であることが好ましい。
また、外装本体を構成する構成部材の厚さは、樹脂製であれば、5mm〜30mmであることが好ましく、より好ましくは8mm〜20mm、さらに好ましくは10mm〜15mmであり、金属製であれば、0.2mm〜3mmであることが好ましく、より好ましくは0.5mm〜2mm、さらに好ましくは0.7mm〜1.5mmである。
As shown in FIG. 1B, the bellows member 20 is in an elongated shape by receiving an external air pressure outside the vacuum heat insulation panel 10 with respect to the degree of vacuum of the vacuum space 14 of the vacuum heat insulation panel 10.
However, if the vacuum degree of the vacuum space 14 falls, the difference with the said external pressure will shrink, and as shown in FIG.1 (c), the bellows member 20 will become a contracted shape.
Therefore, when the bellows member 20 contracts, the degree of vacuum in the vacuum space 14 decreases, and a change in the degree of vacuum in the vacuum space 14 can be confirmed at a glance. Furthermore, the specific degree of vacuum in the vacuum space 14 can be measured by the degree of contraction of the bellows member 20.
In the present invention, the material of the constituent members constituting the exterior body may be any material that can withstand a temperature of about 100 ° C., and may be made of a resin such as polyethylene or polypropylene, or a ceramic such as alumina or silica. From the viewpoint of rigidity, strength, and low dust generation of the heat insulation panel, it is preferable that the heat insulation panel is made of metal such as stainless steel, iron, and aluminum.
Moreover, if the thickness of the structural member which comprises an exterior main body is resin, it is preferable that it is 5 mm-30 mm, More preferably, it is 8 mm-20 mm, More preferably, it is 10 mm-15 mm, and if it is metal, The thickness is preferably 0.2 mm to 3 mm, more preferably 0.5 mm to 2 mm, and still more preferably 0.7 mm to 1.5 mm.

図2は、ベローズ部材20の取付構造の一例を示した説明用断面図である。
図2(a)に示すベローズ部材20は、真空断熱パネル10に設けられた取付孔12に溶接によって取り付けられる。ここで、この取付孔12の外周縁に沿って段部となる溝部13が形成されている。取付孔12によって真空断熱パネル10の歪みなど変形が生じやすくなるが、溝部13を形成することで剛性が発揮され、真空断熱パネル10の変形を防止できるようになる。
FIG. 2 is an explanatory cross-sectional view showing an example of a mounting structure of the bellows member 20.
The bellows member 20 shown in FIG. 2A is attached to the attachment hole 12 provided in the vacuum heat insulating panel 10 by welding. Here, a groove 13 serving as a step is formed along the outer peripheral edge of the mounting hole 12. Although the deformation such as distortion of the vacuum heat insulating panel 10 is likely to occur due to the mounting holes 12, the groove 13 is formed to exhibit rigidity and prevent the vacuum heat insulating panel 10 from being deformed.

図2(b)に示すベローズ部材20は、真空空間14内で仕切板16,16によって仕切られた測定空間18に設けられる。この真空空間18は、仕切版16,16によって剛性が保たれる空間となる。測定空間18は仕切板16に形成された連通孔17によって、真空空間14と連通しているので、真空空間14と同じ真空度となる。従って、ベローズ部材20によって測定された測定空間18の真空度が、真空断熱パネル10の真空空間14の真空度となる。   The bellows member 20 shown in FIG. 2B is provided in the measurement space 18 partitioned by the partition plates 16 and 16 in the vacuum space 14. The vacuum space 18 is a space in which rigidity is maintained by the partition plates 16 and 16. Since the measurement space 18 communicates with the vacuum space 14 through the communication hole 17 formed in the partition plate 16, the degree of vacuum is the same as that of the vacuum space 14. Therefore, the degree of vacuum of the measurement space 18 measured by the bellows member 20 becomes the degree of vacuum of the vacuum space 14 of the vacuum heat insulating panel 10.

図3は、本発明の第二実施形態を示す説明用断面図である。
図3(a)に示すように、真空構造体である真空断熱パネル30は、その一部に湾曲して設けられたダイアフラム40を有する。このダイアフラム40は凹凸自在であり、形状変化可能な形状変化部31を形成する。
FIG. 3 is an explanatory cross-sectional view showing a second embodiment of the present invention.
As shown in FIG. 3A, the vacuum heat insulation panel 30 which is a vacuum structure has a diaphragm 40 which is provided in a curved portion. The diaphragm 40 is free to be uneven, and forms a shape changing portion 31 whose shape can be changed.

図3(b)に示すように、ダイアフラム40は、真空断熱パネル30の真空空間34の真空度に対して、真空断熱パネル30外の外気圧を受け、窪んだ形状にある。
しかし、真空空間34の真空度が低下すると、前記外気圧との差が縮まり、図3(c)に示すように、ダイアフラム40は隆起した形状になる。
従って、ダイアフラム40が隆起すると、真空空間34の真空度が低下したことになり、一見して真空空間34の真空度の変化を確認できる。さらに、ダイアフラム40の隆起時点で、真空空間14の具体的な真空度が測定可能となる。
As shown in FIG. 3 (b), the diaphragm 40 receives an external air pressure outside the vacuum heat insulation panel 30 with respect to the degree of vacuum of the vacuum space 34 of the vacuum heat insulation panel 30, and has a depressed shape.
However, when the degree of vacuum in the vacuum space 34 is reduced, the difference from the external pressure is reduced, and the diaphragm 40 has a raised shape as shown in FIG.
Therefore, when the diaphragm 40 is raised, the vacuum degree of the vacuum space 34 is lowered, and a change in the vacuum degree of the vacuum space 34 can be confirmed at a glance. Furthermore, when the diaphragm 40 is raised, a specific degree of vacuum in the vacuum space 14 can be measured.

図4は、本発明の第三実施形態を示す説明用斜視図である。
第三実施形態は、真空断熱パネル50の一部に、取付孔51を設け、その取付孔51に真空度測定ユニット60,65を溶接により取り付けて、真空度測定構造を備えた真空断熱パネルを製造するものである。
FIG. 4 is an explanatory perspective view showing a third embodiment of the present invention.
In the third embodiment, a mounting hole 51 is provided in a part of the vacuum heat insulating panel 50, and vacuum degree measuring units 60 and 65 are attached to the mounting hole 51 by welding to provide a vacuum heat insulating panel having a vacuum degree measuring structure. To manufacture.

真空度測定ユニット60は、形状変化可能なダイアフラム61を備え、そのダイアフラム61を囲むようにして測定空間63を形成する筒型のカバー部材62からなっている。そのカバー部材62には、真空断熱パネル50の真空空間54と測定空間63とを連通する連通孔64を有する。
また、真空度測定ユニット65は、形状変化可能なベローズ部材66を備え、そのベローズ部材66を囲むようにして測定空間68を形成する筒型のカバー部材67からなっている。そのカバー部材67には、真空断熱パネル50の真空空間54と測定空間68とを連通する連通孔69を有する。
The vacuum degree measurement unit 60 includes a diaphragm 61 that can change its shape, and includes a cylindrical cover member 62 that forms a measurement space 63 so as to surround the diaphragm 61. The cover member 62 has a communication hole 64 that allows the vacuum space 54 and the measurement space 63 of the vacuum heat insulating panel 50 to communicate with each other.
Further, the vacuum degree measuring unit 65 includes a bellows member 66 that can change its shape, and includes a cylindrical cover member 67 that forms a measurement space 68 so as to surround the bellows member 66. The cover member 67 has a communication hole 69 that allows the vacuum space 54 and the measurement space 68 of the vacuum heat insulating panel 50 to communicate with each other.

このように、真空度測定ユニット60,65を用いて真空度測定構造を備えた真空断熱パネルを製造することで、真空度測定ユニット60,65の筒型のカバー部材62,67が仕切版となって、測定空間63,68の剛性が保たれることになる。   Thus, by manufacturing the vacuum heat insulation panel provided with the vacuum measurement structure using the vacuum measurement units 60 and 65, the cylindrical cover members 62 and 67 of the vacuum measurement units 60 and 65 are separated from the partition plates. Thus, the rigidity of the measurement spaces 63 and 68 is maintained.

本発明は、ベローズ部材やダイアフラムのようなシンプルな形状変化部を設けたことで、極めて簡便に断熱用真空パネルの真空度を測定できるものである。ただし、図1に示すベローズ部材20や図3に示すダイアフラム40は本発明の形状変化部の一例であり、これに限定されるものではない。真空空間の真空度と外気圧との差によって、形状変化可能な部材であればいずれでもよい。   In the present invention, by providing a simple shape changing portion such as a bellows member or a diaphragm, the degree of vacuum of the vacuum panel for heat insulation can be measured very simply. However, the bellows member 20 shown in FIG. 1 and the diaphragm 40 shown in FIG. 3 are examples of the shape change part of this invention, and are not limited to this. Any member can be used as long as it can change its shape depending on the difference between the degree of vacuum of the vacuum space and the external pressure.

本発明は、真空断熱パネルに用いられるだけでなく、真空空間を有する真空構造体に広く用いることができるものである。   The present invention can be widely used not only for a vacuum heat insulation panel but also for a vacuum structure having a vacuum space.

本発明の第一実施形態を示す説明用断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing for description which shows 1st embodiment of this invention. ベローズ部材の取付構造の一例を示した説明用断面図。Sectional drawing for description which showed an example of the attachment structure of a bellows member. 本発明の第二実施形態を示す説明用断面図。Sectional drawing for description which shows 2nd embodiment of this invention. 本発明の第三実施形態を示す説明用斜視図。An explanatory perspective view showing a third embodiment of the present invention.

符号の説明Explanation of symbols

10 真空断熱パネル 11 形状変化部
14 真空空間 16 仕切板
17 連通孔 18 仕切空間
20 ベローズ部材
DESCRIPTION OF SYMBOLS 10 Vacuum heat insulation panel 11 Shape change part 14 Vacuum space 16 Partition plate 17 Communication hole 18 Partition space 20 Bellows member

Claims (9)

内部に真空空間を形成する真空構造体の一部を形状変化可能な形状変化部とし、真空空間の真空度の変化に伴ってその形状変化部が形状変化することで、真空空間の真空度を測定することを特徴とする真空度測定構造。   The part of the vacuum structure that forms the vacuum space inside is a shape changeable part that can change shape, and the shape change part changes shape as the vacuum degree of the vacuum space changes. A vacuum measurement structure characterized by measuring. 前記形状変化部は、真空構造体の一部に凹状に設けられた伸縮自在なベローズ部材であることを特徴とする請求項1記載の真空度測定構造。   2. The vacuum degree measuring structure according to claim 1, wherein the shape changing portion is a retractable bellows member provided in a concave shape in a part of the vacuum structure. 前記形状変化部は、真空構造体の一部に湾曲して設けられたダイアフラムであることを特徴とする請求項1記載の真空度測定構造。   2. The vacuum degree measuring structure according to claim 1, wherein the shape changing portion is a diaphragm provided by being bent in a part of the vacuum structure. 内部に真空空間を形成する真空構造体の一部を形状変化可能な形状変化部に形成し、真空空間の真空度の変化に伴ってその形状変化部を形状変化させて、真空空間の真空度を測定することを特徴とする真空度測定方法。   A part of the vacuum structure that forms the vacuum space inside is formed in a shape-changing portion that can change its shape, and the shape-changing portion is changed in shape as the degree of vacuum in the vacuum space changes. A method for measuring a degree of vacuum, characterized in that 請求項1から3のいずれかに記載の真空度測定構造を備えたことを特徴とする真空構造体。   A vacuum structure comprising the vacuum measuring structure according to claim 1. 請求項1から3のいずれかに記載の真空度測定構造を備えたことを特徴とする真空断熱パネル。   A vacuum heat insulation panel comprising the vacuum degree measurement structure according to claim 1. 内部に真空空間を形成する真空構造体の一部に取付孔を設け、その取付孔の外周縁に沿って段部を形成し、真空空間の真空度の変化に伴ってその形状を変化する形状変化部材をその取付孔へ取り付けることを特徴とする真空構造体の製造方法。   A mounting hole is formed in a part of the vacuum structure that forms a vacuum space inside, a step is formed along the outer peripheral edge of the mounting hole, and the shape changes in accordance with the change in the vacuum degree of the vacuum space. A method of manufacturing a vacuum structure, wherein the change member is attached to the attachment hole. 内部に真空空間を形成する真空構造体の一部に取付孔を設け、真空空間の真空度の変化に伴ってその形状を変化させる形状変化部を備えた真空度測定ユニットをその取付孔へ取り付けることを特徴とする真空構造体の製造方法。   A mounting hole is provided in a part of the vacuum structure forming a vacuum space inside, and a vacuum degree measuring unit having a shape changing portion that changes its shape in accordance with a change in the vacuum degree of the vacuum space is attached to the mounting hole. A manufacturing method of a vacuum structure characterized by the above. 前記真空度測定ユニットは、前記形状変化部を囲むようにして測定空間を形成する囲繞部材を備え、囲繞部材には、真空空間と測定空間とを連通する連通孔を有する請求項8記載の真空構造体の製造方法。   The vacuum structure according to claim 8, wherein the vacuum degree measurement unit includes an enclosure member that forms a measurement space so as to surround the shape change portion, and the enclosure member has a communication hole that communicates the vacuum space and the measurement space. Manufacturing method.
JP2004297628A 2004-10-12 2004-10-12 Vacuum measurement structure, vacuum structure and vacuum insulation panel Expired - Fee Related JP4845169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297628A JP4845169B2 (en) 2004-10-12 2004-10-12 Vacuum measurement structure, vacuum structure and vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297628A JP4845169B2 (en) 2004-10-12 2004-10-12 Vacuum measurement structure, vacuum structure and vacuum insulation panel

Publications (2)

Publication Number Publication Date
JP2006112812A true JP2006112812A (en) 2006-04-27
JP4845169B2 JP4845169B2 (en) 2011-12-28

Family

ID=36381459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297628A Expired - Fee Related JP4845169B2 (en) 2004-10-12 2004-10-12 Vacuum measurement structure, vacuum structure and vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP4845169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192753A (en) * 2012-03-21 2013-09-30 Nohmi Bosai Ltd Sprinkler head-attaching tool
CN111712697A (en) * 2018-10-17 2020-09-25 Q`z株式会社 Pressure gauge
WO2023027427A1 (en) * 2021-08-23 2023-03-02 오씨아이 주식회사 Vacuum insulator, and vacuum insulator inspection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996511A (en) * 1973-01-19 1974-09-12
JPS61153913A (en) * 1984-12-27 1986-07-12 株式会社東芝 Vacuum valve
JPH0520566A (en) * 1990-07-13 1993-01-29 Mitsubishi Electric Corp Fluid density detector, pressure abnormality detector and fluid condition monitor
JPH05142075A (en) * 1992-05-25 1993-06-08 Toshiba Corp Pressure inspection method for vacuum heat insulation panel
JPH07110278A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Pressure transmission equipment
US6182514B1 (en) * 1999-07-15 2001-02-06 Ut-Battelle, Llc Pressure sensor for sealed containers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996511A (en) * 1973-01-19 1974-09-12
JPS61153913A (en) * 1984-12-27 1986-07-12 株式会社東芝 Vacuum valve
JPH0520566A (en) * 1990-07-13 1993-01-29 Mitsubishi Electric Corp Fluid density detector, pressure abnormality detector and fluid condition monitor
JPH05142075A (en) * 1992-05-25 1993-06-08 Toshiba Corp Pressure inspection method for vacuum heat insulation panel
JPH07110278A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Pressure transmission equipment
US6182514B1 (en) * 1999-07-15 2001-02-06 Ut-Battelle, Llc Pressure sensor for sealed containers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192753A (en) * 2012-03-21 2013-09-30 Nohmi Bosai Ltd Sprinkler head-attaching tool
CN111712697A (en) * 2018-10-17 2020-09-25 Q`z株式会社 Pressure gauge
WO2023027427A1 (en) * 2021-08-23 2023-03-02 오씨아이 주식회사 Vacuum insulator, and vacuum insulator inspection system

Also Published As

Publication number Publication date
JP4845169B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4142040B2 (en) Polymer-based condenser ultrasonic energy converter manufacturing method
CN101248339B (en) Surface acoustic wave (saw) based pressure sensor
WO2016176993A1 (en) Mems microphone encapsulation structure
JP2013525766A (en) Silicon pressure sensor package structure
JP2012505378A (en) Sensor membrane
JPWO2005029912A1 (en) Ultrasonic flowmeter using ultrasonic transducer
JP2007093032A (en) Sheet-shaped heat pipe and its manufacturing method
JP4845169B2 (en) Vacuum measurement structure, vacuum structure and vacuum insulation panel
US20070000332A1 (en) Pressure transmitter
JP5509150B2 (en) Acoustic tube and acoustic characteristic measuring device
WO2008060389A3 (en) Sensor device package having thermally compliant die pad
Naderyan et al. MEMS microphone with 73dBA SNR IN A 4mm x 3mm x 1.2 mm Package
TWI520625B (en) Acoustic transducer with membrane supporting structure
JP5712674B2 (en) Force detector housing case, force measuring device
US20210316985A1 (en) Sensor with chamber
JP2005241364A (en) Pressure sensor
CN104568240A (en) Measuring arrangement with a ceramic measuring cell
US11307215B2 (en) Acceleration sensor core unit, and method for preventing deflection of a base board on which acceleration sensor is mounted
KR100737728B1 (en) Packaging structure of mems microphone and construction method thereof
JP2007211921A (en) Vacuum heat insulating body
JP2011163915A (en) Pressure sensor
JP2009031005A (en) Semiconductor pressure sensor
JP2005337774A (en) Capacitance sensor
GB2575693A (en) Flexural ultrasonic transducer
JP2008070240A (en) Pressure sensitive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees