JP2006111930A - Film deposition system - Google Patents

Film deposition system Download PDF

Info

Publication number
JP2006111930A
JP2006111930A JP2004300897A JP2004300897A JP2006111930A JP 2006111930 A JP2006111930 A JP 2006111930A JP 2004300897 A JP2004300897 A JP 2004300897A JP 2004300897 A JP2004300897 A JP 2004300897A JP 2006111930 A JP2006111930 A JP 2006111930A
Authority
JP
Japan
Prior art keywords
film
shielding member
cathode
article
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300897A
Other languages
Japanese (ja)
Inventor
Masato Takahashi
正人 高橋
Akinobu Shibata
明宣 柴田
Takashi Mikami
隆司 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2004300897A priority Critical patent/JP2006111930A/en
Publication of JP2006111930A publication Critical patent/JP2006111930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition system by an arc type PVD (Physical Vapor Deposition) where a film(s) with a uniform, reduced surface roughness can be deposited with the satisfactory uniformity in film thickness over a wide range(s), that is, over the whole of the objective face to be film-deposited in the work to be film-deposited having the objective face to be film-deposited with a relatively large area or over the respective objective faces to be film-deposited in a plurality of works to be film-deposited dispersively arranged in a wide range. <P>SOLUTION: In the film deposition system A by arc type PVD, shielding members 51, 52 for droplets which suppress the progress of droplets to the work W to be film-deposited, and, on the other hand, allow the progress of an ionized cathode material to at least a part of the work W are provided so as to be located between a cathode 31 and the work W, and also, they are provided at intervals in succession to a plurality of steps along the progressing direction of droplets so that the progress of droplets is suppressed over the whole of the objective face to be film-deposited and the ionized cathode material uniformly goes over the whole of the objective face to be film-deposited. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車部品、各種機械の部品、各種工具、さらには、自動車部品、機械部品等の成形に用いる金型等の成形用型などの物品に膜形成する成膜装置、特に、アーク式PVDによる成膜装置に関する。   The present invention relates to a film forming apparatus for forming a film on an article such as a molding die such as a mold used for molding automobile parts, various machine parts, various tools, and further automotive parts, machine parts, etc. The present invention relates to a PVD film forming apparatus.

物品の表面に膜を形成することにより、該物品の耐摩耗性、他物品等との摺動性、化学的安定性、光学特性等の性質を改善し、物品に求められる性能をより優れたものにすることが、自動車部品、各種機械の部品(例えば摺動部品)、各種工具や、各種成形用型、さらには医療用物品や部材等について広く行われている。   By forming a film on the surface of the article, the properties of the article such as wear resistance, slidability with other articles, chemical stability, optical properties, etc. are improved, and the performance required for the article is further improved. It is widely used for automobile parts, parts for various machines (for example, sliding parts), various tools, various molds, and medical articles and members.

かかる膜形成手法の一つとして、カソードとアノード間の真空アーク放電によりカソード材料を蒸発させるとともにイオン化したカソード材料を含むプラズマを発生させ、該イオン化したカソード材料を被成膜物品へ飛翔させて該物品上に膜形成するアーク式イオンプレーティング法、真空アーク蒸着法などと称されているアーク式PVD法(アーク式物理式気相成長法)が知られている。   As one of such film formation techniques, the cathode material is evaporated by vacuum arc discharge between the cathode and the anode, and plasma containing the ionized cathode material is generated, and the ionized cathode material is allowed to fly to the film-forming article. An arc type PVD method (an arc type physical vapor deposition method) called an arc type ion plating method for forming a film on an article, a vacuum arc vapor deposition method or the like is known.

かかるアーク式PVDによる膜形成は、膜の被成膜物品への密着性が良好である、膜形成速度が高く、膜生産性が高いといった利点があり、工具等の表面処理において広く用いられている。   Film formation by arc-type PVD has advantages such as good adhesion of the film to the film-formed article, high film formation speed, and high film productivity, and is widely used in surface treatment of tools and the like. Yes.

かかるアーク式PVDによる成膜装置の1例を図9に示す。この成膜装置は、成膜チャンバ1、チャンバ1内に設置された被成膜物品W’を支持するホルダ2’、チャンバ1に付設された蒸発源3及びチャンバ1内を排気減圧する排気装置4等を含んでいる。   One example of such an arc type PVD film forming apparatus is shown in FIG. The film forming apparatus includes a film forming chamber 1, a holder 2 ′ that supports a film-formed article W ′ installed in the chamber 1, an evaporation source 3 attached to the chamber 1, and an exhaust device that exhausts and depressurizes the chamber 1. 4 etc. are included.

チャンバ1には、必要に応じて所定のガスをチャンバ内へ導入するためのガス導入ポート11も設けられている。
ホルダ2’には、成膜時に、該ホルダに支持される被成膜物品W’にバイアス電源PWからバイアス電圧、すなわち、膜形成のためのイオンを引き寄せるためのバイアス電圧を印加できるようにしてある。
The chamber 1 is also provided with a gas introduction port 11 for introducing a predetermined gas into the chamber as necessary.
A bias voltage, that is, a bias voltage for attracting ions for film formation, can be applied to the holder 2 ′ from the bias power source PW to the film forming article W ′ supported by the holder during film formation. is there.

蒸発源3は、カソード31、トリガー電極32、アーク放電用電源33、シールドプレート34、磁場形成部35等を備えている。
カソード31は形成しようとする膜に応じて選択した材料で形成される。カソード31の端面(蒸発面)311はホルダ2に向けられている。このカソードに対するアノードはこの例では接地された成膜チャンバ1がこれを兼ねている。なお、アノードは別途設けてもよい。
The evaporation source 3 includes a cathode 31, a trigger electrode 32, an arc discharge power source 33, a shield plate 34, a magnetic field forming unit 35, and the like.
The cathode 31 is formed of a material selected according to the film to be formed. An end surface (evaporation surface) 311 of the cathode 31 is directed to the holder 2. In this example, the anode for the cathode serves as the grounded film forming chamber 1. The anode may be provided separately.

トリガー電極32はカソード31の端面(蒸発面)311に臨んでおり、図示を省略した往復駆動装置によりカソード蒸発面に対し接触離反可能である。
アーク放電用電源33はカソード31とアノードとの間にアーク放電用電圧を印加できるように、また、カソード31とアノード間のアーク放電を誘発するためにカソード31とトリガー電極32との間にトリガー用電圧を印加できるように、カソード31等に配線接続されている。
The trigger electrode 32 faces the end surface (evaporation surface) 311 of the cathode 31 and can be brought into contact with and separated from the cathode evaporation surface by a reciprocating drive device (not shown).
The arc discharge power supply 33 can apply a voltage for arc discharge between the cathode 31 and the anode, and trigger between the cathode 31 and the trigger electrode 32 to induce arc discharge between the cathode 31 and the anode. Wiring is connected to the cathode 31 and the like so that a working voltage can be applied.

アーク放電用電源33とカソード31との間には、アーク放電を安定化するための直流リアクトル36を接続してあり、トリガー電極32はアーク電流が流れないように抵抗37を介して接地されている。   A DC reactor 36 for stabilizing the arc discharge is connected between the arc discharge power source 33 and the cathode 31, and the trigger electrode 32 is grounded via a resistor 37 so that no arc current flows. Yes.

シールドプレート34は本例では磁性材料からなり、カソード蒸発面31に近い位置でカソード31の側周面に対し間隔をあけて臨設されており、トリガー電極32と同電位となるように該電極に電気的に接続されている。
磁場形成部35は本例では永久磁石からなっており、カソード31の背後に設置されている。
In this example, the shield plate 34 is made of a magnetic material, and is provided close to the side circumferential surface of the cathode 31 at a position close to the cathode evaporation surface 31, so that the electrode has the same potential as the trigger electrode 32. Electrically connected.
In this example, the magnetic field forming unit 35 is made of a permanent magnet and is installed behind the cathode 31.

蒸発源3には、また、必要に応じて所定のガスを導入するためのガス導入ポート38が設けられている。
排気装置4は、成膜チャンバ1内及びこれに連通しているカソード31周囲の領域を所定の成膜圧に減圧維持することができる。
The evaporation source 3 is also provided with a gas introduction port 38 for introducing a predetermined gas as required.
The exhaust device 4 can maintain the film forming chamber 1 and the area around the cathode 31 communicating with the film forming chamber 1 at a predetermined film forming pressure.

以上説明した図9に示す成膜装置によると次のように被成膜物品W’に膜形成できる。 例えば、カソード31に高純度アルミニウムからなるカソードを用いて基板タイプの物品W’上にアルミナ膜を形成する場合について説明すると、まず、ホルダ2’上に被成膜基板W’を支持させ、次いで排気装置4を運転して成膜チャンバ内及びこれに連通しているカソード31周囲の領域から排気し、それらを成膜圧力に減圧維持する。   According to the film forming apparatus shown in FIG. 9 described above, a film can be formed on the film-formed article W ′ as follows. For example, a case where an alumina film is formed on a substrate type article W ′ using a cathode made of high-purity aluminum as the cathode 31 will be described. First, the deposition target substrate W ′ is supported on the holder 2 ′, and then The exhaust device 4 is operated to exhaust from the inside of the film forming chamber and the area around the cathode 31 communicating with the film forming chamber, and maintain them under reduced pressure at the film forming pressure.

また、ホルダ2’上の基板W’には、膜形成用イオンを引き寄せるためのバイアス電圧を電源PWから印加する。さらに、チャンバ1内にガス導入ポート11から酸素含有ガス(ここでは酸素ガス)を導入するとともに蒸発源3におけるガス導入ポート38からアルミニウムカソード31の酸化を防止するために、アルゴンガス等の不活性ガスをカソード31の周囲領域に導入する。   Further, a bias voltage for attracting film forming ions is applied from the power source PW to the substrate W ′ on the holder 2 ′. Further, in order to introduce an oxygen-containing gas (in this case, oxygen gas) from the gas introduction port 11 into the chamber 1 and to prevent oxidation of the aluminum cathode 31 from the gas introduction port 38 in the evaporation source 3, an inert gas such as argon gas is used. Gas is introduced into the area around the cathode 31.

かかる状態で、蒸発源3におけるトリガー電極32をカソード31の蒸発面311に接触させると、放電用電源33よって、直流リアクトル36、カソード31、トリガー電極32、抵抗37を含む閉ループに電流が流れる。ひき続きトリガー電極32をカソード31の蒸発面311から離すとアーク放電が誘発され、これをトリガーにしてカソード31とアノード(ここではチャンバー1)の間でアーク放電が開始され、カソード31が溶融蒸発するとともにカソード前方にイオン化されたカソード材料を含むプラズマが形成される。   In this state, when the trigger electrode 32 in the evaporation source 3 is brought into contact with the evaporation surface 311 of the cathode 31, a current flows through the closed loop including the DC reactor 36, the cathode 31, the trigger electrode 32, and the resistor 37 by the discharge power supply 33. Subsequently, when the trigger electrode 32 is moved away from the evaporation surface 311 of the cathode 31, arc discharge is induced. Using this as a trigger, arc discharge is started between the cathode 31 and the anode (here, chamber 1), and the cathode 31 is melted and evaporated. At the same time, a plasma containing the ionized cathode material is formed in front of the cathode.

トリガー電極32は、アーク放電誘発後はカソード31から遠ざけるが、抵抗37が入っているので、トリガー電極32を含む、アーク放電(予備アーク放電)を誘発した閉ループにはほとんど電流は流れなくなる。アーク放電は、放電用電源33によってカソード31、チャンバー1、直流リアクトル36を含む閉ループで持続する。直流リアクトル36は放電を安定化させる。   The trigger electrode 32 is moved away from the cathode 31 after the arc discharge is induced, but since the resistor 37 is included, almost no current flows in the closed loop including the trigger electrode 32 and inducing the arc discharge (preliminary arc discharge). The arc discharge is maintained in a closed loop including the cathode 31, the chamber 1, and the DC reactor 36 by the discharge power source 33. The DC reactor 36 stabilizes the discharge.

磁場形成部35は磁性体で形成されたシールドプレート34によってカソード31の蒸発面311に沿って磁場を形成し、カソード31の蒸発面311で発生するアークスポットを該面全体にわたり均等状に移動させる。これによりカソード31の損耗が均等化されるとともにカソード材料の蒸発が効率化される。また、該磁場は、アーク放電によって生成したプラズマを効率的に閉じ込め、プラズマ密度を高める役割も果たす。シールドプレート34は通常は図示のとおりトリガー電極32と同じ電位にするので、該プレートには殆ど電流は流れず、またカソード31の側面にアークスポットが移動するのを抑制する役割も果たす。   The magnetic field forming unit 35 forms a magnetic field along the evaporation surface 311 of the cathode 31 by the shield plate 34 formed of a magnetic material, and moves the arc spot generated on the evaporation surface 311 of the cathode 31 uniformly over the entire surface. . Thereby, the wear of the cathode 31 is equalized and the evaporation of the cathode material is made efficient. The magnetic field also serves to efficiently confine plasma generated by arc discharge and increase plasma density. Since the shield plate 34 is normally at the same potential as the trigger electrode 32 as shown in the figure, almost no current flows through the plate, and also serves to suppress the movement of the arc spot to the side surface of the cathode 31.

アークスポットからは陰極材料であるアルミニウムが溶融蒸発し、既述のとおりイオン化されたカソード材料、すなわち、この例ではアルミニウムイオンを含むプラズマが生成し、該アルニミウムイオンが、電源PWからバイアスを印加された被成膜基板W’へ向け加速され、さらに、チャンバ1内へ導入された酸素ガスと反応して酸化アルミニウム(アルミナ)となり、基板W’上に堆積してアルミナ膜を形成する。   From the arc spot, aluminum as the cathode material melts and evaporates, and as described above, an ionized cathode material, that is, a plasma containing aluminum ions in this example, is generated, and the aluminum ions are biased from the power source PW. The film is accelerated toward the deposition target substrate W ′, and further reacts with the oxygen gas introduced into the chamber 1 to become aluminum oxide (alumina), which is deposited on the substrate W ′ to form an alumina film.

ところが、カソード31上のアークスポットからは原子、分子など以外にもドロップレットと言われる直径0.1μm〜数100μm程度の巨大粒子が大量に発生する。このようなドロップレットは、そのまま放置しておくと、形成される膜に付着したり、膜中に混入したりし、膜の表面粗度を悪化させたり、或いは膜硬度を極端に低下させる等の問題を引き起こす。膜の表面粗度の悪化は摺動特性や耐摩耗性などの膜性能の低下をもたらす。   However, the arc spot on the cathode 31 generates a large amount of giant particles having a diameter of about 0.1 μm to several hundreds of μm, in addition to atoms and molecules. If such a droplet is left as it is, it will adhere to the film to be formed or mixed into the film, the surface roughness of the film will be deteriorated, or the film hardness will be extremely reduced, etc. Cause problems. Deterioration of the surface roughness of the film causes a decrease in film performance such as sliding characteristics and wear resistance.

本発明者の実験によると、図9の成膜装置において、酸素導入量:50sccm、アルゴンガス導入量:35sccm、チャンバ内ガス圧:7mTorr(約0.93Pa) 、放電電流:100A、電源PWによるバイアス電圧:−30Vの成膜条件で膜厚1μmのアルミナ膜を形成すると、アルミナ膜の表面粗度Raは0.5μmと極めて悪くなった。   According to the experiment of the present inventor, in the film forming apparatus of FIG. 9, the oxygen introduction amount: 50 sccm, the argon gas introduction amount: 35 sccm, the gas pressure in the chamber: 7 mTorr (about 0.93 Pa), the discharge current: 100 A, and the bias by the power source PW. When an alumina film having a film thickness of 1 μm was formed under a film forming condition of voltage: −30 V, the surface roughness Ra of the alumina film was extremely poor at 0.5 μm.

なお、アーク式PVDによる膜形成においては、カソードの材質はアルミニウムに限定されるものではなく、チタン、クロム、グラファイト等々を用いることがあり、アルミニゥム以外のカソードを採用する場合でも、ドロップレットが発生し、同様の問題を引き起こす。   In the film formation by arc PVD, the material of the cathode is not limited to aluminum, but titanium, chromium, graphite, etc. may be used. Even when a cathode other than aluminum is used, droplets are generated. And cause similar problems.

かかる問題解決のために、例えば、米国特許No.4,511,593、特許第3026425号公報(特開平10−25565号公報)、特開2002−97569号公報は、蒸発源と被成膜物品との間に遮蔽板を挿入することによって、形成される膜中へのドッロプレット混入を防止することを開示している。   In order to solve such a problem, for example, US Pat. No. 4,511,593, Japanese Patent No. 3026425 (Japanese Patent Laid-Open No. 10-25565), and Japanese Patent Laid-Open No. 2002-97569 are formed by inserting a shielding plate between the evaporation source and the article to be deposited. It is disclosed to prevent druplets from being mixed into the film.

これを図10を参照してもう少し詳しく説明する。
図10はアーク式PVDによる成膜装置を示しているが、この装置は基本的には図9の成膜装置と同構成である。図9に示す装置における部品、部分等と同じ部品、部分等には図9と同じ参照符号を付してある。
This will be described in more detail with reference to FIG.
FIG. 10 shows an arc type PVD film forming apparatus, which basically has the same configuration as the film forming apparatus of FIG. The same reference numerals as those in FIG. 9 are attached to the same parts and portions as those in the apparatus shown in FIG.

図10に示す成膜装置でも、カソード31から蒸発した原子、分子、クラスター、ドロップレットなどにプラズマ中の電子が衝突することによってアルミニウムイオンが生成するが、実際にイオンとなるのは原子、分子などで、巨大ドロップレットはほとんどイオンにならない。しかしドロップレットは略直進運動のみを行うために、図10の装置では、蒸発源3と被成膜基板W’の間に配置された遮蔽板5’によって基板W’方向へのドロップレット飛翔が阻止され、基板W’には到達しない。   Also in the film forming apparatus shown in FIG. 10, aluminum ions are generated when electrons in the plasma collide with atoms, molecules, clusters, droplets and the like evaporated from the cathode 31, but the ions are actually atoms or molecules. And so on, giant droplets are hardly ionized. However, since the droplets only move substantially straight, in the apparatus of FIG. 10, the droplets fly in the direction of the substrate W ′ by the shielding plate 5 ′ disposed between the evaporation source 3 and the deposition target substrate W ′. It is blocked and does not reach the substrate W ′.

一方、原子、分子などはイオン化され、イオン化された粒子の運動は直進運動のみならず、電界や磁界からの力を受けて、円運動や螺旋運動などの非直線運動を行う。そのため、イオンの一部は遮蔽板5’で進行を阻止されるが、残りのイオンは遮蔽板5’を迂回して基板W’へ進行し、酸素ガスと反応して基板W’表面にアルミナ膜を形成する。このアルミナ膜はドロップレット混入が抑制されており、表面粗度がよく、高硬度である。   On the other hand, atoms, molecules, and the like are ionized, and the movement of the ionized particles is not only a linear movement, but also receives a force from an electric field or a magnetic field to perform a non-linear movement such as a circular movement or a helical movement. For this reason, some of the ions are prevented from advancing by the shielding plate 5 ′, but the remaining ions bypass the shielding plate 5 ′ and proceed to the substrate W ′, react with oxygen gas and react with the alumina on the surface of the substrate W ′. A film is formed. This alumina film is suppressed from being mixed with droplets, has good surface roughness, and high hardness.

本発明者の実験によると、例えば図10の成膜装置において、基板W’の膜形成対象面積:28.3cm2 、遮蔽板5’の面積:38.5cm2 、遮蔽板5’の位置についてはカソード蒸発面311の中心と基板W’の中心を結ぶ線に中心を一致させて両者の略中間位置とし、さらに、酸素導入量:50sccm、アルゴンガス導入量:35sccm、チャンバ内ガス圧:7mTorr(約0.93Pa) 、放電電流:100A、電源PWによるバイアス電圧:−30Vの成膜条件で膜厚1μmのアルミナ膜を形成すると、アルミナ膜の表面粗度Raは0.01μmとなり、図9の成膜装置による膜形成の場合と比べると、アルミナ膜の表面粗度は改善された。 According to the experiment by the present inventor, for example, in the film forming apparatus of FIG. 10, the film formation target area of the substrate W ′: 28.3 cm 2 , the area of the shielding plate 5 ′: 38.5 cm 2 , and the position of the shielding plate 5 ′. Is aligned with the line connecting the center of the cathode evaporation surface 311 and the center of the substrate W ′ so as to be at a substantially intermediate position between them. Further, the oxygen introduction amount: 50 sccm, the argon gas introduction amount: 35 sccm, and the gas pressure in the chamber: 7 mTorr. When an alumina film having a film thickness of 1 μm is formed under the film forming conditions of discharge current: 100 A, bias voltage by power source PW: −30 V (approximately 0.93 Pa), the surface roughness Ra of the alumina film becomes 0.01 μm, which is shown in FIG. The surface roughness of the alumina film was improved as compared with the film formation by the film forming apparatus.

米国特許No.4,511,593U.S. Pat. 4,511,593 特許第3026425号公報Japanese Patent No. 3026425 特開平10−25565号公報Japanese Patent Laid-Open No. 10-25565 特開2002−97569号公報JP 2002-97569 A

しかしながら、図10の装置のように遮蔽板5’を採用する場合でも、図11に示すように、ホルダ5に支持される、膜形成対象面積の大きい被成膜物品(図示例では基板W)に膜形成したり、或いは個々の被成膜物品の膜形成対象面積が小さい複数個の被成膜物品をホルダの広い範囲にわたって分散保持させてそれらに膜形成するような場合には、図2に「●」ドットを結ぶラインで示すように、遮蔽板5’のほぼ投影面内についてはドロップレットの付着、混入が抑制された、表面粗度、膜硬度の点で良好なアルミナ膜が形成されるものの、遮蔽板5’のほぼ投影面外においては、多くのドロップレットが混入した、表面粗度が悪くて硬度の低いアルミナ膜が形成される。   However, even when the shielding plate 5 ′ is employed as in the apparatus of FIG. 10, as shown in FIG. 11, a film-formed article (substrate W in the illustrated example) supported by the holder 5 and having a large film formation target area. In the case of forming a film on each other or forming a film on a plurality of film-formed articles having a small film formation target area of each film-formed article by dispersing and holding them over a wide range of holders, FIG. As shown by the line connecting the “●” dots, an alumina film that is excellent in terms of surface roughness and film hardness is formed in the projection plane of the shielding plate 5 ′, in which droplet adhesion and mixing are suppressed. However, an alumina film having low surface roughness and low hardness, in which many droplets are mixed, is formed almost outside the projection plane of the shielding plate 5 ′.

また、図3に「●」ドットを結ぶラインで示すように、遮蔽板5’のほぼ投影面内における成膜速度に比べて、遮蔽板5’のほぼ投影面外における成膜速度が著しく高くなり、基板W全体における膜厚均一性が著しく悪化する。   Further, as shown by the line connecting the “●” dots in FIG. 3, the film formation speed of the shielding plate 5 ′ substantially outside the projection surface is significantly higher than the film formation speed of the shielding plate 5 ′ substantially within the projection surface. Thus, the film thickness uniformity over the entire substrate W is significantly deteriorated.

そこで図12に示すように、大面積の被成膜基板Wに対応させて大きい遮蔽板5”を採用すると、図2に「■」ドットを結ぶラインで示すように、これらの問題は解決する。しかし、図3に「■」ドットを結ぶラインで示すように、基板中央部での成膜速度が基板周縁部の成膜速度に比べて低下し、基板W全体における膜厚均一性が悪化する。   Therefore, as shown in FIG. 12, when a large shielding plate 5 ″ is used in correspondence with a large area deposition target substrate W, these problems are solved as shown by a line connecting “■” dots in FIG. . However, as shown by the line connecting the “■” dots in FIG. 3, the film formation speed at the center of the substrate is lower than the film formation speed at the peripheral edge of the substrate, and the film thickness uniformity in the entire substrate W is deteriorated. .

かかる問題は、カソードの材質がアルミニウムの場合に限らず、チタン、クロム、グラファイト等々である場合でも同様に発生する。   Such a problem occurs not only when the cathode material is aluminum but also when the cathode is titanium, chromium, graphite, or the like.

そこで本発明は、カソードとアノード間の真空アーク放電によりカソード材料を蒸発させるとともにイオン化したカソード材料を含むプラズマを発生させ、該イオン化したカソード材料を被成膜物品へ飛翔させて該物品上に膜形成するアーク式PVDによる成膜装置であって、比較的面積の大きい膜形成対象面を有する被成膜物品の該膜形成対象面に全体的に、或いは、広い範囲にわたって分散配置される複数の被成膜物品のそれぞれの膜形成対象面に、というように広い範囲にわたって、均一にして小さい表面粗度の膜を膜厚均一性良好に形成できる成膜装置を提供することを課題とする。   Therefore, the present invention evaporates the cathode material by vacuum arc discharge between the cathode and the anode, generates plasma containing the ionized cathode material, and flies the ionized cathode material to the article to be deposited to form a film on the article. An arc type PVD film forming apparatus for forming a film forming target surface having a film forming target surface having a relatively large area. It is an object of the present invention to provide a film forming apparatus capable of forming a film having a small surface roughness uniformly over a wide range on each film forming target surface of an article to be formed with good film thickness uniformity.

前記課題を解決するため本発明は、カソードとアノード間の真空アーク放電によりカソード材料を蒸発させるとともにイオン化したカソード材料を含むプラズマを発生させ、該イオン化したカソード材料を被成膜物品へ飛翔させて該物品上に膜形成するアークPVDによる成膜装置であり、前記カソードから生じるドロップレットの被成膜物品への進行を抑制する一方、イオン化カソード材料の少なくとも一部の被成膜物品への進行を許すドロップレットの遮蔽部材が前記カソードと被成膜物品との間に位置するように設けられており、該遮蔽部材は、被成膜物品の膜形成対象面全体にわたり前記ドロップレットの進行を抑制するとともに該膜形成対象面全体にわたりイオン化カソード材料が向かうようにドロップレット進行方向に沿って複数段に順次間隔をおいて設けられている成膜装置を提供する。   In order to solve the above-described problems, the present invention evaporates the cathode material by vacuum arc discharge between the cathode and the anode, generates plasma containing the ionized cathode material, and causes the ionized cathode material to fly to the article to be deposited. A film forming apparatus using arc PVD for forming a film on the article, which suppresses the progress of droplets generated from the cathode to the film-formed article while at least part of the ionized cathode material proceeds to the film-formed article. A droplet shielding member is provided so as to be positioned between the cathode and the article to be deposited, and the shielding member allows the droplet to travel over the entire film formation target surface of the article to be deposited. And along the droplet traveling direction, the ionized cathode material is directed over the entire target surface of the film formation. To provide a film forming device provided at a sequential intervals stage.

本発明に係る成膜装置によると、カソードから生じるドロップレットの被成膜物品への進行を抑制する一方、イオン化カソード材料の少なくとも一部の被成膜物品への進行を許すドロップレットの遮蔽部材が該カソードと被成膜物品との間に位置するように設けられている。さらに該ドロップレット遮蔽部材は、被成膜物品の膜形成対象面(ホルダに支持される物品が1個のときはその膜形成対象面、ホルダに支持される物品が複数個のときはそれらの膜形成対象面)の全体にわたりドロップレットの進行を抑制するとともに該膜形成対象面全体にわたりイオン化カソード材料が向かうようにドロップレット進行方向に沿って複数段に設けられている。   According to the film forming apparatus of the present invention, the droplet shielding member that suppresses the progress of the droplets generated from the cathode to the film forming article while allowing the ionized cathode material to advance to the film forming article. Is provided between the cathode and the article to be deposited. Further, the droplet shielding member is provided on the film formation target surface of the film-formed article (when there is one article supported by the holder, the film formation target surface; when there are a plurality of articles supported by the holder, The film formation target surface) is provided in a plurality of stages along the droplet traveling direction so that the progress of the droplets is suppressed over the entire film formation target surface and the ionized cathode material is directed over the entire film formation target surface.

従って、かかる複数段のドロップレット遮蔽部材により、カソードから生じるドロップレットの被成膜物品への進行を十分抑制でき、形成される膜へのドロップレットの付着、混入を十分抑制できる。それだけ膜表面粗度の小さい膜を形成できる。しかも、被成膜物品の膜形成対象面全体にわたり膜表面粗度が均一で小さく、膜厚均一性の点でも良好な膜を形成することができる。   Therefore, the plurality of droplet shielding members can sufficiently suppress the progress of the droplets generated from the cathode to the film forming article, and can sufficiently suppress the adhesion and mixing of the droplets to the formed film. Thus, a film having a small film surface roughness can be formed. In addition, the film surface roughness is uniform and small over the entire film formation target surface of the article to be deposited, and a film excellent in film thickness uniformity can be formed.

本発明に係る成膜装置においては、ドロップレットの遮蔽部材は複数段に順次間隔をあけて配置すればよいが、代表例として、簡素化のために2段に設ける場合を挙げることができる。遮蔽部材を2段に設ける場合、カソード側の遮蔽部材は孔無し遮蔽部材とし、被成膜物品支持ホルダ側(被成膜物品側)の遮蔽部材はリング形遮蔽部材とする場合を例示できる。   In the film forming apparatus according to the present invention, the droplet shielding members may be arranged in a plurality of stages at intervals, but a representative example is a case where the droplet shielding members are provided in two stages for simplification. When the shielding members are provided in two stages, the cathode-side shielding member may be a holeless shielding member, and the film-forming article support holder side (film-forming article side) shielding member may be a ring-shaped shielding member.

このように孔無し遮蔽部材とリング形遮蔽部材とを採用する場合、例えば、孔無し遮蔽部材については、カソード側から見ると、リング形遮蔽部材の孔を実質上隠す一方、リング形遮蔽部材の周縁部については見え、リング形遮蔽部材については、カソード側から見ると、孔無し遮蔽部材と共に被成膜物品の膜形成対象面(ホルダに支持される物品が1個のときはその膜形成対象面、ホルダに支持される物品が複数個のときはそれらの膜形成対象面)を実質上隠すように、それぞれの遮蔽部材が形成され(形状、大きさ等を調整して形成され)、その位置が定められている場合を例示できる。なお、ここで「実質上隠す」とは、完全に隠す場合のほか、完全には隠さないがドロップレット進行を阻止できるように殆ど隠していると言える場合も含む。   When employing the non-hole shielding member and the ring-shaped shielding member in this manner, for example, with respect to the non-hole shielding member, when viewed from the cathode side, the hole of the ring-shaped shielding member is substantially hidden while the ring-shaped shielding member The peripheral edge can be seen, and the ring-shaped shielding member can be seen from the cathode side, along with the non-hole shielding member, the film formation target surface of the article to be deposited (if there is only one article supported by the holder, the film formation target When there are a plurality of articles supported by the surface and the holder, the respective shielding members are formed so as to substantially hide the film formation target surfaces (formed by adjusting the shape, size, etc.) The case where the position is defined can be illustrated. Here, “substantially conceal” includes not only completely concealing but also the case where it can be said that it is almost completely concealed so that the progression of droplets can be prevented.

また、本発明に係る成膜装置は蒸発源を一つ有するものでもよく、複数有するものでもよい。従って、カソードの数としては、一つだけでもよく、複数でもよい。いずれにしても、ドロップレットの遮蔽部材は、個々のカソードについてみれば、複数段に順次間隔をあけて配設されていればよい。   In addition, the film forming apparatus according to the present invention may have one or more evaporation sources. Therefore, the number of cathodes may be only one or plural. In any case, the droplet shielding members only need to be sequentially arranged in a plurality of stages with respect to individual cathodes.

例えばカソードが複数個ある場合、複数のカソードに対し、複数段の遮蔽部材からなる一組の遮蔽部材群が該複数のカソードに対し共通に設けられていてもよいし、個々のカソードに対し複数段の遮蔽部材からなる一組の遮蔽部材群が別々に設けられていてもよい。後者の場合、カソードの数が2個とすると、カソードのそれぞれに対し、該カソード用の一組の遮蔽部材群を設けることになり、合計では、複数段の遮蔽部材からなる二組の遮蔽部材群が設けられることになる。   For example, when there are a plurality of cathodes, a set of shielding members composed of a plurality of stages of shielding members may be provided for the plurality of cathodes, or a plurality of cathodes may be provided for each cathode. A set of shielding member groups formed of stepped shielding members may be provided separately. In the latter case, if the number of cathodes is two, a set of shielding members for each cathode is provided for each cathode, and in total, two sets of shielding members composed of a plurality of shielding members are provided. A group will be provided.

また、カソードの数が一つであれ、二つ以上であれ、少なくとも一つのカソードについは、複数段の遮蔽部材からなる複数組の遮蔽部材群が設けられてもよい。例えば、カソードが1個の場合、該1個のカソードに対し、複数段の遮蔽部材からなる二組の遮蔽部材群が設けられてもよい。この場合、かかる複数組の遮蔽部材群は、例えば、ドロップレットの進行方向を横切る方向(例えばカソードとホルダ(被成膜物品)とを結ぶ方向に実質上垂直な方向)に並べるとよい。   Further, whether the number of cathodes is one or two or more, at least one cathode may be provided with a plurality of sets of shielding member groups including a plurality of stages of shielding members. For example, when there is one cathode, two sets of shielding member groups composed of a plurality of stages of shielding members may be provided for the one cathode. In this case, for example, the plurality of sets of shielding member groups may be arranged in a direction crossing the traveling direction of the droplet (for example, a direction substantially perpendicular to a direction connecting the cathode and the holder (film formation article)).

いずれにしても、ドロップレット進行方向に沿って複数段に配置される遮蔽部材のうち少なくとも1段或いは全段の遮蔽部材に、電源部から、膜形成に供すべきイオン化カソード材料(イオン)の通過を促進するためのバイアス電圧を印加できるようにしてもよい。   In any case, at least one or all of the shielding members arranged in a plurality of stages along the droplet traveling direction pass through the ionized cathode material (ions) to be used for film formation from the power supply unit. A bias voltage for promoting the above may be applied.

また、いずれにしても、前記イオン化カソード材料の前記遮蔽部材の通過を促進する磁場を形成するための磁場形成部を設けてもよい。例えば、ドロップレット進行方向に沿って複数段に配置される遮蔽部材のうち少なくとも1段の遮蔽部材(例えば最もホルダ(被成膜物品)に近い位置にある遮蔽部材)に磁場形成部を併設してもよい。   In any case, a magnetic field forming unit for forming a magnetic field that promotes the passage of the ionized cathode material through the shielding member may be provided. For example, a magnetic field forming unit is attached to at least one shielding member (for example, the shielding member closest to the holder (film formation article)) among the shielding members arranged in a plurality of stages along the droplet traveling direction. May be.

以上説明したように本発明によると、カソードとアノード間の真空アーク放電によりカソード材料を蒸発させるとともにイオン化したカソード材料を含むプラズマを発生させ、該イオン化したカソード材料を被成膜物品へ飛翔させて該物品上に膜形成するアーク式PVDによる成膜装置であって、比較的面積の大きい膜形成対象面を有する被成膜物品の該膜形成対象面に全体的に、或いは、広い範囲にわたって分散配置される複数の被成膜物品のそれぞれの膜形成対象面に、というように広い範囲にわたって、均一にして小さい表面粗度の膜を膜厚均一性良好に形成できる成膜装置を提供することができる。   As described above, according to the present invention, the cathode material is evaporated by the vacuum arc discharge between the cathode and the anode, the plasma containing the ionized cathode material is generated, and the ionized cathode material is caused to fly to the article to be deposited. An arc-type PVD film forming apparatus for forming a film on the article, which is dispersed over the entire film forming target surface of the film forming target object having a relatively large film forming target surface or over a wide range. Provided is a film forming apparatus capable of forming a film having a small and uniform surface roughness with good film thickness uniformity over a wide range on each film forming target surface of a plurality of film forming articles to be arranged. Can do.

以下に、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る成膜装置の1例の構成の概略を示している。図1に示す成膜装置Aは、図9に示す従来例の成膜装置において、被成膜物品のホルダ2’を図11や図12の成膜装置のように膜形成対象面の面積が大きい被成膜物品Wを保持できるホルダ2とし、カソード31とホルダ2との間にドロップレットの遮蔽部材51、52を2段一組に設けたものである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an outline of the configuration of an example of a film forming apparatus according to the present invention. The film forming apparatus A shown in FIG. 1 is the same as the film forming apparatus of the conventional example shown in FIG. The holder 2 can hold a large film-formed article W, and droplet shielding members 51 and 52 are provided between the cathode 31 and the holder 2 in a set of two stages.

成膜装置Aにおいても、基本的には図9に示す成膜装置と同様に被成膜物品(図示例では基板)Wに膜形成できる。
例えば、カソード31として高純度アルミニウムからなるカソードを採用し、被成膜基板Wに電源PWからバイアス電圧を印加し、チャンバ1内及びカソード31周囲領域を排気装置4により所定の成膜圧力に減圧維持しつつ、ガス導入ポート11から酸素含有ガス(ここでは酸素ガス)をチャンバ1内に導入するとともに蒸発源3におけるガス導入ポート38からアルゴンガス等の不活性ガスをカソード31の周囲領域に導入する。
Also in the film forming apparatus A, basically, a film can be formed on an article to be formed (a substrate in the illustrated example) W in the same manner as the film forming apparatus shown in FIG.
For example, a cathode made of high-purity aluminum is adopted as the cathode 31, a bias voltage is applied to the deposition target substrate W from the power source PW, and the chamber 1 and the area around the cathode 31 are reduced to a predetermined deposition pressure by the exhaust device 4. While maintaining, an oxygen-containing gas (in this case, oxygen gas) is introduced into the chamber 1 from the gas introduction port 11 and an inert gas such as argon gas is introduced into the peripheral region of the cathode 31 from the gas introduction port 38 in the evaporation source 3. To do.

かかる状態で、蒸発源3においてアーク放電を発生させ、カソード31を溶融蒸発させるとともにカソード前方にイオン化されたカソード材料を含むプラズマ、すなわち、この例ではアルミニウムイオンを含むプラズマを生成させる。該アルニミウムイオンは、バイアス印加された被成膜基板Wへ向け加速され、酸素ガスと反応して酸化アルミニウム(アルミナ)となり、基板W上に堆積してアルミナ膜を形成する。   In this state, arc discharge is generated in the evaporation source 3 to melt and evaporate the cathode 31 and to generate plasma containing a cathode material ionized in front of the cathode, that is, plasma containing aluminum ions in this example. The aluminum ions are accelerated toward the deposition target substrate W to which a bias is applied, react with oxygen gas to become aluminum oxide (alumina), and deposit on the substrate W to form an alumina film.

成膜装置Aにおいても、カソード31から蒸発した原子、分子、クラスター、ドロップレットなどにプラズマ中の電子が衝突することによってアルミニウムイオンが生成するが、実際にイオンとなるのは原子、分子などで、巨大ドロップレットはほとんどイオンにならない。しかしドロップレットは略直進運動のみを行うために、成膜装置Aでは、蒸発源3と被成膜基板Wの間に配置された2段式遮蔽部材51、52によって基板W方向へのドロップレット飛翔が阻止される。   Also in the film forming apparatus A, aluminum ions are generated when electrons in the plasma collide with atoms, molecules, clusters, droplets, and the like evaporated from the cathode 31, but the ions are actually atoms, molecules, and the like. , Giant droplets hardly become ions. However, since the droplets only move substantially straight, in the film forming apparatus A, the droplets in the direction of the substrate W are provided by the two-stage shielding members 51 and 52 disposed between the evaporation source 3 and the deposition target substrate W. Flying is blocked.

一方、原子、分子などはイオン化され、イオン化された粒子の運動は直進運動のみならず、電界や磁界からの力を受けて、円運動や螺旋運動などの非直線運動を行う。そのため、イオンの一部は遮蔽部材51、52で進行を阻止されるが、残りのイオンは遮蔽部材51、52を通過して基板Wへ進行し、酸素ガスと反応して基板W表面にアルミナ膜を形成する。このアルミナ膜はドロップレット混入が抑制されており、表面粗度が均一化されているとともに小さく、高硬度である。また、膜厚均一性も良好である。   On the other hand, atoms, molecules, and the like are ionized, and the movement of the ionized particles is not only a linear movement, but also receives a force from an electric field or a magnetic field to perform a non-linear movement such as a circular movement or a helical movement. For this reason, some of the ions are prevented from advancing by the shielding members 51 and 52, but the remaining ions pass through the shielding members 51 and 52 and proceed to the substrate W, react with oxygen gas, and react with the oxygen on the surface of the substrate W. A film is formed. The alumina film is suppressed from being mixed with droplets, has a uniform surface roughness, is small, and has high hardness. Also, the film thickness uniformity is good.

2段式遮蔽部材51、52についてさらに説明すると、カソード側の前段遮蔽部材51は比較的直径の小さな円板形状の板体部材であり、ホルダ2(基板W)側の後段遮蔽部材52は、比較的外径の大きい円形リング形状の板体部材である。ここでは後段遮蔽部材52の孔521の内径は前段遮蔽部材51の外径にほぼ等しいが、必ずしもそれに限定されない。
本例では、遮蔽部材51、52はいずれも導電性材料(ステンレススチール、モリブデン等)から形成されており、接地されている。
The two-stage type shielding members 51 and 52 will be further described. The front-side shielding member 51 on the cathode side is a disk-shaped plate member having a relatively small diameter, and the rear-stage shielding member 52 on the holder 2 (substrate W) side is It is a circular ring-shaped plate member having a relatively large outer diameter. Here, the inner diameter of the hole 521 of the rear-stage shielding member 52 is substantially equal to the outer diameter of the front-stage shielding member 51, but is not necessarily limited thereto.
In this example, the shielding members 51 and 52 are both made of a conductive material (stainless steel, molybdenum, etc.) and are grounded.

遮蔽部材51、52のそれぞれの外径、遮蔽部材52の内径及び両者間の間隔、カソード31と基板Wとの間における遮蔽部材51、52の位置等は、カソード31の蒸発面311のいずれの部位から生じたドロップレットも、それが被成膜基板Wの方へ向け直進するとき、遮蔽部材51、52の隙間から遮蔽部材52の孔へすり抜けたり、遮蔽部材51、52の外側を通って基板Wへ向かわないように定めてある。   The outer diameter of each of the shielding members 51, 52, the inner diameter of the shielding member 52, the distance between them, the position of the shielding members 51, 52 between the cathode 31 and the substrate W, etc. When the droplet generated from the part also goes straight toward the film formation substrate W, it passes through the gap of the shielding members 51 and 52 into the hole of the shielding member 52 or passes outside the shielding members 51 and 52. It is determined not to go to the substrate W.

また、遮蔽部材51、52のそれぞれの外径、遮蔽部材52の内径及び両者間の間隔、カソード31と基板Wとの間における遮蔽部材51、52の位置等は、膜形成に寄与するイオン化カソード材料(イオン)については、その一部が2段式遮蔽部材51、52で進行を遮られたとしても、残りのイオンが遮蔽部材51、52を通過して基板Wへ向かい、膜形成に供されるようにも定めてある。   Further, the outer diameter of each of the shielding members 51 and 52, the inner diameter of the shielding member 52, the distance between them, the position of the shielding members 51 and 52 between the cathode 31 and the substrate W, and the like contribute to film formation. Even if a part of the material (ion) is blocked by the two-stage shielding members 51 and 52, the remaining ions pass through the shielding members 51 and 52 toward the substrate W and are used for film formation. It is also determined to be.

図1に示す例では、カソード31の蒸発面311は円形面であり、その直径は64mmである。また、被成膜基板Wは円形であり、その外径は250mmである。
前段遮蔽部材51の外径は70mm、後段遮蔽部材52の外径は170mm、内径は70mmである。各遮蔽部材の厚みは3mmである。また、カソード蒸発面311から前段遮蔽部材までの距離は60mm、両遮蔽部材の間隔は25mm、カソード蒸発面311から基板Wまでの距離は150mmである。
遮蔽部材51、52はいずれもその中心をカソード蒸発面311の中心と基板Wの中心を結ぶ線に一致させてある。
In the example shown in FIG. 1, the evaporation surface 311 of the cathode 31 is a circular surface, and its diameter is 64 mm. The deposition target substrate W is circular and has an outer diameter of 250 mm.
The outer diameter of the front shielding member 51 is 70 mm, the outer diameter of the rear shielding member 52 is 170 mm, and the inner diameter is 70 mm. The thickness of each shielding member is 3 mm. The distance from the cathode evaporation surface 311 to the front shielding member is 60 mm, the distance between both shielding members is 25 mm, and the distance from the cathode evaporation surface 311 to the substrate W is 150 mm.
The shielding members 51 and 52 have their centers aligned with a line connecting the center of the cathode evaporation surface 311 and the center of the substrate W.

カソード31側から見ると、前段遮蔽部材51が後段遮蔽部材52の孔を実質上隠しているが、遮蔽部材52の周縁部については見える。また、カソード31側から見ると、全段及び後段の遮蔽部材51、52に遮られて被成膜基板Wが見えない。   When viewed from the cathode 31 side, the front shielding member 51 substantially hides the hole of the rear shielding member 52, but the peripheral portion of the shielding member 52 is visible. Further, when viewed from the cathode 31 side, the deposition target substrate W cannot be seen because it is shielded by the shielding members 51 and 52 in the entire and subsequent stages.

従って、この成膜装置Aにおいては、カソード31で生じるドロップレットは、前段及び後段の遮蔽部材51、52により進行が遮られ、後段遮蔽部材52の基板W上の幾何学的投影面の内側には実質上到達しない。
一方、膜形成に供されるべきイオンは、その一部が遮蔽部材51、52で進行を阻止されるが、残りのイオンは遮蔽板51、52を通過して、さらに言えば、遮蔽部材51の外側から両遮蔽部材の間へ、さらに遮蔽部材52の孔521から基板Wへ進行し、或いはさらに、遮蔽部材51、52の外側を通って基板Wへ進行し、酸素ガスと反応して基板W表面にアルミナ膜を形成する。
Therefore, in this film forming apparatus A, the droplets generated at the cathode 31 are blocked from traveling by the front and rear shielding members 51 and 52, and are located inside the geometric projection plane on the substrate W of the rear shielding member 52. Is virtually unreachable.
On the other hand, some of the ions to be used for film formation are prevented from advancing by the shielding members 51 and 52, but the remaining ions pass through the shielding plates 51 and 52. Between the shielding member 52 and the substrate W through the hole 521 of the shielding member 52, or further through the outside of the shielding members 51 and 52 to the substrate W, reacting with oxygen gas and the substrate. An alumina film is formed on the W surface.

かくして、基板Wの膜形成対象面が比較的大面積であるにも拘らず、膜形成対象面の全体にわたり、形成される膜へのドロップレットの付着や混入が抑制され、該膜は表面粗度が全体に均一化されるとともに小さくなり、高硬度となる。また、図12に例示するように大きい遮蔽部材5”を1段設置する場合と比べると、膜厚均一性も良好になる。   Thus, although the film formation target surface of the substrate W has a relatively large area, the adhesion and mixing of droplets to the formed film are suppressed over the entire film formation target surface, and the film has a rough surface. The degree becomes uniform and becomes smaller as a whole, and the hardness becomes high. Further, the film thickness uniformity is also improved as compared with the case where one large shielding member 5 ″ is installed as illustrated in FIG.

図1の成膜装置Aにおいて、酸素導入量:50sccm、アルゴンガス導入量:35sccm、チャンバ内ガス圧:7mTorr(約0.93Pa) 、放電電流:100A、電源PWによるバイアス電圧:−30Vの成膜条件で基板Wに膜厚1μmのアルミナ膜を形成したところ、図2に「◆」ドットを結ぶラインで示すように、基板W全体にわたり(膜形成対象面全体にわたり)アルミナ膜の表面粗度Raは略0.01μmと均一に小さかった。また、図3に「◆」ドットを結ぶラインで示すように、基板W全体にわたり成膜速度が均一化され、膜厚均一性良好なアルミナ膜を形成できた。   In the film forming apparatus A of FIG. 1, the amount of oxygen introduced: 50 sccm, the amount of argon gas introduced: 35 sccm, the gas pressure in the chamber: 7 mTorr (about 0.93 Pa), the discharge current: 100 A, and the bias voltage by the power source PW: −30 V When an alumina film having a film thickness of 1 μm was formed on the substrate W under the conditions, the surface roughness Ra of the alumina film over the entire substrate W (over the entire film formation target surface) as shown by the line connecting the “♦” dots in FIG. Was uniformly small, approximately 0.01 μm. Further, as shown by the line connecting the “♦” dots in FIG. 3, the film formation rate was made uniform over the entire substrate W, and an alumina film with good film thickness uniformity could be formed.

既述のとおり、図1の成膜装置Aでは2段式遮蔽部材51、52のそれぞれは導電性材料(例えばステンレススチール、モリブデン等)で形成され、接地されている。しかし図4の成膜装置Bのように、それぞれの遮蔽部材に別々にバイアス電源からバイアスを印加してもよい。装置Bでは、遮蔽部材51に電源PW1から負のバイアスを、遮蔽部材52に電源PW2から負のバイアスを印加できるようにしてある。なお、遮蔽部材51、52にバイアスを印加する点を除けば、成膜装置Bは成膜装置Aと同構成である。装置Aと同じ部品、部分等には装置Aと同じ参照符号を付してある。   As described above, in the film forming apparatus A shown in FIG. 1, each of the two-stage shielding members 51 and 52 is formed of a conductive material (for example, stainless steel or molybdenum) and is grounded. However, as in the film forming apparatus B of FIG. 4, a bias may be applied to each shielding member separately from a bias power source. In the apparatus B, a negative bias can be applied to the shielding member 51 from the power source PW1, and a negative bias can be applied to the shielding member 52 from the power source PW2. The film forming apparatus B has the same configuration as the film forming apparatus A except that a bias is applied to the shielding members 51 and 52. The same parts, parts, etc. as in apparatus A are given the same reference numerals as in apparatus A.

装置Bでは、このように膜形成にあたり遮蔽部材51、52のそれぞれにバイアスを印加することで、膜形成に供すべきイオンが遮蔽部材51、52を通過し易くなり、それだけ成膜速度を上げることができる。
遮蔽部材に印加するバイアス極性は負極性に限定されるものではなく、蒸発源3において形成されるプラズマの状態、蒸発源3と遮蔽部材や被成膜物品との位置関係などによっては正極性であってもよく、遮蔽部材51、52のうち一方については正極性、他方は負極性であってもよい。また、両遮蔽部材に共通の電源からバイアスを印加してもよい。
In the apparatus B, by applying a bias to each of the shielding members 51 and 52 during film formation in this way, ions to be used for film formation can easily pass through the shielding members 51 and 52, and the film formation speed is increased accordingly. Can do.
The bias polarity applied to the shielding member is not limited to the negative polarity, and may be positive depending on the state of the plasma formed in the evaporation source 3 and the positional relationship between the evaporation source 3 and the shielding member or film-forming article. One of the shielding members 51 and 52 may be positive, and the other may be negative. Further, a bias may be applied to both the shielding members from a common power source.

場合によっては、電源からバイアスを印加することに代えて、遮蔽部材を抵抗を介して接地することにより遮蔽部材を一種のフローティング状態におき、それにより遮蔽部材を適当な電位に設定してイオン通過を円滑化することも可能である。
或いは、遮蔽部材を電気的に完全にフローティング状態に設定したり、遮蔽部材を絶縁性材料で形成することによっても、同様の効果が得られることもある。
In some cases, instead of applying a bias from the power source, the shielding member is grounded via a resistor to place the shielding member in a kind of floating state, thereby setting the shielding member to an appropriate potential and passing ions. Can also be smoothed.
Alternatively, the same effect may be obtained by setting the shielding member electrically in a completely floating state or by forming the shielding member with an insulating material.

図5は本発明に係る成膜装置の他の例を示している。図5の成膜装置Cは、図1の装置Aにおいて、磁場形成部の1例として永久磁石であるリング形マグネット6を後段遮蔽部材52の孔521の基板側出口近傍に併設したものである。これ以外の点は装置Aと同構成であり、装置Aと同じ部品、部分等には装置Aと同じ参照符号を付してある。   FIG. 5 shows another example of the film forming apparatus according to the present invention. The film forming apparatus C of FIG. 5 is the apparatus A of FIG. 1 in which a ring-shaped magnet 6 that is a permanent magnet as an example of the magnetic field forming unit is provided near the substrate side outlet of the hole 521 of the rear shielding member 52. . The other points are the same as those of the device A, and the same parts and parts as those of the device A are denoted by the same reference numerals as those of the device A.

成膜装置Cにおいては、後段遮蔽部材52を通過しようとするイオン化カソード材料(イオン)がマグネット6の磁界からローレンツ力を受け、磁力線にまとわりつきながら運動するので、それだけイオンの遮蔽部材51、52の通過割合が増し、成膜速度が向上する。   In the film forming apparatus C, the ionized cathode material (ion) that is going to pass through the latter-stage shielding member 52 receives Lorentz force from the magnetic field of the magnet 6 and moves while clinging to the magnetic field lines. The passage rate is increased, and the film formation rate is improved.

なお、磁場形成部は、イオンの遮蔽部材通過を促進する効果が得られるのであれば、遮蔽部材近傍に設ける必要はなく、そのような効果が得られるのであれば設置位置はどこでもよい。また、磁場形成部は装置Cにおけるように永久磁石である必要はなく、電磁石でもよい。さらに、遮蔽部材への前記のごときバイアス印加(或いは抵抗挿入等)と磁場形成部による磁界とを併用してもよい。   The magnetic field forming unit need not be provided in the vicinity of the shielding member as long as the effect of promoting the passage of ions through the shielding member can be obtained, and the installation position may be anywhere as long as such an effect can be obtained. Further, the magnetic field forming unit need not be a permanent magnet as in the apparatus C, and may be an electromagnet. Further, the bias application (or resistance insertion or the like) to the shielding member and the magnetic field generated by the magnetic field forming unit may be used in combination.

以上説明した成膜装置A、B、Cでは遮蔽部材を2段に設けているが、遮蔽部材は3段以上に設けてもよい。また、各遮蔽部材の形状も円形に限定されず、成膜装置の形状、被成膜物品の形態、成膜条件等に応じて他の形態、例えば方形、矩形等でもよい。
また、成膜装置A、B、Cでは、小さい遮蔽部材51を前段に、大きい遮蔽部材52を後段に配置しているが、支障なければ、大きい遮蔽部材を前段に、小さい遮蔽部材を後段に配置してもよい。
In the film forming apparatuses A, B, and C described above, the shielding member is provided in two stages, but the shielding member may be provided in three or more stages. Further, the shape of each shielding member is not limited to a circle, and may be another shape such as a rectangle or a rectangle depending on the shape of the film forming apparatus, the shape of the article to be deposited, the film forming conditions, and the like.
Further, in the film forming apparatuses A, B, and C, the small shielding member 51 is disposed at the front stage and the large shielding member 52 is disposed at the rear stage. If there is no problem, the large shielding member is disposed at the front stage and the small shielding member is disposed at the rear stage. You may arrange.

3段以上に遮蔽部材を設ける場合でも、前段から後段にいくにしたがって大きくなる遮蔽部材を採用してもよいし、逆に前段から後段にいくにしたがって小さくなる遮蔽部材を採用してもよい。
遮蔽部材の材質については既述のように通常は導電性材料を採用できるが、蒸発源3からの熱輻射を強く受けるような場合や、熱負荷が大きい場合は、導電性材料を用いる場合はモリブデンやタングステンなどの高融点金属が好ましく、絶縁性材料を用いる場合でもアルミナや窒化ホウ素(BN)などの高融点材料が好ましい。
Even when the shielding member is provided in three or more stages, a shielding member that increases as it goes from the front stage to the rear stage may be adopted, or conversely, a shielding member that becomes smaller as it goes from the front stage to the rear stage may be adopted.
As described above, a conductive material can be usually used for the material of the shielding member. However, when the heat radiation is strongly received from the evaporation source 3 or when the heat load is large, the conductive material is used. A refractory metal such as molybdenum or tungsten is preferable. Even when an insulating material is used, a refractory material such as alumina or boron nitride (BN) is preferable.

成膜装置A、B、Cでは蒸発源の数、従ってカソードの数は一つであり、これに対し遮蔽部材は2段一組で設置されている。しかし、一つの蒸発源(カソード)に対し、それぞれが複数段の遮蔽部材からなる遮蔽部材群を二組設けてもよい。図6は一つのカソード31に対し、それぞれが前段遮蔽部材51a及び後段遮蔽部材52aを一組とする遮蔽部材群を二組設けた例を示している。二組の遮蔽部材群は、図示例ではカソード蒸発面の中心と基板(図6では省略)中心とを結ぶ線に対し垂直方向に並べてある。   In the film forming apparatuses A, B, and C, the number of evaporation sources, that is, the number of cathodes is one, and the shielding members are installed in two sets. However, two sets of shielding member groups each composed of a plurality of stages of shielding members may be provided for one evaporation source (cathode). FIG. 6 shows an example in which two sets of shielding members each including a front-stage shielding member 51a and a rear-stage shielding member 52a are provided for one cathode 31. In the illustrated example, the two sets of shielding members are arranged in a direction perpendicular to a line connecting the center of the cathode evaporation surface and the center of the substrate (not shown in FIG. 6).

また、蒸発源は1台に限定されず、2台以上設けてもよい。2台以上設ける場合、各蒸発源に対し共通の複数段一組の遮蔽部材群を設けてもよいし、各蒸発源に対し別々に複数段一組の遮蔽部材群を設けてもよい。図7は二つの蒸発源(二つのカソード31、31’)に共通に、前段遮蔽部材51bと後段遮蔽部材52bからなる一組の遮蔽部材群を設けた例を示している。図8は二つの蒸発源(二つのカソード31、31’)のそれぞれに別々に、前段遮蔽部材51cと後段遮蔽部材52cからなる一組の遮蔽部材群を設けた例を示している。   Further, the number of evaporation sources is not limited to one, and two or more evaporation sources may be provided. When two or more units are provided, a plurality of sets of shielding member groups common to each evaporation source may be provided, or a plurality of sets of shielding member groups may be provided separately for each evaporation source. FIG. 7 shows an example in which a pair of shielding member groups each including a front shielding member 51b and a rear shielding member 52b are provided in common to two evaporation sources (two cathodes 31, 31 '). FIG. 8 shows an example in which a pair of shielding member groups each including a front-stage shielding member 51c and a rear-stage shielding member 52c are provided for each of two evaporation sources (two cathodes 31, 31 ').

いずれにしても、遮蔽部材はドロップレットの進行阻止だけでなく、被成膜物品側からの放熱を阻止するような、一種のリフレクター効果も発揮し得る。例えば、成膜装置A、B、Cにおいて基板Wを図示省略のヒータで所定成膜温度に加熱しながら膜形成する場合、基板W表面から熱が逃げるため基板Wの温度がなかなか高くならないというような場合において、基板温度を高くするためにヒータ自身を相当高温にしようとすると、そのようなヒーターは高価であるし、周囲の防熱対策が大がかりとなる。   In any case, the shielding member can exhibit not only the progress of the droplet but also a kind of reflector effect that prevents the heat release from the film-formed article side. For example, in the film forming apparatuses A, B, and C, when the film is formed while heating the substrate W to a predetermined film forming temperature with a heater (not shown), the temperature of the substrate W does not increase easily because heat escapes from the surface of the substrate W. In such a case, if the heater itself is to be heated to a considerably high temperature in order to increase the substrate temperature, such a heater is expensive and the surrounding heat-proof measures become large.

しかし、例えば成膜装置A、B、Cの場合、基板Wの表面から輻射として逃げる熱が遮蔽部材51、52によって反射されるので、熱が逃げにくくなり、その結果、基板Wの表面温度はそれだけ速やかに高くなる。またヒーター自身の温度も遮蔽部材51、52がないときに比べれば低くて済むので、それだけコスト安に済み、周囲の防熱対策もそれほど大がかりにしなくてもよい。   However, for example, in the case of the film forming apparatuses A, B, and C, heat that escapes as radiation from the surface of the substrate W is reflected by the shielding members 51 and 52, so that the heat becomes difficult to escape, and as a result, the surface temperature of the substrate W is It gets higher quickly. Further, since the temperature of the heater itself can be lower than when the shielding members 51 and 52 are not provided, the cost can be reduced by that amount, and the surrounding heat prevention measures do not have to be so large.

例えば、図1の装置Aにおいて、前段の円板状遮蔽部材51、後段の円形リング板状遮蔽部材52のそれぞれを2重以上の構成にすると、よりリフレクター効果は高くなる。   For example, in the apparatus A of FIG. 1, when each of the front-stage disc-shaped shielding member 51 and the rear-stage circular ring-plate-shaped shielding member 52 is composed of two or more layers, the reflector effect becomes higher.

本発明は、自動車部品、各種機械の部品、各種工具、さらには、自動車部品、機械部品等の成形に用いる金型等の成形用型などの物品に、膜表面粗度が均一化されているとともに小さい膜を膜厚均一性良好に形成することに利用できる。   In the present invention, film surface roughness is uniformized in articles such as molding parts such as molds used for molding automobile parts, various machine parts, various tools, and automobile parts, machine parts, etc. In addition, it can be used to form a small film with good film thickness uniformity.

本発明に係る成膜装置の1例を示す図である。It is a figure which shows one example of the film-forming apparatus which concerns on this invention. 図1、図11、図12の各成膜装置による膜形成実験で得られた膜形成対象面各部での膜表面粗度を示す図である。It is a figure which shows the film | membrane surface roughness in each part of the film formation object surface obtained by the film formation experiment by each film-forming apparatus of FIG.1, FIG.11, FIG.12. 図1、図11、図12の各成膜装置による膜形成実験で得られた膜形成対象面各部での成膜速度を示す図である。It is a figure which shows the film-forming speed | rate in each part of the film formation object surface obtained by the film formation experiment by each film-forming apparatus of FIG.1, FIG.11, FIG.12. 本発明に係る成膜装置の他の例を示す図である。It is a figure which shows the other example of the film-forming apparatus which concerns on this invention. 本発明に係る成膜装置のさらに他の例を示す図である。It is a figure which shows the further another example of the film-forming apparatus which concerns on this invention. 遮蔽部材の設置の仕方の他の例を示す図である。It is a figure which shows the other example of the method of installation of a shielding member. 遮蔽部材の設置の仕方のさらに他の例を示す図である。It is a figure which shows the further another example of the method of installation of a shielding member. 遮蔽部材の設置の仕方のさらに他の例を示す図である。It is a figure which shows the further another example of the method of installation of a shielding member. 成膜装置の従来例を示す図である。It is a figure which shows the prior art example of the film-forming apparatus. 成膜装置の他の従来例を示す図である。It is a figure which shows the other conventional example of the film-forming apparatus. 成膜装置のさらに他の従来例を示す図である。It is a figure which shows the other prior art example of the film-forming apparatus. 成膜装置のさらに他の従来例を示す図である。It is a figure which shows the other prior art example of the film-forming apparatus.

符号の説明Explanation of symbols

A、B、C 成膜装置
1 成膜チャンバ
11 ガス導入ポート
2、2’ 被成膜物品支持ホルダ
3 蒸発源
31、31’ カソード
311 カソド蒸発面
32 トリガー電極
33 アーク放電用電源
34 シールドプレート
35 磁場形成部
36 リアクトル
37 抵抗
38 ガス導入ポート
4 排気装置
51、51a、51b、51c 前段遮蔽部材
52、52a、52b、52c 後段遮蔽部材
521 遮蔽部材の孔
5’、5” 遮蔽部材
W、W’被成膜基板(被成膜物品の例)
PW、PW1、PW2 バイアス電源
6 マグネット(磁場形成部の例)
A, B, C Film formation apparatus 1 Film formation chamber 11 Gas introduction port 2, 2 ′ Film formation article support holder 3 Evaporation source 31, 31 ′ Cathode 311 Cathode evaporation surface 32 Trigger electrode 33 Arc discharge power supply 34 Shield plate 35 Magnetic field forming part 36 Reactor 37 Resistance 38 Gas introduction port 4 Exhaust devices 51, 51a, 51b, 51c Front-stage shielding members 52, 52a, 52b, 52c Rear-stage shielding members 521 Holes 5 ', 5 "of shielding members W, W' Deposition substrate (example of deposition object)
PW, PW1, PW2 Bias power supply 6 Magnet (example of magnetic field forming unit)

Claims (4)

カソードとアノード間の真空アーク放電によりカソード材料を蒸発させるとともにイオン化したカソード材料を含むプラズマを発生させ、該イオン化したカソード材料を被成膜物品へ飛翔させて該物品上に膜形成するアークPVDによる成膜装置であり、前記カソードから生じるドロップレットの被成膜物品への進行を抑制する一方、イオン化カソード材料の少なくとも一部の被成膜物品への進行を許すドロップレットの遮蔽部材が前記カソードと被成膜物品との間に位置するように設けられており、該遮蔽部材は、被成膜物品の膜形成対象面全体にわたり前記ドロップレットの進行を抑制するとともに該膜形成対象面全体にわたりイオン化カソード材料が向かうようにドロップレット進行方向に沿って複数段に順次間隔をおいて設けられていることを特徴とする成膜装置。   By arc PVD, in which a cathode material is evaporated by vacuum arc discharge between the cathode and the anode, a plasma containing the ionized cathode material is generated, and the ionized cathode material is made to fly to the article to be deposited to form a film on the article. A film forming apparatus, wherein a droplet shielding member that suppresses the progress of droplets generated from the cathode to the film forming article while allowing at least a part of the ionized cathode material to advance to the film forming article is the cathode The shielding member suppresses the progress of the droplet over the entire film formation target surface of the film formation article and over the entire film formation target surface. Sequentially spaced in multiple stages along the droplet traveling direction so that the ionized cathode material faces Film-forming apparatus according to claim Rukoto. 前記遮蔽部材は2段に設けられており、該2段の遮蔽部材のうち前記カソード側に配置される遮蔽部材は孔無し遮蔽部材であり、前記被成膜物品側に配置される遮蔽部材はリング形遮蔽部材であり、該孔無し遮蔽部材及びリング形遮蔽部材は、該孔無し遮蔽部材については、前記カソードから見たとき該リング形遮蔽部材の孔を実質上隠すが周縁部は見えるように、該リング形遮蔽部材については、前記カソードからみたとき該孔無し遮蔽部材とともに前記被成膜物品を実質上隠すように形成され、位置が定められている請求項1記載の成膜装置。   The shielding member is provided in two stages, and the shielding member arranged on the cathode side of the two-stage shielding members is a holeless shielding member, and the shielding member arranged on the film-formed article side is A ring-shaped shielding member, wherein the holeless shielding member and the ring-shaped shielding member are configured such that when viewed from the cathode, the hole of the ring-shaped shielding member is substantially concealed but the peripheral portion is visible. 2. The film forming apparatus according to claim 1, wherein the ring-shaped shielding member is formed so as to substantially hide the film-formed article together with the holeless shielding member when viewed from the cathode. 前記複数段の遮蔽部材のうち少なくとも1段の遮蔽部材にイオン化カソード材料通過促進用のバイアス電圧を印加する電源部を有している請求項1又は2記載の成膜装置。   3. The film forming apparatus according to claim 1, further comprising: a power supply unit that applies a bias voltage for promoting passage of the ionized cathode material to at least one of the plurality of stages of shielding members. 前記イオン化カソード材料の前記遮蔽部材の通過を促進する磁場を形成するための磁場形成部を備えている請求項1、2又は3記載の成膜装置。   The film forming apparatus according to claim 1, further comprising a magnetic field forming unit configured to form a magnetic field that promotes passage of the ionized cathode material through the shielding member.
JP2004300897A 2004-10-15 2004-10-15 Film deposition system Pending JP2006111930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300897A JP2006111930A (en) 2004-10-15 2004-10-15 Film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300897A JP2006111930A (en) 2004-10-15 2004-10-15 Film deposition system

Publications (1)

Publication Number Publication Date
JP2006111930A true JP2006111930A (en) 2006-04-27

Family

ID=36380693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300897A Pending JP2006111930A (en) 2004-10-15 2004-10-15 Film deposition system

Country Status (1)

Country Link
JP (1) JP2006111930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001530A (en) * 2008-06-20 2010-01-07 Fujitsu Ltd Film deposition apparatus and film deposition method
KR101215624B1 (en) 2011-03-08 2012-12-26 한국생산기술연구원 Cigs-based compound thin film solarcells and the method of manufacturing the same
WO2013015280A1 (en) * 2011-07-26 2013-01-31 日新電機株式会社 Plasma device and method for producing carbon thin film using same
WO2014115733A1 (en) * 2013-01-22 2014-07-31 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using plasma device
JP2021521337A (en) * 2018-04-20 2021-08-26 プランゼー コンポジット マテリアルズ ゲーエムベーハー Vacuum arc source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141061U (en) * 1986-02-25 1987-09-05
JPH06506986A (en) * 1991-04-29 1994-08-04 ナウチノ−プロイズボドストヴェノーエ・プレドプリェティエ・“ノヴァテク” Method and equipment for processing products in gas discharge plasma
JPH11279747A (en) * 1998-03-31 1999-10-12 Agency Of Ind Science & Technol Vapor-deposited film forming method and vapor deposition device
JP2002097569A (en) * 2000-07-19 2002-04-02 Ito Kogaku Kogyo Kk Surface processing method in vacuum
JP2002194535A (en) * 2000-10-19 2002-07-10 Sumitomo Titanium Corp Pure silicon monoxide for vapor deposition material and production device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141061U (en) * 1986-02-25 1987-09-05
JPH06506986A (en) * 1991-04-29 1994-08-04 ナウチノ−プロイズボドストヴェノーエ・プレドプリェティエ・“ノヴァテク” Method and equipment for processing products in gas discharge plasma
JPH11279747A (en) * 1998-03-31 1999-10-12 Agency Of Ind Science & Technol Vapor-deposited film forming method and vapor deposition device
JP2002097569A (en) * 2000-07-19 2002-04-02 Ito Kogaku Kogyo Kk Surface processing method in vacuum
JP2002194535A (en) * 2000-10-19 2002-07-10 Sumitomo Titanium Corp Pure silicon monoxide for vapor deposition material and production device therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001530A (en) * 2008-06-20 2010-01-07 Fujitsu Ltd Film deposition apparatus and film deposition method
KR101215624B1 (en) 2011-03-08 2012-12-26 한국생산기술연구원 Cigs-based compound thin film solarcells and the method of manufacturing the same
WO2013015280A1 (en) * 2011-07-26 2013-01-31 日新電機株式会社 Plasma device and method for producing carbon thin film using same
WO2014115733A1 (en) * 2013-01-22 2014-07-31 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using plasma device
CN104937132A (en) * 2013-01-22 2015-09-23 日新电机株式会社 Plasma device, carbon thin film manufacturing method and coating method using plasma device
JP5954440B2 (en) * 2013-01-22 2016-07-20 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using the same
JP2016172927A (en) * 2013-01-22 2016-09-29 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using the former
EP2949779A4 (en) * 2013-01-22 2016-10-05 Nissin Electric Co Ltd Plasma device, carbon thin film manufacturing method and coating method using plasma device
JP2021521337A (en) * 2018-04-20 2021-08-26 プランゼー コンポジット マテリアルズ ゲーエムベーハー Vacuum arc source
JP7253567B2 (en) 2018-04-20 2023-04-06 プランゼー コンポジット マテリアルズ ゲーエムベーハー vacuum arc source

Similar Documents

Publication Publication Date Title
US9127354B2 (en) Filtered cathodic arc deposition apparatus and method
US9771648B2 (en) Method of ionized physical vapor deposition sputter coating high aspect-ratio structures
JP5306198B2 (en) Electrical insulation film deposition method
JP2006083408A (en) Vacuum film-forming apparatus
JP5608176B2 (en) A modifiable magnetic array for arc evaporation sources
JP2010511788A (en) Vacuum coating apparatus for forming a homogeneous PVD coating
JP2014231644A (en) Coating apparatus for covering substrate, and method for coating substrate
JP2009041115A (en) Sputtering source, sputtering apparatus and sputtering method
JP2006111930A (en) Film deposition system
KR20210089740A (en) Inclined magnetron in PVD sputtering deposition chamber
KR20060066632A (en) Method and apparatus for cathodic arc deposition of materials on a substrate
JP5494663B2 (en) Arc evaporation source and vacuum evaporation system
JP4859523B2 (en) Plasma source, film forming apparatus and film manufacturing method
EP2679702B1 (en) Arc evaporation source
JP6896691B2 (en) Low temperature arc discharge ion plating coating
JP4019457B2 (en) Arc type evaporation source
JP2004353023A (en) Arc discharge type ion plating apparatus
EP2811508B1 (en) Gas configuration for magnetron deposition systems
WO2017026343A1 (en) Sputtering apparatus and film formation method
JP2012092380A (en) Vacuum arc deposition method
US11942311B2 (en) Magnet arrangement for a plasma source for performing plasma treatments
TWI417407B (en) Vent groove modified sputter target assembly and apparatus containing same
JP2006104512A (en) Film deposition method and film deposition apparatus
US20220051879A1 (en) Electrode arrangement for a plasma source for performing plasma treatments
JPH0470392B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525