JP2006110535A - Method and apparatus for producing water or water solution having surface activity using porous glass - Google Patents

Method and apparatus for producing water or water solution having surface activity using porous glass Download PDF

Info

Publication number
JP2006110535A
JP2006110535A JP2004329765A JP2004329765A JP2006110535A JP 2006110535 A JP2006110535 A JP 2006110535A JP 2004329765 A JP2004329765 A JP 2004329765A JP 2004329765 A JP2004329765 A JP 2004329765A JP 2006110535 A JP2006110535 A JP 2006110535A
Authority
JP
Japan
Prior art keywords
water
spg
aqueous solution
membrane
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004329765A
Other languages
Japanese (ja)
Inventor
Noboru Nakajima
昇 中島
Mitsuteru Fujiwara
光輝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPG TECHNO KK
Original Assignee
SPG TECHNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPG TECHNO KK filed Critical SPG TECHNO KK
Priority to JP2004329765A priority Critical patent/JP2006110535A/en
Publication of JP2006110535A publication Critical patent/JP2006110535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus inexpensively, capable of simply and certainly reducing a particle size of water molecule clusters and producing hydroxyions simultaneously, which are minus ions possessing a surface active function. <P>SOLUTION: Water is reformed by reducing its particle size and making the water rich in the hydroxyions by making the water permeate continuous micropores of a three-dimensional network structure of porous glass molded in an arbitrary shape. Shirasu (pumicious sand) porous glass (SPG), which is most suitable for this invention, has a number of micropores passing through a film, and excellent in the uniformity of the micropores having high porosity. The molded form of the SPG is not limited to but can be discs, columns, or hollow strings of SPG bundled to form a filter. It is also possible to reform the water electrically by making the water permeate through the filter having a plus electrode and a minus electrode, respectively, on either side of the surface of the SPG which is electroplated to carry current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水又は食酢等の水溶液(以下、単に水という)のクラスターを小さくし、マイナスイオンである界面活性化作用を有するヒドロキシルイオンの豊富な水を生成することのできる多孔質ガラス膜を用いた水の改質方法、またその装置に関するものである。  The present invention provides a porous glass membrane capable of reducing the cluster of water or an aqueous solution of vinegar or the like (hereinafter simply referred to as water) and generating water rich in hydroxyl ions having a surface activating action as negative ions. The present invention relates to a method for reforming water and an apparatus therefor.

人間をはじめ、動物の生体の65%以上は水分で構成されている。今日まで私たちは、天然水は無害であるもとの信じてきた。しかし現代社会においては、自然界では様々な環境汚染が進行し、今後は、安全な水、健康のために良いという水を選択せざるを得ないという時代が到来している。  More than 65% of human bodies, including humans, are composed of water. To date we have believed that natural water is harmless. However, in the modern society, various environmental pollutions have progressed in the natural world, and in the future, it is time to choose safe water and water that is good for health.

水は、ぶどうの房のようにHO分子が数十個集まった構造になっており、分子の集合体(クラスター)として存在しているが、このクラスターの大きさは様々である。そして、クラスターの小さい水ほど浸透性が高く、生体細胞の隅々まで浸透し、栄養素を運び入れ、老廃物を効率よく運び出し、個々の細胞を活性化する作用があると言われている。Water has a structure in which dozens of H 2 O molecules are gathered like a bunch of grapes and exists as an aggregate (cluster) of molecules, but the size of this cluster varies. And it is said that the smaller the cluster water, the higher the permeability, and it penetrates to every corner of living cells, carries nutrients, efficiently transports waste products, and activates individual cells.

従来からマイナスイオンであるヒドロキシルイオンの豊富な水や、クラスターの小さい水の効果に関する報告は数々なされている。図9に水中で界面活性化作用を有すると言われるヒドロキシルイオン[(OH(HO)]の構造図を示す。これは界面活性剤のような一分子中に親水基、疎水基を有するものと同様に、ヒドロキシルイオンにも親水性、疎水性の部分を有することから、水と油などを乳化してしまう作用を起こすというものである。There have been many reports on the effects of water rich in hydroxyl ions, which are negative ions, and water with small clusters. FIG. 9 shows a structural diagram of hydroxyl ion [(OH ) m (H 2 O) n ], which is said to have a surface activation action in water. This is because the hydroxyl ion has hydrophilic and hydrophobic parts as well as those that have hydrophilic and hydrophobic groups in one molecule, such as surfactants, and this emulsifies water and oil. Is to cause.

界面活性化作用を有するヒドロキシルイオンの豊富な水を生成する方法としては、水のクラスターを小さくする方法と同様に電気分解による方法や、水中に電気石と呼ばれているトルマリンなどの鉱石を投入して自然電気分解による方法などのように、水分子HOをHとOHに分解させ、HはH水素ガスとして放出されるが、OHは分解されてない水中のHOと結合(水和)してヒドロキシルイオンOH(HO)になるという原理で界面活性化作用を有するヒドロキシルイオンを生成する方法が殆どである。As a method of generating water rich in hydroxyl ions with surface activation, electrolysis as well as water clusters are reduced, or ore such as tourmaline called tourmaline is introduced into water. Then, water molecules H 2 O is decomposed into H + and OH as in a method by natural electrolysis, etc., and H + is released as H 2 hydrogen gas, but OH is not decomposed in water. Most of the methods generate hydroxyl ions having a surface activation action on the principle that they are bonded (hydrated) with 2 O to become hydroxyl ions OH (H 2 O).

またHは一般に単独の水素イオンとしては存在せず、水溶液中では水中のHOと水和してヒドロニウムイオン[H(HO)]として存在している。ここで、例えばオキソニウム塩[H3O][C1O4]に含まれているような[H3O]という明確な組成をもったものはオキソニウムイオンとよばれるが、これに対して水溶液中のように水和の程度が明らかでないときにヒドロニウムイオンといわれる。このようにHとOHはHOとの水和の程度というものが存在し水中での前述のOH(HO)とH(HO)は、[(OH(HO)]と[(H(HO)]で表されると考えられる。つまりヒドロキシルイオンも水分子(HO)のクラスターを形成して存在していると考えられる。従来、界面活性化作用のヒドロキシルイオンを有する水の生成方法としては、例えば、特許文献1や特許文献2に記載されているようにトルマリン等の電気石を用いる方法が殆どである。特許文献1には、イオン交換樹脂槽とトルマリン槽を連結させて水を通水させることにより界面活性化作用のヒドロキシルイオンを有する洗浄水を生成するというものが記載されている。また、特許文献2には、トルマリンに接触させてヒドロキシルイオンを生成した水を、送風機によりマイナスイオンとして大気中に放出するものが記載されている。In general, H + does not exist as a single hydrogen ion, but exists as hydronium ion [H + (H 2 O)] in an aqueous solution by hydration with H 2 O in water. Here, for example, oxonium salt [H3O] + [C1O4] - but as contained in a [H3O] + that have a clear composition that is referred to as oxonium ions, as in the aqueous solution with respect thereto When the degree of hydration is not clear, it is called hydronium ion. Thus, H + and OH have a degree of hydration with H 2 O, and the above-mentioned OH (H 2 O) and H + (H 2 O) in water are [(OH ). m (H 2 O) n ] and [(H + ) m (H 2 O) n ]. That is, it is considered that hydroxyl ions are also present by forming a cluster of water molecules (H 2 O) n . Conventionally, as a method for producing water having hydroxyl ions for surface activation, for example, as described in Patent Document 1 and Patent Document 2, most of the methods use tourmaline or other tourmaline. Patent Document 1 discloses that an ion exchange resin tank and a tourmaline tank are connected to cause water to flow, thereby generating washing water having hydroxyl ions having a surface activation action. Patent Document 2 describes that water that has been brought into contact with tourmaline to generate hydroxyl ions is discharged into the atmosphere as negative ions by a blower.

特開平7−096283号公報JP-A-7-096283 特開平11−178938号公報Japanese Patent Application Laid-Open No. 11-1778938

このようにトルマリン等の電気石を用いて、界面活性化作用を有するヒドロキシルイオンを生成する方法では、水との接触により生成されるため電気石の占める表面積が重要である。同様に、活性炭やセラミックス焼結体を用い、水の流通する途中にこれらの固形体を多数個収納し、水に浸漬あるいは接触させることでクラスターを小さくしようとするものもある(例えば、特許文献3及び特許文献4参照)。  Thus, in the method of generating hydroxyl ions having a surface activation action using tourmaline or other tourmaline, the surface area occupied by tourmaline is important because it is generated by contact with water. Similarly, there are some which use activated carbon or ceramic sintered body, store a large number of these solid bodies during the circulation of water, and try to reduce the cluster by immersing or contacting with water (for example, patent document) 3 and Patent Document 4).

特開平6−320175号公報JP-A-6-320175 特開平8−252574号公報JP-A-8-252574

しかしながら、上記のように、イオン交換樹脂槽とトルマリン槽を通水させながらトルマリンなどの固形体に接触させてヒドロキシルイオンを生成させる方法や活性炭やセラミックス焼結体などの固形体に水を接触させて水分子クラスターを小さくする方法では、固形体を収納している容器内で隣接する固形体間にどうしても様々な大きさの空隙が生じるため、ヒドロキシルイオンの生成、あるいは水分子クラスターを小さくするには不十分と考えられる。本発明は、上記のような課題に鑑みなされたもので、孔径の均一に揃ったシラス多孔質ガラス膜に水を強制的に透過させることにより、簡単且つ確実に界面活性化作用を有するマイナスイオンのヒドロキシルイオンを生成させながら、同時に水分子クラスターを小さくすることができる方法と、その装置を安価に提供することにある。  However, as described above, water is brought into contact with a solid body such as activated carbon or a ceramic sintered body by contacting with a solid body such as tourmaline while passing through an ion exchange resin tank and a tourmaline tank. In the method of reducing the size of water molecule clusters, voids of various sizes are inevitably generated between adjacent solid bodies in the container containing the solid bodies. Is considered insufficient. The present invention has been made in view of the above-described problems. By forcibly allowing water to permeate through a shirasu porous glass film having a uniform pore diameter, the negative ion has a surface activation effect easily and reliably. It is to provide a method capable of simultaneously reducing the size of a water molecule cluster while producing the hydroxyl ions, and an apparatus thereof at low cost.

このため本発明では、任意形状に成形した多孔質ガラスの三次元的な網目状の連続した細孔に水を透過させることにより、ヒドロキシルイオンの豊富な水を生成することができ、且つ水分子クラスターを小さくし、水を改質することを第1の特徴とする。本発明に最も適しているシラス多孔質ガラス(以下、SPGという)は、膜を貫通する多数の細孔を有し、気孔率の高い細孔の均一性について優れている公知の多孔質ガラスである。SPGの成形形状は特に限定されないが、平板形、円柱形、あるいは中空糸膜状のSPGを束ねたフィルターなど使用目的に応じた形状に成形できる。また、SPG膜表面層に通電可能な鍍金を施すことにより一方面にプラス極、他方面にマイナス極の電極を取り付け、水を透過させながら水を電気的に改質することも可能である。  For this reason, in the present invention, water is permeated through three-dimensional network-like continuous pores of porous glass molded into an arbitrary shape, so that water rich in hydroxyl ions can be generated, and water molecules The first feature is to reduce the cluster and reform the water. Shirasu porous glass (hereinafter referred to as SPG) most suitable for the present invention is a known porous glass having a large number of pores penetrating the membrane and excellent in the uniformity of pores having high porosity. is there. The shape of the SPG is not particularly limited, but it can be formed into a shape according to the purpose of use, such as a filter in which flat plate, cylindrical, or hollow fiber membrane SPGs are bundled. It is also possible to electrically modify water while allowing water to permeate by attaching a positive electrode on one surface and a negative electrode on the other surface by applying an energizable plating to the surface layer of the SPG film.

本発明によれば、大掛かりな電気的な装置を必要とせず安価な装置で水のクラスターを小さくしながら界面活性化作用を有する水の生成が可能である。  According to the present invention, it is possible to generate water having an interfacial activation effect while reducing the size of the water cluster with an inexpensive device without requiring a large-scale electrical device.

本発明によれば、トルマリン等の電気石や、セラミックス焼結体などを積層させたフィルターのように隣接する固形体間の空隙を通過するような状態は全く起こらず、SPGを用いた水透過装置は、均一に揃った図2に示すような孔を確実に透過させることのできる装置である。SPGはガラスフィルターであり、管状のものでは約30Kgf/cmの外圧に耐えることができる。したがって、孔径の不均一な有機膜のように、外圧を加えたときその孔径より大きいものが有機膜の孔径を拡げながら透過してしまうという不具合も発生しない。According to the present invention, the state of passing through the gap between adjacent solid bodies does not occur like a filter in which tourmaline or a tourmaline or a ceramic sintered body is laminated, and water permeation using SPG. The device is a device that can reliably transmit the uniform holes shown in FIG. SPG is a glass filter and can withstand an external pressure of about 30 Kgf / cm 2 when it is tubular. Therefore, there is no problem that, when an external pressure is applied, an organic film having a non-uniform pore diameter is larger than the pore diameter and permeates while expanding the pore diameter of the organic film.

すなわち、SPGは無機質膜で孔径が均一に揃っていることにより、圧力を加えれば水を強制的にSPG細孔に均一に透過させることが可能で、細孔径が小さくなるほどSPG表面積も広くなり細孔径10μmで表面積は約0.2m/g、細孔径0.2μmで表面積は約8m/gにもなる。That is, SPG is an inorganic membrane with uniform pore diameters, so that when pressure is applied, water can be forced to permeate uniformly through the SPG pores. The smaller the pore diameter, the larger the SPG surface area. When the pore diameter is 10 μm, the surface area is about 0.2 m 2 / g, and the pore diameter is 0.2 μm and the surface area is about 8 m 2 / g.

以下に、本発明の実施の形態を図面に示す実施例に基づいて説明する。
図1は本発明の一実施例を示す水透過モジュール全体を示す概略図、図2はSPG膜を模式的に示す断面図、図3はSPG処理前の原水と、孔径2.7μmのSPG膜に透過した水(以下、SPG処理水という)との3ヶ月経過後の状態を液体イオン化質量分析法により比較測定した質量スペクトルを示すグラフで、水分子を換算してその個数として示したものである。図4は図3の両者分布の水分子クラスター増減分布を示すグラフ、図5はSPG膜を搭載した噴霧器の一実施例を示す斜視図、図6はSPG膜を搭載した噴霧器の他の実施例を示す斜視図、図7はSPG膜を搭載した浄水装置の一実施例を示す斜視図、図8は浄水装置に搭載されたSPG膜を模式的に示す一実施例の断面図、図9は水中の界面活性化作用を有するマイナスイオンのヒドロキシルイオンの構造図、図10はSPG膜を通過する過程で生成される水中のヒドロキシルイオンの構造図、図11は孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化1日目(当日)の状態を示す写真、図12は孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化5日目の状態を示す写真、図13は孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化7日目の状態を示す写真、図14は孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化8日目に再攪拌した状態を示す写真、図15は孔径0.2μmのSPG処理水と他社水のエマルション乳化1日目(当日)の状態を示す写真、図16は孔径0.2μmのSPG処理水と他社水のエマルション乳化2日目の状態を示す写真、図17は孔径0.2μmのSPG処理水と他社水のエマルション乳化7日目の状態を示す写真、図18は孔径0.2μmのSPG処理水と他社水のエマルション乳化15日目の状態を示す写真である。
Embodiments of the present invention will be described below based on examples shown in the drawings.
FIG. 1 is a schematic view showing an entire water permeation module according to an embodiment of the present invention, FIG. 2 is a cross-sectional view schematically showing an SPG membrane, and FIG. 3 is a raw water before SPG treatment and an SPG membrane having a pore diameter of 2.7 μm. Is a graph showing a mass spectrum obtained by comparing and measuring liquid ionization mass spectrometry after three months with water permeated to water (hereinafter referred to as SPG-treated water). is there. FIG. 4 is a graph showing the water molecule cluster increase / decrease distribution of both distributions in FIG. 3, FIG. 5 is a perspective view showing an embodiment of a sprayer equipped with an SPG film, and FIG. 6 shows another embodiment of a sprayer equipped with an SPG film. FIG. 7 is a perspective view showing an embodiment of a water purifier equipped with an SPG membrane, FIG. 8 is a sectional view of an embodiment schematically showing the SPG membrane mounted on the water purifier, and FIG. FIG. 10 is a structural diagram of hydroxyl ions of negative ions having a surface activating action in water, FIG. 10 is a structural diagram of hydroxyl ions in water generated in the process of passing through the SPG membrane, and FIG. 11 is an illustration of SPG-treated water having a pore diameter of 0.2 μm. Photograph showing the state of emulsion emulsification on the first day (on the day) of raw water before SPG treatment, FIG. 12 is a photograph showing the state of emulsion emulsification on the fifth day of emulsion emulsification of SPG treated water having a pore size of 0.2 μm and FIG. Pore diameter 0.2μm A photograph showing the state of emulsion emulsification on the 7th day of the SPG-treated water and the raw water before SPG treatment, and FIG. 14 is a photograph showing the state of re-stirring on the 8th day of the emulsion emulsification of the SPG-treated water and raw water before the SPG treatment. FIG. 15 is a photograph showing the state of emulsion emulsification on the first day (on the day) of SPG-treated water having a pore size of 0.2 μm and other company's water, and FIG. 16 is the second day of emulsion emulsification of SPG-treated water having a pore size of 0.2 μm FIG. 17 is a photograph showing the state of emulsion emulsification on the 7th day of SPG-treated water with a pore diameter of 0.2 μm and other company water, and FIG. 18 is an emulsion emulsification 15 of SPG-treated water with a pore diameter of 0.2 μm and other company water. It is a photograph showing the state of the day.

SPGは水に非常に濡れやすいという親水性の膜である。これは、図10に示すように、広いSPG表面にヒドロキシル基(OH)が露出しており、水分子同士の水素結合と同様に、SPG表面で静電気的な力あるいは水素結合が起きているためということが考えられる。したがって孔径が均一で三次元的な網目状の連続した細孔を透過するので、図10のW01のクラスター形成している水はSPG表面のヒドロキシル基(OH)に確実に接触し、図中、矢示する改質過程L1を経てW11と水分子クラスターの小さいW21との水和のヒドロキシルイオン構造を形成するようにSPG表面上での改質、細分化が効率良く行われると思われる。SPG is a hydrophilic film that is very wettable with water. As shown in FIG. 10, hydroxyl groups (OH ) are exposed on a wide SPG surface, and an electrostatic force or a hydrogen bond occurs on the SPG surface as well as hydrogen bonds between water molecules. For this reason, it can be considered. Therefore, since the pore diameter is uniform and permeates through the three-dimensional network of continuous pores, the water forming the W01 cluster in FIG. 10 reliably comes into contact with the hydroxyl group (OH ) on the SPG surface. It is considered that the modification and fragmentation on the SPG surface are efficiently performed so as to form a hydroxyl ion structure of hydration of W11 and W21 having a small water molecule cluster through the modification process L1 indicated by the arrow.

同様に、改質過程L2を経てW12と水分子クラスターの小さくなったW22との水和のヒドロキシルイオン構造を形成している模様を矢示する。このようにSPGを透過させるSPG処理水というのは界面活性化作用を有するクラスターが小さいヒドロキシルイオン[(OH(HO)]を豊富に生成することが容易に可能である。SPG膜を搭載した水の改質装置は、図8に示すような片側を封管したSPG膜を搭載した図7に示すような構造の水改質装置も考えられる。この図7に示す装置は、SPG膜の周辺に活性炭14を敷き詰めて、活性炭層15で水中の大きな不純物などを一次ろ過として行い、二次フィルターとしてSPG膜に通水させることにより汚れた原水を効率よく浄化し、水のクラスターを小さくしながら界面活性化作用を有する水を生成することのできる水の改質装置が考えられる。Similarly, a pattern of forming a hydroxyl ion structure of hydration between W12 and W22 having a small water molecule cluster through the reforming process L2 is indicated. As described above, the SPG-treated water that allows SPG to permeate can easily generate abundant hydroxyl ions [(OH ) m (H 2 O) n ] having small surface-activating clusters. As a water reforming apparatus equipped with an SPG membrane, a water reforming apparatus having a structure as shown in FIG. 7 equipped with an SPG membrane sealed on one side as shown in FIG. 8 can be considered. In the apparatus shown in FIG. 7, activated carbon 14 is spread around the SPG membrane, large impurities in water are subjected to primary filtration through the activated carbon layer 15, and the raw water contaminated by passing through the SPG membrane as a secondary filter. A water reformer that can efficiently purify and generate water having an interfacial activating action while reducing the size of the water cluster can be considered.

図1に水透過モジュールを示す。本実施例では水の透過膜として、円筒状のSPG膜1を用いた。このSPG膜1は、細孔径が均一で、0.05μm乃至30μmの範囲で細孔径を選定できるが、本実施例ではSPG処理水に界面活性化作用を有するヒドロキシルイオンが豊富に存在することを確認するために、界面活性剤を添加することなく水そのものでO/Wエマルションの乳化状態の持続性観察を行った。  FIG. 1 shows a water permeation module. In this embodiment, a cylindrical SPG membrane 1 was used as the water permeable membrane. The SPG membrane 1 has a uniform pore diameter, and the pore diameter can be selected in the range of 0.05 μm to 30 μm. However, in this example, the SPG treated water is rich in hydroxyl ions having a surface activation action. In order to confirm, the durability of the emulsified state of the O / W emulsion was observed with water itself without adding a surfactant.

SPG膜乳化において界面活性剤を添加することなく孔径約0.2μmのSPG処理水を連続相として使用し、分散相に大豆油を使用してO/Wエマルションを生成した。またその比較対象として同様に、SPG処理する前の原水と、界面活性化作用があるとされている前記特許文献1に記載されたものと同様の方法で生成された処理水(比較例水1;商品名:創生水)及び市販のミネラルウォーター(比較例水2;採水地が大分県日田市中ノ島町の商品名;日田天領水)でO/Wエマルションを生成した。ここでSPG膜乳化法を用いたのは、水のクラスターを小さくする方法に超音波が使われるという場合もあり、超音波乳化法や24000rpm程度の高速のホモジナイザー乳化法では、乳化の最中に水そのもののクラスターを細分化してしまうという可能性があり、水そのものの本来の性状での乳化力確認実験に適さないと考察したからである。  In the SPG membrane emulsification, SPG-treated water having a pore size of about 0.2 μm was used as a continuous phase without adding a surfactant, and soybean oil was used as a dispersed phase to produce an O / W emulsion. Moreover, similarly as the comparison object, the raw water before the SPG treatment and the treated water (Comparative Example Water 1) generated by the same method as that described in Patent Document 1 which is said to have a surface activating effect. An O / W emulsion was produced with a commercial name mineral water (comparative example water 2; a commercial name of Nakanoshima-cho, Hita-shi, Oita Prefecture; Hita Tenryosui). The SPG membrane emulsification method is used here because ultrasonic waves are sometimes used to reduce the water cluster. In the ultrasonic emulsification method and the high-speed homogenizer emulsification method of about 24,000 rpm, This is because there is a possibility that the cluster of water itself may be subdivided, and it is considered that it is not suitable for an emulsifying power confirmation experiment with the original properties of water itself.

SPG膜乳化は連続相を約500rpm程度でゆっくり回転させながら乳化が行えるので本来性状の水のクラスターを変えることなく乳化力確認実験を行うことができるので最適である。表1に乳化持続性の結果を示し、経時的乳化安定状態を示す写真を図11乃至図14と図15乃至図18に示す。ここで、界面活性力が弱いものは終盤に油の層が上澄みに出現してきていることが分かる。表1から明らかなように、SPG処理する前の水道水と原水の何れもSPG処理後の水に界面活性化作用が出現しているのが分かる。また、SPG膜の孔径が小さくなるほどその界面活性化作用の持続性が長くなっているのが分かる。これは、使用する孔径が小さくなるほどSPG膜表面積が広くなるので界面活性化作用を有する水としての改質が効率よく行われると予想できる。図3及び図4のグラフから、SPG処理する前の原水の水分子のクラスター分布に比べて、SPG処理水は、大きい方のクラスター分布が減少し、小さい方のクラスター分布が増加した状態で安定しているのが分かる。  SPG membrane emulsification is optimal because the emulsification can be carried out while slowly rotating the continuous phase at about 500 rpm, so that an emulsification force confirmation experiment can be conducted without changing the water cluster of the nature. Table 1 shows the results of the emulsification sustainability, and photographs showing the stable emulsion state over time are shown in FIGS. 11 to 14 and FIGS. 15 to 18. Here, it can be seen that an oil layer appears in the supernatant of those having weak surface activity. As is clear from Table 1, it can be seen that both tap water and raw water before the SPG treatment have a surface activation effect on the water after the SPG treatment. Moreover, it turns out that the persistence of the interface activation effect | action becomes long, so that the hole diameter of a SPG film | membrane becomes small. This is because the surface area of the SPG film becomes larger as the pore size used becomes smaller, so it can be expected that the reforming as water having an interfacial activating action is performed efficiently. From the graphs of FIGS. 3 and 4, compared to the cluster distribution of the water molecules before the SPG treatment, the SPG treated water is stable with the larger cluster distribution decreased and the smaller cluster distribution increased. You can see that

尚、表中、原水と孔径0.2μmのSPG処理水と、ヒドロキシルイオンが豊富といわれる比較例処理水による乳化力比較の「〜以上」とは、この日から油分分離が始まったことを意味する。  In the table, “more than” in the emulsifying power comparison between the raw water, the SPG treated water having a pore size of 0.2 μm, and the treated water of the comparative example, which is said to be rich in hydroxyl ions, means that the oil separation started from this day. To do.

図5、図6に、クラスターの小さい水となり界面活性化作用を有するマイナスイオンを生成できる器具を示す。図5に示す噴霧器は、ハンドスプレータイプで、ポンプ部11を人手で押圧すると、水汲み汲み上げ導管10よりSPG膜1を介してマイナスイオンの豊富なクラスターが小さくなった水がノズル12から噴霧される構成にされている。また、図6に示す噴霧器は、容器内の気圧をポンプ部11で高めておいて、水を噴霧させたいときにボタン13を押圧することにより水汲み上げ導管10よりSPG膜を介して水のクラスターが小さく、界面活性化作用を有するマイナスイオンが豊富な水がノズル12から噴霧されるという構成にされている。これら噴霧器に水道水や、ミネラルウォーターを入れて噴霧するだけでいつでもどこでも必要に応じてその場でクラスターの小さい水である界面活性化作用を有するマイナスイオンを肌や、植物などに補給することができる。表2に孔径0.2μmのSPG処理水を図5に示す噴霧器の容器内に投入し噴霧させたときのマイナスイオン量と、SPG処理する前の原水を図5に示す噴霧器の容器内に投入し噴霧させたときのマイナスイオン量の比較を示す(測定条件:温度27℃、湿度53%、室内マイナスイオン濃度−4/cc)。  FIG. 5 and FIG. 6 show an instrument that can generate negative ions having a surface activation effect as water with small clusters. The sprayer shown in FIG. 5 is of a hand spray type, and when the pump unit 11 is manually pressed, water in which a cluster rich in negative ions is reduced from the nozzle 12 through the SPG membrane 1 from the water pumping conduit 10. It is configured to be. Further, in the sprayer shown in FIG. 6, the water pressure is increased from the water pumping conduit 10 through the SPG membrane by pressing the button 13 when the pressure in the container is increased by the pump unit 11 and water is sprayed. And water rich in negative ions having a surface activation action is sprayed from the nozzle 12. Just by spraying tap water or mineral water into these sprayers, it is possible to replenish skin, plants, etc. with negative ions that have surface activation action, which is water with small clusters, at any time and anywhere as needed. it can. Table 2 shows the amount of negative ions when SPG-treated water with a pore size of 0.2 μm is put into the container of the sprayer shown in FIG. 5 and sprayed, and the raw water before SPG treatment is put into the container of the sprayer shown in FIG. Comparison of the amount of negative ions when sprayed is shown (measurement conditions: temperature 27 ° C., humidity 53%, indoor negative ion concentration −4 / cc).

マイナスイオン量は一般家庭で約−100/cc、滝周辺でも約−5000/cc程度しか発生しない。表2から明らかなように、本実施例では、医療効果が期待できる−10000/ccを大幅に越える量のマイナスイオンが発生することが判明した。  The amount of negative ions is generated only at about -100 / cc in general households and about -5000 / cc in the vicinity of waterfalls. As is apparent from Table 2, in this example, it was found that negative ions were generated in an amount significantly exceeding −10000 / cc, at which a medical effect can be expected.

図19に、SPG膜27に水を透過する際に微弱電気が発生していることが確認できるシステムを示す。このとき発生した電圧を表3に、そのグラフを図20に示す。このときSPG膜27を透過する水圧を表4に、そのグラフを図21に示す。図中、24はSPG膜27を透過する前の水タンク、31はSPG膜27を透過した後の水タンク、32は圧力計、25は循環ポンプ、26は水の流れ、28は電圧計で、電圧計28は、SPG膜27を透過する前の水の電位を測定する端子29と、SPG膜27を透過した後の水の電位を測定する端子30とを備えている。  FIG. 19 shows a system capable of confirming that weak electricity is generated when water passes through the SPG film 27. The voltages generated at this time are shown in Table 3, and the graph is shown in FIG. The water pressure permeating the SPG film 27 at this time is shown in Table 4, and the graph is shown in FIG. In the figure, 24 is a water tank before passing through the SPG film 27, 31 is a water tank after passing through the SPG film 27, 32 is a pressure gauge, 25 is a circulation pump, 26 is a water flow, and 28 is a voltmeter. The voltmeter 28 includes a terminal 29 that measures the potential of water before passing through the SPG film 27 and a terminal 30 that measures the potential of water after passing through the SPG film 27.

表3と図20に示すように、SPG膜27を透過させる水の流速が上がるか、SPG膜27の孔径が小さくなることによりSPG膜27を透過する前と後との2点間電圧が上昇することが分かる。また、SPG膜27を透過する水の流れを止めた後、水がSPG膜27を透過する前と後との2点間の電圧は一定値で安定することが確認されている。これは、SPG膜27表面で静電気的変化が生じていると考えられる。この現象は、システム構造を工夫することにより発電機や蓄電池、セラミックコンデンサーなど電気機器、電子部品などの応用が可能とも考えられる。  As shown in Table 3 and FIG. 20, the voltage between the two points before and after permeation through the SPG film 27 increases as the flow rate of water that permeates through the SPG film 27 increases or the pore diameter of the SPG film 27 decreases. I understand that In addition, it has been confirmed that the voltage between two points before and after the water passes through the SPG film 27 is stabilized at a constant value after the flow of the water passing through the SPG film 27 is stopped. This is considered that an electrostatic change occurs on the surface of the SPG film 27. It is considered that this phenomenon can be applied to electric devices such as generators, storage batteries, ceramic capacitors, and electronic parts by devising the system structure.

SPG膜そのものは、水のクラスターを変えるだけでなく均一な孔径を有しているので、大きな抜け穴が無く、ろ過不足などの心配も全くなく除菌効果なども期待できる。また、クラスターの小さい水とマイナスイオンであるヒドロキシルイオンは浸透性に優れ洗浄力、乳化力があるため、乾燥した肌などに噴霧し保水力を高めたり、頭皮にスプレーすることにより頭髪の毛根に埋まった皮脂などを洗い流すのに効果がある。本発明のSPG膜搭載の水改質装置で生成したクラスターの小さい水、且つ洗浄力のあるマイナスイオンの豊富な水を飲料水として利用し、体内に供給することにより身体の体質改善にも効果があると期待できる。また、O/Wエマルションのような乳化製品製造過程で乳化剤をあまり使用することなく数日間程度の乳化安定性が見込めれば十分であるという場合、例えば、水分を80〜95%含有する食酢と油から製造されるドレッシング等、O/Wエマルションの連続相水溶液にSPG処理水を利用することによりO/Wエマルション乳化製品を製造したり、乳化剤を使用せずに予め粗く混合したO/WエマルションをSPGに透過させることによりO/Wの水溶液部分がSPGにより界面活性作用を有する水溶液に改質され、長期間乳化安定なO/Wエマルションを得ることが可能である。  Since the SPG membrane itself has a uniform pore size as well as changing the water cluster, there is no large loophole, and there is no concern about insufficient filtration, and a sterilization effect can be expected. In addition, water with small clusters and hydroxyl ions, which are negative ions, have excellent penetrability and have detergency and emulsification power, so they can be sprayed on dry skin to increase water retention or spray on the scalp to apply to the hair roots. It is effective to wash away buried sebum. The use of water with small clusters and abundant negative ion water with detergency generated by the water reformer equipped with the SPG membrane of the present invention is also effective for improving the constitution of the body by supplying it to the body. I can expect that. Moreover, when it is sufficient if the emulsification stability of about several days can be anticipated without using an emulsifier so much in an emulsified product manufacturing process like O / W emulsion, for example, vinegar containing 80 to 95% of water An O / W emulsion emulsified by using SPG-treated water as a continuous phase aqueous solution of an O / W emulsion, such as a dressing produced from oil, or a coarsely mixed O / W emulsion without using an emulsifier. By allowing SPG to permeate the SPG, the O / W aqueous solution portion is modified by SPG into an aqueous solution having a surface-active action, and an O / W emulsion that is stable and stable for a long period of time can be obtained.

本発明の一実施例を示す水透過モジュール全体を示す概略図である。It is the schematic which shows the whole water-permeable module which shows one Example of this invention. SPG膜を模式的に示す断面図である。It is sectional drawing which shows a SPG film | membrane typically. SPG処理前の原水と、孔径2.7μmのSPG膜に透過した水(以下、SPG処理水という)との3ヶ月経過後の状態を液体イオン化質量分析法により比較測定した質量スペクトルを示すグラフである。The graph which shows the mass spectrum which measured the state after three months of the raw water before SPG processing, and the water (henceforth SPG processing water) which permeate | transmitted the SPG membrane with a pore diameter of 2.7 micrometers by liquid ionization mass spectrometry. is there. 図3の両者分布の水分子クラスター増減分布を示すグラフである。It is a graph which shows the water molecule cluster increase / decrease distribution of both distribution of FIG. SPG膜を搭載した噴霧器の一実施例を示す斜視図である。It is a perspective view which shows one Example of the sprayer carrying an SPG film | membrane. SPG膜を搭載した噴霧器の他の実施例を示す斜視図である。It is a perspective view which shows the other Example of the sprayer carrying an SPG film | membrane. SPG膜を搭載した浄水装置の一実施例を示す斜視図である。It is a perspective view which shows one Example of the water purifier which mounts an SPG membrane. 浄水装置に搭載されたSPG膜の一実施例を模式的に示す断面図である。It is sectional drawing which shows typically one Example of the SPG membrane mounted in the water purifier. 水中の界面活性化作用を有するマイナスイオンのヒドロキシルイオンを模式的に示す構造図である。FIG. 3 is a structural diagram schematically showing a negative ion hydroxyl ion having a surface activation action in water. SPG膜を通過する過程で生成される水中のヒドロキシルイオンを模式的に示す構造図である。FIG. 3 is a structural diagram schematically showing hydroxyl ions in water generated in the process of passing through an SPG membrane. 孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化1日目(当日)の状態を示す写真。The photograph which shows the state of the emulsion emulsification 1st day (the day) of SPG processing water with a pore diameter of 0.2 micrometer and raw water before SPG processing. 孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化5日目の状態を示す写真。The photograph which shows the state of the emulsion emulsification on the 5th day of SPG processing water with a hole diameter of 0.2 micrometer, and raw | natural water before SPG processing. 孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化7日目の状態を示す写真。The photograph which shows the state of the emulsion emulsification on the 7th day of SPG processing water with a pore diameter of 0.2 micrometer, and raw | natural water before SPG processing. 孔径0.2μmのSPG処理水とSPG処理前原水のエマルション乳化8日目に再攪拌した状態を示す写真。The photograph which shows the state re-stirred on the 8th day of emulsion emulsification of SPG-treated water having a pore size of 0.2 μm and raw water before SPG treatment. 孔径0.2μmのSPG処理水と他社水のエマルション乳化1日目(当日)の状態を示す写真。The photograph which shows the state of the emulsion emulsification 1st day (the day) of the SPG process water with a pore diameter of 0.2 micrometer, and other companies water. 孔径0.2μmのSPG処理水と他社水のエマルション乳化2日目の状態を示す写真。The photograph which shows the state on the 2nd day of emulsion emulsification of the SPG process water of 0.2 micrometer in pore diameter, and water of other companies. 孔径0.2μmのSPG処理水と他社水のエマルション乳化7日目の状態を示す写真。The photograph which shows the state of the emulsion emulsification on the 7th day of SPG processing water with a hole diameter of 0.2 micrometer, and other companies water. 孔径0.2μmのSPG処理水と他社水のエマルション乳化15日目の状態を示す写真。The photograph which shows the state of the emulsion emulsification on the 15th day of the emulsion of SPG treated water having a pore size of 0.2 μm and water of other companies. SPG膜に水を透過する際に微弱電気が発生していることが確認できるシステムを示す模式図である。It is a schematic diagram which shows the system which can confirm that weak electricity has generate | occur | produced when water permeate | transmits an SPG film | membrane. 水がSPG膜を透過する前後の電位差を示すグラフである。It is a graph which shows the electrical potential difference before and behind water permeate | transmits a SPG membrane. 水がSPG膜を透過する際の水圧の変化を示すグラフである。It is a graph which shows the change of the water pressure when water permeate | transmits a SPG film | membrane.

符号の説明Explanation of symbols

1 シラス多孔質ガラス(SPG)
2 モジュール
3 モジュール上蓋
4 モジュール下蓋
5 水供給口
6 水道口
7 外側から加圧されSPG膜を透過する前の水
8 透過された水
9 ポンプ式容器
10 水汲み上げ導管
11 押圧ヘッド
12 ノズル
13 ボタン
14 活性炭
15 活性炭を敷き詰めた層
16 H原子
17 O原子
18 Si原子
19 SPG表面
20 孔径0.2μmのSPG処理水での乳化物
21 SPG処理前原水での乳化物
22 比較例水1(商品名:創生水)での乳化物
23 比較例水2(商品名:日田天領水)での乳化物
24 SPG膜を透過する前の水タンク
25 循環ポンプ
26 水の流れ
27 SPG膜
28 電圧計
29 端子(透過前)
30 端子(透過後)
31 SPG膜を透過した後の水タンク
32 圧力計
W1 親油性部分(OH
W2 親水性部分(HO)
W01 クラスター形成水
L1 改質過程
W11 生成されたOH
W21 小さくなったクラスター
W02 クラスター形成水
L2 改質過程
W12 生成されたOH
W22 小さくなったクラスター
1 Shirasu porous glass (SPG)
2 Module 3 Module upper cover 4 Module lower cover 5 Water supply port 6 Water supply port 7 Water 8 which has been pressurized from the outside and has not passed through the SPG membrane 8 Permeated water 9 Pump-type container 10 Water pumping conduit 11 Press head 12 Nozzle 13 Button 14 Activated carbon 15 Layer of activated carbon 16 H atom 17 O atom 18 Si atom 19 SPG surface 20 Emulsion in SPG treated water having a pore size of 0.2 μm 21 Emulsion in raw water before SPG treatment 22 Comparative example water 1 (trade name) : Emulsified water 23) Comparative Example Water 2 (trade name: Hita Tenryomizu) Emulsified water 24 Water tank 25 before permeating the SPG membrane Circulation pump 26 Water flow 27 SPG membrane 28 Voltmeter 29 Terminal (before transmission)
30 terminals (after transmission)
31 Water tank 32 after passing through the SPG membrane Pressure gauge W1 Lipophilic part (OH ) m
W2 hydrophilic part (H 2 O) n
W01 Cluster formation water L1 Reformation process W11 Produced OH
W21 Smaller cluster W02 Cluster formation water L2 Reforming process W12 OH produced
W22 Smaller cluster

Claims (4)

シラス多孔質ガラスを用いた界面活性力を有する水又は水溶液の生成方法であって、シラス多孔質ガラスの貫通孔に水又は水溶液を透過させることにより界面活性化作用を有するマイナスイオンであるヒドロキシルイオンの豊富な水又は水溶液を生成することを特徴とする水又は水溶液の生成方法。Hydroxyl ion, which is a negative ion having a surface activation action by generating water or an aqueous solution having surface activity using shirasu porous glass, and allowing water or aqueous solution to permeate through the through-holes of shirasu porous glass A method for producing water or an aqueous solution, characterized in that an abundant water or aqueous solution is produced. 多孔質体の三次元的な網目状の連続した細孔に水又は水溶液を透過させることにより、界面活性力を有するマイナスイオンであるヒドロキシルイオンの豊富な水又は水溶液を生成することを特徴とする水又は水溶液の生成方法。It is characterized in that water or an aqueous solution rich in hydroxyl ions, which are negative ions having surface activity, is produced by allowing water or an aqueous solution to permeate through three-dimensional network-like continuous pores of a porous body. Method for producing water or aqueous solution. 請求項1または請求項2記載の多孔質体を用いたマイナスイオンである界面活性化作用を有する水又は水溶液を生成する生成装置。The production | generation apparatus which produces | generates the water or aqueous solution which has the surface activation effect | action which is a negative ion using the porous body of Claim 1 or Claim 2. ノズルを有する押圧ヘッドと内部に液体汲み上げ用の導管が挿通されるとともに、水又は水溶液が収納された水収納容器とからなり、前記押圧ヘッドに圧力を加えることにより請求項1または請求項2記載の多孔質体を介してノズルよりマイナスイオンである界面活性化作用を有するヒドロキシルイオン水を生成吐出することを特徴とする水の生成装置。3. A press head having a nozzle and a water pumping pipe inserted therein and a water storage container storing water or an aqueous solution, and applying pressure to the press head according to claim 1 or claim 2. A water generating apparatus characterized by generating and discharging hydroxyl ion water having a surface activating action, which is negative ions, from a nozzle through the porous body.
JP2004329765A 2004-10-15 2004-10-15 Method and apparatus for producing water or water solution having surface activity using porous glass Pending JP2006110535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329765A JP2006110535A (en) 2004-10-15 2004-10-15 Method and apparatus for producing water or water solution having surface activity using porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329765A JP2006110535A (en) 2004-10-15 2004-10-15 Method and apparatus for producing water or water solution having surface activity using porous glass

Publications (1)

Publication Number Publication Date
JP2006110535A true JP2006110535A (en) 2006-04-27

Family

ID=36379485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329765A Pending JP2006110535A (en) 2004-10-15 2004-10-15 Method and apparatus for producing water or water solution having surface activity using porous glass

Country Status (1)

Country Link
JP (1) JP2006110535A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039394U (en) * 1983-08-23 1985-03-19 東邦レーヨン株式会社 Adsorption element
JPH04219131A (en) * 1990-12-20 1992-08-10 Fuji Davison Chem Ltd Production of emulsion and spherical silica gel
JPH06125737A (en) * 1992-10-20 1994-05-10 Asahi Glass Co Ltd Method for improving taste of liquid food material
JPH07324992A (en) * 1994-05-31 1995-12-12 Meidensha Corp Temperature sensor
JPH0957248A (en) * 1995-08-24 1997-03-04 Mitsubishi Rayon Co Ltd Simple water purifying device for emergency use
JP2006063040A (en) * 2004-08-30 2006-03-09 Organic Germanium Kk Method for producing physiologically active water having high permeability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039394U (en) * 1983-08-23 1985-03-19 東邦レーヨン株式会社 Adsorption element
JPH04219131A (en) * 1990-12-20 1992-08-10 Fuji Davison Chem Ltd Production of emulsion and spherical silica gel
JPH06125737A (en) * 1992-10-20 1994-05-10 Asahi Glass Co Ltd Method for improving taste of liquid food material
JPH07324992A (en) * 1994-05-31 1995-12-12 Meidensha Corp Temperature sensor
JPH0957248A (en) * 1995-08-24 1997-03-04 Mitsubishi Rayon Co Ltd Simple water purifying device for emergency use
JP2006063040A (en) * 2004-08-30 2006-03-09 Organic Germanium Kk Method for producing physiologically active water having high permeability

Similar Documents

Publication Publication Date Title
Jiang et al. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol
Shi et al. High-performance capacitive deionization via manganese oxide-coated, vertically aligned carbon nanotubes
CN109415838A (en) Electrolytic degreasing method and electrolytic degreasing device
KR101760635B1 (en) Excess microbubble hydrogen preparation device
Liu et al. Optimization of a hierarchical porous-structured reactor to mitigate mass transport limitations for efficient electrocatalytic ammonia oxidation through a three-electron-transfer pathway
KR101788917B1 (en) Device for producing hydrogen water
KR102616663B1 (en) Reduced water production device and reduced water production method
TW434189B (en) Apparatus and method for producing ionic water and system and method for producing electrolytic ionic water
CN107096479A (en) The method of plasma processing and device of chemical liquid
JP2003245669A (en) Electrolytic hydrogen dissolved water generator
CN105161730B (en) Air cathode and microbiological fuel cell
JP5912603B2 (en) Method for producing saturated gas-containing nanobubble water
KR101617617B1 (en) Electrode for wastewater treatment combined diamond coating boron and preparation method thereof
Xu et al. Surface metallization of porous polymer materials for multifunctional applications
Yang et al. Fe (II)-Modulated Microporous Electrocatalytic Membranes for Organic Microcontaminant Oxidation and Fouling Control: Mechanisms of Regulating Electron Transport toward Enhanced Reactive Oxygen Species Activation
CN103936110A (en) Domestic water electrolysis preparation device
JP2006110535A (en) Method and apparatus for producing water or water solution having surface activity using porous glass
WO2005056222A1 (en) Metal nanocolloidal liquid, method for producing metal support and metal support
CN113479872A (en) Preparation method of nitrogen-doped three-dimensional porous graphene hydrogel electrode material, electrode and application thereof
JPH03154691A (en) Method and apparatus for making high concentration ozone water
CN102388167A (en) Water splitting apparatus and method of using the same
CN105665163B (en) Shower bath head
CN105692810B (en) Healthy bath water device for making
JP6224269B1 (en) Water treatment apparatus and conductive porous carbon material used therefor
CN212356651U (en) Oxidant preparation assembly and sewage treatment equipment using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207